Towards weighing individual atoms by high-angle scattering of electrons
Argentero, G; Kotakoski, J; Eder, F R; Meyer, J C
2015-01-01
We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number.
Towards weighing individual atoms by high-angle scattering of electrons
Energy Technology Data Exchange (ETDEWEB)
Argentero, G.; Mangler, C.; Kotakoski, J.; Eder, F.R.; Meyer, J.C., E-mail: Jannik.Meyer@univie.ac.at
2015-04-15
We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate that the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number. - Highlights: • We explore how energy loss spectroscopy could be used to obtain information about the mass, rather than the charge, of atoms. • The dose and precision that would be needed to distinguish between the two isotopes of carbon, C12 and C13, is estimated. • Signal broadening due to phonons is included in the calculation. • Initial experiments show the separation between gold and carbon based on their mass rather than charge.
Scattering of phonons by dislocations
Energy Technology Data Exchange (ETDEWEB)
Anderson, A. C.
1979-01-01
By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, and the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10/sup 9/ Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations.
Scattering of thermal phonons by extended defects in dielectric crystals
Energy Technology Data Exchange (ETDEWEB)
Roth, E. P.
1975-01-01
The scattering of thermal phonons by extended defects in dielectric crystals has been observed through measurements of thermal conductivity and ballistic heat pulse propagation. The thermal conductivities of LiF and NaCl conatining 500 low-angle grain boundaries per cm were measured in the range 0.08-5 K. The measurements gave little or no evidence for phonon scattering from the grain boundaries. Measurements of phonon scattering at a 10 deg. grain boundary in silicon using direct generation and detection of ballistically propagating heat pulses were made over an effective phonon temperature range of 2 to 20 K. The grain boundary reflection coefficient was determined to be < 2%. The thermal conductivities of LiF crystals containing 5 x 10/sup 6/ - 3 x 10/sup 7/ dislocations per square cm were measured over the temperature range 0.1 to 10 K. The measurements of the sheared crystal indicated that the slow transverse phonon mode was strongly scattered by a dynamic phonon-dislocation interaction at T approximately < 2 K, while the remaining modes were scattered primarily by the boundaries. The measurements of the bent crystals indicated that, for T approximately < 2 K, the slow transverse and possibly the longitudinal phonons were strongly scattered by a dynamic phonon-dislocation interaction. For T approximately > 2 k, some fraction of the phonons (at least the slow transverse mode) were still strongly scattered, even after long exposure to ..gamma.. irradiation, while the remaining phonons were scattered primarily by the boundaries.
Weak phonon scattering effect of twin boundaries on thermal transmission.
Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin
2016-01-29
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries' thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity.
Weak phonon scattering effect of twin boundaries on thermal transmission
Huicong Dong; Jianwei Xiao; Roderick Melnik; Bin Wen
2016-01-01
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries’ thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced averag...
Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2016-04-13
Using phonon wave packet molecular dynamics simulations, we find that anomalous longitudinal acoustic (LA) mode phonon scattering in low to moderate energy ranges is responsible for initiating thermophoretic motion in carbon nanotube oscillators. The repeated scattering of a single mode LA phonon wave packet near the ends of the inner nanotube provides a net unbalanced force that, if large enough, initiates thermophoresis. By applying a coherent phonon pulse on the outer tube, which generalizes the single mode phonon wave packet, we are able to achieve thermophoresis in a carbon nanotube oscillator. We also find the nature of the unbalanced force on end-atoms to be qualitatively similar to that under an imposed thermal gradient. The thermodiffusion coefficient obtained for a range of thermal gradients and core lengths suggest that LA phonon scattering is the dominant mechanism for thermophoresis in longer cores, whereas for shorter cores, it is the highly diffusive mechanism that provides the effective force.
Kuleev, I G
2001-01-01
The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees
Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene
DEFF Research Database (Denmark)
Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads
2017-01-01
Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons.......We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility...
Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene
Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads
2017-01-01
Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons. We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry and resulting mobility.
Wang, Yan; Lu, Zexi; Ruan, Xiulin
2016-06-01
The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.
Long-Wavelength Phonon Scattering in Nonpolar Semiconductors
DEFF Research Database (Denmark)
Lawætz, Peter
1969-01-01
The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering. Fo...
Influence of mass contrast in alloy phonon scattering
Shiga, Takuma; Shiomi, Junichiro
2015-01-01
We have investigated the effect of mass contrast on alloy phonon scattering in mass-substituted Lennard-Jones crystals. By calculating the mass-difference phonon scattering rate using a modal analysis method based on molecular dynamics, we have identified the applicability and limits of the widely-used mass-difference perturbation model in terms of magnitude and sign of the mass difference. The result of a phonon -mode-dependent analysis reveals that the critical phonon frequency, above which the mass-difference perturbation theory fails, decreases with the magnitude of the mass difference independently of its sign. This gives rise to a critical mass contrast, above which the mass-difference perturbation model noticeably underestimates the lattice thermal conductivity.
Phonon scattering in graphene over substrate steps
DEFF Research Database (Denmark)
Sevincli, Haldun; Brandbyge, Mads
2014-01-01
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance...
Electron-phonon coupling in perovskites studied by Raman Scattering
Sathe, V. G.; Tyagi, S.; Sharma, G.
2016-10-01
Raman scattering is an unique technique for characterization and quantification of electron-phonon, spin-phonon and spin-lattice coupling in many of the currently prominent compounds like multiferroics and manganites. In manganites, it is understood now that a phase separated landscape with coexisting metallic and insulating regions exist in most of the compounds and application of small external perturbation causes an alteration in this landscape. In such scenario, local metallic regions grow suddenly at the expense of insulating regions below the magnetic ordering temperature. Such regions can be characterized effectively using Raman scattering measurements where delocalized electrons couple with the adjacent phonon peaks giving a Fano resonance in the form of asymmetric line shape.
Phonon scattering in graphene over substrate steps
Energy Technology Data Exchange (ETDEWEB)
Sevinçli, H., E-mail: haldunsevincli@iyte.edu.tr [Department of Materials Science and Engineering, Izmir Institute of Technology, Gülbahçe Kampüsü, 35430 Urla, Izmir (Turkey); Department of Micro- and Nano-technology (DTU Nanotech), Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Brandbyge, M., E-mail: mads.brandbyge@nanotech.dtu.dk [Department of Micro- and Nano-technology (DTU Nanotech), Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Center for Nanostructured Graphene(CNG), Department of Micro- and Nano-technology, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)
2014-10-13
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.
Ab initio phonon scattering by dislocations
Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.
2017-06-01
Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.
Electron-Phonon Scattering in Atomically Thin 2D Perovskites.
Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai
2016-11-22
Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-01
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Phonon scattering in quasi-one-dimensional structure
Energy Technology Data Exchange (ETDEWEB)
Bourahla, B., E-mail: bourahla_boualem@yahoo.f [Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou, BP 17 RP 15000 (Algeria); Laboratoire de Physique de l' etat Condense, UMR 6087, Universite du Maine, 72085 Le Mans (France); Nafa, O. [Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou, BP 17 RP 15000 (Algeria); Tigrine, R. [Laboratoire de Physique et Chimie Quantique, Universite de Tizi Ouzou, BP 17 RP 15000 (Algeria); Laboratoire de Physique de l' etat Condense, UMR 6087, Universite du Maine, 72085 Le Mans (France)
2011-02-15
We introduce a model to study a symmetric nanocontact, whereby its mechanical properties can be analyzed via the vibration spectra. The model system consists of two groups of triple semi-infinite atomic chains joined by atoms in between. The matching method theoretical approach is used to calculate the coherent reflection and transmission scattering probabilities, the characteristic vibration Green functions and densities of states (DOS), for the vibration components of the individual atomic sites that constitute a complete representation of the nanocontact domain boundaries. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the nanocontact domain. The analysis of the vibration spectra and the DOS demonstrate the fluctuations, related to Fano resonances, due to the coherent coupling between traveling phonons and the localized vibration modes in the nanocontact domain.
Anharmonic effects in light scattering due to optical phonons in silicon
Balkanski, M.; Wallis, R. F.; Haro, E.
1983-08-01
Systematic measurements by light scattering of the linewidth and frequency shift of the q-->=0 optical phonon in silicon over the temperature range of 5-1400 K are presented. Both the linewidth and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indicates the necessity of including terms in the phonon proper self-energy corresponding to four-phonon anharmonic processes.
Carrier-Phonon Scattering Rate and Charge Transport in Spherical and TMV Viruses
Sanjeev K. Gupta; Jha, Prafulla K.
2009-01-01
The present paper presents the carrier-acoustic phonon scattering in the spherical and TMV viruses. We demonstrate theoretically that the absorption rate changes in spherical and TMV viruses according to the phonon energy while emission of phonon is limited by the hole energy. The obtained relaxation rate is then used to calculate the conductivity and mobility of viruses. The obtained conductivity for spherical and TMV viruses suggest that the TMV virus is more conducting and therefore may be...
Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
Xie, Guofeng; Guo, Yuan; Li, Baohua; Yang, Liwen; Zhang, Kaiwang; Tang, Minghua; Zhang, Gang
2013-09-21
We present a kinetic model to investigate the anomalous thermal conductivity in silicon nanowires (SiNWs) by focusing on the mechanism of phonon-boundary scattering. Our theoretical model takes into account the anharmonic phonon-phonon scattering and the angle-dependent phonon scattering from the SiNWs surface. For SiNWs with diameter of 27.2 nm, it is found that in the case of specular reflection at lateral boundaries, the thermal conductivity increases as the length increases, even when the length is up to 10 μm, which is considerably longer than the phonon mean free path (MFP). Thus the phonon-phonon scattering alone is not sufficient for obtaining a normal diffusion in nanowires. However, in the case of purely diffuse reflection at lateral boundaries, the phonons diffuse normally and the thermal conductivity converges to a constant when the length of the nanowire is greater than 100 nm. Our model demonstrates that for observing the length dependence of thermal conductivity experimentally, nanowires with smooth and non-contaminated surfaces, and measuring at low temperature, are preferred.
Phonons in Solid Hydrogen and Deuterium Studied by Inelastic Coherent Neutron Scattering
DEFF Research Database (Denmark)
Nielsen, Mourits
1973-01-01
Phonon dispersion relations have been measured by coherent neutron scattering in solid para-hydrogen and ortho-deuterium. The phonon energies are found to be nearly equal in the two solids, the highest energy in each case lying close to 10 meV. The pressure and temperature dependence of the phonon...... energies have been measured in ortho-deuterium and the lattice change determined by neutron diffraction. When a pressure of 275 bar is applied, the phonon energies are increased by about 10%, and heating the crystal to near the melting point decreases them by about 7%. The densities of states, the specific...
Two-phonon scattering in graphene in the quantum Hall regime
Alexeev, A. M.; Hartmann, R. R.; Portnoi, M. E.
2015-01-01
One of the most distinctive features of graphene is its huge inter-Landau-level splitting in experimentally attainable magnetic fields which results in the room-temperature quantum Hall effect. In this paper we calculate the longitudinal conductivity induced by two-phonon scattering in graphene in a quantizing magnetic field at elevated temperatures. It is concluded that the purely phonon-induced scattering, negligible for conventional semiconductor heterostructures under quantum Hall conditi...
Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt
2008-01-01
We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase modu
One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect
Energy Technology Data Exchange (ETDEWEB)
Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)
2013-02-01
We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.
Low-Field Mobility and Galvanomagnetic Properties of Holes in Germanium with Phonon Scattering
DEFF Research Database (Denmark)
Lawætz, Peter
1968-01-01
A theoretical calculation of the low-field galvanomagnetic properties of holes in Ge has been carried out incorporating all relevant details of the band structure. The scattering is limited to acoustic and optical phonons and is described by the deformation potentials a, b, d, and d0. For pure...... acoustic scattering, no overall consistency is found between available galvanomagnetic data and deformation potentials derived directly from experiments on strained Ge. The discrepancies may be ascribed to ionized-impurity scattering, but at higher temperatures where optical phonon scattering is operative...
Energy Technology Data Exchange (ETDEWEB)
Khurgin, Jacob B., E-mail: jakek@jhu.edu [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Bajaj, Sanyam; Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-12-28
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.
Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth
2015-12-01
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.
Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon
Chu, Yanbiao; Gautreau, Pierre; Basaran, Cemal
2014-09-01
In contrast with carbon nanotubes, the absence of translational symmetry (or periodical boundary condition) in the restricted direction of zigzag graphene nanoribbon removes the selection rule of subband number conservation. However, zigzag graphene nanoribbons with even dimers do have the inversion symmetry. We, therefore, propose a selection rule of parity conservation for electron-phonon interactions. The electron-phonon scattering matrix in zigzag graphene nanoribbons is developed using the tight-binging model within the deformation potential approximation.
Ballistic Performance Study of Nanowire FET: Effect of Channel Materials and Phonon Scattering
Iztihad, Hossain Md.; Khan, Touhid; Sufian, Abu; Alam, Md. Nur Kutubul; Mollah, Md. Nurunnabi; Islam, Md. Rafiqul
2016-02-01
The ballistic performance of Si and Ge nanowire (NW) is compared in this study. Current-voltage characteristic is obtained by self-consistently solving the nonequilibrium Green’s function (NEGF) transport equation with Poisson’s equation. The result is obtained at ⟨001⟩ channel orientation. Simulation result shows Ge NW gives higher ON-state current than Si NW, when OFF-state current is made equal by gate metal work function engineering. However, at subthreshold region, performance of NW FET for both material is almost identical. The intravalley and intervalley electron-phonon scattering effect is also calculated using the deformation potential theory and the self-consistent Born approximation. It is found that electron-phonon scattering effect is more pronounced at ON-state of Si NW FET. The ballistic current decreases with the decrease in diameter of the Si NW FET due to electron-phonon scattering.
Phonon-interface scattering in multilayer graphene on an amorphous support
Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li
2013-01-01
The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656
The effects of substrate phonon mode scattering on transport in carbon nanotubes.
Perebeinos, Vasili; Rotkin, Slava V; Petrov, Alexey G; Avouris, Phaedon
2009-01-01
Carbon nanotubes (CNTs) have large intrinsic carrier mobility due to weak acoustic phonon scattering. However, unlike two-dimensional metal-oxide-semiconductor field effect transistors (MOSFETs), substrate surface polar phonon (SPP) scattering has a dramatic effect on the CNTFET mobility, due to the reduced vertical dimensions of the latter. We find that for the van der Waals distance between CNT and an SiO2 substrate, the low-field mobility at room temperature is reduced by almost an order of magnitude depending on the tube diameter. We predict additional experimental signatures of the SPP mechanism in dependence of the mobility on density, temperature, tube diameter, and CNT-substrate separation.
Selection rules for light scattering by folded acoustic phonons in low-index Si-based superlattices
Anastassakis, E.; Popovic, Z. V.
1996-08-01
We consider the propagation of acoustic waves in Si-based heterojunctions (HJs), quantum wells (QWs) and superlattices (SLs) grown in arbitrary directions, and present a general formalism for obtaining wave velocities, selection rules, and efficiency of Raman scattering (RS) and Brillouin scattering (BS) by folded acoustic-phonons. Results based on nine different directions for the phonon wavevector are tabulated.
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez; Rossen, Pim B.; Soukiassian, Arsen; Suresha, S. J.; Duda, John C.; Foley, Brian M.; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W.; Moore, Joel E.; Muller, David A.; Schlom, Darrell G.; Hopkins, Patrick E.; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A.
2014-02-01
Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.
Neutron scattering study of phonons in LaCoO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Yoshihiko [Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585 (Japan)]. E-mail: koba@pc.uec.ac.jp; Sin Naing, Thant [Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585 (Japan); Suzuki, M. [Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585 (Japan); Akimitsu, M. [Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585 (Japan); Asai, K. [Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585 (Japan); Yamada, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Akimitsu, J. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara 229-8551 (Japan); Manuel, P. [ISIS, Rutherford Appleton Laboratory, Didcot OX110QX (United Kingdom); Tranquada, J.M. [Brookhaven National Laboratory, New York, NY 11973 (United States); Shirane, G. [Brookhaven National Laboratory, New York, NY 11973 (United States)
2006-05-01
We have investigated phonons with the inelastic neutron scattering in order to study the 100K spin-state transition (ST) in LaCoO{sub 3}. The acoustic phonon dispersions show some characteristic features of the folded Brillouin zone (BZ) of the rhombohedrally distorted perovskite structure containing two chemical formula of LaCoO{sub 3} in the unit cell. The optical phonons of the E{sub g} rotational modes of O atoms and the E{sub g} vibration mode of La atoms show a remarkable softening above the ST. The softening is most pronounced at R-point of the pseudo-cubic reciprocal lattice but covers almost whole region of the Brillouin zone. In contrast, the acoustic phonons show no such softening associated with the ST.
Theory of Raman Scattering by Phonons in Germanium Nanostructures
Directory of Open Access Journals (Sweden)
Wang-Chen Chumin
2007-01-01
Full Text Available AbstractWithin the linear response theory, a local bond-polarization model based on the displacement–displacement Green’s function and the Born potential including central and non-central interatomic forces is used to investigate the Raman response and the phonon band structure of Ge nanostructures. In particular, a supercell model is employed, in which along the [001] direction empty-column pores and nanowires are constructed preserving the crystalline Ge atomic structure. An advantage of this model is the interconnection between Ge nanocrystals in porous Ge and then, all the phonon states are delocalized. The results of both porous Ge and nanowires show a shift of the highest-energy Raman peak toward lower frequencies with respect to the Raman response of bulk crystalline Ge. This fact could be related to the confinement of phonons and is in good agreement with the experimental data. Finally, a detailed discussion of the dynamical matrix is given in the appendix section.
Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks
Energy Technology Data Exchange (ETDEWEB)
Park, Jungkyu [Case Western Reserve University, Department of Mechanical and Aerospace Engineering (United States); Lee, Jonghoon [Wright Patterson Air Force Base, Air Force Research Laboratory (United States); Prakash, Vikas, E-mail: vikas.prakash@case.edu [Case Western Reserve University, Department of Mechanical and Aerospace Engineering (United States)
2015-01-15
In this research article, we analyze phonon scattering in branched single-walled carbon nanotube (SWCNT) networks with SWCNT–SWCNT T- and X- junctions using the wave packet method. Five phonon branches including the longitudinal acoustic, twisting, transverse acoustic, radial breathing, and flexural optical modes are selected to study energy reflection, ramification, and transmission through T- and X-junctions with (6,6) and (4,4) SWCNTs. The results of the simulations indicate that the diameter of SWCNTs affects phonon scattering at carbon nanotube junctions; T-junctions of (6,6) SWCNTs transmit energy more efficiently when compared to T-junctions with (4,4) SWCNTs. In addition, T-junctions of both (6,6) and (4,4) SWCNTs transmit vibrational energy more efficiently when compared to X-junctions in the same phonon frequency range—for example, in the case of the longitudinal acoustic branch, the average energy transmission at T-junctions for low-frequency phonons (lower than 6 THz) was found to be 1.8–2.4 times higher [for the case of (6.6) and (4,4) SWCNTs, respectively] when compared to the X-junctions. It is also observed that energy transmission at the T-junctions shows a dependency on the phonon group velocity with the higher group velocity phonons showing higher energy transmission; however, for the case of the X-junctions, there is little or no correlation observed between the group velocity and energy transmission indicating a complete energy redistribution of the incoming phonons at the junction. Moreover, for the SWCNT–SWCNT branched networks, the energy ramification at the T-junctions was found to be very similar to that at the X-junctions for both (6,6) and (4,4) SWCNTs indicating transverse thermal transport at the X-junctions to be as efficient as the T-junctions.
Patimisco, Pietro; Scamarcio, Gaetano; Santacroce, Maria Vittoria; Spagnolo, Vincenzo; Vitiello, Miriam Serena; Dupont, Emmanuel; Laframboise, Sylvain R; Fathololoumi, Saeed; Razavipour, Ghasem S; Wasilewski, Zbigniew
2013-04-22
We measured the lattice and subband electronic temperatures of terahertz quantum cascade devices based on the optical phonon-scattering assisted active region scheme. While the electronic temperature of the injector state (j = 4) significantly increases by ΔT = T(e)(4) - T(L) ~40 K, in analogy with the reported values in resonant phonon scheme (ΔT ~70-110 K), both the laser levels (j = 2,3) remain much colder with respect to the latter (by a factor of 3-5) and share the same electronic temperature of the ground level (j = 1). The electronic population ratio n(2)/n(1) shows that the optical phonon scattering efficiently depopulates the lower laser level (j = 2) up to an electronic temperature T(e) ~180 K.
Phonon transport in silicon nanowires: The reduced group velocity and surface-roughness scattering
Zhu, Liyan; Li, Baowen; Li, Wu
2016-09-01
Using a linear-scaling Kubo simulation approach, we have quantitatively investigated the effects of confinement and surface roughness on phonon transport in silicon nanowires (SiNWs) as thick as 55 nm in diameter R . The confinement effect leads to significant reduction of phonon group velocity v in SiNWs compared to bulk silicon except at extremely low phonon frequencies f , which very likely persists in SiNWs several hundreds of nanometers thick, suggesting the inapplicability of bulk properties, including anharmonic phonon scattering, to SiNWs. For instance, the velocity can be reduced by more than 30% for phonons with f >4.5 THz in 55-nm-thick nanowires. In rough SiNWs Casimir's limit, which is valid in confined macroscopic systems, can underestimate the surface scattering by more than one order of magnitude. For a roughness profile with Lorentzian correlation characterized by root-mean-square roughness σ and correlation length Lr, the frequency-dependent phonon diffusivity D follows power-law dependences D ∝Rασ-βLrγ , where α ˜2 and β ˜1 . On average, γ increases from 0 to 0.5 as R /σ increases. The mean free path and the phonon lifetime essentially follow the same power-law dependences. These dependences are in striking contrast to Casimir's limit, i.e., D ˜v R /3 , and manifest the dominant role of the change in the number of atoms due to roughness. The thermal conductivity κ can vary by one order of magnitude with varying σ and Lr in SiNWs, and increasing σ and shortening Lr can efficiently lower κ below Casimir's limit by one order of magnitude. Our work provides different insights to understand the ultralow thermal conductivity of SiNWs reported experimentally and guidance to manipulate κ via surface roughness engineering.
Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides.
Wang, Zhao; Yang, Xiaolong; Feng, Dan; Wu, Haijun; Carrete, Jesus; Zhao, Li-Dong; Li, Chao; Cheng, Shaodong; Peng, Biaolin; Yang, Guang; He, Jiaqing
2017-02-01
We present a comprehensive experimental and theoretical study of phonon scattering by nanoprecipitates in potassium-doped PbTe, PbSe, and PbS. We highlight the role of the precipitate size distribution measured by microscopy, whose tuning allows for thermal conductivities lower than the limit achievable with a single size. The correlation between the size distribution and the contributions to thermal conductivity from phonons in different frequency ranges provides a physical basis to the experimentally measured thermal conductivities, and a criterion to estimate the lowest achievable thermal conductivity. The results have clear implications for efficiency enhancements in nanostructured bulk thermoelectrics.
Phononic thermal resistance due to a finite periodic array of nano-scatterers
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier
2016-07-01
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5-100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Phononic thermal resistance due to a finite periodic array of nano-scatterers
Energy Technology Data Exchange (ETDEWEB)
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)
2016-07-28
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Diffuse scattering and low-energy phonons in superionic conductor Cu1.8SSe
Danilkin, Sergey; Hoser, Andreas; Schweika, Werner
2005-03-01
The neutron diffuse and inelastic scattering were studied in the superionic α-phase of copper selenide. In neutron diffraction experiments on Cu1.85Se single crystal the diffuse scattering features were observed along [111] direction in vicinity of (400) and (422) reflections. In inelastic neutron scattering measurements performed with time-of-flight spectrometer the elastic and inelastic scattering processes were separated and a strong inelastic scattering was observed also along [111] nearby (400) and (022). This shows that diffuse scattering found in conventional diffraction experiment is mainly inelastic and most probably comes from the low-energy phonons. Such phonons with optic-like behaviour of transverse acoustic modes at q/qm> 0.2-0.4 were found earlier in α-Cu1.85Se [1]. [1] S.A. Danilkin, A.N. Skomorokhov, A. Hoser, H. Fuess, V. Rajevac, N.N. Bickulova, Crystal structure and lattice dynamics of superionic copper selenide Cu2-δSe, J. Alloys and Compounds, 2003, v. 361, p. 57-61.
A multi-phonon light-scattering and resolution of acousto-optic devices
Shcherbakov, Alexandre S.; Hanessian de la Garza, Ana V.; Chavushyan, Vahram; Nemov, Sergey A.
2012-02-01
Rather specific types of light diffraction in the condensed matters are analyzed theoretically, so that in fact a set of processes conditioned by a multi-phonon light scattering in the Bragg regime is under investigation. Besides of their scientific novelty, studying these phenomena promises real progress in applications, because practical exploiting of the m - phonon processes in frontier schemes for the acousto-optical spectrum analysis of both optical and radio-signals leads potentially to improving the frequency and/or spectral resolution of the corresponding analyzers by almost m - times. With this in mind, the wave-based description, the corpuscular approach as well as the quantum interpretation of acousto-optical interaction are used here to characterize various aspects related to improving the expected resolution of acousto-optical devices exploiting a multi-phonon light scattering. In so doing, the quantity of orders under consideration is limited by number N <= 4 , which is still hopefully possible to be achieved experimentally in Bragg regime. Additionally, a brief description of a multi-order light scattering by usual thin diffraction grating is presented in the appendix for the convenience of its physical comparison with the results obtained for acousto-optics.
Energy Technology Data Exchange (ETDEWEB)
Hu, Bo, E-mail: hubo2011@semi.ac.cn
2015-03-15
The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.
Directory of Open Access Journals (Sweden)
C. Roy
2011-11-01
Full Text Available We present a quantum optics formalism to study the intensity power broadening of a semiconductor quantum dot interacting with an acoustic-phonon bath and a high-Q microcavity. Power broadening is investigated using a time-convolutionless master equation in the polaron frame, which allows for a nonperturbative treatment of the interaction of the quantum dot with the phonon reservoir. We calculate the full non-Lorentzian photoluminescence (PL line shapes and numerically extract the intensity linewidths of the quantum-dot exciton and the cavity mode as a function of the pump rate and temperature. For increasing field strengths, multiphonon and multiphoton effects are found to be important, even for phonon-bath temperatures as low as 4 K. We show that the interaction of the quantum dot with the phonon reservoir introduces pronounced features in the power-broadened PL line shape, enabling one to observe clear signatures of electron-phonon scattering. The PL line shapes from cavity pumping and exciton pumping are found to be distinctly different, primarily since the latter is excited through the exciton-phonon reservoir. To help explain the underlying physics of phonon scattering on the power-broadened line shape, an effective phonon Lindblad master equation derived from the full time-convolutionless master equation is introduced; we identify and calculate distinct Lindblad scattering contributions from electron-phonon interactions, including effects such as excitation-induced dephasing, incoherent exciton excitation, and exciton-cavity feeding. Our effective phonon master equation is shown to reproduce the full PL intensity and the phonon-coupling effects very well, suggesting that its general Lindblad form may find widespread use in semiconductor cavity-QED.
Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming
2017-02-08
By carefully and systematically performing Green-Kubo equilibrium molecular dynamics simulations, we report that the thermal conductivity (κ) of Si nanowires (NWs) does not diverge but converges and increases steeply when NW diameter (D) becomes extremely small (dκ/dD < 0), a long debate of one-dimensional heat conduction in history. The κ of the thinnest possible Si NWs reaches a superhigh level that is as large as more than 1 order of magnitude higher than its bulk counterpart. The abnormality is explained in terms of the dominant normal (N) process (energy and momentum conservation) of low frequency acoustic phonons that induces hydrodynamic phonon flow in the Si NWs without being scattered. With D increasing, the downward shift of optical phonons triggers strong Umklapp (U) scattering with acoustic phonons and attenuates the N process, leading to the regime of phonon boundary scattering (dκ/dD < 0). The two competing mechanisms result in nonmonotonic diameter dependence of κ with minima at critical diameter of 2-3 nm. Our results unambiguously demonstrate the converged κ and the clear trend of κ ∼ D for extremely thin Si NWs by fully elucidating the competition between the hydrodynamic phonon flow and phonon boundary scattering.
Electron-soft phonon scattering in n -type SrTi O3
Zhou, W. X.; Zhou, J.; Li, C. J.; Zeng, S. W.; Huang, Z.; Harsan Ma, H. J.; Han, K.; Lim, Z. S.; Wan, D. Y.; Zhang, L. C.; Venkatesan, T.; Feng, Y. P.; Ariando
2016-11-01
SrTi O3 undergoes a cubic to tetragonal phase transition at Tc=105 -110 K , which can be described by a Brillouin zone corner Γ25 (111) soft phonon. Even though clear anomalies in specific heat, thermal expansion coefficient, and sound velocity have been observed, the correlation between phase transition and electronic transport properties in n -type doped SrTi O3 is still controversial. Here, we report phase transition induced electronic transport anomaly in temperature dependence of the temperature coefficient of resistance (TCR) consistently observed in a wide variety of SrTi O3 -based systems by detailed transport measurements and first-principles calculations. The observed TCR anomaly, which can be well fitted with the electron-Γ25 soft phonon scattering around Tc, is found to be caused by anomalies in both mobility and carrier density, with the former taking the dominant role. Moreover, the magnitude of the anomaly is found to decrease with increasing carrier density. These findings demonstrate the role of the electron-Γ25 soft phonon scattering in the conduction mechanism in SrTi O3 -based systems.
The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials
Cai, Chengxin; Wang, Zhaohong; Chu, Yangyang; Liu, Guangshun; Xu, Zhuo
2017-10-01
In this paper, the phononic band structures of Bragg scattering and locally resonant pentamode metamaterials (PMs) with single and composite materials symmetric double-cone elements (SDCEs) are calculated by using the finite element method. The numerical results show that, for the Bragg scattering PMs with single material SDCEs, the phononic band gaps (PBGs) can be obtained while the top touch cone diameters (TTCDs) (i.e. d) are much smaller than the bottom touch cone diameters (i.e. D), and the variation range of the PBGs frequency is mainly determined by the TTCDs. This indicates that the Bragg scattering PMs with single material SDCEs can be investigated as a phonon crystal. On this basis, the locally resonant SDCE PMs can be designed by using the composite SDCEs instead of single material SDCEs, and the PBGs can be obtained under the 100 Hz. This finding provides a way to control the low-frequency acoustics waves by using small-sized SDCEs PMs. In addition, compared with the Bragg scattering PMs, the relative bandwidth of the first PBGs of the locally resonant PMs can be expanded at least 25 times. In the end, the effect of mass density ~ρ and Young’s modulus E of the composition material parameters of locally resonant SDCEs PMs on the PBGs is also studied by changing the parameters individually. The results show that the lower and upper edge and relative bandwidth of the first PBGs of locally resonant PMs with composite SDCEs are mainly impacted by the difference of the mass density ρ between the two constituent materials, and the difference of the Young’s modulus E between the two constituent materials has little effect on the PBGs.
Using high pressure to study thermal transport and phonon scattering mechanisms
Hohensee, Gregory Thomas
The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine
Two-phonon 1- state in 112Sn observed in resonant photon scattering
Pysmenetska, I; Karg, O; Kneissl, U; Kohstall, C; Pitz, H H; Ponomarev, V Yu; Scheck, M; Stedile, F; Volz, S; Von Neumann-Cosel, P; Walter, S; Von Garrel, H
2006-01-01
Results of a photon scattering experiment on 112Sn using bremsstrahlung with an endpoint energy of E_0 = 3.8 MeV are reported. A J = 1 state at E_x = 3434(1) keV has been excited. Its decay width into the ground state amounts to Gamma_0 = 151(17) meV, making it a candidate for a [2+ x 3-]1- two-phonon state. The results for 112Sn are compared with quasiparticle-phonon model calculations as well as the systematics of the lowest-lying 1- states established in other even-mass tin isotopes. Contrary to findings in the heavier stable even-mass Sn isotopes, no 2+ states between 2 and 3.5 MeV excitation energy have been detected in the present experiment.
Energy Technology Data Exchange (ETDEWEB)
Lü, X.; Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7, 10117 Berlin (Germany)
2016-06-07
We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of the initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.
Phonon scattering limited performance of monolayer MoS{sub 2} and WSe{sub 2} n-MOSFET
Energy Technology Data Exchange (ETDEWEB)
Sengupta, Amretashis, E-mail: a.sengupta@vlsi.iiests.ac.in [School of VLSI Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103 (India); Chanana, Anuja; Mahapatra, Santanu [Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore-560012 (India)
2015-02-15
In this paper we show the effect of electron-phonon scattering on the performance of monolayer (1L) MoS{sub 2} and WSe{sub 2} channel based n-MOSFETs. Electronic properties of the channel materials are evaluated using the local density approximation (LDA) in density functional theory (DFT). For phonon dispersion we employ the small displacement / frozen phonon calculations in DFT. Thereafter using the non-equilibrium Green’s function (NEGF) formalism, we study the effect of electron-phonon scattering and the contribution of various phonon modes on the performance of such devices. It is found that the performance of the WSe{sub 2} device is less impacted by phonon scattering, showing a ballisticity of 83% for 1L-WSe{sub 2} FET for channel length of 10 nm. Though 1L-MoS{sub 2} FET of similar dimension shows a lesser ballisticity of 75%. Also in the presence of scattering there exist a a 21–36% increase in the intrinsic delay time (τ) and a 10–18% reduction in peak transconductance (g{sub m}) for WSe{sub 2} and MoS{sub 2} devices respectively.
Electron-phonon scattering and in-plane electric conductivity in twisted bilayer graphene
Ray, N.; Fleischmann, M.; Weckbecker, D.; Sharma, S.; Pankratov, O.; Shallcross, S.
2016-12-01
We have surveyed the in-plane transport properties of the graphene twist bilayer using (i) a low-energy effective Hamiltonian for the underlying electronic structure, (ii) an isotropic elastic phonon model, and (iii) the linear Boltzmann equation for elastic electron-phonon scattering. We find that transport in the twist bilayer is profoundly sensitive to the rotation angle of the constituent layers. Similar to the electronic structure of the twist bilayer, the transport is qualitatively different in three distinct angle regimes. At large angles (θ >≈10∘ ) and at temperatures below an interlayer Bloch-Grüneisen temperature of ≈10 K, the conductivity is independent of the twist angle, i.e., the layers are fully decoupled. Above this temperature the layers, even though decoupled in the ground state, are recoupled by electron-phonon scattering and the transport is different both from single-layer graphene as well as the Bernal bilayer. In the small-angle regime θ <≈2∘ , the conductivity drops by two orders of magnitude and develops a rich energy dependence, reflecting the complexity of the underlying topological changes (Lifshitz transitions) of the Fermi surface. At intermediate angles, the conductivity decreases continuously as the twist angle is reduced, while the energy dependence of the conductivity presents two sharp transitions, that occur at specific angle-dependent energies, and that may be related to (i) the well-studied van Hove singularity of the twist bilayer and (ii) a Lifshitz transition that occurs when trigonally placed electron pockets decorate the strongly warped Dirac cone. Interestingly, we find that, while the electron-phonon scattering is dominated by layer symmetric flexural phonons in the small-angle limit, at large angles, in contrast, it is the layer antisymmetric flexural mode that is most important. We examine the role of a layer perpendicular electric field finding that it affects the conductivity strongly at low temperatures
Electron-phonon coupling and surface Debye temperature of Bi2Te3(111) from helium atom scattering
DEFF Research Database (Denmark)
Tamtogl, Anton; Kraus, Patrick; Avidor, Nadav
2017-01-01
We have studied the topological insulator Bi2Te3(111) by means of helium atom scattering. The average electron-phonon coupling lambda of Bi2Te3(111) is determined by adapting a recently developed quantum-theoretical derivation of the helium scattering probabilities to the case of degenerate...
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Bruch, Ludwig Walter
2007-01-01
Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...
Comparing the anomalous phonons in Fe(Te,Se) and (Fe,Ni)(Te,Se) via neutron scattering
Schneeloch, John; Xu, Zhijun; Gu, Genda; Zaliznyak, Igor; Winn, Barry; Rodriguez-Rivera, Jose; Birgeneau, Robert; Xu, Guangyong; Tranquada, John
We studied the anomalous acoustic-type phonons in the Fe(Te,Se) iron-based superconductor family that arise from the (100) Bragg peak, which is forbidden according to the reported crystal structure for these materials. Inelastic neutron scattering was performed on superconducting and non-superconducting crystals of various compositions. The (100) phonons were much weaker in a non-superconducting nickel-doped crystal than in a superconducting crystal with similar selenium fraction, but comparison with another non-superconducting crystal suggests the difference is not simply related to superconductivity. This composition dependence was observed for both transverse and longitudinal phonons. The temperature dependences of the (100) phonons resembled those of conventional phonons. We will discuss these results and possible explanations for the relation between composition and lattice dynamics in this system.
Investigation of phonon-like excitation in hydrated protein powders by neutron scattering
Chu, Xiang-Qiang (Rosie); Mamontov, Eugene; O'Neill, Hugh; Zhang, Qiu; Kolesnikov, Alexander
2013-03-01
Detecting the phonon dispersion relations in proteins is essential for understanding the intra-protein dynamical behavior. Such study has been attempted by X-ray in recent years. However, for such detections, neutrons have significant advantages in resolution and time-efficiency compare to X-rays. Traditionally the collective motions of atoms in protein molecules are hard to detect using neutrons, because of high incoherent scattering background from intrinsic hydrogen atoms in the protein molecules. The recent availability of a fully deuterated green fluorescent protein (GFP) synthesized by the Bio-deuteration Lab at ORNL opens new possibilities to probe collective excitations in proteins using inelastic neutron scattering. Using a direct time-of-flight Fermi chopper neutron spectrometer, we obtained a full map of the meV phonon-like excitations in the fully deuterated protein. The Q range of the observed excitations corresponds to the length scale close to the size of the secondary structures of proteins and reflects the collective intra-protein motions. Our results show that hydration of GFP seems to harden, not soften, the collective motions. This result is counterintuitive but in agreement with the observations by previous neutron scattering experiments. Sample preparation was supported by facilities operated by the Center for Structural Molecular Biology at ORNL which is supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research Project ERKP291.
Modeling inelastic phonon scattering in atomic- and molecular-wire junctions
DEFF Research Database (Denmark)
Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads
2005-01-01
Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between...... the full nonequilibrium Green's function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide...... a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule....
DEFF Research Database (Denmark)
Nielsen, Per Kær; Gregersen, Niels; Mørk, Jesper
2013-01-01
A solid-state single-photon source emitting indistinguishable photons on-demand is an essential component of linear optics quantum computing schemes. However, the emitter will inevitably interact with the solid-state environment causing decoherence and loss of indistinguishability. In this paper......, we present a comprehensive theoretical treatment of the influence of phonon scattering on the coherence properties of single photons emitted from semiconductor quantum dots. We model decoherence using a full microscopic theory and compare with standard Markovian approximations employing Lindblad...
Phonons and magnons in stripe-ordered nickelates. A Raman scattering study
Gnezdilov, V.; Kurnosov, V.; Yeremenko, A.; Pashkevich, Yu.; Lemmens, P.; Tranquada, J.; Choi, K.-Y.; Güntherodt, G.; Nakajima, K.
2005-02-01
Electronic correlation effects in La2-xSrxNiO4 (x=1/3 and 0.225) lead to spontaneous phase separation into microscopic spin/charge stripes with commensurate and incommensurate order, respectively. Raman scattering experiments on such single-crystalline materials show a rich phenomenology of phonon and magnon anomalies due to the new, self-organized periodicities. These effects are observable as function of temperature but can also be induced by cooling in seemingly small magnetic fields leading to a reorganization of stripe structure.
Effect of Electron-Phonon Scattering on Shot Noise in Nanoscale Junctions
Chen, Yu-Chang; di Ventra, Massimiliano
2005-10-01
We investigate the effect of electron-phonon inelastic scattering on shot noise in nanoscale junctions in the regime of quasiballistic transport. We predict that when the local thermal energy of the junction is larger than its lowest vibrational mode energy eVc, the inelastic contribution to shot noise (conductance) increases (decreases) with bias as V (V). The corresponding Fano factor thus increases as V. We also show that the inelastic contribution to the Fano factor saturates with increasing thermal current exchanged between the junction and the bulk electrodes to a value which, for V≫Vc, is independent of bias. These predictions can be readily tested experimentally.
Coherent phonon scattering in ZnO and ZnS at sulfite and oxygen impurities
Energy Technology Data Exchange (ETDEWEB)
Bachmann, M.; Czerner, M.; Heiliger, C. [I. Physikalisches Institut, Justus Liebig University Giessen (Germany)
2013-01-15
We employ an atomistic Green's function (AGF) method which is based on ab initio interatomic force constants (IFCs) to calculate coherent phonon scattering in ZnO at sulfur impurities and ZnS at oxygen impurities. For our calculations we consider different geometries and different transport directions. In particular, we investigate the impact of the change in the mass of the impurities on the transmission function and also the change in the IFCs due to the impurities. We show that if we only consider a change in the mass the transmission function for the high energy phonons is strongly reduced. If we further take into account the change in the IFCs also the low energy phonons are affected. From these results we conclude that incorporation of sulfur in ZnO and incorporation of oxygen in ZnS can reduce the thermal lattice conductivity and therefore increase the figure of merit substantially. In addition, our results demonstrate that for a realistic description just the change of the mass is not enough but the IFCs of the impurities have to be calculated. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Mei, A. B.; Hellman, O.; Schlepütz, C. M.; Rockett, A.; Chiang, T.-C.; Hultman, L.; Petrov, I.; Greene, J. E.
2015-11-01
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations ℏ ωj (q), phonon densities of states g (ℏ ω ), and isochoric temperature-dependent vibrational heat capacities cv(T ) . We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv(T ) , computed within the harmonic approximation from ℏ ωj (q) values, increase with temperature from 0.4 ×10-4eV /atom K at 100 K to 1.4 ×10-4eV /atom K at 200 K and 1.9 ×10-4eV /atom K at 300 K, in excellent agreement with isobaric heat capacity values cp(T ) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲θc , where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲10 nm .
Phonon and magnon scattering of Bi{sub 2}Fe{sub 4}O{sub 9} ceramic
Energy Technology Data Exchange (ETDEWEB)
Sharma, Poorva, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Kumar, Ashwini, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India)
2014-04-24
We report the phonon structure of Bi{sub 2}Fe{sub 4}O{sub 9} ceramics as synthesized by solid-state reaction route. Rietveld refined X-ray diffraction patterns confirmed the formation of single-phase perovskite structure and all the peaks of Bi{sub 2}Fe{sub 4}O{sub 9} perfectly indexed to the orthorhombic (space group Pbam). Raman scattering measurements identifies 12A{sub g}+1B{sub 2g}+1B{sub 3g} Raman active optical phonon modes. Apart from phonon scattering, mode at 470 cm{sup −1} is observed which is due to magnon scattering. The P-E loop infers paraelectric nature of Bi{sub 2}Fe{sub 4}O{sub 9}.
Bulk phonon scattering in perturbed quasi-3D multichannel crystallographic waveguide
Energy Technology Data Exchange (ETDEWEB)
Rabia, M S [Laboratoire de Mecanique des Structures et Energetique, Departement de Genie Mecanique, Faculte du Genie de la Construction, Universite M. Mammeri, Tizi-Ouzou 15000 (Algeria)], E-mail: m2msr@yahoo.fr
2008-11-19
In the present paper, we concentrate on the influence of local defects on scattering properties of elastic waves in perturbed crystalline quasi-three-dimensional nanostructures in the harmonic approximation. Our model consists of three infinite atomic planes, assimilated into a perfect waveguide in which different distributions of scatterers (or defects) are inserted in the bulk. We have investigated phonon transmission and conductance for three bulk defect configurations. The numerical treatment of the problem, based on the Landauer approach, resorts to the matching method initially employed for the study of surface localized phonons and resonances. We present a detailed study of the defect-induced fluctuations in the transmission spectra. These fluctuations can be related to Fano resonances and Fabry-Perot oscillations. The first is due to the coupling between localized defect states and the perfect waveguide propagating modes whereas the latter results from the interference between incidental and reflected waves. Numerical results reveal the intimate relation between transmission spectra and localized impurity states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems.
Bulk phonon scattering in perturbed quasi-3D multichannel crystallographic waveguide.
Rabia, M S
2008-11-19
In the present paper, we concentrate on the influence of local defects on scattering properties of elastic waves in perturbed crystalline quasi-three-dimensional nanostructures in the harmonic approximation. Our model consists of three infinite atomic planes, assimilated into a perfect waveguide in which different distributions of scatterers (or defects) are inserted in the bulk. We have investigated phonon transmission and conductance for three bulk defect configurations. The numerical treatment of the problem, based on the Landauer approach, resorts to the matching method initially employed for the study of surface localized phonons and resonances. We present a detailed study of the defect-induced fluctuations in the transmission spectra. These fluctuations can be related to Fano resonances and Fabry-Pérot oscillations. The first is due to the coupling between localized defect states and the perfect waveguide propagating modes whereas the latter results from the interference between incidental and reflected waves. Numerical results reveal the intimate relation between transmission spectra and localized impurity states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems.
Prunnila, M; Kivinen, P; Savin, A; Törmä, P; Ahopelto, J
2005-11-11
We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on doped n-type Si samples with electron concentrations (3.5-16.0) x 10(25) m(-3) are performed at sub-Kelvin temperatures. We find a good agreement between the theory and the experiment.
Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.
2016-10-01
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one's ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.
Energy Technology Data Exchange (ETDEWEB)
Devereaux, T.P.; Shvaika, A.M.; Wu, K.; Wohlfeld, K.; Jia, C.J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.
2016-10-25
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.
Lin, Yow-Jon
2015-12-01
A correlation between the temperature-dependent leakage conduction, phonon and impurity scatterings and potential fluctuations of graphene/n-type Si Schottky diodes is identified. For applying a sufficiently high reverse-bias voltage, the significantly increase in the leakage current density with voltage at low temperature is mainly the result of graphene's Fermi-energy shifts. However, the high-field saturating leakage current is observed at high temperature. This is because of the competition among the phonon and impurity scatterings. In the graphene film transferred onto the n-type Si substrate, the Femi energy level is lower and the phonon coupling is stronger, giving a stronger dependence in the carrier velocity with temperature and a weaker dependence in the leakage current density with reserve-bias voltage.
Raman scattering from confined phonons in GaAs/AlGaAs quantum wires
Bairamov, B. H.; Aydinli, A.; Tanatar, B.; Güven, K.; Gurevich, S.; Mel'tser, B. Ya.; Ivanov, S. V.; Kop'ev, P. S.; Smirnitskii, V. B.; Timofeev, F. N.
1998-10-01
We report on photoluminescence and Raman scattering performed at low temperature (T = 10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL = 100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 = 285.6 cm-1forL = 11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.
Enhanced Thermoelectric Performance of Nanostructured Bi2Te3 through Significant Phonon Scattering.
Yang, Lei; Chen, Zhi-Gang; Hong, Min; Han, Guang; Zou, Jin
2015-10-28
N-type Bi2Te3 nanostructures were synthesized using a solvothermal method and in turn sintered using sparking plasma sintering. The sintered n-type Bi2Te3 pellets reserved nanosized grains and showed an ultralow lattice thermal conductivity (∼0.2 W m(-1) K(-1)), which benefits from high-density small-angle grain boundaries accommodated by dislocations. Such a high phonon scattering leads an enhanced ZT of 0.88 at 400 K. This study provides an efficient method to enhance thermoelectric performance of thermoelectric nanomaterials through nanostructure engineering, making the as-prepared n-type nanostructured Bi2Te3 as a promising candidate for room-temperature thermoelectric power generation and Peltier cooling.
Effect of electron-phonon scattering anisotropy on the Hall effect in molybdenum
Energy Technology Data Exchange (ETDEWEB)
Cherepanov, V.I.; Startsev, V.E.; Volkenshtein, N.V.
1979-10-01
The Hall effect is studied in the temperature interval 2--150 K in monocrystalline molybdenum with resistance ratio rho/sub 273.2//rho/sub 4.2/ =32000. For T<80 /sup 0/K the Hall coefficient is anisotropic and has a nonmonotonic temperature dependence. An extremum in R/sub H/(T) is observed at hydrogen temperatures and is sensitive to the magnitude of the magnetic field. The observed behavior of R/sub H/(T) is explained by the Fermi surface geometry of molybdenum and by the influence of the electron-phonon scattering anisotropy. The interpretation of the experimental data is supported by a comparison of the temperature dependences of the Hall coefficient for molybdenum and tungsten.
Scattering rates due to electron-phonon interaction in CdS1-xSex quantum dots
Alcalde, Augusto M.; Weber, Gerald
2000-11-01
We calculate electron-LO-confined and surface phonon scattering rates in CdS1-xSex spherical quantum dots. The phonon modes are described in the frame of the two-mode dielectric continuum model, and the standard k.p formalism is used for treating the electronic band structure. We include the effects of inhomogeneous broadening due to statistical dot size distribution, which can create a wide channel of efficient relaxation. We demonstrate that changes in the concentration can generate variations of more than one order of magnitude in the relaxation rates.
Zhang, Shu-Lin; Xia, Lei; Chen, Weihua; Li, D. Y.; Li, Wanyu; He, Juan
2016-12-01
The phonon dispersion relation (PDR), i.e., the dependence of phonon frequency ω on its wavevector q, ω(q), was measured traditionally by inelastic neutron scattering (INS) or inelastic X-ray scattering (IXS). A new approach to measure PDR by Raman scattering (RS) of nanostructures was proposed and applied to observe the longitudinal optical (LO) PDR of diamond successfully. Due to the higher resolution and accuracy of ω and q in RS, a clear downbending feature of ω with increasing q away from the Brillouin zoon center was observed for the first time. The validity of the new approach has been confirmed also by the appearing of the downward bending in PDR, which is originally measured by traditional high-resolution IXS experiment. The downbending feature may give us a clue for deep understanding of the interactions occur in diamond, while the overbending feature observed by INS and IXS has been attributed to strong effective second-nearest-neighbor forces.
Surface defects characterization in a quantum wire by coherent phonons scattering
Energy Technology Data Exchange (ETDEWEB)
Rabia, M. S. [Laboratoire de Mécanique des Structures et Energétique, Faculté du Génie de la Construction, Université. Mammeri de Tizi-Ouzou, BP 17 RP Hasnaoua II, Tizi-Ouzou 15000, Algérie m2msr@yahoo.fr (Algeria)
2015-03-30
The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.
Electron-confined LO-phonon scattering in GaAs-Al0.45Ga0.55As superlattice
Indian Academy of Sciences (India)
D Abouelaoualim
2006-02-01
We develop a theoretical model to the scattering time due to the electron-confined LO-phonon in GaAs-AlGa1-As superlattice taking into account the sub-band parabolicity. Using the new analytic wave function of electron miniband conduction of superlattice and a reformulation slab model for the confined LO-phonon modes, an expression for the electron-confined LO-phonon scattering time is obtained. In solving numerically a partial differential equation for the phonon generation rate, our results show that for = 0.45, the LO-phonon in superlattice changes from a bulk-like propagating mode to a confined mode. The dispersion of the relaxation time due to the emission of confined LO-phonons depends strongly on the total energy.
Zhou, Yanguang; Hu, Ming
2017-03-01
Understanding phonon transport across interfaces serves as a major tool to advance a diverse spectrum of fundamental and applied research. Unlike bulk materials, where the three-phonon scattering process is relatively straightforward to investigate, little research has been dedicated to the detailed analysis of the three-phonon scattering process at interfaces due to the complexity of interfaces and the mismatch of phonon dispersions of the two connecting parts. Based on the nonequilibrium molecular dynamics simulation, which is one of the most popular approaches to investigate the thermal conductance, we develop an explicit theoretical framework by considering the full third-order force constants field to quantify the two- and three-phonon scattering at interfaces. Bulk Ar is used as a benchmark to validate the computational scheme by comparing the results with those using the all-order phonon scattering method [frequency-dependent directly decomposed method; Y. Zhou and M. Hu, Phys. Rev. B 92, 195205 (2015), 10.1103/PhysRevB.92.195205]. Then, Ar-heavy Ar and Si-Ge interfaces are studied and the respective role of two- and three-phonon scattering processes is quantitatively characterized at different temperatures. Moreover, all four different types of the three-phonon scattering process are explicitly evaluated. The method developed herein for splitting the two- and three-phonon scattering processes in the interfacial heat transport is expected to advance our understanding of the phonon process at interfaces, and will facilitate designing high-performance interfacial structures in terms of efficient thermal management.
Energy Technology Data Exchange (ETDEWEB)
Volkenshtein, N.V.; Veprev, A.G.; Startsev, V.E.; Cherepanov, A.N.; Cherepanov, V.I.
1985-07-01
The Hall coefficient R/sub H/(T), transverse magnetoresistance rho/sub c/(T), and the temperature-dependent component rho/sub c/(T) of the impurity electrical resistance are measured as functions of temperature T = 4.2--300 K for vanadium and tantalum single crystals with rho/sub 273.2//rho/sub 4.2/ = 1350 and 500, respectively. The curves R/sub H/(T) have minima at T0 = 33 and 24 K for vanadium and tantalum, respectively, which indicates that the electron-phonon scattering is anisotropic. The anisotropy is caused by ''intersheet'' electron-phonon processes in which the charge carriers are scattered between the open hole surface GAMMAH3h and the closed hole ellipsoids N3h. The curves r/sub H/(T) and rho/sub c/(T) have maxima for T close to T0. The observed extrema have a common physical origin and can be explained by the Kagan-Zhernov-Flerov theory, which postulates that the nonequilibrium part of the electron distribution function is anisotropic. The observed dependence R/sub H/(T) for T>T0 agrees with calculations of R/sub H/(T) for vanadium based on realistic models for the electron and phonon spectra, including the anisotropy for the electron-phonon interaction matrix element.
Molenkamp, L.W.; Wiersma, Douwe A.
1984-01-01
We report results of an optical and picosecond photon echo study on the zero-phonon line of photosite I of pentacene in benzoic acid. The results show that optical dephasing in this system proceeds via uncorrelated phonon scattering processes from the ground and optically excited state to singly exc
Energy Technology Data Exchange (ETDEWEB)
Weber, F.
2007-11-02
The present thesis concentrates on the signatures of strong electron-phonon coupling in phonon properties measured by inelastic neutron scattering. The inelastic neutron scattering experiments were performed on the triple-axis spectrometers 1T and DAS PUMA at the research reactors in Saclay (France) and Munich (Germany), respectively. The work is subdivided into two separate chapters: In the first part, we report measurements of the lattice dynamical properties, i.e. phonon frequency, linewidth and intensity, of the conventional, i.e. phonon-mediated, superconductor YNi{sub 2}B{sub 2}C of the rare-earth-borocarbide family. The detailed check of theoretical predictions for these properties, which were calculated in the theory group of our institute, was one major goal of this work. We measured phonons in the normal state, i.e. T>T{sub c}, for several high symmetry directions up to 70 meV. We were able to extract the full temperature dependence of the superconducting energy gap 2{delta}(T) from our phonon scans with such accuracy that even deviations from the weak coupling BCS behaviour could be clearly observed. By measuring phonons at different wave vectors we demonstrated that phonons are sensitive to the gap anisotropy under the precondition, that different phonons get their coupling strength from different parts of the Fermi surface. In the second part, we investigated the properties of Mn-O bond-stretching phonons in the bilayer manganite La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}. At the doping level x=0.38 this compound has an ferromagnetic groundstate and exhibits the so-called colossal magnetoresistance effect in the vicinity of the Curie temperature T{sub C}. The atomic displacement patterns of the investigated phonons closely resemble possible Jahn-Teller distortions of the MnO{sub 6} octahedra, which are introduced in this compound by the Jahn-Teller active Mn{sup 3+} ions. We observed strong renormalizations of the phonon frequencies and clear peaks of
Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Mönch, I.; Deneke, Ch.; Schmidt, O. G.; Rampnoux, J. M.; Wang, S.; Plissonnier, M.; Rastelli, A.; Dilhaire, S.; Mingo, N.
2010-06-01
The ability to precisely control the thermal conductivity (κ) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of κ of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low κ are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as ~15nm. Single-barrier thermal resistances between 2 and 4×10-9m2KW-1 were attained, resulting in a room-temperature κ down to about 0.9Wm-1K-1, in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green's function simulations.
Raman scattering by phonons of Ga1-xAlxSb mixed crystals
Berdekas, D.
2013-06-01
We present calculations of the Raman scattering spectra by the long-wavelength vibrations of Ga1-xAlxSb mixed crystals for three different cation concentrations. Each mixed crystal is approached using a primitive cell 64 times larger than the primitive cell of the bulk constituents GaSb and AlSb. The phonon modes are calculated on the basis of an 11 parameter Rigid Ion Model and the Raman spectra are calculated using the Bond Polarizability Model (BPM), away from resonance conditions. The parameters of this model (BPM) are not arbitrarily approximated but we have obtained them on the basis of certain relations, involving directly measurable quantities, such as dielectric and elastooptic constants of the bulk crystal. It is shown that for small concentrations the Al ions are not randomly distributed over the whole crystal but almost all tend to concentrate in neighboring lattice planes. Further, we have reproduced the Raman spectra close to resonance conditions, assuming that the value of the first order polarizability of AlSb is increased by an amount of 50% close to resonance conditions. Finally it is shown that disorder produces asymmetric Raman lines spectra with the intensities of the two strongest peaks in the optic frequency ranges of the bulk constituents being concentration dependent.
Surface optical phonon-assisted electron Raman scattering in a semiconductor quantum disc
Institute of Scientific and Technical Information of China (English)
刘翠红; 马本堃; 陈传誉
2002-01-01
We have carried out a theoretical calculation of the differential cross section for the electron Raman scatteringprocess associated with the surface optical phonon modes in a semiconductor quantum disc. Electron states are consid-ered to be confined within a quantum disc with infinite potential barriers. The optical phonon modes we have adoptedare the slab phonon modes by taking into consideration the Frohlich interaction between an electron and a phonon.The selection rules for the Raman process are given. Numerical results and a discussion are also presented for variousradii and thicknesses of the disc, and different incident radiation energies.
Nag Chowdhury, Basudev; Chattopadhyay, Sanatan
2016-09-01
In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.
Wette, Frederik
1991-01-01
In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed [Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Sonobe, Taro [Kyoto University Research Administration Office, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki [Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011 (Japan)
2013-10-28
Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.
Model for topological phononics and phonon diode
Liu, Yizhou; Xu, Yong; Zhang, Shou-Cheng; Duan, Wenhui
2017-08-01
The quantum anomalous Hall effect, an exotic topological state first theoretically predicted by Haldane and recently experimentally observed, has attracted enormous interest for low-power-consumption electronics. In this work, we derived a Schrödinger-like equation of phonons, where topology-related quantities, time-reversal symmetry, and its breaking can be naturally introduced similar to the process for electrons. Furthermore, we proposed a phononic analog of the Haldane model, which makes the novel quantum (anomalous) Hall-like phonon states characterized by one-way gapless edge modes immune to scattering. The topologically nontrivial phonon states are useful not only for conducting phonons without dissipation but also for designing highly efficient phononic devices, like an ideal phonon diode, which could find important applications in future phononics.
Koh, Yee Kan; Lyons, Austin S; Bae, Myung-Ho; Huang, Bin; Dorgan, Vincent E; Cahill, David G; Pop, Eric
2016-10-12
Heat transfer across interfaces of graphene and polar dielectrics (e.g., SiO2) could be mediated by direct phonon coupling, as well as electronic coupling with remote interfacial phonons (RIPs). To understand the relative contribution of each component, we develop a new pump-probe technique called voltage-modulated thermoreflectance (VMTR) to accurately measure the change of interfacial thermal conductance under an electrostatic field. We employed VMTR on top gates of graphene field-effect transistors and find that the thermal conductance of SiO2/graphene/SiO2 interfaces increases by up to ΔG ≈ 0.8 MW m(-2) K(-1) under electrostatic fields of heat transfer between the charge carriers in graphene and RIPs in SiO2. Second, the increase in heat conduction could be caused by better conformity of graphene interfaces under electrostatic pressure exerted by the induced charge carriers. Regardless of the origins of the observed ΔG, our VMTR measurements establish an upper limit for heat transfer from unbiased graphene to SiO2 substrates via RIP scattering; for example, only heat transport is facilitated by RIP scattering even at a carrier concentration of ∼4 × 10(12) cm(-2).
Energy Technology Data Exchange (ETDEWEB)
Liu, Jie; Xu, Xu; Anantram, M.P.
2014-09-01
The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.
Electron-phonon scattering and high-field transport in n-type Si
DEFF Research Database (Denmark)
Jørgensen, Mogens Hoffmann
1978-01-01
. The solution of the Boltzmann equation is reduced to the solution of a coupled set of ordinary second-order differential equations which are well suited for iterative numerical techniques. By comparing experimental and numerical data we can assign realistic values to electron-phonon coupling constants...
Energy Technology Data Exchange (ETDEWEB)
Muñoz, Jorge A. [Intel Corporation, Information Technology Research, Hillsboro, OR 97124 (United States); Fultz, Brent [California Institute of Technology, Department of Applied Physics and Materials Science, Pasadena, CA 91125 (United States)
2015-07-23
Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.
A phonon scattering assisted injection and extraction based terahertz quantum cascade laser
Dupont, E.; Fathololoumi, S.; Wasilewski, Z. R.; Aers, G.; Laframboise, S. R.; Lindskog, M.; Razavipour, S. G.; Wacker, A.; Ban, D.; Liu, H. C.
2012-04-01
A lasing scheme for terahertz quantum cascade lasers, based on consecutive phonon-photon-phonon emissions per module, is proposed and experimentally demonstrated. The charge transport of the proposed structure is modeled using a rate equation formalism. An optimization code based on a genetic algorithm was developed to find a four-well design in the GaAs/Al0.25Ga0.75As material system that maximizes the product of population inversion and oscillator strength at 150 K. The fabricated devices using Au double-metal waveguides show lasing at 3.2 THz up to 138 K. The electrical characteristics display no sign of differential resistance drop at lasing threshold, which, in conjunction with the low optical power of the device, suggest—thanks to the rate equation model—a slow depopulation rate of the lower lasing state, a hypothesis confirmed by non-equilibrium Green's function calculations.
Anharmonicity in Light Scattering by Optical Phonons in GaAs1-xBix
Energy Technology Data Exchange (ETDEWEB)
Joshya, R. S.; Rajaji, V.; Narayana, Chandrabhas; Mascarenhas, Angelo; Kini, R. N.
2016-05-28
We present a Raman spectroscopic study of GaAs 1-xBix epilayers grown by molecular beam epitaxy. We have investigated the anharmonic effect on the GaAs-like longitudinal optical phonon mode (LO'GaAs) of GaAs 1-xBix for different Bi concentrations at various temperatures. The results are analyzed in terms of the anharmonic damping effect induced by thermal and compositional disorder. We have observed that the anharmonicity increases with Bi concentration in GaAs 1-xBix as evident from the increase in the anharmonicity constants. In addition, the anharmonic lifetime of the optical phonon decreases with increasing Bi concentration in GaAs 1-xBix.
Phonon Softening in PrFeAsO1-y (y˜0.2) by Inelastic X-Ray Scattering
Baron, Alfred Q. R.; Fukuda, Tatsuo; Shamoto, Shin-Ichi; Uchiyama, Hiroshi; Mizuki, Jun-Ichiro; Nakamura, Hiroki; Machida, Masahiko; Ishikado, Motoyuki; Arai, Masatoshi; Kito, Hijiri; Eisaki, Hiroshi
2009-03-01
We present phonon dispersion measurements from single crystals of PrFeAsO1-y with Tc (onset) of 42 to 45 K made using inelastic x-ray scattering with 1.5 meV resolution at BL35XU of SPring-8. In agreement with our previous results on powders and crystals [1] we see pronounced softening of the in-plane Fe-As modes compared to phonon calculations using pseudopotential methods in the tetragonal (non-magnetic) structure. C-axis modes are somewhat harder. No strong changes in phonon spectra across Tc were observed at the momentum transfers investigated. We also compare our results against calculations of phonons in the magnetic parent material. [1] Fukuda, et al, J. Phys. Soc. Japan, 77 (2008), 103715.
Raman scattering by coupled plasmon-LO phonons in InN nanocolumns
Energy Technology Data Exchange (ETDEWEB)
Lazic, S.; Gallardo, E.; Calleja, J.M. [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 288049 Madrid (Spain); Grandal, J.; Sanchez-Garcia, M.A.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, 28040 Madrid (Spain)
2008-07-01
Raman measurements on high quality, relaxed InN nanocolumns grown on Si(001) and Si(111) substrates by plasma-assisted molecular beam epitaxy are reported. A coupled LO phonon-plasmon mode around 430 cm{sup -1}, together with the uncoupled LO phonon appears in the nanocolumnar samples. The coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns, while the uncoupled phonon originates from their inner part. Infrared reflectance measurements confirm the presence of electrons in the nanocolumns. The electron density in the accumulation layer depends on the growth temperature and is sensitive to exposure of HCl. Our results indicate that accumulation of intrinsic electrons occurs not only at the polar surfaces of InN layers, but also on non-polar lateral surfaces of InN nanocolumns. Its origin is attributed to an In-rich surface reconstruction of the nanocolumns sidewalls. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Institute of Scientific and Technical Information of China (English)
Liang Pang
2014-01-01
We theoretically present the intrinsic limits to electron mobility in the modulation-doped AlGaN/GaN two-dimensional electron gas (2DEG) due to effects including acoustic deformation potential (DP) scattering, piezoelectric scattering (PE), and polar-optic phonon scattering (POP). We find that DE and PE are the more significant limiting factors at intermediate temperatures of 40 K to 250 K, while POP becomes dominant as room temperature is approached. Detailed numerical results are presented for the change of electron mobility with respect to temperature and carrier density. We conclude that these three types of phonon scattering, which are generally determined by the material properties but not the technical processing, are hard limits to the 2DEG mobility.
Well-width dependence of exciton-phonon scattering in InxGa1 - xAs/GaAs single quantum wells
DEFF Research Database (Denmark)
Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1999-01-01
The temperature and density dependencies of the exciton dephasing time in In0.18Ga0.82As/GaAs single quantum wells with different thicknesses have been measured by degenerate four-wave mixing; The exciton-phonon scattering contribution to the dephasing is isolated by extrapolating the dephasing r...
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Krishnendu, E-mail: kghosh3@buffalo.edu; Singisetti, Uttam, E-mail: uttamsin@buffalo.edu [Electrical Engineering Department, University at Buffalo, Buffalo, New York 14260 (United States)
2015-02-14
N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO{sub 2} and ZrO{sub 2} high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al{sub 2}O{sub 3}, the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density.
Exciton-Phonon Scattering in CdSe/ZnSe Quantum Dots
Institute of Scientific and Technical Information of China (English)
张立功; 申德振; 范希武; 吕少哲
2002-01-01
A temperature-dependent photoluminescence measurement is performed in CdSe/ZnSe quantum dots with a ZnCdSe quantum well. We deduce the temperature dependence of the exciton linewidth and peak energy of the zero-dimensional exciton in the quantum dots and two-dimensional exciton in the CdSe wetting layer. The experimental data reveal a reduction of homogeneous broadening of the exciton line in the quantum dots in comparison with that in the two-dimensional wetting layer, which indicates the decrease of exciton and optical phonon coupling in the CdSe quantum dots.
Energy Technology Data Exchange (ETDEWEB)
Pavlou, Andrew T., E-mail: pavloa2@rpi.edu; Ji, Wei, E-mail: jiw2@rpi.edu
2016-06-15
Highlights: • Thermal scattering data are fit using linear least squares regression. • Mesh points are optimally selected from phonon frequency distributions. • New meshes give more accurate fits of thermal data than our previous work. • Coefficient data storage is significantly reduced compared to current methods. - Abstract: In a series of papers, we have introduced a new sampling method for Monte Carlo codes for the low-energy secondary scattering parameters that greatly reduces data storage requirements. The method is based on the temperature dependence of the energy transfer (beta) and squared momentum transfer (alpha) between a neutron and a target nuclide. Cumulative distribution functions (CDFs) in beta and alpha are constructed for a range of temperatures on a mesh of incident energies in the thermal range and temperature fits are created for beta and alpha at discrete CDF probability lines. The secondary energy and angle distributions generated from the fit coefficients showed good agreement with the standard Monte Carlo sampling. However, some discrepancies still existed because the CDF probability mesh values were selected uniformly and arbitrarily. In this paper, a physics-based approach for optimally selecting the CDF probability meshes for the on-the-fly sampling method is introduced, using bound carbon in graphite as the example nuclide. This approach is based on the structure of the phonon frequency distribution of thermal excitations. From the study, it was determined that low (<0.1) and high (>0.9) beta CDF probabilities are important to the structure of the beta probability density functions (PDFs) while very low (<1 × 10{sup −4}) alpha CDF probabilities are important to the structure of the alpha PDFs. The final meshes contain 200 probability values for both beta and alpha. This results in 14.5 MB of total data storage for the on-the-fly coefficients which are used for any temperature realization. This is a significant reduction in
Gustin, Chris; Hughes, Stephen
2017-08-01
We study the role of electron-phonon scattering for a pulse-triggered quantum dot single-photon source which utilizes a modified version of stimulated Raman adiabatic passage and cavity coupling. This on-demand source is coherently pumped with an optical pulse in the presence of a continuous-wave laser drive, allowing for efficient generation of indistinguishable single photons with polarizations orthogonal to the applied fields. In contrast to previous studies, we explore the role of electron-phonon scattering on this semiconductor system by using a polaron master equation approach to model the biexciton-exciton cascade and cavity mode coupling. In addition to background zero-phonon-line decoherence processes, microscopic electron-acoustic-phonon coupling, which usually degrades the indistinguishability and efficiency of semiconductor photon sources, is rigorously taken into account. We study how different system parameters (including cavity and laser detunings, cavity spectral width, temperature) affect the device performance and contrast the relative influence of intrinsic phonon coupling with other dephasing mechanisms. We describe how this biexciton-exciton cascade scheme allows for true single photons to be generated with over 90% quantum indistinguishability and efficiency simultaneously using realistic experimental parameters. We also show how the double-field dressing can be probed through the cavity-emitted spectrum.
Manipulation of Phonons with Phononic Crystals
Energy Technology Data Exchange (ETDEWEB)
Leseman, Zayd Chad [Univ. of New Mexico, Albuquerque, NM (United States)
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
Shcherbakov, A S; Arellanes, A O; Chavushyan, V
2016-12-01
We develop an advanced approach to the optical spectrometer with acousto-optical dynamic grating for the Guillermo Haro astrophysical observatory (Mexico). The progress consists of two principle novelties. First is the use of the acousto-optical nonlinearity of two-phonon light scattering in crystals with linear acoustic losses. This advanced regime of light scattering exhibits a recently revealed additional degree of freedom, which allows tuning of the frequency of elastic waves and admits the nonlinear apodization improving the dynamic range. The second novelty is the combination of the cross-disperser with acousto-optical processing. A similar pioneering step provides an opportunity to operate over all the visible range in a parallel regime with maximal achievable resolution. The observation window of the optical spectrometer in that observatory is ∼9 cm, so that the theoretical estimations of maximal performances for a low-loss LiNbO3 crystal for this optical aperture at λ=405 nm give spectral resolution of 0.0523 Å, resolving power of 77,400, and 57,500 spots. The illustrative proof-of-principle experiments with a 6 cm LiNbO3 crystal have been performed.
Multiple Scattering and Visco-Thermal Effects on 2D Phononic Crystal
Duclos, Aroune; Pagneux, Vincent
2008-01-01
In this paper, we are interested in the transition between regimes here either visco-thermal or multiple scattering effects dominate for the propagation of acoustic waves through a 2D regular square array of rigid cylinders embedded in air. An extension of the numerical method using Schl\\"omilch series is performed in order to account for visco-thermal losses. Comparison withexperimental data and results from classical homogenization theory allows to study the transition between a low frequency limit (where viscous and thermal effects dominate) and a high frequency regime (where multiple scattering effects become predominant). For this particular geometry, a large frequency domain where visco-thermal and multiple scattering effects coexist is found.
Yu, T; Sun, W X; Lin, J Y; Ding, J
2003-01-01
Half-metallic CrO sub 2 powder compact with rod-shaped nanoparticles was studied by micro-Raman scattering in the presence of an external magnetic field at room temperature (300 K). In the low-field region (H <= 250 mT), the frequency and intensity of the E sub g mode, an internal phonon mode of CrO sub 2 , increase dramatically with increase in the magnetic field, while the corresponding linewidth decreases. The above parameters become constant when the CrO sub 2 powder enters the saturation state at higher magnetic field. The pronounced anomalies of the Raman phonon parameters under a low magnetic field are attributed to the spin-phonon coupling enhanced by the magnetic ordering, which is induced by the external magnetic field. (letter to the editor)
Institute of Scientific and Technical Information of China (English)
Zhong Qinghu; Yi Xuehua; Pu Shouliang; Yan Yuzhen
2013-01-01
We have presented a theoretical calculation of the differential cross section (DCS) for the electron Raman scattering (ERS) process associated with the interface optical (IO) and surface optical (SO) phonons in multilayer coaxial cylindrical AlxGa1-xAs/GaAs quantum cables (QC).We consider the Fr(o)hlich electron-phonon interaction in the framework of the dielectric continuum approach.The selection rules for the processes are studied.Singularities are found to be sensitively size-dependent and by varying the size of the QC,it is possible to control the frequency shift in the Raman spectra.A discussion of the phonon behavior for the QC with different size is presented.The numerical results are also compared with those of experiments.
Three-phonon stimulated Raman scattering in an orthorhombic LuAlO3 crystal
Kaminskii, A. A.
2016-12-01
High-order stimulated Raman scattering (SRS) has been revealed in a LuAlO3 crystal upon stationary picosecond laser excitation. All recorded Stokes and anti-Stokes χ(3)-nonlinear laser components are attributed to three SRS-promoting A g vibrational modes of its octahedral anionic units (AlO3)-3.
The phonon buckling mode in YBa{sub 2}Cu{sub 3}O{sub 6+x} measured by inelastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Raichle, Markus; Bakr, Mohammed; Hinkov, Vladimir; Ulrich, Clemens; Broell, Markus; Lin, Chengtian; Keimer, Bernhard [MPI fuer Festkoerperforschung, Stuttgart (Germany); Reznik, Dmitry; Lamago, Daniel; Bourges, Philippe; Sidis, Yvan [Laboratoire Leon Brillouin, Paris (France); Hradil, Klaudia [Universitaet Goettingen, Goettingen (Germany)
2008-07-01
Cuk et al.[Phys. Rev. Lett. 93, 117003 (2004)] and Devereaux et al.[Phys. Rev. Lett. 93, 117004 (2004)] relate the antinoidal kink in ARPES measurements with the B1g phonon buckling mode. However, this assumption is controversial as this kink has also been related to the magnetic resonance mode by Kaminski et al.[Phys. Rev. Lett. 86, 1070 (2001)] and Kim et al.[Phys. Rev. Lett. 91, 167002 (2003)]. Until now inelastic neutron scattering measurements on this phonon mode on YBa{sub 2}Cu{sub 3}O{sub 6+x} by Reznik et al.[Phys. Rev. Lett. 75, 2396 (1995)] has only been done on twinned samples for x=1. Here we present high resolution neutron measurements on the buckling mode on YBCO for x=0.6 and x=1.0. These measurements performed at Puma and 1T1 at Saclay have been made on fully detwinned samples. Thus we could show that this phonon mode performes an anisotropic superconductivity-induced interaction with a neighboring phonon mode. Hence these measurements enrich the experimental evidence for superconductivity induced phonon effects in high temperature superconductors.
Energy Technology Data Exchange (ETDEWEB)
Price, A., E-mail: A.C.PRICE.625036@swansea.ac.uk; Martinez, A. [College of Engineering, Swansea University, Swansea (United Kingdom)
2015-04-28
Using quantum transport simulations, the impact of electron-phonon scattering on the transfer characteristic of a gate-all-around nanowire (GaAs) field effect transistor (NWFET) has been thoroughly investigated. The Non-Equilibrium Green's Function formalism in the effective mass approximation using a decoupled mode decomposition has been deployed. NWFETs of different dimensions have been considered, and scattering mechanisms including acoustic, optical and polar optical phonons have been included. The effective masses were extracted from tight binding simulations. High and low drain bias have been considered. We found substantial source to drain tunnelling current and significant impact of phonon scattering on the performance of the NWFET. At low drain bias, for a 2.2 × 2.2 nm{sup 2} cross-section transistor, scattering caused a 72%, 77%, and 81% decrease in the on-current for a 6 nm, 10 nm, and 20 nm channel length, respectively. This reduction in the current due to scattering is influenced by the increase in the tunnelling current. We include the percentage tunnelling for each valley at low and high drain bias. It was also found that the strong quantisation caused the relative position of the valleys to vary with the cross-section. This had a large effect on the overall tunnelling current. The phonon-limited mobility was also calculated, finding a mobility of 950 cm{sup 2}/V s at an inversion charge density of 10{sup 12 }cm{sup −2} for a 4.2 × 4.2 nm{sup 2} cross-section device.
Mannarelli, Massimo
2013-01-01
We analyze the effect of restricted geometries on the contribution of Nambu-Goldstone bosons (phonons) to the shear viscosity, $\\eta$, of a superfluid. For illustrative purpose we examine a simplified system consisting of a circular boundary of radius $R$, confining a two-dimensional rarefied gas of phonons. Considering the Maxwell-type conditions, we show that phonons that are not in equilibrium with the boundary and that are not specularly reflected exert a shear stress on the boundary. In this case it is possible to define an effective (ballistic) shear viscosity coefficient $\\eta \\propto \\rho_{\\rm ph} \\chi R$, where $\\rho_{\\rm ph}$ is the density of phonons and $\\chi$ is a parameter which characterizes the type of scattering at the boundary. For an optically trapped superfluid our results corroborate the findings of Refs. \\cite{Mannarelli:2012su, Mannarelli:2012eg}, which imply that at very low temperature the shear viscosity correlates with the size of the optical trap and decreases with decreasing tempe...
Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L
2005-03-25
In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.
Interfacial electron and phonon scattering processes in high-powered nanoscale applications.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Patrick E.
2011-10-01
The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.
Goryachev, Maxim; Creedon, Daniel L; Galliou, Serge; Tobar, Michael E
2013-08-23
The confinement of high frequency phonons approaching 1 GHz is demonstrated in phonon-trapping acoustic cavities at cryogenic temperatures using a low-coupled network approach. The frequency range is extended by nearly an order of magnitude, with excitation at greater than the 200th overtone achieved for the first time. Such a high frequency operation reveals Rayleigh-type phonon scattering losses due to highly diluted lattice impurities and corresponding glasslike behavior, with a maximum Q(L)×f product of 8.6×10(17) at 3.8 K and 4×10(17) at 15 mK. This suggests a limit on the Q×f product due to unavoidable crystal disorder. Operation at 15 mK is high enough in frequency that the average phonon occupation number is less than unity, with a loaded quality factor above half a billion. This work represents significant progress towards the utilization of such acoustic cavities for hybrid quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Jana, R. N.; Meikap, A. K. [Department of Physics, National Institute of technology, Durgapur, Mahatma Gandhi Avenue, Durgapur – 713209 (India)
2016-05-23
The results of a comprehensive study of weak electron localization (WEL) and electron-electron interaction (EEI) effects in disordered V{sub 75}X{sub 25} (X = Pd, Al) alloys has been reported. The resistivity in absence of magnetic field shows a minimum at temperature T = T{sub m} and follows T{sup 1/2} law within the temperature range 5 K ≤ T ≤ T{sub m}, which suggests predominant EEI effect. Magnetoresistivity is positive due to strong spin-orbit interaction. The dephasing scattering time is dominated by the electron-phonon scattering. The electron-phonon scattering rate shows quadratic temperature dependence behavior, which is explained by the theory of incomplete dragging at the random scattering potential by phonons. The zero temperature scattering time strongly depends on the disorder and its magnitude decreases with increasing disorder.
Liu, Te-Huan; Zhou, Jiawei; Liao, Bolin; Singh, David J.; Chen, Gang
2017-02-01
We present a first-principles framework to investigate the electron scattering channels and transport properties for polar materials by combining the exact solution of the linearized electron-phonon (e-ph) Boltzmann transport equation in its integral-differential form associated with the e-ph coupling matrices obtained from the polar Wannier interpolation scheme. No ad hoc parameter is required throughout this calculation, and GaAs, a well-studied polar material, is used as an example to demonstrate this method. In this work, the long-range and short-range contributions as well as the intravalley and intervalley transitions in the e-ph interactions (EPIs) have been quantitatively addressed. Promoted by such mode-by-mode analysis, we find that in GaAs, the piezoelectric scattering is comparable to deformation-potential scattering for electron scatterings by acoustic phonons in EPI even at room temperature, and it makes a significant contribution to mobility. Furthermore, we achieved good agreement with experimental data for the mobility, and we identified that electrons with mean free paths between 130 and 210 nm provide the dominant contribution to the electron transport at 300 K. Such information provides a deeper understanding of the electron transport in GaAs, and the presented framework can be readily applied to other polar materials.
Neutron scattering study of phonon dynamics on type-I Clathrate Ba{sub 8}Ga{sub 16}Ge{sub 30}
Energy Technology Data Exchange (ETDEWEB)
Lee, C H [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Yoshizawa, H [Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Avila, M A [Hiroshima University, Higashi-Hiroshima, 739-8530 Hiroshima (Japan); Hase, I [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Kihou, K [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takabatake, T [Hiroshima University, Higashi-Hiroshima, 739-8530 Hiroshima (Japan)
2007-12-15
Phonon dynamics of type-I clathrates Ba{sub 8}Ga{sub 16}Ge{sub 30} has been studied at room temperature by inelastic neutron scattering for energy less than 9 meV. Optical phonons associated with large vibrations of Ba atoms filled in large tetrakaidecahedral cages are observed around E = 4.5 meV. Analysis based on a Born-Von Karman force model shows that the longitudinal force constants between the Ba atoms and the oversized cages has a relatively small value of 0.011 {approx} 0.014 mdyn194. The results indicate that the Ba atoms are very loosely bound to the surrounding oversized cages that consist of Ga and Ge atoms.
Beyer, Andreas; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin
2016-10-01
Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible.
Phonon engineering for nanostructures.
Energy Technology Data Exchange (ETDEWEB)
Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
Gupta, Mayanak Kumar; Mittal, Ranjan; Zbiri, Mohamed; Singh, Ripandeep; Rols, Stephane; Schober, Helmut; Chaplot, Samrath Lal
2014-10-01
We have carried out an extensive phonon study on multiferroic GaFeO3 to elucidate its dynamical behavior. Inelastic neutron scattering measurements are performed over a wide temperature range, 150 to 1198 K. First principles lattice dynamical calculations are done for the sake of the analysis and interpretation of the observations. The comparison of the phonon spectra from magnetic and nonmagnetic calculations highlights pronounced differences. The energy range of the vibrational atomistic contributions of the Fe and O ions are found to differ significantly in the two calculation types. Therefore, magnetism induced by the active spin degrees of freedom of Fe cations plays a key role in stabilizing the structure and dynamics of GaFeO3. Moreover, the computed enthalpy in various phases of GaFeO3 is used to gain deeper insights into the high-pressure phase stability of this material. Further, the volume dependence of the phonon spectra is used to determine its thermal expansion behavior.
Singh, Baltej; Gupta, Mayanak Kumar; Mittal, Ranjan; Zbiri, Mohamed; Rols, Stephane; Patwe, Sadequa Jahedkhan; Achary, Srungarpu Nagabhusan; Schober, Helmut; Tyagi, Avesh Kumar; Chaplot, Samrath Lal
2017-02-01
β-Eucryptite (LiAlSiO4) shows anisotropic thermal expansion as well as one-dimensional super-ionic conductivity. We have performed the lattice dynamical calculations using ab-initio density functional theory along with inelastic neutron scattering measurements. The anisotropic stress dependence of the phonon spectrum is calculated to obtain the thermal expansion behavior along various axes. The calculations show that the Grüneisen parameters of the low-energy phonon modes around 10 meV have large negative values and govern the negative thermal expansion behavior at low temperatures along both the "a"- and "c"-axes. On the other hand, anisotropic elasticity along with anisotropic positive values of the Grüneisen parameters of the high-energy modes in the range 30-70 meV are responsible for the thermal expansion at high temperatures, which is positive in the a-b plane and negative along the c-axis. The analysis of the polarization vectors of the phonon modes sheds light on the mechanism of the anomalous thermal expansion behavior. The softening of a Γ-point mode at about 2 GPa may be related to the high-pressure phase transition.
Phonon-drag effects on thermoelectric power
Wu, M. W.; Horing, N. J. M.; Cui, H. L.
1995-01-01
We carry out a calculation of the phonon-drag contribution $S_g$ to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at hi...
Giefers, H.; Koval, S.; Wortmann, G.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.
2006-09-01
The local phonon density of states (DOS) at the Sn site in tin monoxide (SnO) is studied at pressures up to 8GPa with Sn119 nuclear resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation at 23.88keV . The preferred orientation (texture) of the SnO crystallites in the investigated samples is used to measure NRIXS spectra preferentially parallel and almost perpendicular to the c axis of tetragonal SnO . A subtraction method is applied to these NRIXS spectra to produce projected local Sn DOS spectra as seen parallel and perpendicular to the c axis of SnO . These experimentally obtained local Sn DOS spectra, both in the polycrystalline case as well as projected parallel and perpendicular to the c axis, are compared with corresponding theoretical phonon DOS spectra, derived from dispersion relations calculated with a recently developed shell model. Comparison between the experimental projected Sn DOS spectra and the corresponding theoretical DOS spectra enables us to follow the pressure-induced shifts of several acoustic and optic phonon modes. While the principal spectral features of the experimental and theoretical phonon DOS agree well at energies above 10meV , the pressure behavior of the low-energy part of the DOS is not well reproduced by the theoretical calculations. In fact, they exhibit, in contrast to the experimental data, a dramatic softening of two low-energy modes, their energies approaching zero around 2.5GPa , clearly indicating the limitations of the applied shell model. These difficulties are obviously connected with the complex Sn-O and Sn-Sn bindings within and between the Sn-O-Sn layers in the litharge structure of SnO . We derived from the experimental and theoretical DOS spectra a variety of elastic and thermodynamic parameters of the Sn sublattice, such as the Lamb-Mössbauer factor, the mean force constant, and Debye temperatures, as well as the vibrational contributions to the Helmholtz free energy, specific heat, entropy, and
Energy Technology Data Exchange (ETDEWEB)
Sheikh Obeid, Abdulrahman
2014-11-01
In the framework of this thesis electron scattering experiments on low-energy excitations of {sup 92}Zr and {sup 94}Zr were performed at the S-DALINAC in a momentum transfer range q=0.3-0.6 fm{sup -1}. The nature of one-phonon symmetric and mixed-symmetric 2{sup +} and 3{sup -} states of {sup 92}Zr was investigated by comparison with predictions of the quasi-particle phonon model (QPM). Theoretical (e,e') cross sections have been calculated within the distorted wave Born approximation (DWBA) to account for Coulomb distortion effects. The reduced strengths of the one-quadrupole phonon states and the one-octupole phonon state have been extracted. The similarity of the momentum-transfer dependence of the form factors between the 2{sup +} states supports the one-phonon nature of the 2{sup +}{sub 2} state of {sup 92}Zr. A new method based on the Plane Wave Born Approximation (PWBA) for a model-independent determination of the ratio of the E2 transition strengths of fully symmetric (FSS) and mixed-symmetry (MSS) one-phonon excitations of heavy vibrational nuclei is introduced. Due to the sensitivity of electron scattering to charge distributions, the charge transition-radii difference can be determined. The basic assumptions (independence from the ratio of Coulomb corrections and from absolute values of transition radii) are tested within the Tassie model, which makes no specific assumptions about the structure of the states other than collectivity. It is shown that a PWBA analysis of the form factors, which usually fails for heavy nuclei, can nevertheless be applied in a relative analysis. This is a new promising approach to determine the ground state transition strength of the 2{sup +} MSS of vibrational nuclei with a precision limited only by the experimental information about the B(E2;2{sup +}{sub 1}→0{sup +}{sub 1}) strength. The PWBA approach furthermore provides information about differences of the proton transition radii of the respective states
1990-01-01
The gap between the nonlocalized lattice-phonon description and the localized Einstein oscillator treatment is filled by transforming the phonon Hamiltonian back to the particle variables. The particle-coordinate, normalized, wave function for the phonon vacuum state is exhibited.
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Masaaki, E-mail: nakayama@a-phys.eng.osaka-cu.ac.jp; Ohno, Tatsuya; Furukawa, Yoshiaki [Department of Applied Physics, Graduate School of Engineering, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
2009-01-26
sion is given by5 keff=vF 2Te / 3AeeTe 2+BepTp , where vF is the Fermi velocity and Aee and Bep are electron-electron and electron-phonon...be used to express the free electron colli- sional frequency as38 =1 / AeeTe 2+ Bep Tp, where Aee and Bep are the material constants relating to...wavelength of =800 nm 1.55 eV, the values for n1 and n2 listed in Table I for air, Au, Si, and SiO2, 53 and Aee and Bep for Au as 1.2 107 K−2 s−1 and
Role of phonon scattering by elastic strain field in thermoelectric Sr1−xYxTiO3−δ
Bhattacharya, S.
2014-06-12
Perovskite-type SrTiO3-δ ceramics are multifunctional materials with significant potential as n-type thermoelectric (TE) materials. The electronic and thermal transport properties of spark plasma sintered polycrystalline Sr1-xYxTiO3-δ (x=0.05, 0.075, 0.1) ceramics are systematically investigated from (15-800) K. The Sr0.9Y0.1TiO3-δ simultaneously exhibits a large Seebeck coefficient, α>-80μV/K and moderately high electrical resistivity, ρ∼0.8mΩ-cm at a carrier concentration of ∼1021cm-3 at 300K resulting in a high TE power factor defined herein as (α2σT)∼0.84W/m-K at 760K. Despite the similar atomic masses of Sr (87.6g/mol) and Y (88.9g/mol), the lattice thermal conductivity (κL) of Sr1-xY xTiO3-δ is significantly reduced with increased Y-doping, owing to the smaller ionic radii of Y3+ (∼1.23Å, coordination number 12) compared to Sr2+ (∼1.44Å, coordination number 12) ions. In order to understand the thermal conductivity reduction mechanism, the κL in the Sr1-xY xTiO3-δ series are phenomenologically modeled with a modified Callaway\\'s equation from 30-600K. Phonon scattering by elastic strain field due to ionic radii mismatch is found to be the prominent scattering mechanism in reducing κL of these materials. In addition, the effect of Y-doping on the elastic moduli of Sr1-xY xTiO3-δ (x=0, 0.1) is investigated using resonant ultrasound spectroscopy, which exhibits an anomaly in x=0.1 in the temperature range 300-600K. As a result, the phonon mean free path is found to be further reduced in the Sr0.9Y0.1TiO3-δ compared to that of SrTiO3-δ, resulting in a considerably low thermal conductivity κ∼2.7W/m-K at 760K. Finally, we report a thermoelectric figure of merit (ZT)∼0.3 at 760K in the Sr0.9Y 0.1TiO3-δ, the highest ZT value reported in the Y-doped SrTiO3 ceramics thus far. © 2014 AIP Publishing LLC.
Gasanly, N. M.; Aydinli, A.; Aydinli, A.; Kocabaş, C.; Özkan, H.
The temperature dependencies (10-300 K) of the eight Raman-active mode frequencies and linewidths in GaSe0.5S0.5 layered crystal have been measured in the frequency range from 10 to 320 cm-1. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison of the experimental data with the theories of the shift and broadening of the interlayer and intralayer phonon lines showed that the temperature dependencies can be explained by the contributions from thermal expansion, lattice anharmonicity and crystal disorder. The purely anharmonic contribution (phonon-phonon coupling) is found to be due to three-phonon processes. It was established that the effect of crystal disorder on the broadening of phonon lines is greater for GaSe0.5S0.5 than for binary compounds GaSe and GaS.
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
Mei, Jun; Liu, Zhengyou; Qiu, Chunyin
2005-06-29
We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.
Perrin, Bernard
2007-06-01
The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how phonons can help tracking dark matter. These 328 presentations gave rise to 185 articles
Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo
2015-01-14
Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-04-20
We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52 GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.
Energy Technology Data Exchange (ETDEWEB)
Otelaja, O. O. [School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853 (United States); Robinson, R. D., E-mail: rdr82@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)
2015-10-26
In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.
Phonon heat transport in gallium arsenide
Indian Academy of Sciences (India)
Richa Saini; Vinod Ashokan; B D Indu; R Kumar
2012-03-01
The lifetimes of quantum excitations are directly related to the electron and phonon energy linewidths of a particular scattering event. Using the versatile double time thermodynamic Green’s function approach based on many-body theory, an ab-initio formulation of relaxation times of various contributing processes has been investigated with newer understanding in terms of the linewidths of electrons and phonons. The energy linewidth is found to be an extremely sensitive quantity in the transport phenomena of crystalline solids as a collection of large number of scattering processes, namely, boundary scattering, impurity scattering, multiphonon scattering, interference scattering, electron–phonon processes and resonance scattering. The lattice thermal conductivities of three samples of GaAs have been analysed on the basis of modiﬁed Callaway model and a fairly good agreement between theory and experimental observations has been reported.
Enders, J; Eberth, J; Fitzler, A; Fransen, C; Herzberg, R D; Kaiser, H; Käubler, L; Neuman-Cosel, P V; Pietralla, N; Ponomarev, V Yu; Richter, A; Schnare, H; Schwengner, R; Skoda, S; Thomas, H G; Tiesler, H; Weisshaar, D; Wiedenhöver, I
2000-01-01
Results of a sup 2 sup 0 sup 8 Pb (gamma,gamma') experiment are presented aiming at an identification of the 2 sup + member of the long-sought two-octupole phonon multiplet. Four E2 excitations have been observed below 6.5 MeV excitation energy, two of them for the first time. However, in contrast to new results of calculations within the quasiparticle-phonon nuclear model (QPM), no obvious candidate for the two-octupole phonon vibration could be found in the present study. We discuss the J suppi=2 sup + states detected in this as well as previous experiments with respect to their possible two-octupole phonon structure.
1990-01-01
An atomic lattice in its ground state is excited by the rapid displacement and release of an atomic constituent. The time dependence of the energy transfer to other constituents is studied by using a phonon dispersion relation that is linear in frequency and propagation vector components.
Acoustic Phonon Thermal Transport through a Nanostructure
Institute of Scientific and Technical Information of China (English)
LI Wen-Xia; LIU Tian-Yu; LIU Chang-Long
2006-01-01
@@ Using the scattering matrix method, we investigate the thermal transport in a nanostructure at low temperatures.It is found that phonon transport exhibits some novel and interesting features: resonant transmission, resonant reflection, and small thermal conductance.
Energy Technology Data Exchange (ETDEWEB)
Basak, Tista, E-mail: tistabasak1@gmail.com [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Rao, Mala N.; Chaplot, S.L.; Salke, Nilesh; Rao, Rekha [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Dhanasekaran, R. [Crystal Growth Centre, Anna University, SP Road, Chennai 600025 (India); Rajarajan, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Rols, S. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, Grenoble (France); Mittal, R.; Jayakrishnan, V.B.; Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India)
2014-01-15
Inelastic neutron scattering, Raman and X-ray diffraction measurements coupled with lattice dynamical calculations (employing a semi-empirical transferable potential model) have been carried out to gain a detailed understanding of the peculiar vibrational spectrum exhibited by the mixed crystal ZnS{sub 1−x}Se{sub x}. Raman scattering measurements performed over a varying range of temperature (100–800 K) and pressure (up to 13 GPa) have confirmed that the additional mode observed in the spectra are visible over the entire range of temperature and pressure. Correlation of the individual motions of atoms (obtained from computed total and partial phonon density of states) with the inelastic neutron scattering measurements (carried out over the entire Brillouin zone) have then indicated that the existence of the additional mode in ZnS{sub 1−x}Se{sub x} is due to the vibrations of the Se atom being in resonance with that of the S atom. Further, it has been shown that the presence of this additional mode can be tuned by varying the mass of the atom at the Se site. In addition, an analysis of bond-length distribution with increasing Se concentration have elucidated that bond-length spread is not responsible for the presence of the additional mode. An analysis of the peak shifts of the Raman modes with temperature and pressure indicate that the anharmonicity of the vibrational modes increases with increasing compositional disorder. This is attributed to the fact that increasing Se concentration gives rise to a distribution of bond-lengths in ZnS{sub 1−x}Se{sub x}, which is responsible for this compositional disorder induced anharmonicity. Our computations have thus revealed that mass of the anion is responsible for the presence of additional mode while bond-length distribution gives rise to the existence of compositional disorder induced anharmonicity in ZnS{sub 1−x}Se{sub x}. Further, it is observed that the contribution of explicit anharmonicity to the total
Le Tacon, M.; Forrest, T. R.; Rüegg, Ch.; Bosak, A.; Walters, A. C.; Mittal, R.; Rønnow, H. M.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.; Hill, J. P.; Krisch, M.; McMorrow, D. F.
2009-12-01
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO0.60F0.35 single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.
Energy Technology Data Exchange (ETDEWEB)
Hill, J.P.; Le Tacon, M.; Forrest, T.R.; Ruegg, Ch.; Bosak, A.; Walters, A.C.; Mittal, R.; Rønnow, H.M.; Zhigadlo, N.D.; Katrych, S.; Karpinski, J.; Krisch, M.; McMorrow, D.F.
2009-12-01
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO{sub 0.60}F{sub 0.35} single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.
Phonon Squeezing by Raman Scattering.
Nori, Franco; Hu, Xuedong
1997-03-01
We have studied quantum fluctuation properties of a crystal lattice, and proposed several mechanisms to achieve this goal(X. Hu and F. Nori, Phys. Rev. Lett. 76, 2294 (1996); Phys. Rev. B 53, 2419 (1996); preprint.).
Optical phonons in Ge quantum dots obtained on Si(111)
Talochkin, A B
2002-01-01
The light combination scattering on the optical phonons in the Ge quantum dots, obtained on the Si surface of the (111) orientation through the molecular-beam epitaxy, is studied. The series of lines, connected with the phonon spectrum quantization, was observed. It is shown, that the phonon modes frequencies are well described by the elastic properties and dispersion of the voluminous Ge optical phonons. The value of the Ge quantum dots deformation is determined
Band structure characteristics of T-square fractal phononic crystals
Institute of Scientific and Technical Information of China (English)
Liu Xiao-Jian; Fan You-Hua
2013-01-01
The T-square fractal two-dimensional phononic crystal model is presented in this article.A comprehensive study is performed for the Bragg scattering and locally resonant fractal phononic crystal.We find that the band structures of the fractal and non-fractal phononic crystals at the same filling ratio are quite different through using the finite element method.The fractal design has an important impact on the band structures of the two-dimensional phononic crystals.
Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.
Hu, Xuedong; Nori, Franco
1997-03-01
We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.
Institute of Scientific and Technical Information of China (English)
颜琳; 赵鹤平; 王小云; 蔡灿英; 李德俊; 邬云文
2006-01-01
Phononic crystal is a novel functional material with acoustic band-gaps. We study the band structure of 2D phononic crystal using the plane wave expansion method. The crystal is composed of a square array of scatterers embedded in an epoxy host, and the scatterers have square cross sections. The results show that the band-gaps of this system can be adjusted by changing the scatterers' tropism. When the filling rate is low, with the increase of the scatterers'rotation angle, the band-gap width initially becomes narrower and then widens gradually, while at high filling rates, the band-gap width increases slightly at first and then decreases as the scatterers' rotation angle increases.%声子晶体是一种具有声波带隙特性的新型功能材料.运用平面波展开法研究了二维声子晶体的带结构,二维声子晶体由横截面为正方形的散射体按正方形排列植入环氧树脂基体中形成.结果表明:通过改变散射体的取向可以调节系统的带隙,当填充率较低时,带隙宽度随散射体旋转角的增加先减小再增加,而填充率较高时,带隙宽度随散射体旋转角的增加而先稍有增加然后再减小.
Phonon manipulation with phononic crystals.
Energy Technology Data Exchange (ETDEWEB)
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power
Influence of anharmonic phonon decay on self-heating in Si nanowire transistors
Energy Technology Data Exchange (ETDEWEB)
Rhyner, Reto, E-mail: rhyner@iis.ee.ethz.ch; Luisier, Mathieu, E-mail: mluisier@iis.ee.ethz.ch [Integrated Systems Laboratory, ETH Zürich, Gloriastr. 35, 8092 Zürich (Switzerland)
2014-08-11
Anharmonic phonon-phonon scattering is incorporated into an electro-thermal quantum transport approach based on the nonequilibrium Green's function formalism. Electron-phonon and phonon-phonon interactions are taken into account through scattering self-energies solved in the self-consistent Born approximation. While studying self-heating effects in ultra-scaled Si nanowire transistors, it is found that the phonon decay process softens the artificial accumulation of high energy phonons caused by electron relaxations close to the drain region. This leads to an increase of the device current in the ON-state and a reduction of the effective lattice temperature.
Polarization dependent behavior of CdS around the first and second LO-phonon modes
Energy Technology Data Exchange (ETDEWEB)
Frausto-Reyes, C., E-mail: cfraus@cio.mx [Centro de Investigaciones en Optica AC, Unidad Aguascalientes, Prolong., Constitucion 607, Fracc. Reserva Loma Bonita, CP 20200, Apartado Postal 507, Ags. (Mexico); Molina-Contreras, J.R., E-mail: rmolina@correo.ita.mx [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256, Aguascalientes, Ags. (Mexico); Lopez-Alvarez, Y.F. [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1081 Oriente, Fracc. Bonna Gens, CP 20256, Aguascalientes, Ags. (Mexico); Medel-Ruiz, C.I.; Perez Ladron de Guevara, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon s/n, Fracc. Paseos de la Montana, CP 47460, Lagos de Moreno, Jal. (Mexico); Ortiz-Morales, M. [Centro de Investigaciones en Optica AC, Unidad Aguascalientes, Prolong., Constitucion 607, Fracc. Reserva Loma Bonita, CP 20200, Apartado Postal 507, Ags. (Mexico)
2010-10-25
The present work report studies on resonant Raman experimental line shape for CdS around the first and second LO-phonon modes. The application of our method to the study of LO-phonon modes of CdS suggests that the scattered intensity is dominated by the surface and dependent on polarization. Results showed that the Raman spectra for CdS, roughly fall into three groups: a broad line-wing with apparent maxima around 194 cm{sup -1} in the range of 140 and 240 cm{sup -1} which can be ascribed to overtone scattering from acoustic phonons; a band near the 1LO phonon mode which can be attributed to a combination of one-phonon scattering and peak acoustic phonon and finally, a band near the 2LO phonon mode which can be attributed to a combination of two-phonon scattering and peak acoustic phonon.
El-Kady, Ihab F.; Olsson, Roy H.
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Relaxation between electrons and surface phonons of a homogeneously photoexcited metal film
Indian Academy of Sciences (India)
Navinder Singh
2004-11-01
The energy relaxation between the hot degenerate electrons of a homogeneously photoexcited metal film and the surface phonons (phonon wave vectors in two dimensions) is considered under Debye approximation. The state of electrons and phonons is described by equilibrium Fermi and Bose functions with different temperatures. Two cases for electron scattering by the metal surface, namely specular and diffuse scattering, are considered.
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Phononic High Harmonic Generation
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subsequently, the down-conversion of second harmonic phonons into first harmonic phonons and conversion of first and second harmonic phonons into third harmonic phonons occur. On the similar lines, an eventual conversion of third harmonic phonons to high orders is also observed to commence. This surprising physical pathway for phononic low-order to high-order harmonic conversion may find general relevance to other physical systems.
Sasmal, Kalyan; Hadjiev, Viktor; Chu, C. W.(Paul)
Quaternary CaFeAsF has ZrCuSiAs-type structure,(RO)δ+ layer in RFeAsO replaced by (CaF)δ+ layer,with tetragonal (P4/nmm)-orthorhombic (Cmma) phase transition at 134K,while magnetic order,SDW sets in at 114K. Partial replacement of Fe with Co/Ni is direct electron doping to (FeAs)δ+ layer.Tc ~15K in CaFe0.9Ni0.1AsF.Substitution of rare earth metal for alkaline earth metal suppresses anomaly in resistivity & induces superconductivity.Tc ~52K in Ca0.5Pr0.5FeAsF.Characterized by resistivity, susceptibility,XRD & EDX-SEM.Upper critical field estimated from magneto resistance.Bulk superconductivity proved by DC magnetization. Hall coefficient RH revealed hole-like charge carriers in parent compound CaFeAsF, while electron-type (RH in normal state is -Ve) for Ca0.5Pr0.5FeAsF.Evolution of Raman active phonons of Ca1-xPrxFeAsF measured with polarized Raman spectroscopy at room temperature from absurfaces of impurity-free microcrystals.Spectra exhibit sharp phonon lines on very weak electronic scattering background.Frequency and symmetry of Raman phonons involving out-of-plane atomic vibrations are found at 162.5 cm-1 (A1 g, Pr), 201 cm-1 (A1 g, As), 215.5 cm-1 (B1 g, Fe), 265 cm-1 (Eg, Fe) and 334 cm-1 (B1 g, F) for Ca0.5Pr0.5FeAsF.Observations are compared with RFeAsO unconventional superconductors also possibly related to magnetic fluctuations
Nanoscale pillar hypersonic surface phononic crystals
Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.
2016-09-01
We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.
Geometrical tuning of thermal phonon spectrum in nanoribbons
Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay
2016-03-01
Phonon spectral energy transmission in silicon nanoribbons is investigated using Monte-Carlo simulations in the boundary scattering regime by changing the length and width geometrical parameters. We show that the transition frequency from specular scattering to diffuse scattering is inversely proportional to the edge roughness σ with a geometry independent factor of proportionality. The increase of the length over width ratio \\zeta leads to a decrease of the energy transmission in the diffuse scattering regime which evolves as {{≤ft(1+{{\\zeta}0.59}\\right)}-1} . This trend is explained by developing a model of phonon energy transmission in the fully diffuse scattering regime which takes into account the probability for a diffusively scattered phonon to be directly transmitted from any position on the edge of the nanoribbon. This model establishes the importance of the solid angles in the energy transmission evolution with \\zeta . The transition from unity energy transmission in the specular scattering regime to reduced transmission in the diffuse scattering regime constitutes a low-pass frequency filter for phonons. Our simulations show an energy rejection rate better than 90% for high \\zeta , which paves the way for potential high performance filters. Filtering out high frequency phonons is of significant interest for phononic crystal applications, which use band engineering of phonons in the wave regime with low frequencies.
Phononic crystals of poroelastic spheres
Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.
2016-11-01
An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.
Atomistic aspects of crack propagation along high angle grain boundaries
Energy Technology Data Exchange (ETDEWEB)
Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering
1997-12-31
The author presents atomistic simulations of the crack tip configuration near a high angle {Sigma} = 5 [001](210) symmetrical tilt grain boundary in NiAl. The simulations were carried out using molecular statics and embedded atom (EAM) potentials. The cracks are stabilized near a Griffith condition involving the cohesive energy of the grain boundary. The atomistic configurations of the tip region are different in the presence of the high angle grain boundary than in the bulk. Three different configurations of the grain boundary were studied corresponding to different local compositions. It was found that in ordered NiAl, cracks along symmetrical tilt boundaries show a more brittle behavior for Al rich boundaries than for Ni-rich boundaries. Lattice trapping effects in grain boundary fracture were found to be more significant than in the bulk.
Molecular dynamics study of phonon screening in graphene
Javvaji, Brahmanandam; Roy Mahapatra, D.; Raha, S.
2014-04-01
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phononmode is excited fromone end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
Non-linear Flight Dynamics at High Angles of Attack
DEFF Research Database (Denmark)
Granasy, P.; Sørensen, C.B.; Mosekilde, Erik
1998-01-01
The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicle...... (HARV). When the aircraft is forced with small thrust deflections whilst in poststall equilibrium, chaotic motion is observed at certain frequencies. At other frequencies, several limiting states coexist....
High angle of attack aerodynamics subsonic, transonic, and supersonic flows
Rom, Josef
1992-01-01
The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist...
Phonon dispersion curves of CsCN
Indian Academy of Sciences (India)
N K Gaur; Preeti Singh; E G Rini; Jyotsna Galgale; R K Singh
2004-08-01
The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique.
Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions
Grüneis, A.; Serrano, J.; Bosak, A.; Lazzeri, M.; Molodtsov, S. L.; Wirtz, L.; Attaccalite, C.; Krisch, M.; Rubio, A.; Mauri, F.; Pichler, T.
2009-08-01
The two-dimensional mapping of the phonon dispersions around the K point of graphite by inelastic x-ray scattering is provided. The present work resolves the longstanding issue related to the correct assignment of transverse and longitudinal phonon branches at K . We observe an almost degeneracy of the three TO-, LA-, and LO-derived phonon branches and a strong phonon trigonal warping. Correlation effects renormalize the Kohn anomaly of the TO mode, which exhibits a trigonal warping effect opposite to that of the electronic band structure. We determined the electron-phonon coupling constant to be 166(eV/Å)2 in excellent agreement to GW calculations. These results are fundamental for understanding angle-resolved photoemission, double-resonance Raman and transport measurements of graphene-based systems.
1991-01-01
The concepts of source and quantum action principle are used to produce the phonon Green's function appropriate for an initial phonon vacuum state. An application to the Mossbauer effect is presented.
First-principles dynamics of electrons and phonons
Bernardi, Marco
2016-01-01
First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review this theoretical and computational framework, focusing on perturbative treatments of scattering, dynamics and transport of coupled electrons and phonons. We discuss application of these first-principles calculations to electronics, lighting, spectroscopy and renewable energy.
Acoustic and optical phonons in metallic diamond
Directory of Open Access Journals (Sweden)
M. Hoesch, T. Fukuda, T. Takenouchi, J.P. Sutter, S. Tsutsui, A.Q.R. Baron, M. Nagao, Y. Takano, H. Kawarada and J. Mizuki
2006-01-01
Full Text Available The dispersion of acoustic and optical phonons in highly boron-doped diamond has been measured by inelastic X-ray scattering at an energy resolution of 6.4 meV. The sample is doped in the metallic regime and shows superconductivity below 4.2 K (midpoint. The data are compared to pure and nitrogen-doped diamond that represent the non-metallic state. No difference is found for the acoustic phonons in the three samples, while the optical phonons show a shift of the dispersion (softening in qualitative agreement with earlier results from Raman spectroscopy. The presence of boron and nitrogen incorporated into the diamond lattice leads to structural disorder. Evidence for this is found both in the observation of otherwise symmetry-forbidded Bragg intensity at (0 0 2 and intensity from acoustic phonon modes in the vicinity of (0 0 2.
Phonon broadening in high entropy alloys
Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.
2017-09-01
Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.
DEFF Research Database (Denmark)
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, P.
2012-01-01
of the physics and emphasize the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions, we present the parameter regimes where phonon effects are expected to be important. Also, we include...
Wong, Joe
2004-03-01
The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)
Phonon dispersion and lifetimes in MgB2.
Shukla, Abhay; Calandra, Matteo; D'Astuto, Matteo; Lazzeri, Michele; Mauri, Francesco; Bellin, Christophe; Krisch, Michael; Karpinski, J; Kazakov, S M; Jun, J; Daghero, D; Parlinski, K
2003-03-01
We measure phonon dispersion and linewidth in a single crystal of MgB2 along the Gamma-A, Gamma-M, and A-L directions using inelastic x-ray scattering. We use density functional theory to compute the effect of both electron-phonon coupling and anharmonicity on the linewidth, obtaining excellent agreement with experiment. Anomalous broadening of the E(2g) phonon mode is found all along Gamma-A. The dominant contribution to the linewidth is always the electron-phonon coupling.
Raman spectra of semiconductor nanoparticles: Disorder-activated phonons
Ingale, Alka; Rustagi, K. C.
1998-09-01
We present Raman spectra of four semiconductor doped glasses and a single crystal of CdS0.55Se0.45 in the range 30-800 cm-1 in the backscattering geometry. This includes the first-order Raman scattering from the disorder-activated zone-edge phonons and the LO phonons. TO phonon modes are not observed, as in bulk CdS, for the excitation well above the lowest gap. We show that the asymmetric line profile of the LO phonon structure can be understood as a composite of two phonon modes: the zone center and the zone edge phonons. Disorder-activated modes in the (30-130)-cm-1 range and the higher-order Raman spectra are also observed and found to be consistent with this assignment.
Theoretical study of the transverse acoustic phonons of GaSb at high pressure
Indian Academy of Sciences (India)
S Shinde; M Talati; Prafulla K Jha; S P Sanyal
2004-08-01
We have investigated the phonon dispersion curves and one-phonon density of states up to the pressure of 8 GPa using a theoretical model, namely the rigid ion model. The transverse acoustic phonons as a function of pressure have been compared with the recently measured inelastic neutron scattering data which show a strong softening near the zone boundaries. The calculated one-phonon density of states show pronounced shift in the peak positions with the increase in pressure.
Indian Academy of Sciences (India)
L Pintschovius; F Weber; W Reichardt; A Kreyssig; R Heid; D Reznik; O Stockert; K Hradil
2008-10-01
Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron–phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high c (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron–phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth.
Energy Technology Data Exchange (ETDEWEB)
Kuleyev, I. G., E-mail: kuleev@imp.uran.ru; Kuleyev, I. I.; Bakharev, S. M.; Ustinov, V. V. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)
2016-09-15
We study the effect of anisotropy in elastic properties on the electron–phonon drag and thermoelectric phenomena in gapless semiconductors with degenerate charge-carrier statistics. It is shown that phonon focusing leads to a number of new effects in the drag thermopower at low temperatures, when diffusive phonon scattering from the boundaries is the predominant relaxation mechanism. We analyze the effect of phonon focusing on the dependences of the thermoelectromotive force (thermopower) in HgSe:Fe crystals on geometric parameters and the heat-flow directions relative to the crystal axes in the Knudsen regime of the phonon gas flow. The crystallographic directions that ensure the maximum and minimum values of the thermopower are determined and the role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower in HgSe:Fe crystals at low temperatures is analyzed. It is shown that the main contribution to the drag thermopower comes from slow quasi-transverse phonons in the directions of focusing in long samples.
Kuliev, I G
2002-01-01
One studied the effect of normal processes of electron-electron and phonon-phonon scattering on relaxation of quasi-particle pulse in nonequilibrium electron-phonon systems of degenerate semiconductors. One solved a system of kinetic equations for electron and phonon functions of distribution and calculated kinetic coefficients degeneration parameter. One analyzed the effect of normal processes of quasi-particle scattering on electric conductivity, thermo-emf and heat conductivity of degenerate semiconductors. One took account of redistribution of phonon pulse in N-processes of phonon-phonon scattering both inside every oscillating particle and between phonon different oscillating branches
Energy Technology Data Exchange (ETDEWEB)
Volodin, V. A., E-mail: volodin@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Sachkov, V. A. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation); Sinyukov, M. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-05-15
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.
Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.
2015-05-01
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.
Swinteck, Nichlas Z.
molecular dynamics simulation techniques, that phonon-boundary collision effects and coherent phononic effects (band-folding) are two competing scattering mechanisms responsible for the reduction of acoustic and optical phonon lifetimes. Conclusions drawn about the lifetime of thermal phonons in phononic crystal patterned graphene are linked with the anharmonic, one-dimensional crystal model.
Goel, Prabhatasree; Gupta, M. K.; Mittal, R.; Rols, S.; Achary, S. N.; Tyagi, A. K.; Chaplot, S. L.
2015-03-01
Lattice dynamics and high-pressure phase transitions in A W O4 (A =Ba ,Sr ,Ca , and Pb ) have been investigated using inelastic neutron scattering experiments, ab initio density functional theory calculations, and extensive molecular dynamics simulations. The vibrational modes that are internal to W O4 tetrahedra occur at the highest energies consistent with the relative stability of W O4 tetrahedra. The neutron data and the ab initio calculations are found to be in excellent agreement. The neutron and structural data are used to develop and validate an interatomic potential model. The model is used for classical molecular dynamics simulations to study their response to high pressure. We have calculated the enthalpies of the scheelite and fergusonite phases as a function of pressure, which confirms that the scheelite to fergusonite transition is second order in nature. With increase in pressure, there is a gradual change in the A O8 polyhedra, while there is no apparent change in the W O4 tetrahedra. We found that all the four tungstates amorphize at high pressure. This is in good agreement with available experimental observations which show amorphization at around 45 GPa in BaW O4 and 40 GPa in CaW O4 . Further molecular dynamics simulations at high pressure and high temperature indicate that application of pressure at higher temperature hastens the process of amorphization. On amorphization, there is an abrupt increase in the coordination of the W atom while the bisdisphenoids around the A atom are considerably distorted. The pair-correlation functions of the various atom pairs corroborate these observations. Our observations aid in predicting the pressure of amorphization in SrW O4 and PbW O4 .
Hyperfine phononic frequency comb
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
Optical frequency combs [1-8] have resulted in significant advances in optical frequency metrology and found wide application to precise physical measurements [1-4, 9] and molecular fingerprinting [8]. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this letter, we report the first clear experimental evidence for a phononic frequency comb. In contrast to the Kerr nonlinearity [10] in optical frequency comb formation, the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an auto-parametrically excited sub-harmonic mode [16]. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define attributes to control the features [17-18] associated with comb formation in such a system. Further, the interplay between these nonlinear resonances and the well-known Duffing phenomenon [12-14] is also observed. The present...
Probing and tuning inelastic phonon conductance across finite-thickness interface
Murakami, Takuru; Shiga, Takuma; Shiomi, Junichiro
2015-01-01
Phonon transmission across an interface between dissimilar crystalline solids is calculated using molecular dynamics simulations with interatomic force constants obtained from first principles. The results reveal that although inelastic phonon-transmission right at the geometrical interface can become far greater than the elastic one, its contribution to thermal boundary conductance (TBC) is severely limited by the transition regions, where local phonon states at the interface recover the bulk state over a finite thickness. This suggests TBC can be increased by enhancing phonon equilibration in the transition region for instance by phonon scattering, which is demonstrated by increasing the lattice anharmonicity.
Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena
Jin, Yongmei M.; Wang, Yu U.; Ren, Yang
2015-12-01
Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.
Molding Phonon Flow with Symmetry: Rational Design of Hypersonic Phononic Crystals
Koh, Cheong Yang; Thomas, Edwin L.
2009-03-01
Phononic crystals structured at appropriate length scales allow control over the flow of phonons, leading to new possibilities in applications such as heat-management, sound isolation and even energy transfer and conversion. Symmetry provides a unified framework for the interpretation 1D to 3D phononic band structures, allowing utilization of a common set of principles for designing band structures of phononic crystals as well as actual purposeful defects such as waveguide location and boundary termination in finite devices. In this work, we explore the band structure properties of phononic crystals with non-symmorphic space groups, as well as those having quasi-crystalline approximants. We demonstrate gap opening abilities from both anti-crossing and Bragg scattering, as well as unique features like ``sticking'' bands. Symmetry concepts are also powerful means to tune the density of states of the structures. Importantly, we fabricate various theoretical designs and measure their experimental dispersion diagrams for comparison with theoretical calculation. This affords an elegant approach toward a design blueprint for fabricating phononic structures for applications such as opto-acoustic coupling.
``Forbidden'' phonon in the iron chalcogenide series
Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.
2015-03-01
Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.
Phonon-induced polariton superlattices
DEFF Research Database (Denmark)
de Lima, Jr., M. M.; Poel, Mike van der; Santos, P. V.;
2006-01-01
We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the...... of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion....
Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
Cuffe, J; Ristow, O; Chávez, E; Shchepetov, A; Chapuis, P-O; Alzina, F; Hettich, M; Prunnila, M; Ahopelto, J; Dekorsy, T; Sotomayor Torres, C M
2013-03-01
We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ~4.7 ns to 5 ps with decreasing membrane thickness from ~194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.
PHONON SOFTENING IN INTERMEDIATE VALENT SmB6
Mörke, I.; Wachter, P.
1981-01-01
We have measured the Raman spectrum of a SmB6 single crystal and compared it to LaB6 and EuB6. Beside the three high energy Raman active phonons we found additional excitations in these compounds. Most prominent is a peak at 172 cm-1 for SmB6, 214 cm-1 for LaB6 and 220 cm-1 for EuB6. The spectra are analysed in terms of defect induced phonon scattering. The softening of the line in intermediate valent (IV) SmB6 is explained in analogy with the phonon anomalies found in other IV compounds.
Institute of Scientific and Technical Information of China (English)
O. Rafil; M. Tamine; B. Bourahla; R. Tigrine; S. Amoudache; A. Khater
2006-01-01
We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model for studying the dynamical properties using three polyacene chains is proposed with the aim to present the vibrational properties of this structure. It employs the formalism of solid states in two dimensions which admit phonons. A simulation process of the two-dimensional lattice structure shows that elastic waves may explain the existence of vibrational modes in the frequency range 100-400 cm-1. The presence of acoustic and optical like phonons is discussed in terms of the elastic force constants. A hyperfine resonance structure is obtained. It allows the analysis of the dynamical evolution in thin films of polyacene. It is found that the behavior of the phonon density of states exhibits resonance between modes in the structure.
Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction
Melnick, Corey; Kaviany, Massoud
2016-03-01
The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.
Birefringent phononic structures
Directory of Open Access Journals (Sweden)
I. E. Psarobas
2014-12-01
Full Text Available Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
Electron-phonon coupling in hybrid lead halide perovskites
Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.
2016-05-01
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ~40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
Electron-phonon coupling in hybrid lead halide perovskites.
Wright, Adam D; Verdi, Carla; Milot, Rebecca L; Eperon, Giles E; Pérez-Osorio, Miguel A; Snaith, Henry J; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M
2016-05-26
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth
DEFF Research Database (Denmark)
Tweed, C.J.; Ralph, B.; Hansen, Niels
1984-01-01
and coworkers. These estimates of local driving pressures have shown that they are similar for both the low and the high angle boundaries encountered in the samples. The pinning effects by particles at high angle boundaries are in general accord with the model due to Zener whilst those at low angle boundaries...
Scattering Tools for Nanostructure Phonon Engineering
2013-09-25
approved for public release. AIR FORCE RESEARCH LABORATORY AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSA ARLINGTON, VIRGINIA 22203 AIR FORCE MATERIEL...Stroscio, Phys. Rev. B 51, 9930 (1995). 31 J.A. Rogers, M.G. Lagally, and R.G. Nuzzo, Nature 477, 45 (2011). 32 E. Iwase, P.-C. Hui, D. Woolf , A.W
Phonon spectrum of the ferromagnetic superconductor UGe2 and consequences for its specific heat
Raymond, S.; Huxley, A.
2006-03-01
We report inelastic neutron scattering measurements of the phonon spectrum of the pressure-induced ferromagnetic superconductor UGe2 . The phonon contribution to the specific heat was estimated from a fit to our data. The excess specific heat previously noted at around Tx≈30K is not due to phonons but is well described by the temperature dependence of the magnetic order parameter at the molecular field level.
Hyperbolic phonon polaritons in hexagonal boron nitride
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Robb, Paul D; Finnie, Michael; Craven, Alan J
2012-07-01
High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis.
Three-Phonon Phase Space as an Indicator of the Lattice Thermal Conductivity in Semiconductors
Lindsay, L.; Broido, D. A.
2007-03-01
The room temperature lattice thermal conductivity of many semiconductors is limited primarily by three-phonon scattering processes arising from the anharmonicity of the interatomic potential. We employ an adiabatic bond charge model [1,2] for the phonon dispersions to calculate the phase space for three-phonon scattering events of several group IV and III-V semiconductors. We find that the amount of phase space available for this scattering in materials varies inversely with their measured thermal conductivities. Anomalous behavior occurs in III-V materials having large mass differences between cation and anion, which we explain in terms of the severely restricted three-phonon phase space arising from the large gap between acoustic and optic phonon branches. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976).
Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
Nunes, O. A. C.
2014-06-01
We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate RPA ,DA scales with TBGS -1 (S =PA,DA), TBGS being the Block -Gru¨neisen temperature. In the high-T Block -Gru¨neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio RPA/RDA scales with ≈1/√n , n being the carrier concentration. We found that only for carrier concentration n ≤1010cm-2, RPA/RDA>1. In the low-T Block -Gru¨neisen regime, and for n =1010cm-2, the ratio RPA/RDA scales with TBGDA/TBGPA≈7.5 and RPA/RDA>1. In this regime, PA phonon dominates the electron scattering and RPA/RDA<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.
Phonon anharmonicity and negative thermal expansion in SnSe
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-01
The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.
Phonon waveguides for electromechanical circuits
Hatanaka, D.; Mahboob, I.; Onomitsu, K.; Yamaguchi, H.
2014-07-01
Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.
Single mode phonon energy transmission in functionalized carbon nanotubes.
Lee, Jonghoon; Varshney, Vikas; Roy, Ajit K; Farmer, Barry L
2011-09-14
Although the carbon nanotube (CNT) features superior thermal properties in its pristine form, the chemical functionalization often required for many applications of CNT inevitably degrades the structural integrity and affects the transport of energy carriers. In this article, the effect of the side wall functionalization on the phonon energy transmission along the symmetry axis of CNT is studied using the phonon wave packet method. Three different functional groups are studied: methyl (-CH(3)), vinyl (-C(2)H(3)), and carboxyl (-COOH). We find that, near Γ point of the Brillouin zone, acoustic phonons show ideal transmission, while the transmission of the optical phonons is strongly suppressed. A positive correlation between the energy transmission coefficient and the phonon group velocity is observed for both acoustic and optical phonon modes. On comparing the transmission due to functional groups with equivalent point mass defects on CNT, we find that the chemistry of the functional group, rather than its molecular mass, has a dominant role in determining phonon scattering, hence the transmission, at the defect sites.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Effect of pressure on the phonon properties of europium chalcogenides
Indian Academy of Sciences (India)
U K Sakalle; P K Jha; S P Sanyal
2000-06-01
Lattice vibrational properties of europium chalcogenides have been investigated at high pressure by using a simple lattice dynamical model theory viz. the three-body force rigid ion model (TRIM) which includes long range three-body interaction arising due to charge transfer effects. The dispersion curves for the four Eu-chalcogenides agree reasonably well with the available experimental data. Variation of LO, TO, LA and TA phonons with pressure have also been studied at the symmetry points of the brillouin zone (BZ) for Euchalcogenides for the first time by using a lattice dynamical model theory. We have also calculated the one phonon density of states and compared them with the first order Raman scattering results. The calculation of one phonon density of states for Eu-chalcogenides has also been extended up to the phase transition pressure. We observed a pronounced shift in phonon spectrum as pressure is increased.
Phonon-assisted electron emission from individual carbon nanotubes.
Wei, Xianlong; Golberg, Dmitri; Chen, Qing; Bando, Yoshio; Peng, Lianmao
2011-02-09
A question of how electrons can escape from one-atom-thick surfaces has seldom been studied and is still not properly answered. Herein, lateral electron emission from a one-atom-thick surface is thoroughly studied for the first time. We study electron emission from side surface of individual electrically biased carbon nanotubes (CNTs) both experimentally and theoretically and discover a new electron emission mechanism named phonon-assisted electron emission. A kinetic model based on coupled Boltzmann equations of electrons and optical phonons is proposed and well describes experimentally measured lateral electron emission from CNTs. It is shown that the electrons moving along a biased CNT can overflow from the one-atom-thick surface due to the absorption of hot forward-scattering optical phonons. A low working voltage, high emission density, and side emission character make phonon-assisted electron emission primarily promising in electron source applications.
Phonons in Ge/Si superlattices with Ge quantum dots
Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T
2001-01-01
Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Kulić, M. L.; Dolgov, O. V.
2017-01-01
The theory of the electron-phonon interaction (EPI) with strong forward scattering peak (FSP) in an extreme delta-peak limit (Kulić and Zeyher 1994 Phys. Rev. B 49 4395; Kulić 2000 Phys. Rep. 38 1-264 Kulić and Dolgov 2005 Phys. Status Solidi b 242 151; Danylenko et al 1999 Eur. Phys. J. B 9 201) is recently applied in (Lee et al 2014 Nature 515 245; Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009) for the explanation of high {T}{{c}}(˜ 100 {{K}}) in a monolayer FeSe grown on {{{SrTiO}}}3 (Lee et al 2014 Nature 515 245) and TiO2 (Rebec et al 2016 arXiv:1606.09358v1) substrates. The EPI is due to a long-range dipolar electric field created by high-energy oxygen vibrations ({{Ω }}˜ 90 meV) at the interface (Lee et al 2014 Nature 515 245; Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009). In leading order (with respect to {T}{{c}0}/{{Ω }}) the mean-field critical temperature {T}{{c}0}={ }q/4) ˜ {({{aq}}{{c}})}2{V}{{epi}}(0) and the gap {{{Δ }}}0=2{T}{{c}0\\text{}} are due to an interplay between the maximal EPI pairing potential {V}{{epi}}(0) and the FSP-width q c. For {T}{{c}0}˜ 100 K one has {{{Δ }}}0˜ 16 meV in a satisfactory agreement with ARPES experiments. In leading order T c0 is mass-independent and a very small oxygen isotope effect is expected in next to leading order. In clean systems T c0 for s-wave and d-wave pairing is degenerate but both are affected by non-magnetic impurities, which are pair-weakening in the s-channel and pair-breaking in the d-channel. The self-energy and replica bands at T = 0 and at the Fermi surface are calculated and compared with experimental results at T> 0 ( Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009). The EPI coupling constant {λ }{{m}}={ }q/2{{Ω }} is mass-dependent ({M}1/2) and at ω (\\ll {{Ω }}) makes the slope of the self-energy {{Σ }}(k,ω )(≈ -{λ }{{m
Evolution of the phonon density of states of LaCoO3 over the spin state transition
Energy Technology Data Exchange (ETDEWEB)
Golosova, N. O. [Joint Institute for Nuclear Research, Dubna, Russia; Kozlenko, D. P. [Joint Institute for Nuclear Research, Dubna, Russia; Kolesnikov, Alexander I [ORNL; Kazimirov, V. Yu. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, M. B. [St. Petersburg State University, St. Petersburg, Russia; Jirak, Z. [Institute of Physics, Czech Republic; Savenko, B. N. [Joint Institute for Nuclear Research, Dubna, Russia
2011-01-01
The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spin state transition and relevant orbital-phonon coupling.
Extended phonon collapse in the charge-density-wave compound NbSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Weber, Frank [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States); Rosenkranz, Stephan; Castellan, John-Paul; Osborn, Raymond [Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States); Hott, Roland; Heid, Rolf; Bohnen, Klaus-Peter [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Egami, Takeshi [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee (United States); Said, Ayman [Advanced Photon Source, Argonne National Laboratory, Illinois (United States); Reznik, Dmitry [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Department of Physics, University of Colorado at Boulder, Boulder, Colorado (United States)
2011-07-01
We investigated the phonon softening in the charge density wave compound NbSe{sub 2} using the high-resolution hard inelastic X-ray scattering beamline 30-ID-C at the Advanced Photon Source, Argonne National Laboratory. The acoustic {sigma}{sub 1} phonon branch was measured from the zone center {gamma} to the M point at temperatures between 250 K and 8 K across the CDW transition at T{sub CDW}=33 K. Density functional theory calculations for the lattice dynamical properties which predict an extended phonon breakdown are used to analyze the detailed nature of the softening phonon branch.
Phononic crystals fundamentals and applications
Adibi, Ali
2016-01-01
This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.
Frictional drag between quantum wells mediated by phonon exchange
DEFF Research Database (Denmark)
Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang;
1998-01-01
lattice imperfections or electronic excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean free path l(ph) smaller than a critical value, imperfection scattering dominates and the drag rate varies as ln(l(ph)/d) over many orders of magnitude of the layer separation...
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yam, ChiYung [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Raman selection rule of surface optical phonon in ZnS nanobelts
Ho, Chih-Hsiang
2016-02-18
We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.
Polar-optical-phonon-limited electron mobility in GaN/AlGaN heterojunctions
Rizwana, K. Begum; Sankeshwar, N. S.
2012-06-01
The phonon-scattering-limited mobility of a two dimensional electron gas (2DEG) at GaN/AlGaN heterojunctions (HJs) is investigated for temperatures T<300K. Scattering by acoustic phonons is assumed to be quasielastic and that by polar LO phonons to be inelastic. Solving the linearized Boltzmann equation (LBE) using an iteration method, the carrier energy dependence of first order perturbation distribution (φ) is studied. Numerical results of φ are compared with commonly used closed-form low-temperature (τLT) and high-energy (τHE) relaxation time approximations. Good agreement with experimental data is obtained.
SEMICONDUCTOR PHYSICS: Phonon-induced magnetoresistance oscillations in a high-mobility quantum well
Qisheng, Zhou; Juncheng, Cao; Ming, Qi; Xiaolin, Lei
2010-09-01
We examine the temperature dependence of acoustic-phonon-induced magnetoresistance oscillations in a high-mobility GaAs-based quantum well with conventional transverse and longitudinal phonon modes, using a model in which the temperature increase of the Landau level broadening or the single-particle scattering rate 1/τs is attributed to the enhancement of electron-phonon scattering with rising temperature. The non-monotonic temperature behavior, showing an optimal temperature at which a given order of oscillation amplitude exhibits a maximum and the shift of the main resistance peak to higher magnetic field with rising temperature, is produced, in agreement with recent experimental findings.
Energy Technology Data Exchange (ETDEWEB)
Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)
2015-12-07
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
Giri, Ashutosh; Hopkins, Patrick E.
2015-12-01
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
Energy Technology Data Exchange (ETDEWEB)
Gu, Xiaokun; Yang, Ronggui, E-mail: Ronggui.Yang@Colorado.Edu [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)
2015-01-14
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
Gu, Xiaokun; Yang, Ronggui
2015-01-01
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ˜10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.
A moment model for phonon transport at room temperature
Mohammadzadeh, Alireza; Struchtrup, Henning
2017-01-01
Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also, the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system. A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave vector of phonons. As an example, a system of moment equations, consisting of three directional and seven frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is obtained.
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-11-27
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
Reduction of thermal conductivity in phononic nanomesh structures
Yu, Jen-Kan
2010-07-25
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.
Lattice Boltzmann Method used for the aircraft characteristics computation at high angle of attack
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Traditional Finite Volume Method(FVM)and Lattice Boltzmann Method(LBM)are both used to compute the high angle attack aerodynamic characteristics of the benchmark aircraft model named CT-1.Even though the software requires flow on the order of Ma<0.4,simulation at Ma=0.5 is run in PowerFLOW after theoretical analysis.The consistency with the wind tunnel testing is satisfied,especially for the LBM which can produce perfect results at high angle attack.PowerFLOW can accurately capture the detail of flows because it is inherently time-dependent and parallel and suits large-scale computation very well.
Konar, Aniruddha; Fang, Tian; Jena, Debdeep
2010-03-01
Surface phonons (SO-phonons) arise at the boundary of two different dielectric mediums. Though the effect of electron-surface phonon scattering on low-filed charge transport has been studied extensively for thin Si-MOSFET [1] and graphene [2], its effect on the 1D nanowire devices has not studied so far. Vibrating diploes in polar gate-dielectric induces a time-varying potential inside the nanowires. The frequencies of these time-varying fields have been calculated by implementing electrostatic boundary conditions at different interfaces of nanowire-dielectric-metal system. Our calculation shows that the electron-SO phonon interaction strength decays exponentially from the gate-nanowire interface towards the nanowire axis. Electron-SO phonon scattering rate has been calculated using Boltzmann transport equation under relaxation time approximation. We find that for thin nanowires (radius 1-20 nm), electron-SO phonon scattering rate is comparable to other dominant scattering mechanisms (such as impurity and bulk optical phonon scatterings) and reduces carrier mobility significantly. Calculating surface-phonon limited mobility of Si nanowires on various available common dielectrics, we have predicted the optimum choice of gate-dielectrics for nanowire-based electronic devices. [4pt] [1] M. V. Fischetti et. al J. Appl. Phys. 90 4581 (2001). [0pt] [2] A. Konar et. al. arXiv: 0902.0819.
Second order resonant Raman scattering
Energy Technology Data Exchange (ETDEWEB)
Garcia-Cristobal, A.; Catarero, A. [Valencia Univ. (Spain). Dept. de Fisica Aplicada; Trallero-Giner, C. [Instituto Politecnico Nacional, Mexico City (Mexico). Centro de Investigacion y de Estudios Avanzados
1996-03-01
A theoretical model for resonant Raman scattering by two optical phonons in zincblende-type semiconductors is presented. The effect of Coulomb interaction between electrons and holes is taken into account by introducing discrete and continuous excitonic intermediate states. The model can be applied for laser frequencies below and above the band gap. We consider deformation potential and Froehlich interaction for the electron-one-phonon coupling. The absolute value of the scattering efficiency is evaluated for the L-O-phonons, TO-plus LO-phonon and two-TO-photons Raman processes, around the E{sub o} absorption edge of II-VI compound semiconductors. Comparison with the electron-hole uncorrelated theory and experimental data emphasizes the role if the excitonic effects. (author). 10 refs., 2 figs.
Electron-phonon interaction in high temperature superconductors
Directory of Open Access Journals (Sweden)
H. Khosroabadi
2006-09-01
Full Text Available We explore the important role of the strong electron-phonon interaction in high temperature superconductivity through the study of the results of some important experiments, such as inelastic neutron and X-ray scattering, angle resolved photoemission spectroscopy, and isotope effects. We also present our computational results of the eigenvalues and eigenvectors of the Ag Raman modes, and the ionic displacement dependence of the electronic band structure by density functional theory. It is clearly evident that the role of phonons in the mechanism behind the high-temperature superconducting state should be seriously considered.
Phonon Softening and Dispersion in EuTiO3
Ellis, David S.; UCHIYAMA, Hiroshi; Tsutsui, Satoshi; Sugimoto, Kunihisa; Kato, Kenichi; Ishikawa, Daisuke; Baron, Alfred Q. R.
2012-01-01
We measured phonon dispersion in single crystal EuTiO$_3$ using inelastic x-ray scattering. A structural transition to an antiferrodistortive phase was found at a critical temperature $T_0$=287$\\pm$1 K using powder and single-crystal x-ray diffraction. Clear softening of the zone boundary \\emph{R}-point \\textbf{q}=(0.5 0.5 0.5) acoustic phonon shows this to be a displacive transition. The mode energy plotted against reduced temperature could be seen to nearly overlap that of $\\rm SrTiO_3$, su...
Dynamical Cooper pairing in nonequilibrium electron-phonon systems
Knap, Michael; Babadi, Mehrtash; Refael, Gil; Martin, Ivar; Demler, Eugene
2016-12-01
We analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.
Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack
Institute of Scientific and Technical Information of China (English)
Shi Zhongke; Fan Li
2013-01-01
To investigate the longitudinal motion stability of aircraft maneuvers conveniently,a new stability analysis approach is presented in this paper.Based on describing longitudinal aerodynamics at high angle-of-attack (α ＜ 50°) motion by polynomials,a union structure of two-order differential equation is suggested.By means of nonlinear theory and method,analytical and global bifurcation analyses of the polynomial differential systems are provided for the study of the nonlinear phenomena of high angle-of-attack flight.Applying the theories of bifurcations,many kinds of bifurcations,such as equilibrium,Hopf,homoclinic (heteroclinic) orbit and double limit cycle bifurcations are discussed and the existence conditions for these bifurcations as well as formulas for calculating bifurcation curves are derived.The bifurcation curves divide the parameter plane into several regions; moreover,the complete bifurcation diagrams and phase portraits in different regions are obtained.Finally,our conclusions are applied to analyzing the stability and bifurcations of a practical example of a high angle-of-attack flight as well as the effects of elevator deflection on the asymptotic stability regions of equilibrium.The model and analytical methods presented in this paper can be used to study the nonlinear flight dynamic of longitudinal stall at high angle of attack.
Wing-Alone Aerodynamic Characteristics to High Angles of Attack at Subsonic and Transonic Speeds.
1982-11-01
indicators of symmetry since the wings were unbanked within the limits of tolerances and flow angularity. Longitudinal, spanwise, and vertical... unbanked wings at subsonic and transonic speeds from low to high angles of attack. The wing planforms varied in aspect ratio and taper ratio with
Yang, Jia-Yue; Qin, Guangzhao; Hu, Ming
2016-12-01
The macroscopic thermal transport is fundamentally determined by the intrinsic interactions among microscopic electrons and phonons. In conventional insulators and semiconductors, phonons dominate the thermal transport, and the contribution of electron-phonon interaction (EPI) is negligible. However, in polar semiconductors, the Fröhlich electron-phonon coupling is strong and its influence on phononic thermal transport is of great significance. In this work, the effect of EPI on phonon dispersion and lattice thermal conductivity of wurtzite gallium nitride (GaN) is comprehensively investigated from the atomistic level by performing first-principles calculations. Due to the existence of relatively large electronegativity difference between Ga and N atoms, the Fröhlich coupling in wurtzite GaN is remarkably strong. Consequently, the lattice thermal conductivity of natural wurtzite GaN at room temperature is reduced by ˜24%-34% when including EPI, and the resulted thermal conductivity value is in better agreement with experiments. Furthermore, the scattering rate of phonons due to EPI, the intrinsic phonon-phonon interaction (PPI) as well as isotope disorder is computed and analyzed. It shows that the EPI scattering rate is comparable to PPI for low-frequency heat-carrying phonons. This work attempts to explore the mechanism of thermal transport beyond intrinsic PPI for polar semiconductors, with a great potential of thermal conductivity engineering for desired performance.
Energy Technology Data Exchange (ETDEWEB)
Edwards, D.F.
1988-09-30
A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.
Optical phonon dynamics and electronic fluctuations in the Dirac semimetal C d3A s2
Sharafeev, A.; Gnezdilov, V.; Sankar, R.; Chou, F. C.; Lemmens, P.
2017-06-01
Raman scattering in the three-dimensional Dirac semimetal C d3A s2 shows an intricate interplay of electronic and phonon degrees of freedom. We observe resonant phonon scattering due to interband transitions, an anomalous anharmonicity of phonon frequency and intensity, as well as quasielastic (E ˜0 ) electronic scattering. The latter two effects are governed by a characteristic temperature scale T*˜100 K that is related to mutual fluctuations of lattice and electronic degrees of freedom. A refined analysis shows that this characteristic temperature corresponds to the energy of optical phonons which couple to interband transitions in the Dirac states of C d3A s2 . As electron-phonon coupling in a topological semimetal is primarily related to phonons with finite momenta, the back action on the optical phonons is only observed as anharmonicities via multiphonon processes involving a broad range of momenta. The resulting energy density fluctuations of the coupled system have previously only been observed in low dimensional or frustrated spin systems with suppressed long range ordering.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-01-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors. PMID:27731406
Tunable Topological Phononic Crystals
Chen, Ze-Guo
2016-05-27
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, A., E-mail: juimaha@yahoo.co [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Sarkar, C.K. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India)
2011-04-01
The small signal high-frequency ac mobility of hot electrons in n-GaN in the extreme quantum limit at low- and high-temperatures has been calculated considering the non-equilibrium phonon distribution as well as the thermal phonon distributions. The energy loss rate has been calculated considering the dominance of the piezo electric coupling scattering and the polar optical phonon scattering while the momentum loss rate has been calculated considering the acoustic phonon scattering via deformation potential and the piezo electric coupling and the dislocation scattering.
Phonon Density of States and Heat Capacity of La$_{3-x}$Te$_4$
Energy Technology Data Exchange (ETDEWEB)
Delaire, Olivier A [ORNL; May, Andrew F. [California Institute of Technology, Pasadena; McGuire, Michael A [ORNL; Porter, Wallace D [ORNL; Lucas, [ORNL; Stone, Matthew B [ORNL; Abernathy, Douglas L [ORNL; Snyder, G. J. [California Institute of Technology, Pasadena
2009-01-01
The phonon density of states (DOS) of La$_{3-x}$Te$_4$ compounds ($x=0.0, 0.18, 0.32$) was measured at 300, 520, and 780$\\,$K, using inelastic neutron scattering. A significant stiffening of the phonon DOS, and a large broadening of features were observed upon introduction of vacancies on La sites (increasing $x$). Heat capacity measurements were performed at temperatures $~1.85 \\leqslant T \\leqslant 1200 \\,$K, and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La$_{3-x}$Te$_4$ strongly scatter phonons, and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation.
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
Davis, Bruce L.; Hussein, Mahmoud I.
2011-12-01
The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell) and the phononic crystal lattice (defined by a supercell) contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant), dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
Directory of Open Access Journals (Sweden)
Bruce L. Davis
2011-12-01
Full Text Available The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell and the phononic crystal lattice (defined by a supercell contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant, dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zav'Yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.
Collective hypersonic excitations in strongly multiple scattering colloids.
Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N
2011-04-29
Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.
Semi-Dirac points in phononic crystals
Zhang, Xiujuan
2014-01-01
A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in
Pseudogap and anharmonic phonon behavior in Ba8Ga16Ge30: An NMR study
Sirusi, Ali A.; Ross, Joseph H.
2016-08-01
We have performed 69Ga, 71Ga, and 137Ba NMR on Ba8Ga16Ge30, a clathrate semiconductor which has been of considerable interest due to its large figure of merit for thermoelectric applications. In measurements from 4 K to 450 K, we used measurements on the two Ga nuclei to separate the magnetic and electric quadrupole hyperfine contributions and thereby gain information about the metallic and phonon behavior. The results show the presence of a pseudogap in the Ga electronic states within the conduction band, superposed upon a large Ba contribution to the conduction band. Meanwhile the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors. These results provide evidence for enhanced anharmonicity of the propagative phonon modes over a wide range, providing experimental evidence for enhanced phonon-phonon scattering as a mechanism for the reduced thermal conductivity.
Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong
2016-06-01
The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.
Unusual phonon softening in the Kondo lattice CeCu 2
Loewenhaupt, Michael; Witte, Ulrike; Kramp, Sirko; Braden, Markus; Svoboda, Pavel
2002-03-01
CeCu2 is a Kondo lattice with antiferromagnetic order below 3.5 K and a Kondo temperature of about 6 K. Earlier neutron scattering experiments lead to the assumption of a coupling between a crystal field transition and some phonons with energies around 14 meV. With the results from our newly performed inelastic neutron measurements on a single crystal we found these assumptions confirmed. We observed an unusual softening of certain phonons with increasing temperature. This softening of up to 15% is much stronger than the normal thermal behavior of phonons. Additionally, the line width of these phonons is increasing. At the same time the magnetic response is strongly broadened by the coupling to the phonons. The findings for CeCu2 are discussed in relation with similar observation of a coupling between electronic and lattice degrees of freedom in CeAl2 and YbPO4.
Energy Technology Data Exchange (ETDEWEB)
Mike L. Laue
1997-05-30
The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.
Xu, Zhi-Jie
2015-01-01
We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics (MD) simulations. Locally dominant phonon modes (k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium (LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes (k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution (or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems. Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode (k = 0) is excited first and gradually expanding to the highest mode (kmax(x,t)), where kmax(x,t) can only asymptotically approach the maximum mode kB of the first Brillouin zone (kmax(x,t) → kB). No energy distributed into modes with kmax(x,t) proportional to the sound speed
Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN
Cuscó, Ramon; Gil, Bernard; Cassabois, Guillaume; Artús, Luis
2016-10-01
We present a Raman scattering study of optical phonons in hexagonal BN for temperatures ranging from 80 to 600 K. The experiments were performed on high-quality, single-crystalline hexagonal BN platelets. The observed temperature dependence of the frequencies and linewidths of both Raman active E2 g optical phonons is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional theory calculations. With increasing temperature, the E2g high mode displays strong anharmonic interactions, with a linewidth increase that indicates an important contribution of four-phonon processes and a marked frequency downshift that can be attributed to a substantial effect of the four-phonon scattering processes (quartic anharmonicity). In contrast, the E2g low mode displays a very narrow linewidth and weak anharmonic interactions, with a frequency downshift that is primarily accounted for by the thermal expansion of the interlayer spacing.
Gravitational Perturbation in Topological Phonon Space
Institute of Scientific and Technical Information of China (English)
李芳昱; 罗俊; 唐孟希
1994-01-01
The effect of gravitational wave (GW) on phonon in crystal lattice space with spiral dislocation is expressed as a gravitational perturbation in topological phonon space with background of the spiral dislocation.This is a new-type effect form of the GW field to the phonon.The corresponding phonon solutions are given.
Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations
Litvinchuk, A. P.
2009-08-01
The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.
Density of phonon states in the light-harvesting complex II of green plants
Pieper, J K; Irrgang, K D; Renger, G
2002-01-01
In photosynthetic antenna complexes, the coupling of electronic transitions to low-frequency vibrations of the protein matrix (phonons) plays an essential role in light absorption and ultra-fast excitation energy transfer (EET). The model calculations presented here indicate that inelastic neutron scattering experiments provide invaluable information on the phonon density of states for light-harvesting complex II, which may permit a consistent interpretation of contradictory results from high-resolution optical spectroscopy. (orig.)
Phonon density of states in Tl 2CaBa 2Cu 2O 8
Chaplot, S. L.; Dasannacharya, B. A.; Mukhopadhyay, R.; Rao, K. R.; Vijayaraghavan, P. R.; Iyer, R. M.; Phatak, G. M.; Yakhmi, J. V.
1991-10-01
The neutron-weighted phonon density of states in the high-temperature superconductor Tl 2CaBa 2Cu 2O 8 ( Tc=107 K) is obtained from coherent inelastic neutron scattering measurements at the Dhruva reactor at 300 K. The phonon spectrum is qualitatively similar to that in the 90 K superconductor YBa 2Cu 3O 7, and compares well with an independent lattice dynamical calculation.
Lumped model for rotational modes in phononic crystals
Peng, Pai
2012-10-16
We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.
Signature of electron-phonon interaction in high temperature superconductors
Directory of Open Access Journals (Sweden)
Vinod Ashokan
2011-09-01
Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.
Quantum kinetic exciton-LO-phonon interaction in CdSe
DEFF Research Database (Denmark)
Woggon, Ulrike; Gindele, Frank; Langbein, Wolfgang
2000-01-01
Oscillations with a period of similar to 150 fs are observed in the four-wave mixing (FWM) signal of bulk CdSe and interpreted in terms of non-Markovian exciton-LO-phonon scattering. The experiments show evidence of phonon quantum kinetics in semiconductors of strong polar coupling strength...... and high exciton binding energy. By comparison of the spectral and temporal response of the FWM signal in bulk CdSe and CdSe quantum dots, we demonstrate the influence of continuum states on the interference of electron-hole pair polarizations coupled via an LO phonon....
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
Extended phonon collapse and the origin of the charge-density-wave in NbSe{sub 2}.
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K.-P.; Egami, T.; Said, A. H.; Reznik, D. (X-Ray Science Division); ( MSD); (Karlsruhe Inst. of Tech.); (Univ. of Tennessee); (Univ. of Colorado at Boulder)
2011-01-01
We report inelastic x-ray scattering measurements of the temperature dependence of phonon dispersion in the prototypical charge-density-wave (CDW) compound 2H-NbSe{sub 2}. Surprisingly, acoustic phonons soften to zero frequency and become overdamped over an extended region around the CDW wave vector. This extended phonon collapse is dramatically different from the sharp cusp in the phonon dispersion expected from Fermi surface nesting. Instead, our experiments, combined with ab initio calculations, show that it is the wave vector dependence of the electron-phonon coupling that drives the CDW formation in 2H-NbSe{sub 2} and determines its periodicity. This mechanism explains the so far enigmatic behavior of CDW in 2H-NbSe{sub 2} and may provide a new approach to other strongly correlated systems where electron-phonon coupling is important.
Phonon softening in the CDW Systems NbSe{sub 2} and TiSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Hott, Roland; Heid, Rolf; Bohnen, Klaus-Peter [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Weber, Frank [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States); Rosenkranz, Stephan; Castellan, John-Paul; Osborn, Raymond [Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States); Egami, Takeshi [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee (United States); Said, Ayman [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois (United States); Reznik, Dmitry [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Department of Physics, University of Colorado at Boulder, Boulder, Colorado (United States)
2011-07-01
We investigated the soft-mode behaviour of phonons in the charge density wave (CDW) systems NbSe{sub 2} and TiSe{sub 2} both theoretically in Density Functional Theory (DFT) based on ab-initio phonon calculations and experimentally by means of high resolution Inelastic X-ray Scattering (IXS). For both materials, the theoretical predictions for the phonon softening using the experimental lattice parameters coincide with the experimentally observed CDW instability behaviour. While TiSe{sub 2} shows a rather sharp phonon anomaly at T=190 K, the anomaly in NbSe{sub 2} at T=33 K is much broader than expected for a Fermi surface nesting driven CDW instability. For NbSe{sub 2}, we exclude Fermi surface nesting as main origin of the phonon softening. For TiSe{sub 2}, there is no need to go beyond DFT in order to describe the phonon softening.
Phonons with orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Energy Technology Data Exchange (ETDEWEB)
Nomura, Masahiro, E-mail: nomura@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Tokyo 153–8505 (Japan); Institute for Nano Quantum Information Electronics, The University of Tokyo, Tokyo 153–8505 (Japan); Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg 79110 (Germany); Kage, Yuta [Institute of Industrial Science, The University of Tokyo, Tokyo 153–8505 (Japan); Müller, David; Moser, Dominik; Paul, Oliver [Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg 79110 (Germany)
2015-06-01
Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.
Hao, Qing; Xiao, Yue; Zhao, Hongbo
2016-08-01
In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.
The phonon dispersion of wurtzite CdSe
Widulle, F.; Kramp, S.; Pyka, N. M.; Göbel, A.; Ruf, T.; Debernardi, A.; Lauck, R.; Cardona, M.
1999-03-01
We have measured the phonon dispersion of wurtzite CdSe along overlineΓA by inelastic neutron scattering at room temperature. The sample was grown with the very weakly neutron absorbing isotope 116Cd and natural selenium. These experiments extend the picture so far obtained from earlier measurements on 114CdS and deliver more information on the accuracy of theoretical models. The experimental data are compared with ab initio and shell model calculations.
Three-dimensional phonon population anisotropy in silicon nanomembranes
McElhinny, Kyle M.; Gopalakrishnan, Gokul; Holt, Martin V.; Czaplewski, David A.; Evans, Paul G.
2017-07-01
Nanoscale single crystals possess modified phonon dispersions due to the truncation of the crystal. The introduction of surfaces alters the population of phonons relative to the bulk and introduces anisotropy arising from the breaking of translational symmetry. Such modifications exist throughout the Brillouin zone, even in structures with dimensions of several nanometers, posing a challenge to the characterization of vibrational properties and leading to uncertainty in predicting the thermal, optical, and electronic properties of nanomaterials. Synchrotron x-ray thermal diffuse scattering studies find that freestanding Si nanomembranes with thicknesses as large as 21 nm exhibit a higher scattering intensity per unit thickness than bulk silicon. In addition, the anisotropy arising from the finite thickness of these membranes produces particularly intense scattering along reciprocal-space directions normal to the membrane surface compared to corresponding in-plane directions. These results reveal the dimensions at which calculations of materials properties and device characteristics based on bulk phonon dispersions require consideration of the nanoscale size of the crystal.
Identification of High Angle Structures Controlling the Geothermal System at Rye Patch, Nevada.
Ehni, W. J.
2001-12-01
The successful completion of a recent well in the Rye Patch Geothermal field, located in Pershing County, Nevada, supports the geologic and geophysical interpretation that high angle structures control this geothermal system. Although lower angle structures are present, hot water migrates up from deeper sources along high angle faults more efficiently than structures with a shallower dip. Earlier attempts to develop the resource focused on structures that dipped at an angle between 60 and 70 degrees from horizontal. Recently acquired geophysical data indicated that numerous high angle structures were present in the area, with dips between 80 and 90 degrees. Original drilling targets focused on the subsurface projection of a surface structure, mapped as the Rye Patch fault, with an erroneously low angle. These early attempts at drilling were discouraging and might have been more successful if additional geology and geophysics were used to evaluate the geothermal system and map the Rye Patch fault more accurately. The successful completion of the most recent well can be attributed to the incorporation of the geology of previous wells with additional geology and geophysics. Temperature gradient holes were used to confirm that the Rye Patch fault provided the primary plumbing for this geothermal system, and 3D seismic data indicated that most of the structures had dips between 80 and 90 degrees. Geothermometry at Rye Patch indicates that the resource has a relatively high quartz equilibrium temperature and it is speculated that the higher the angle of the structural control, the higher the resource temperature. The dip of Basin and Range normal faults varies considerably and the interpretation of these structures for geothermal, fossil geothermal mineral prospects, and or oil and gas prospects is important. At Rye Patch, the high angle structure feeds geothermal fluids into cavernous limestone beds, dipping to the west usually between 40 and 60 degrees, which is a
Photonic and phononic quasicrystals
Energy Technology Data Exchange (ETDEWEB)
Steurer, Walter; Sutter-Widmer, Daniel [Laboratory of Crystallography, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)
2007-07-07
This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotational symmetry. Both are prerequisites for the construction of isotropic band gap composites, in particular from materials with low index contrast, which are required for numerous applications. Another interesting property of quasiperiodic structures is their scaling symmetry, which may be exploited to create spectral gaps in the sub-wavelength regime. This review covers structure/property relationships of heterostructures based on one-dimensional (1D) substitutional sequences such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro and Cantor sequence as well as on 1D modulated structures, further on 2D tilings with 8-, 10-, 12- and 14-fold symmetry as well as on the pinwheel tiling, the Sierpinski gasket and on curvilinear tilings and, finally, on the 3D icosahedral Penrose tiling. (topical review)
Surface pressure model for simple delta wings at high angles of attack
Indian Academy of Sciences (India)
A A Pashilkar
2001-12-01
A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a simple delta wing. The model is then extended to a wing/body combination where body-alone data are also available. The model is shown to be simple and consistent with experimental data. The pressure model can be used as a ﬁrst approximation for the load estimation on the delta wing at high angles of attack.
Prediction of forces and moments on finned bodies at high angle of attack in transonic flow
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W. L.
1981-04-01
This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.
Magnus effects at high angles of attack and critical Reynolds numbers
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Indian Academy of Sciences (India)
B K SAHOO; A PANSARI
2016-12-01
In this article we have investigated theoretically the effect of built-in-polarization field on various phonon scattering mechanisms in AlxGa1−xN alloy. The built-in-polarization field of AlxGa1−xN modifies the elastic constant,group velocity of phonons and Debye temperature. As a result, various phonon scattering mechanisms are changed. Important phonon scattering mechanisms such as normal scattering, Umklapp scattering, point defect scattering, dislocation scattering and phonon–electron scattering processes have been considered in the computation. The combined relaxation time due to above-mentioned scattering mechanisms has also been computed as afunction of phonon frequency for various Al compositions at room temperature. It is found that combined relaxation time is enhanced due to built-in-polarization effect and makes phonon mean free path longer, which is required forhigher optical, electrical and thermal transport processes. The result can be used to determine the effect of built-inpolarization field on optical and thermal properties of Al$_x$Ga$_{1−x}$N and will be useful, particularly, for improvementof thermoelectric performance of Al$_x$Ga$_{1−x}$N alloy through polarization engineering.
Spectroscopy of phonons and spin torques in magnetic point contacts.
Yanson, I K; Naidyuk, Yu G; Bashlakov, D L; Fisun, V V; Balkashin, O P; Korenivski, V; Konovalenko, A; Shekhter, R I
2005-10-28
Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.
Study on flow behavior and structure over chined fuselage at high angle of attack
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04×105 with PIV and pressure measurement techniques.Firstly,the experiment results have proved that micro tip perturbation has no effects on the vortex flow and its aerodynamic characteristics over chined fuselage at high angle of attack,in which there are not any non-deterministic flow behaviors.Secondly,the evolution of leeward vortex structure over chined fuselage along the axis of model can be divided into four flow regimes:linear conical developed regime,decay regime of leeward vortex intensity,asymmetric leeward vortex break down regime and completely break down regime.And a correlation between leeward vortex structure and sectional aerodynamic force was also revealed in the present paper.Thirdly,the experiment results show the behavior of leeward vortex core trajectories and zonal characteristics of leeward vortex structure with angles of attack.Finally,the experiment results of Reynolds number effect on the leeward vortex flow have further confirmed research conclusions from previous studies:the flows over chined fuselage at high angles of attack are insensitive to variation of Reynolds number,and there is a little effect on the secondary boundary layer separation and the suction peak induced by leeward vortex.
Institute of Scientific and Technical Information of China (English)
YANG Li-zhi; GAO Zheng-hong
2005-01-01
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented.Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, λ is negative, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However,after a critical angle of attack is reached, the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.
Energy Technology Data Exchange (ETDEWEB)
Flach, B.
2000-01-01
This thesis has two topics: One is the investigation of an adsorbate induced phonon anomaly on W(110) and Mo{sub 1-x}Re{sub x}(110) (x = 5, 15, 25%) with inelastic helium atom scattering (HAS). The other one is the study of the growth, morphology and dynamics of ultra-thin lithium films deposited on W(110). In 1992 a giant phonon anomaly was found by J. Luedecke on the hydrogen saturated W(110) and Mo(110) surfaces. The anomaly consists of a deep and sharp indentation in the phonon dispersion curves in which the phonon energy nearly drops to zero ({omega}{sub 1}). In addition, a small and broad dip in the surface Rayleigh mode is observed ({omega}{sub 2}). The anomaly appears in the anti {gamma}-H- as well as in the anti {gamma}-S-direction of the surface Brillouin zone (SBZ). Since its first discovery, numerous other experimental and theoretical studies have followed. In the present work the effects is reinvestigated and experimental parameters, such as the crystal temperature and the incident energy, were changed in order to study their influence on the anomalous phonon behavior. In the case of H/Mo(110) the substrate was changed as well by alloying with small amounts of rhenium. In the present experiments a strong crystal temperature dependence of the {omega}{sub 2}-branch was found which leads to lower energies at the 'dip' for smaller temperatures, while the {omega}{sub 1}-anomaly remains unchanged. Such behavior agrees well with the picture that the {omega}{sub 2}-branch is due to a Kohn anomaly. (orig.)
Phononics in low-dimensional materials
Directory of Open Access Journals (Sweden)
Alexander A. Balandin
2012-06-01
Full Text Available Phonons – quanta of crystal lattice vibrations – reveal themselves in all electrical, thermal, and optical phenomena in materials. Nanostructures open exciting opportunities for tuning the phonon energy spectrum and related material properties for specific applications. The possibilities for controlled modification of the phonon interactions and transport – referred to as phonon engineering or phononics – increased even further with the advent of graphene and two-dimensional van der Waals materials. We describe methods for tuning the phonon spectrum and engineering the thermal properties of the low-dimensional materials via ribbon edges, grain boundaries, isotope composition, defect concentration, and atomic-plane orientation.
Toward Single Electron Resolution Phonon Mediated Ionization Detectors
Mirabolfathi, Nader; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew; Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard
2015-01-01
Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ~ 14 eV$_{ee}$ . CDMSlite is currently the most sensitive experiment to WIMPs of mass $\\sim$5 GeV/c$^{2}$ but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a $\\times$ 2 Luke phonon gain, world best RMS resolution of sigma $\\sim$7 eV$_{ee}$ for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applie...
Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)
Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.
2016-09-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
YPHON: A package for calculating phonons of polar materials
Wang, Yi; Chen, Long-Qing; Liu, Zi-Kui
2014-11-01
In our recent works, we have developed a mixed-space approach within the framework of direct method for the first-principle calculation of phonon properties. It makes full use of the accuracy of the force constants calculated in the real space and the dipole-dipole interactions in the reciprocal space, making the accurate phonon calculation possible with the direct method for polar materials. In this paper, an efficient C++ implementation of the mixed-space approach, YPHON, is provided as open source, including demos and Linux scripts for extracting input data to YPHON from the output of VASP.5. The functions of the current package include the calculations of: (1) the phonon dispersions; (2) the phonon density of states; (3) the neutron scattering section weighted phonon density of state; (4) the phonons of the high symmetry structure using the force constants from low symmetry structure; (5) the phonon dispersions of random alloys; and (6) the analysis of the vibrational modes using the point group theory. Catalogue identifier: AETS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 567815 No. of bytes in distributed program, including test data, etc.: 9763594 Distribution format: tar.gz Programming language: C++, Linux scripts. Computer: Linux systems with a g++ or C++ compiler. Operating system: Linux. RAM: Ranges from a few Mbytes to a few Gbytes, dynamically depending on the system size. Classification: 7.8. External routines: GSL-the GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. VASP.5 or later for the calculations of force constants and dielectric constants and Born effective charge for polar materials. Nature of problem: This package has the purpose of computing
Mahdouani, M.
2017-03-01
We present a theoretical study of the electron- surface phonon interaction in mono-layer graphene (1LG) on polar substrates such as SiO2,HfO2, SiC and hexagonal BN . Thus we have used the eigen energies derived from the tight-binding Hamiltonian in mono-layer graphene. Our results indicate that the electron-surface phonon interaction depends on the polar substrate. Such polar substrates allow for the existence of polar optical phonons localized near the graphene-substrate interface which could be an important scattering source for graphene carriers through the long-range Fröhlich coupling. Likewise, we have investigated the effect of various dielectrics on the SO phonon-limited mobility, the SO phonon-limited resistivity, the SO phonon-limited conductivity and the scattering rate in single layer graphene by considering the effects of the SO optical phonon scattering arising from the polar substrates and by varying the temperature, the charge carrier density and the physical separation between graphene and interface of dielectric substrate.
Phonon spectra in quantum wires
Directory of Open Access Journals (Sweden)
Ilić Dušan
2007-01-01
Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.
Phonon transport properties of two-dimensional group-IV materials from ab initio calculations
Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan
2016-12-01
It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
A quantum cascade phonon-polariton laser
Ohtani, Keita; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme
2016-01-01
We report a laser that coherently emits phonon-polaritons, quasi-particles arising from the coupling between photons and transverse optical phonons. The gain is provided by an intersubband transition in a quantum cascade structure. The polaritons at h$\
Nonadiabatic effects in the phonon dispersion of Mg1 -xAlxB2
d'Astuto, Matteo; Heid, Rolf; Renker, Burkhard; Weber, Frank; Schober, Helmut; De la Peña-Seaman, Omar; Karpinski, Janusz; Zhigadlo, Nikolai D.; Bossak, Alexei; Krisch, Michael
2016-05-01
Superconducting MgB2 shows an E2 g zone center phonon, as measured by Raman spectroscopy, that is very broad in energy and temperature dependent. The Raman shift and lifetime show large differences with the values elsewhere in the Brillouin zone measured by inelastic x-ray scattering (IXS), where its dispersion can be accounted for by standard harmonic phonon theory, adding only a moderate electron-phonon coupling. Here we show that the effects rapidly disappear when electron-phonon coupling is switched off by Al substitution on the Mg sites. Moreover, using IXS with very high wave-vector resolution in MgB2, we can follow the dispersion connecting the Raman and the IXS signal, in agreement with a theory using only electron-phonon coupling but without strong anharmonic terms. The observation is important in order to understand the effects of electron-phonon coupling on zone center phonon modes in MgB2, and also in all metals characterized by a small Fermi velocity in a particular direction, typical for layered compounds.
Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals.
Wei, Zhiyong; Wehmeyer, Geoff; Dames, Chris; Chen, Yunfei
2016-10-07
Molecular dynamics simulations are performed to investigate the thermal transport properties of a three-dimensional (3D) anisotropic phononic crystal consisting of silicon nanowires and films. The calculation shows that the in-plane thermal conductivity is negatively correlated with the out-of-plane thermal conductivity upon making geometric changes, whether varying the nanowire diameter or the film thickness. This enables the anisotropy ratio of thermal conductivity to be tailored over a wide range, in some cases by more than a factor of 20. Similar trends in thermal conductivity are also observed from an independent phonon ray tracing simulation considering only diffuse boundary scattering effects, though the range of anisotropy ratios is smaller than that obtained in MD simulation. By analyzing the phonon dispersion relation with varied geometric parameters, it is found that increasing the nanowire diameter increases the out-of-plane acoustic phonon group velocities, but reduces the in-plane longitudinal and fast transverse acoustic phonon group velocities. The calculated phonon irradiation further verified the negative correlation between the in-plane and the out-of-plane thermal conductivity. The proposed 3D phononic crystal may find potential application in thermoelectrics, energy storage, catalysis and sensing applications owing to its widely tailorable thermal conductivity.
Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia
2017-06-01
We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.
Phonon creation by gravitational waves
Sabín, Carlos; Ahmadi, Mehdi; Fuentes, Ivette
2014-01-01
We show that gravitational waves create phonons in a Bose-Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances that correspond to the dynamical Casimir effect in a BEC phononic field contained in a cavity-type trap. We propose to use this effect to detect gravitational waves. The amplitude of the wave can be estimated applying recently developed relativistic quantum metrology techniques. We provide the optimal precision bound on the estimation of the wave's amplitude. Finally, we show that the parameter regime required to detect gravitational waves with this technique is within experimental reach.
ASYMMETRIC VORTICES FLOW OVER SLENDER BODY AND ITS ACTIVE CONTROL AT HIGH ANGLE OF ATTACK
Institute of Scientific and Technical Information of China (English)
DENG Xueying; WANG Yankui
2004-01-01
The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area. This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices. This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices. The critical issues are discussed,which include the formation and evolution mechanism of asymmetric multi-vortices; main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure; the evolution and development of asymmetric vortices under the perturbation on the model nose; forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail. However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.
Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack
Directory of Open Access Journals (Sweden)
Xin Qi
2015-02-01
Full Text Available Bifurcation analysis and stability design for aircraft longitudinal motion are investigated when the nonlinearity in flight dynamics takes place severely at high angle of attack regime. To predict the special nonlinear flight phenomena, bifurcation theory and continuation method are employed to systematically analyze the nonlinear motions. With the refinement of the flight dynamics for F-8 Crusader longitudinal motion, a framework is derived to identify the stationary bifurcation and dynamic bifurcation for high-dimensional system. Case study shows that the F-8 longitudinal motion undergoes saddle node bifurcation, Hopf bifurcation, Zero-Hopf bifurcation and branch point bifurcation under certain conditions. Moreover, the Hopf bifurcation renders series of multiple frequency pitch oscillation phenomena, which deteriorate the flight control stability severely. To relieve the adverse effects of these phenomena, a stabilization control based on gain scheduling and polynomial fitting for F-8 longitudinal motion is presented to enlarge the flight envelope. Simulation results validate the effectiveness of the proposed scheme.
Flight validation of ground-based assessment for control power requirements at high angles of attack
Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.
1994-01-01
A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.
Quasi-periodic dynamics of a high angle of attack aircraft
Rohith, G.; Sinha, Nandan K.
2017-01-01
High angle of attack maneuvers closer to stall is a commonly accessed flight regime especially in case of fighter aircrafts. Stall and post-stall dynamics are dominated by nonlinearities which make the analysis difficult. Presence of external factors such as wind makes the system even more complex. Rich nonlinearities point to the possibility of existence of chaotic solutions. Past studies in this area confirm the development of such solutions. These studies are mainly concentrated on very high angle of attack regimes, which may not be practically easily accessible. This paper examines the possibility of existence of chaotic solutions in the lower, more accessible areas in the post stall domain. The analysis is composed of the study of effect of external wind as an agent to drive the system towards the possibility of a chaotic solution. Investigations reveal presence of quasi-periodic solutions, which are characterized by two incommensurate frequencies. This solution appears in the time simulation by varying the control parameter viz., wind. The solutions correspond to the values in the lower region of the angle of attack versus elevator bifurcation curve in the post-stall region. A steady wind is considered for the analysis and explores the possibility of chaotic motion by increasing the wind in a step wise manner. It is found that wind adds extra energy to the system which in turn drives the system in to chaos. The analysis is done with the help of phase portrait, Poincare map and amplitude spectrum and a quasi-periodic route to chaos via torus doubling is also presented.
Investigation on high angle of attack characteristics of hypersonic space vehicle
Institute of Scientific and Technical Information of China (English)
HUANG Wei; LI ShiBin; LIU Jun; WANG ZhenGuo
2012-01-01
The high angle of attack characteristics play an important role in the aerodynamic performances of the hypersonic space vehicle.The three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the two-equation RNG k-ε turbulence model have been employed to investigate the influence of the high angle of attack on the lift-to-drag ratio and the flow field characteristics of the hypersonic space vehicle,and the contributions of each component to the aerodynamic forces of the vehicle have been discussed as well.At the same time,in order to validate the numerical method,the predicted results have been compared with the available experimental data of a hypersonic slender vehicle,and the grid independency has been analyzed.The obtained results show that the predicted lift-to-drag ratio and pitching moment coefficient show very good agreement with the experimental data in the open literature,and the grid system makes only a slight difference to the numerical results.There exists an optimal angle of attack for the aerodynamic performance of the hypersonic space vehicle,and its value is 20°.When the angle of attack is 20°,the high pressure does not leak from around the leading edge to the upper surface.With the further increasing of the angle of attack,the high pressure spreads from the wing tips to the central area of the vehicle,and overflows from the leading edge again.Further,the head plays an important role in the drag performance of the vehicle,and the lift percentage of the flaperon is larger than that of the rudderevator.This illustrates that the optimization of the flaperon configuration is a great work for the improvement of the aerodynamic performance of the hypersonic space vehicle,especially for a high lift-to-drag ratio.
Dynamically induced robust phonon transport and chiral cooling in an optomechanical system
Kim, Seunghwi; Taylor, Jacob M; Bahl, Gaurav
2016-01-01
The transport of sound and heat, in the form of phonons, has a fundamental material limit: disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carrier propagation exhibits broken parity symmetry - provides robustness against such disorder by preventing elastic backscattering. Here we experimentally demonstrate a path for achieving robust phonon transport even in the presence of material disorder, by dynamically inducing chirality through traveling-wave optomechanical coupling. Using this approach, we demonstrate dramatic optically-induced chiral transport for clockwise and counterclockwise phonons in a symmetric resonator. This induced chirality also enhances isolation from the thermal bath and leads to gain-free reduction of the intrinsic damping of the phonons. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to a novel optical cooling of the mechanics. This technique has the potential to improve upon...
Local symmetry breaking and spin–phonon coupling in SmCrO{sub 3} orthochromite
Energy Technology Data Exchange (ETDEWEB)
El Amrani, M. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Zaghrioui, M., E-mail: zaghrioui@univ-tours.fr [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Ta Phuoc, V.; Gervais, F. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Massa, Néstor E. [Laboratorio Nacional de Investigacion y Servicios en Espectroscopia Optica-Centro CEQUINOR, Universidad Nacional de La Plata, C. C. 962, 1900 La Plata (Argentina)
2014-06-01
Raman scattering and infrared reflectivity performed on polycrystalline SmCrO{sub 3} support strong influence of the antiferromagnetic order on phonon modes. Both measurements show softening of some modes below T{sub N}. Such a behavior is explained by spin–phonon coupling in this compound. Furthermore, temperature dependence of the infrared spectra has demonstrated important changes compared to the Raman spectra, suggesting strong structural modifications due to the cation displacements rather to those of the oxygen ions. Our results reveal that polar distortions originating in local symmetry breaking, i.e. local non-centrosymmetry, resulting in Cr off-centring. - Highlights: • We investigated Raman and infrared phonon modes of SmCrO{sub 3} versus temperature. • Results reveal strong influence of the antiferromagnetic order on phonon modes. • Temperature dependence of the infrared spectra shows strong structural modifications suggesting local symmetry breaking.
TUNABLE Band Structures of 2d Multi-Atom Archimedean-Like Phononic Crystals
Xu, Y. L.; Chen, C. Q.; Tian, X. G.
2012-06-01
Two dimensional multi-atom Archimedean-like phononic crystals (MAPCs) can be obtained by adding "atoms" at suitable positions in primitive cells of traditional simple lattices. Band structures of solid-solid and solid-air MAPCs are computed by the finite element method in conjunction with the Bloch theory. For the solid-solid system, our results show that the MAPCs can be suitably designed to split and shift band gaps of the corresponding traditional simple phononic crystal (i.e., with only one scatterer inside a primitive cell). For the solid-air system, the MAPCs have more and wider band gaps than the corresponding traditional simple phononic crystal. Numerical calculations for both solid-solid and solid-air MAPCs show that the band gap of traditional simple phononic crystal can be tuned by appropriately adding "atoms" into its primitive cell.
Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene
Araujo, Paulo T.; Mafra, Daniela L.; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S.
2012-01-01
In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS2, WSe2, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications. PMID:23264879
Observation of resonant lattice modes by inelastic neutron scattering
DEFF Research Database (Denmark)
Bjerrum Møller, Hans; Mackintosh, A.R.
1965-01-01
Observation by inelastic neutron scattering of resonant lattice modes due to small concentration of W atoms in Cr host crystal; frequencies and lifetimes of phonons with frequencies near that of resonant mode are considerably affected by presence of defects....
Thermodynamic potential of electrons and phonons system of disordered alloy
Repetskij, S P
2002-01-01
The cluster decomposition for the delayed two-time Green functions and the disordered crystal dynamic potential is obtained with an account of the electron-phonon and electron-electron interactions. The system electron states are described within the frames of the multizone strong coupling model. The calculations are based on the diagram technique for the Green temperature functions. The coherent potential approximation is chosen as the zero mononode approximation in this cluster decomposition method. It is shown that the processes of the contributions of the elementary excitations scattering on the clusters decrease with the cluster nodes number growth in the cluster in correspondence with certain small parameters. The analytical evaluations of the electron-phonon interaction impact on the electron energy spectrum of the ordering alloy are made in the monozone model. The possibility of applying the obtained results for describing the strong electron correlations impact on the electron structure and propertie...
Disclosing phonon squeezing by non-equilibrium optical experiments
Esposito, Martina; Zimmermann, Klaus; Giusti, Francesca; Randi, Francesco; Boschetto, Davide; Parmigiani, Fulvio; Floreanini, Roberto; Benatti, Fabio; Fausti, Daniele
2015-01-01
Fluctuations of the atomic positions are at the core of a large class of unusual material properties ranging from quantum para-electricity and charge density wave to, possibly, high temperature superconductivity. Their measurement in solids is subject of an intense scientific debate focused on the research of a methodology capable of establishing a direct link between the variance of the ionic displacements and experimentally measurable observables. Here we address this issue by means of non-equilibrium optical experiments performed in shot-noise limited regime. The variance of the time dependent atomic positions and momenta is directly mapped into the quantum fluctuations of the photon number of the scattered probing light. A fully quantum description of the non-linear interactions between photonic and phononic fields unveils evidences of squeezing of thermal phonons in $\\alpha-$quartz.
Nonlinear control of high-frequency phonons in spider silk
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Dynamics of vortices in neutral superfluids with noninteracting phonons
Fortin, Jean-Yves
2001-05-01
The transverse force on an isolated and moving vortex in a neutral superfluid at rest is evaluated at finite temperature in the case of noninteracting phonons. Using the Thouless, Ao, Niu (TAN) [Phys. Rev. Lett. 76, 3758 (1996)] general theory, we show that the transverse force is exactly equal to the superfluid Magnus force. We extend this theory in the case of a slowly moving vortex on a circular trajectory, and find an additional contribution coming from the centrifugal reaction. This term gives a negative vortex mass due to the phonons and diverges logarithmically at low frequency. The friction force is also evaluated for zero and finite frequencies, and compared with the scattering theory.
Phonon instability in the CDW systems 2H-NbSe{sub 2} and TiSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Hott, Roland; Heid, Rolf; Bohnen, Klaus-Peter [Karlsruhe Institute of Technology, Institute of Solid State Physics, P. O. Box. 3640, D-76021 Karlsruhe (Germany); Weber, Frank [Karlsruhe Institute of Technology, Institute of Solid State Physics, P. O. Box. 3640, D-76021 Karlsruhe (Germany); Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439 (United States); Rosenkranz, Stephan; Castellan, John-Paul; Osborn, Raymond; Karapetrov, Goran [Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439 (United States); Egami, Takeshi [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, 37996 (United States); Said, Ayman [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439 (United States); Reznik, Dmitry [Karlsruhe Institute of Technology, Institute of Solid State Physics, P. O. Box. 3640, D-76021 Karlsruhe (Germany); Department of Physics, University of Colorado at Boulder, Boulder, Colorado, 80309 (United States)
2012-07-01
Further investigations on the soft-mode behaviour of phonons in the Charge Density Wave (CDW) systems 2H-NbSe{sub 2} and TiSe{sub 2} have been performed both theoretically in Density Functional Theory (DFT) based on ab-initio phonon calculations as well as experimentally by means of high resolution Inelastic X-ray Scattering (IXS). For both materials, the theoretical predictions for the phonon softening coincide with the experimentally observed CDW instability behaviour. For 2H-NbSe{sub 2} the wave vector dependence of the electron-phonon coupling drives the CDW formation and determines its periodicity. For TiSe{sub 2}, electron-phonon-coupling is strong enough to stabilize the structural phase transition at finite temperatures.
Phonon softening in the CDW systems NbSe{sub 2} and TiSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Hott, Roland; Heid, Rolf; Bohnen, Klaus-Peter [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Weber, Frank; Castellan, John-Paul [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Materials Science Division, Argonne National Laboratory, Argonne, IL (United States); Rosenkranz, Stephan; Osborn, Raymond [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States); Egami, Takeshi [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Said, Ayman [Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Reznik, Dmitry [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Department of Physics, University of Colorado at Boulder, Boulder, CO (United States)
2013-07-01
We present new results on the soft-mode behaviour of phonons in the Charge Density Wave (CDW) systems NbSe{sub 2} and TiSe{sub 2}. Our theoretical predictions from Density Functional Theory (DFT) based on ab-initio phonon calculations coincide with the CDW instability behaviour that we observed experimentally by means of high resolution Inelastic X-ray Scattering (IXS). While TiSe{sub 2} shows a rather sharp phonon anomaly at T=190 K, the anomaly in NbSe{sub 2} at T=33 K is much broader than expected for a Fermi surface nesting driven CDW instability. For NbSe{sub 2}, we exclude Fermi surface nesting as main origin of the phonon softening. For TiSe{sub 2}, the phonon softening seems to be well described within the framework of DFT.
Soda Cans Metamaterial: A Subwavelength-Scaled Phononic Crystal
Directory of Open Access Journals (Sweden)
Fabrice Lemoult
2016-07-01
Full Text Available Photonic or phononic crystals and metamaterials, due to their very different typical spatial scales—wavelength and deep subwavelength—and underlying physical mechanisms—Bragg interferences or local resonances—, are often considered to be very different composite media. As such, while the former are commonly used to manipulate and control waves at the scale of the unit cell, i.e., wavelength, the latter are usually considered for their effective properties. Yet we have shown in the last few years that under some approximations, metamaterials can be used as photonic or phononic crystals, with the great advantage that they are much more compact. In this review, we will concentrate on metamaterials made out of soda cans, that is, Helmholtz resonators of deep subwavelength dimensions. We will first show that their properties can be understood, likewise phononic crystals, as resulting from interferences only, through multiple scattering effects and Fano interferences. Then, we will demonstrate that below the resonance frequency of its unit cell, a soda can metamaterial supports a band of subwavelength varying modes, which can be excited coherently using time reversal, in order to beat the diffraction limit from the far field. Above this frequency, the metamaterial supports a band gap, which we will use to demonstrate cavities and waveguides, very similar to those obtained in phononic crystals, albeit of deep subwavelength dimensions. We will finally show that multiple scattering can be taken advantage of in these metamaterials, by correctly structuring them. This allows to turn a metamaterial with a single negative effective property into a negative index metamaterial, which refracts waves negatively, hence acting as a superlens.
Nonlinear phononics using atomically thin membranes
Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander
2014-09-01
Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.
Whalley, Lucy D.; Skelton, Jonathan M.; Frost, Jarvist M.; Walsh, Aron
2016-12-01
Lattice vibrations in CH3NH3PbI3 are strongly interacting, with double-well instabilities present at the Brillouin zone boundary. Analysis within a first-principles lattice-dynamics framework reveals anharmonic potentials with short phonon quasiparticle lifetimes and mean free paths. The phonon behavior is distinct from the inorganic semiconductors GaAs and CdTe where three-phonon interaction strengths are three orders of magnitude smaller. The implications for the applications of hybrid halide perovskites arising from thermal conductivity, band-gap deformation, and charge-carrier scattering through electron-phonon coupling, are presented.
Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite
Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.
2011-08-01
Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.
Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering
Energy Technology Data Exchange (ETDEWEB)
Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.
2011-03-03
We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.
Theory of coherent phonons in graphene
Sanders, G. D.; Stanton, C. J.; Kim, J.-H.; Yee, K.-J.; Jung, M. H.; Hong, B. H.; Haroz, E. H.; Kono, J.
2011-03-01
We develop a theory for the generation and detection of coherent phonons in graphene. Coherent phonons are generated via the deformation potential electron-phonon interaction with photogenerated carriers. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire graphene Brillouin zone while the phonon states are treated in a valence force field model. The equations of motion for the coherent phonon amplitudes are obtained in a density matrix formalism and we find that the coherent phonon amplitudes satisfy driven oscillator equations for each value of the phonon wavevector. Comparison is made with recent experimental measurements. Supported by NSF through grants OISE-0530220 and DMR-0706313 and the ONR through grant ONR-00075094, and the Robert A. Welch Foundation through grant No. C-1509.
Energy Technology Data Exchange (ETDEWEB)
Oliva, R.; Ibanez, J.; Cusco, R.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n, 08028 Barcelona, Catalonia (Spain); Kudrawiec, R. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Serafinczuk, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Martinez, O.; Jimenez, J. [Departamento de Fisica de la Materia Condensada, Cristalografia, y Mineralogia, Universidad de Valladolid, 47011 Valladolid (Spain); Henini, M. [Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Boney, C.; Bensaoula, A. [Department of Physics, University of Houston, 4800 Calhoun, Houston, Texas 77004 (United States)
2012-03-15
We use Raman scattering to investigate the composition behavior of the E{sub 2h} and A{sub 1}(LO) phonons of In{sub x}Ga{sub 1-x}N and to evaluate the role of lateral compositional fluctuations and in-depth strain/composition gradients on the frequency of the A{sub 1}(LO) bands. For this purpose, we have performed visible and ultraviolet Raman measurements on a set of high-quality epilayers grown by molecular beam epitaxy with In contents over a wide composition range (0.25 < x < 0.75). While the as-measured A{sub 1}(LO) frequency values strongly deviate from the linear dispersion predicted by the modified random-element isodisplacement (MREI) model, we show that the strain-corrected A{sub 1}(LO) frequencies are qualitatively in good agreement with the expected linear dependence. In contrast, we find that the strain-corrected E{sub 2h} frequencies exhibit a bowing in relation to the linear behavior predicted by the MREI model. Such bowing should be taken into account to evaluate the composition or the strain state of InGaN material from the E{sub 2h} peak frequencies. We show that in-depth strain/composition gradients and selective resonance excitation effects have a strong impact on the frequency of the A{sub 1}(LO) mode, making very difficult the use of this mode to evaluate the strain state or the composition of InGaN material.
Mobarak, K A; Espeland, L; Krogstad, O; Lyberg, T
2001-04-01
The objective of this cephalometric study was to compare skeletal stability and the time course of postoperative changes in high-angle and low-angle Class II patients after mandibular advancement surgery. The subjects were 61 consecutive mandibular retrognathism patients whose treatment included bilateral sagittal split osteotomy and rigid fixation. The patients were divided according to the preoperative mandibular plane angle; the 20 patients with the lowest mandibular plane angle (20.8 degrees +/- 4.9 degrees ) constituted the low-angle group, while the 20 cases with the highest mandibular plane angle (43.0 degrees +/- 4.0 degrees ) represented the high-angle group. Lateral cephalograms were taken on 6 occasions: immediately before surgery, immediately after surgery, 2 and 6 months after surgery, and 1 and 3 years after surgery. Results demonstrated that the high-angle and low-angle groups had different patterns of surgical and postoperative changes. High-angle patients were associated with both a higher frequency and a greater magnitude of horizontal relapse. While 95% of the total relapse took place during the first 2 months after surgery in the low-angle group, high-angle patients demonstrated a more continuous relapse pattern, with a significant proportion (38%) occurring late in the follow-up period. Possible reasons for the different postsurgical response are discussed.
A holographic perspective on phonons and pseudo-phonons
Amoretti, Andrea; Argurio, Riccardo; Musso, Daniele; Zayas, Leopoldo A Pando
2016-01-01
We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.
Superconductivity-induced phononic effects in high-temperature superconductors: Raman study
Energy Technology Data Exchange (ETDEWEB)
Limonov, M. [Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13, Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Lee, S.; Masui, T.; Uchiyama, H.; Tajima, S. [Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13, Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Yamanaka, A. [Chitose Institute of Science and Technology, Chitose, Hokkaido 066-8655 (Japan)
2004-11-01
Raman scattering spectra of (123) and Bi-based high-temperature superconductors (HTSC) with different doping levels have been investigated. It is demonstrated that phonons in HTSC can provide unique information on energy, symmetry, temperature- and doping-dependencies of the superconducting gap and pseudogap. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Spin-dependent electron-phonon interaction in SmFeAsO by low-temperature Raman spectroscopy.
Zhang, L; Guan, P F; Feng, D L; Chen, X H; Xie, S S; Chen, M W
2010-11-03
The interplay between spin dynamics and lattice vibration has been suggested as an important part of the puzzle of high-temperature superconductivity. Here, we report the strong interaction between spin fluctuation and phonon in SmFeAsO, a parent compound of the iron arsenide family of superconductors, revealed by low-temperature Raman spectroscopy. Anomalous zone-boundary-phonon Raman scattering from spin superstructure was observed at temperatures below the antiferromagnetic ordering point, which offers compelling evidence on spin-dependent electron-phonon coupling in pnictides.
Dynamic surface measurements on a model helicopter rotor during blade slap at high angles of attack
Hubbard, J. E., Jr.; Harris, W. L.
1982-01-01
The modern helicopter offers a unique operational capability to both the public and private sectors. However, the use of the helicopter may become severely limited due to the radiated noise generated by the rotor system. A description is presented of some of the experimental results obtained with a model helicopter rotor in an anechoic wind tunnel with regard to blade stall as a source mechanism of blade slap. Attention is given to dynamic rotor blade surface phenomena and the resulting far field impulsive noise from the model helicopter rotor at high angles of attack and low tip speed. The results of the investigation strongly implicates the boundary layer as playing an important role in blade slap due to blade/vortex interaction (BVI) in a highly loaded rotor. Intermittent stall cannot be ruled out as a possible source mechanism for blade slap. This implies that blade surface characteristics, airfoil shape and local Reynolds number may now be used as tools to reduce the resultant far-field sound pressure levels in helicopters.
Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack
Institute of Scientific and Technical Information of China (English)
Xin Qi; Shi Zhongke
2015-01-01
Bifurcation analysis and stability design for aircraft longitudinal motion are investigated when the nonlinearity in flight dynamics takes place severely at high angle of attack regime. To pre-dict the special nonlinear flight phenomena, bifurcation theory and continuation method are employed to systematically analyze the nonlinear motions. With the refinement of the flight dynam-ics for F-8 Crusader longitudinal motion, a framework is derived to identify the stationary bifurca-tion and dynamic bifurcation for high-dimensional system. Case study shows that the F-8 longitudinal motion undergoes saddle node bifurcation, Hopf bifurcation, Zero-Hopf bifurcation and branch point bifurcation under certain conditions. Moreover, the Hopf bifurcation renders ser-ies of multiple frequency pitch oscillation phenomena, which deteriorate the flight control stability severely. To relieve the adverse effects of these phenomena, a stabilization control based on gain scheduling and polynomial fitting for F-8 longitudinal motion is presented to enlarge the flight envelope. Simulation results validate the effectiveness of the proposed scheme.
High angle of attack: Forebody flow physics and design emphasizing directional stability
Ravi, R.
A framework for understanding the fundamental physics of flowfields over forebody type shapes at low speed, high angle of attack conditions with special emphasis on sideslip has been established. Computational Fluid Dynamics (CFD) has been used to study flowfieids over experimentally investigated forebodies: the Lamont tangent-ogive forebody, the F-5A forebody and the Erickson chine forebody. A modified version of a current advanced code, CFL3D, was used to solve the Euler and thin-layer Navier-Stokes equations. The Navier-Stokes equations used a form of the Baldwin-Lomax turbulence model modified to account for massive crossflow separation. Using the insight provided by the solutions obtained using CFD, together with comparison with limited available data, the aerodynamics of forebodies with positive directional stability has been revealed. An unconventional way of presenting the results is used to illustrate how a positive contribution to directional stability arises. Based on this new understanding, a parametric study was then conducted to determine which shapes promote a positive contribution to directional stability. The effect of cross-sectional shape on directional stability was found to be very significant. Broad chine-shaped cross-sections were found to promote directional stability. Also, directional stability is improved if the chine is placed closer to the top of the cross-section. Planform shapes also played an important role in determining the forebody directional stability characteristics. This initial parametric study has been used to propose some guidelines for aerodynamic design to promote positive directional stability.
Phonon dispersions of Ni-Mn-Al shape memory alloy
Energy Technology Data Exchange (ETDEWEB)
Mehaddene, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)/Physik-Department E13, Technische Universitaet Muenchen, D-85747 Garching (Germany)], E-mail: mtarik@ph.tum.de; Neuhaus, J.; Petry, W.; Hradil, K. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)/Physik-Department E13, Technische Universitaet Muenchen, D-85747 Garching (Germany); Bourges, P. [Laboratoire Leon Brillouin (LLB), CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Hiess, A. [Insitut Laue Langevin (ILL), F-38042 Grenoble Cedex 9 (France)
2008-05-25
Normal modes of vibration of a Ni-Mn-Al single crystal have been measured by inelastic neutron scattering. The force constants have been fitted to the Born-von Karman model using axially symmetric forces. Dispersion curves of both acoustical and optical phonons have been determined along the high symmetry [1 0 0], [1 1 0] and [1 1 1] directions. The temperature dependence of the normal modes revealed an anomalous softening of the TA{sub 2}[1 1 0] phonons observed in the range of 0.1-0.25 reciprocal lattice units in good agreement with recent ab initio calculations. Contrary to the acoustical TA{sub 2}[1 1 0] modes. The optical TO{sub 2}[1 1 0] modes with the same polarisation showed a normal behaviour with temperature, namely a decrease in frequency upon heating due to increasing anharmonicity. Elastic scattering performed along the [1 1-bar0] direction did not reveal any significant elastic or diffuse scattering.
Engineering dissipation with phononic spectral hole burning
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Measuring phonons in protein crystals
Niessen, Katherine A.; Snell, Edward; Markelz, A. G.
2013-03-01
Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.
Validation of Phonon Physics in the CDMS Detector Monte Carlo
McCarthy, K A; Anderson, A J; Brandt, D; Brink, P L; Cabrera, B; Cherry, M; Silva, E Do Couto E; Cushman, P; Doughty, T; Figueroa-Feliciano, E; Kim, P; Mirabolfathi, N; Novak, L; Partridge, R; Pyle, M; Reisetter, A; Resch, R; Sadoulet, B; Serfass, B; Sundqvist, K M; Tomada, A
2011-01-01
The SuperCDMS collaboration is a dark matter search effort aimed at detecting the scattering of WIMP dark matter from nuclei in cryogenic germanium targets. The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at achieving a deeper understanding of the performance of the SuperCDMS detectors and aiding the dark matter search analysis. We present results from validation of the phonon physics described in the CDMS-DMC and outline work towards utilizing it in future WIMP search analyses.
Longitudinal polar optical phonons in InN/GaN single and double het- erostructures
Energy Technology Data Exchange (ETDEWEB)
Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)
2011-05-15
Longitudinal optical phonon energy in InN epi-layers has been determined independently from the Raman spectroscopy and temperature dependent Hall mobility measurements. Raman spectroscopy technique can be used to obtain directly the LO energy where LO phonon scattering dominates transport at high temperature. Moreover, the Hall mobility is determined by the scattering of electrons with LO phonons so the data for the temperature dependence of Hall mobility have been used to calculate the effective energy of longitudinal optical phonons.The samples investigated were (i) single heterojunction InN with thicknesses of 1.08, 2.07 and 4.7 {mu}m grown onto a 40 nm GaN buffer and (ii) GaN/InN/AlN double heterojunction samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m. Hall Effect measurements were carried out as a function of temperature in the range between T = 1.7 and 275 K at fixed magnetic and electric fields. The Raman spectra were obtained at room temperature. In the experiments, the 532 nm line of a nitrogen laser was used as the excitation source and the light was incident onto the samples along of the growth direction (c-axis). The results, obtained from the two independent techniques suggest the following: (1) LO phonon energies obtained from momentum relaxation experiments are generally slightly higher than those obtained from the Raman spectra. (2) LO phonon energy for the single heterojunctions does not depend on the InN thickness. (3) In double heterostructures, with smaller InN thicknesses and hence with increased strain, LO phonon energy increases by 3% (experimental accuracy is < 1%) when the InN layer thickness increases from 400 to 800 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nonsymmorphic Phononic Metamaterials: shaping waves over multiple length scales
Koh, Cheongyang; Thomas, Edwin
2012-02-01
The vector nature of the phonon makes rational design of phononic metamaterials challenging, despite potential in unique wave propagation behavior, such as negative refraction and hyper-lensing. While most designs to date focus on the ``meta-atom'' (building block) design, their ``spatial arrangement'' (non-locality) is equally instrumental in dispersion engineering. Here, we present a generalized design framework (DF) for PMM design, utilizing both ``global'' and ``local'' symmetry concepts. We demonstrate, utilizing specific properties of nonsymmorphic plane groups, PMMs possessing i) a low-frequency in-plane complete spectral gap (ICSG) of 102% (CSG of 88%), ii) a set of polychromatic ICSGs totaling over 100% in normalized gap size. Within the same DF, we further integrate broken symmetry states (BSS) (edge states, waveguides, etc) with designed polarization, (de)localization and group velocities. In particular, we demonstrate how these BSS may be utilized to elucidate signatures of complex polarization fields through phonon-structure interactions, leading to interesting applications in elastic-wave imaging, as well as information retrieval by probing polarization states of scattering bodies over multiple scales.
Phonon softening and dispersion in EuTiO3
Ellis, David S.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Sugimoto, Kunihisa; Kato, Kenichi; Ishikawa, Daisuke; Baron, Alfred Q. R.
2012-12-01
We measured phonon dispersion in single-crystal EuTiO3 using inelastic x-ray scattering. A structural transition to an antiferrodistortive phase was found at a critical temperature T0=287±1 K using powder and single-crystal x-ray diffraction. Clear softening of the zone boundary R-point q=(0.50.50.5) acoustic phonon shows this to be a displacive transition. The mode energy plotted against reduced temperature could be seen to nearly overlap that of SrTiO3, suggesting a universal scaling relation. Phonon dispersion was measured along Γ-X (000)→(0.500). Mode eigenvectors were obtained from a shell model consistent with the q dependence of intensity and energy, which also showed that the dispersion is nominally the same as in SrTiO3 at room temperature, but corrected for mass. The lowest-energy optical mode, determined to be of Slater character, softens approximately linearly with temperature until the 70-100 K range where the softening stops, and at low temperature, the mode disperses linearly near the zone center.
Inelastic light scattering in low dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Watt, M
1988-12-01
Raman scattering is a powerful technique with which to study the lattice vibrations of semiconductors. Investigations of the phonons of GalnAs-InP heterostructures have shown that although the phonons in GalnAs quantum wells resembled those of bulk GalnAs, they were screened by free carriers. Raman scattering and photoluminescence techniques were employed to estimate the plasma density at which plasmon-phonon coupling became significant. Triple crystal x-ray diffraction measurements complemented the Raman scattering data and provided information on the GalnAs alloy composition and state of strain. It was found that although nominally lattice-matched to the underlying InP, the epitaxially-grown layers were tetragonally distorted in the direction of growth. Assessment of sample damage produced by reactive-ion-etching (RIE) was undertaken as a prerequisite to the study of phonons in fabricated nanostructures. Structural damage to the crystal showed up as a relaxation of the crystalline selection rules allowing the observation of a symmetry-forbidden phonon. The intensity of this phonon correlated well with depth profiling of the damage. Optimised RIE conditions were found to produce negligible crystalline damage. The study of GaAs cylinders (with diameters of less than 100 nanometers) revealed an additional feature in the optical phonon region of their Raman spectra. This feature was identified as a surface phonon of the quantum cylinders. The experimentally-observed frequencies of the surface phonon peaks showed good agreement with calculated frequencies based on vibrations in small, geometrically-regular crystals. The main contribution of this work is the study of the surface phonons of the GaAs quantum cylinders. This is the first time that surface phonons have been observed in small fabricated samples: all previous work has involved specially-prepared crystalline powders or else comparatively large slab geometries. The conclusion that can be drawn from this work
Carrier-phonon interaction in semiconductor quantum dots
Energy Technology Data Exchange (ETDEWEB)
Seebeck, Jan
2009-03-10
In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non
Circular Phonon Dichroism in Weyl Semimetals
Liu, Donghao; Shi, Junren
2017-08-01
We derive the phonon dynamics of magnetic metals in the presence of strong spin-orbit coupling. We show that both a dissipationless viscosity and a dissipative viscosity arise in the dynamics. While the dissipationless viscosity splits the dispersion of left-handed and right-handed circularly polarized phonons, the dissipative viscosity damps them differently, inducing circular phonon dichroism. The effect offers a new degree of manipulation of phonons, i.e., the control of the phonon polarization. We investigate the effect in Weyl semimetals. We find that there exists strong circular phonon dichroism in Weyl semimetals breaking both the time-reversal and the inversion symmetry, making them potential materials for realizing the acoustic circular polarizer.
Phonon-Assisted Resonant Tunnelling through a Triple-Quantum-Dot: a Phonon-Signal Detector
Institute of Scientific and Technical Information of China (English)
SHEN Xiao-Yun; DONG Bing; LEI Xiao-lin
2008-01-01
We study the effect of electron-phonon interaction on current and zero-frequency shot noise in resonant tunnelling through a series triple-quantum-dot coupling to a local phonon mode by means of a nonperturbative mapping technique along with the Green function formulation.By fixing the energy difference between the first two quantum dots to be equal to phonon frequency and sweeping the level of the third quantum dot,we find a largely enhanced current spectrum due to phonon effect,and in particular we predict current peaks corresponding to phonon-absorption and phonon-emission assisted resonant tunnelling processes,which show that this system can be acted as a sensitive phonon-signal detector or as a cascade phonon generator.
Search for the 3-phonon state of {sup 40}Ca; Recherche de l'etat a trois phonons dans le {sup 40}Ca
Energy Technology Data Exchange (ETDEWEB)
Fallot, M
2002-09-01
We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in {sup 40}Ca, with the reaction {sup 40}Ca + {sup 40}Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4{pi} array. The analysis confirms the previous results about the GQR and the 2-phonon state in {sup 40}Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in {sup 40}Ca and {sup 208}Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)
Theoretical investigation of the phonon-limited carrier mobility in (001) Si films
Li, Jing; Lampin, Evelyne; Delerue, Christophe; Niquet, Yann-Michel
2016-11-01
We calculate the phonon-limited carrier mobility in (001) Si films with a fully atomistic framework based on a tight-binding (TB) model for the electronic structure, a valence-force-field model for the phonons, and the Boltzmann transport equation. This framework reproduces the electron and phonon bands over the whole first Brillouin zone and accounts for all possible carrier-phonon scattering processes. It can also handle one-dimensional (wires) and three-dimensional (bulk) structures and therefore provides a consistent description of the effects of dimensionality on the phonon-limited mobilities. We first discuss the dependence of the electron and hole mobilities on the film thickness and carrier density. The mobility tends to decrease with decreasing film thickness and increasing carrier density, as the structural and electric confinement enhances the electron-phonon interactions. We then compare hydrogen-passivated and oxidized films in order to understand the impact of surface passivation on the mobility and discuss the transition from nanowires to films and bulk. Finally, we compare the semi-classical TB mobilities with quantum Non-Equilibrium Green's Function calculations based on k ṡ p band structures and on deformation potentials for the electron-phonon interactions (KP-NEGF). The TB mobilities show a stronger dependence on carrier density than the KP-NEGF mobilities, yet weaker than the experimental data on Fully Depleted-Silicon-on-Insulator devices. We discuss the implications of these results on the nature of the apparent increase of the electron-phonon deformation potentials in silicon thin films.
2005-05-09
Carbon Nanotubes with Enhanced K(T) CNT in CNT Yarns and Oriented CNT bucky- aerogels 4Anvar A. Zakhidov, University of Texas at Dallas Our Main...CNT Fibers and Yarns and - Oriented CNT-ribbon aerogels 50Anvar A. Zakhidov, University of Texas at Dallas PHONON TRANSISTOR in NANOTUBE FIBERS with...100µm) of copper and gold are much lower: Dcopper = 117 mm2/s, Dgold = 130 mm2/s. 60Anvar A. Zakhidov, University of Texas at Dallas Multifunctional
Electron-phonon interactions from first principles
Giustino, Feliciano
2017-01-01
This article reviews the theory of electron-phonon interactions in solids from the point of view of ab initio calculations. While the electron-phonon interaction has been studied for almost a century, predictive nonempirical calculations have become feasible only during the past two decades. Today it is possible to calculate from first principles many materials properties related to the electron-phonon interaction, including the critical temperature of conventional superconductors, the carrier mobility in semiconductors, the temperature dependence of optical spectra in direct and indirect-gap semiconductors, the relaxation rates of photoexcited carriers, the electron mass renormalization in angle-resolved photoelectron spectra, and the nonadiabatic corrections to phonon dispersion relations. In this article a review of the theoretical and computational framework underlying modern electron-phonon calculations from first principles as well as landmark investigations of the electron-phonon interaction in real materials is given. The first part of the article summarizes the elementary theory of electron-phonon interactions and their calculations based on density-functional theory. The second part discusses a general field-theoretic formulation of the electron-phonon problem and establishes the connection with practical first-principles calculations. The third part reviews a number of recent investigations of electron-phonon interactions in the areas of vibrational spectroscopy, photoelectron spectroscopy, optical spectroscopy, transport, and superconductivity.
Influence of the electron-phonon iinteraction on phonon heat conduction in a molecular nanowire
Directory of Open Access Journals (Sweden)
Galović Slobodanka P.
2006-01-01
Full Text Available A model for phonon heat conduction in a molecular nanowire is developed. The calculation takes into account modification of the acoustic phonon dispersion relation due to the electron-phonon interaction. The results obtained are compared with models based upon a simpler, Callaway formula.
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
Energy Technology Data Exchange (ETDEWEB)
Chase, T. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Department of Applied Physics, Stanford University, Stanford, California 94305, USA; Trigo, M. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Reid, A. H. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Li, R. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Vecchione, T. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Shen, X. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Weathersby, S. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Coffee, R. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Hartmann, N. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Reis, D. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Department of Applied Physics, Stanford University, Stanford, California 94305, USA; PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Wang, X. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Dürr, H. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2016-01-25
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Giant electrothermal conductivity and spin-phonon coupling in an antiferromagnetic oxide.
Chiorescu, C; Neumeier, J J; Cohn, J L
2008-12-19
The application of weak electric fields ( less, similar 100 V/cm) is found to dramatically enhance the lattice thermal conductivity of the antiferromagnetic insulator CaMnO3 over a broad range of temperature about the Néel ordering point (125 K). The effect is coincident with field-induced detrapping of bound electrons, suggesting that phonon scattering associated with short- and long-ranged antiferromagnetic order is suppressed in the presence of the mobilized charge. This interplay between bound charge and spin-phonon coupling might allow for the reversible control of spin fluctuations using weak external fields.
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
Energy Technology Data Exchange (ETDEWEB)
Chase, T. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Trigo, M.; Reid, A. H.; Dürr, H. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Reis, D. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)
2016-01-25
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses
Directory of Open Access Journals (Sweden)
Nakamura Kazutaka G.
2013-03-01
Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.
Modeling of phonon- and Coulomb-mediated capture processes in quantum dots
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg
2003-01-01
of higher dimensionality. Here, we investigate carrier capture processes into quantum dots, mediated by emission of one and two LO phonons. In these investigations is is assumed that the dot is empty initially. In the Case of single-phonon capture we also investigate the influence of the presence...... are performed by assuming that the incident carrier is a free carrier described by a plane wave. Therefore, the influence of waves are scattered by the quantum dot have been neglected. At certain wavelengths and dot sizes, the quantum dot can act as a Fabry-Perot mirror in which the incident carrier travels...
Brillouin Scattering Self-Cancellation
Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo
2016-01-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...
2016-07-11
C.; Wang, G. Y.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Nat. Chem. 2011, 3, 160-166. 8 Liu, M.; Ma, Y.; Wu, H.; Wang, R. Y. ACS Nano 2015, 9...V.; Lee, J. S.; Liu, W.; Spokoyny, B.; Talapin, D. V. J. Am. Chem. Soc. 2011, 133, 10612-10620. 29 Zhang, H.; Jang, J.; Liu, W.; Talapin, D. V. ACS ...Diroll, B. T.; Murray, C. B.; Kagan, C. R. Nat Commun 2012, 3, 1216. 37 Yun, H. J.; Paik, T.; Edley, M. E.; Baxter, J. B.; Murray, C. B. ACS Appl
Gai, Pratibha; Midgley, Paul; Weyland, Matthew; Thomas, John; Boyes, Edward
2003-03-01
Back-scattered electron (BSE) imaging, combined with scanning transmission electron microscopic (STEM) high angle annular dark field (HAADF) imaging, both using Rutherford-scattered electrons, are ideal in recording images of supported nanocatalysts. The incoherent scattering process ensures that images are ideal for electron tomography and the reconstruction of three-dimensional (3D) nanocatalyst distribution such as Pd on carbon.
Phonon and magnon heat transport and drag effects
Heremans, Joseph P.
2014-03-01
Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable
Dynamical stabilization by phonon-phonon interaction exemplified in cubic zirconia
Energy Technology Data Exchange (ETDEWEB)
Souvatsos, [etrps G [Los Alamos National Laboratory; Rudin, Sven P [Los Alamos National Laboratory
2008-01-01
Cubic zirconia exhibits a soft phonon mode (X{sup -}{sub 2}), which becomes dynamically unstable at low temperatures. Previous ab initio invest.igations into the temperature-induced stabilization of the soft mode treated it as an independent anharmonic oscillator. Calculations presented here, using the self consistent ab initio lattice dynamical (SCAILD) method to evaluate the phonons at 2570 K, show that the soft mode should not be treated independently of other phonon modes. Phonon-phonon interactions stabilize the X{sup -}{sub 2} mode. Furthermore, the effective potential experienced by the mode takes on a quadratic form.
Bond-Stretching Phonons in a Stripe-Ordered Nickelate
Tranquada, J. M.; Nakajima, K.; Braden, M.; Pintschovius, L.; Reichardt, W.; McQueeney, R.
2001-03-01
We have used neutron scattering at the Orphée Reactor, LLB, to study the bond-stretching optical phonons in a stripe-ordered single crystal of La_2-xSr_xNiO4 with x≈0.32. The stripes run along a [110] direction, at 45^circ to the Ni-O bond direction. We have measured the dispersion of the highest-energy Σ1 mode; because of twinning of the stripe domains in the tetragonal structure, we simultaneously sample phonons in directions parallel and perpendicular to the stripes. At zone center, a single strong peak appears at 21 THz (87 meV); however, on moving across the zone the mode appears to split, with half of the weight staying near 20 THz and the other half softening to ~17.5 THz at the zone boundary. The splitting is strong at the ordering wave vector, but changes little from there to the zone boundary. In the [100] direction, the Δ1 mode shows a similar softening but with no splitting. Comparisons with the cuprates will be discussed. This work supported by the U.S. DOE under Contract No. DE-AC02-98CH10886, and the U.S.-Japan Cooperative Research Program on Neutron Scattering.
Splash, pop, sizzle: Information processing with phononic computing
Directory of Open Access Journals (Sweden)
Sophia R. Sklan
2015-05-01
Full Text Available Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic.
Interaction of coherent phonons with defects and elementary excitations
Energy Technology Data Exchange (ETDEWEB)
Hase, Muneaki [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573 (Japan); Kitajima, Masahiro, E-mail: mhase@bk.tsukuba.ac.j, E-mail: kitaji@nda.ac.j [Department of Applied Physics, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686 (Japan)
2010-02-24
We present an overview of the feasibility of using coherent phonon spectroscopy to study interaction dynamics of excited lattice vibrations with their environments. By exploiting the features of coherent phonons with a pump-probe technique, one can study lattice motions in a sub-picosecond time range. The dephasing properties tell us not only about interaction dynamics with carriers (electrons and holes) or thermal phonons but also about point defects in crystals. Modulations of the coherent phonon amplitude by more than two modes are closely related to phonon-carrier or phonon-phonon interferences. Related to this phenomenon, formation of coherent phonons at higher harmonics gives direct evidence for phonon-phonon couplings. A combined study of coherent phonons and ultrafast carrier response can be useful for understanding phonon-carrier interaction dynamics. For metals like zinc, nonequilibrium electrons may dominate the dynamics of both relaxation and generation of coherent phonons. The frequency chirp of coherent phonons can be a direct measure of how and when phonon-phonon and phonon-carrier couplings occur. Carbon nanotubes show some complicated behavior due to the existence of many modes with different symmetries, resulting in superposition or interference. To illustrate one of the most interesting applications, the selective excitation of specific phonon modes through the use of a pulse train technique is shown. (topical review)
Phonon dispersion relation of liquid metals
Indian Academy of Sciences (India)
P B Thakor; P N Gajjar; A R Jani
2009-06-01
The phonon dispersion curves of some liquid metals, viz. Na ( = 1), Mg ( = 2), Al ( = 3) and Pb ( = 4), have been computed using our model potential. The charged hard sphere (CHS) reference system is applied to describe the structural information. Our model potential along with CHS reference system is capable of explaining the phonon dispersion relation for monovalent, divalent, trivalent and tetravalent liquid metals.
Anharmonic phonons and high-temperature superconductivity
Energy Technology Data Exchange (ETDEWEB)
Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))
1993-07-01
We examine a simple model of anharmonic phonons with application to the superconducting isotope effect. Linear and quadratic electron-phonon coupling are considered for various model potentials. The results of the model calculations are compared with the high-temperature superconductors La[sub 2[minus][ital x
Resonant tunneling in a pulsed phonon field
DEFF Research Database (Denmark)
Kral, P.; Jauho, Antti-Pekka
1999-01-01
, The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...
Low-energy phonons and superconductivity in Sn0.8In0.2Te
Xu, Zhijun; Schneeloch, J. A.; Zhong, R. D.; Rodriguez-Rivera, J. A.; Harriger, L. W.; Birgeneau, R. J.; Gu, G. D.; Tranquada, J. M.; Xu, Guangyong
2015-02-01
We present neutron scattering measurements on low-energy phonons from a superconducting (Tc=2.7 K ) Sn0.8In0.2Te single-crystal sample. The longitudinal acoustic phonon mode and one transverse acoustic branch have been mapped out around the (002) Bragg peak for temperatures of 1.7 and 4.2 K. We observe a substantial energy width of the transverse phonons at energies comparable to twice the superconducting gap; however, there is no change in this width between the superconducting and normal states, and the precise origin of this energy width anomaly is not entirely clear. We also confirm that the compound is well ordered, with no indications of structural instability.
Ultra-wide acoustic band gaps in pillar-based phononic crystal strips
Energy Technology Data Exchange (ETDEWEB)
Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim [FEMTO-ST Institute, Université de Franche-Comté, UBFC, CNRS, ENSMM, UTBM, 15B Av. des Montboucons, F-25030 Besançon (France)
2015-12-07
An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.
Phonon spectrum of YBCO obtained by specific heat inversion method for real data
Tao Wen; Dai Xian Xi; Dai Ji Xin; Evenson, W E
2003-01-01
In this paper, the phonon spectrum of YBCO is obtained from experimental specific heat data by an exact inversion formula with a parameter for eliminating divergences. The results can be compared to those of neutron inelastic scattering, which can only be carried out in a few laboratories. Some key points of specific heat-phonon spectrum inversion (SPI) theory and a method of asymptotic behaviour control are discussed. An improved unique existence theorem is presented, and a universal function set for numerical calculation of SPI is calculated with high accuracy, which makes the inversion method applicable and convenient in practice. This is the first time specific heat-phonon SPI has been realized for a concrete system.
Probing electron-phonon excitations in molecular junctions by quantum interference.
Bessis, C; Della Rocca, M L; Barraud, C; Martin, P; Lacroix, J C; Markussen, T; Lafarge, P
2016-02-11
Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.
Crystal field-phonon coupling in the Kondo lattice CeCu2
Witte, U.; Kramp, S.; Braden, M.; Svoboda, P.; Loewenhaupt, M.
CeCu2 is a Kondo lattice and shows antiferromagnetic order below 3.5K. In earlier neutron-scattering experiments on a polycrystalline sample an anomaly in the inelastic neutron spectra at about 14 meV and at temperatures between 100 and 150K was observed. This has led to the assumption of a coupling between a crystal field transition between two excited levels and phonons. Inelastic neutron measurements on a single crystal confirm this assumption. We find an unusual strong energy shift (up to 15%) of certain phonons with increasing temperature, depending on their symmetry. At the same time the magnetic response is strongly broadened due to the coupling to the phonons.
Crystal field-phonon coupling in the Kondo lattice CeCu{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Witte, U. [TU Dresden, Institut fuer Angewandte Physik (IAPD), 01062 Dresden (Germany); HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Kramp, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Braden, M. [LLB Saclay, 91191 Gif-Sur-Yvette Cedex (France); Svoboda, P. [Charles University, 12116 Praha (Czech Republic); Loewenhaupt, M. [TU Dresden, Institut fuer Angewandte Physik (IAPD), 01062 Dresden (Germany)
2002-07-01
CeCu{sub 2} is a Kondo lattice and shows antiferromagnetic order below 3.5 K. In earlier neutron-scattering experiments on a polycrystalline sample an anomaly in the inelastic neutron spectra at about 14 meV and at temperatures between 100 and 150 K was observed. This has led to the assumption of a coupling between a crystal field transition between two excited levels and phonons. Inelastic neutron measurements on a single crystal confirm this assumption. We find an unusual strong energy shift (up to 15%) of certain phonons with increasing temperature, depending on their symmetry. At the same time the magnetic response is strongly broadened due to the coupling to the phonons. (orig.)
The phonon Hall effect: theory and application
Energy Technology Data Exchange (ETDEWEB)
Zhang Lifa; Wang Jiansheng; Li Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Ren Jie [NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456 (Singapore)
2011-08-03
We present a systematic theory of the phonon Hall effect in a ballistic crystal lattice system, and apply it on the kagome lattice which is ubiquitous in various real materials. By proposing a proper second quantization for the non-Hermitian in the polarization-vector space, we obtain a new heat current density operator with two separate contributions: the normal velocity responsible for the longitudinal phonon transport, and the anomalous velocity manifesting itself as the Hall effect of transverse phonon transport. As exemplified in kagome lattices, our theory predicts that the direction of Hall conductivity at low magnetic field can be reversed by tuning the temperatures, which we hope can be verified by experiments in the future. Three phonon-Hall-conductivity singularities induced by phonon-band-topology change are discovered as well, which correspond to the degeneracies at three different symmetric center points, {Gamma}, K, X, in the wavevector space of the kagome lattice.
Phononic crystals and elastodynamics: Some relevant points
Directory of Open Access Journals (Sweden)
N. Aravantinos-Zafiris
2014-12-01
Full Text Available In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Phononic crystals and elastodynamics: Some relevant points
Energy Technology Data Exchange (ETDEWEB)
Aravantinos-Zafiris, N. [Dept. of Materials Science, University of Patras, Patras 26504 (Greece); Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Lixouri, 28200 (Greece); Sigalas, M. M. [Dept. of Materials Science, University of Patras, Patras 26504 (Greece); Kafesaki, M. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1387, 70013 Heraklion, Crete (Greece); Dept. of Materials Science and Technology, Univ. of Crete (Greece); Economou, E. N. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1387, 70013 Heraklion, Crete (Greece); Dept. of Physics, Univ. of Crete (Greece)
2014-12-15
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Ultrafast Structure Switching through Nonlinear Phononics
Juraschek, D. M.; Fechner, M.; Spaldin, N. A.
2017-02-01
We describe a mechanism by which nonlinear phononics allows ultrafast coherent and directional control of transient structural distortions. With ErFeO3 as a model system, we use density functional theory to calculate the structural properties as input into an anharmonic phonon model that describes the response of the system to a pulsed optical excitation. We find that the trilinear coupling of two orthogonal infrared-active phonons to a Raman-active phonon causes a transient distortion of the lattice. In contrast to the quadratic-linear coupling that has been previously explored, the direction of the distortion is determined by the polarization of the exciting light, introducing a novel mechanism for nonlinear phononic switching. Since the occurrence of the coupling is determined by the symmetry of the system we propose that it is a universal feature of orthorhombic and tetragonal perovskites.
In rich In{sub 1-x}Ga{sub x}N: Composition dependence of longitudinal optical phonon energy
Energy Technology Data Exchange (ETDEWEB)
Tiras, E. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, CO4 3SQ Colchester (United Kingdom); Faculty of Science, Department of Physics, Anadolu University, Yunus Emre Campus, 26470 Eskisehir (Turkey); Gunes, M.; Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, CO4 3SQ Colchester (United Kingdom); Schaff, W.J. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853 (United States)
2010-01-15
The composition dependence of longitudinal optical (LO) phonon energies in undoped and Mg-doped In{sub 1-x}Ga{sub x}N samples are determined using Raman spectroscopy in the range of Ga fraction from x = 0 to x = 56%. The LO phonon energy varies from 73 meV for InN to 83 meV for In{sub 1-x}Ga{sub x}N with 56% Ga. Independent measurements of temperature dependent mobility at high temperatures where LO phonon scattering dominates the transport were also used to obtain the LO phonon energy for x = 0 and x = 20%. The results obtained from the two independent techniques compare extremely well. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Phonon-limited mobility in n-type single-layer MoS2 from first principles
DEFF Research Database (Denmark)
Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.
2012-01-01
to recent experimental findings for the mobility in single-layer MoS2 (similar to 200 cm(2)V(-1)s(-1)), our results indicate that mobilities close to the intrinsic phonon-limited mobility can be achieved in two-dimensional materials via dielectric engineering that effectively screens static Coulomb......We study the phonon-limited mobility in intrinsic n-type single-layer MoS2 for temperatures T > 100 K. The materials properties including the electron-phonon interaction are calculated from first principles and the deformation potentials and Frohlich interaction in single-layer MoS2 are established....... The calculated room-temperature mobility of similar to 410 cm(2)V(-1)s(-1) is found to be dominated by optical phonon scattering via intra and intervalley deformation potential couplings and the Frohlich interaction. The mobility is weakly dependent on the carrier density and follows a mu similar to T...
Coherent Inelastic Neutron Scattering Study of Solid Orthodeuterium at High Pressure
DEFF Research Database (Denmark)
Schmidt, J.W.;; Nielsen, Mourits; Daniels, W.B.
1984-01-01
The phonon spectrum of solid deuterium has been measured using coherent inelastically-scattered thermal neutrons. Measurements were conducted at pressures up to 4.5 kbar with a temperature range between 4 and 50 K. Force constants of a harmonic model were calculated from the phonon energies at two...
Inelastic neutron scattering study of lattice dynamics in -ZnCl2
Indian Academy of Sciences (India)
A Sen; Mala N Rao; R Mittal; S L Chaplot
2004-08-01
Inelastic neutron scattering experiments have been carried out to measure the phonon density of states in polycrystalline -ZnCl2 at Dhruva, Trombay. Lattice dynamical calculations, based on an interatomic potential model, are accomplished to study phonons associated with this otherwise extremely hygroscopic compound. Our calculated data are found to be well-compatible with the available measured ones.
Axelson, J. A.
1977-01-01
The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.
Nano-cross-junction effect on phonon transport in silicon nanowire cages
Ma, Dengke; Ding, Hongru; Meng, Han; Feng, Lei; Wu, Yue; Shiomi, Junichiro; Yang, Nuo
2016-10-01
Wave effects of phonons can give rise to controllability of heat conduction in nanostructures beyond that by particle scattering at surfaces and interfaces. In this paper, we propose a new class of three-dimensional nanostructures: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions. We perform equilibrium molecular dynamics simulations and find an ultralow value of thermal conductivity of SiNWC, 0.173 W m-1K-1 , which is one order lower than that of SiNWs. By further modal analysis and atomistic Green's function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNW network.
Poncé, S.; Margine, E. R.; Verdi, C.; Giustino, F.
2016-12-01
The EPW (Electron-Phonon coupling using Wannier functions) software is a Fortran90 code that uses density-functional perturbation theory and maximally localized Wannier functions for computing electron-phonon couplings and related properties in solids accurately and efficiently. The EPW v4 program can be used to compute electron and phonon self-energies, linewidths, electron-phonon scattering rates, electron-phonon coupling strengths, transport spectral functions, electronic velocities, resistivity, anisotropic superconducting gaps and spectral functions within the Migdal-Eliashberg theory. The code now supports spin-orbit coupling, time-reversal symmetry in non-centrosymmetric crystals, polar materials, and k and q-point parallelization. Considerable effort was dedicated to optimization and parallelization, achieving almost a ten times speedup with respect to previous releases. A computer test farm was implemented to ensure stability and portability of the code on the most popular compilers and architectures. Since April 2016, version 4 of the EPW code is fully integrated in and distributed with the Quantum ESPRESSO package, and can be downloaded through QE-forge at http://qe-forge.org/gf/project/q-e.
Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling
Sentef, M. A.
2017-05-01
We investigate an exact nonequilibrium solution of a two-site electron-phonon model, where an infrared-active phonon that is nonlinearly coupled to the electrons is driven by a laser field. The time-resolved electronic spectrum shows coherence-incoherence spectral weight transfer, a clear signature of light-enhanced electron-phonon coupling. The present study is motivated by recent evidence for enhanced electron-phonon coupling in pump-probe terahertz and angle-resolved photoemission spectroscopy in bilayer graphene when driven near resonance with an infrared-active phonon mode [E. Pomarico et al., Phys. Rev. B 95, 024304 (2017), 10.1103/PhysRevB.95.024304], and by a theoretical study suggesting that transient electronic attraction arises from nonlinear electron-phonon coupling [D. M. Kennes et al., Nat. Phys. 13, 479 (2017), 10.1038/nphys4024]. We show that a linear scaling of light-enhanced electron-phonon coupling with the pump field intensity emerges, in accordance with a time-nonlocal self-energy based on a mean-field decoupling using quasiclassical phonon coherent states. Finally, we demonstrate that this leads to enhanced double occupancies in accordance with an effective electron-electron attraction. Our results suggest that materials with strong phonon nonlinearities provide an ideal playground to achieve light-enhanced electron-phonon coupling and possibly light-induced superconductivity.
Cardona, Manuel
2007-01-01
This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...
Response of acoustic phonons to charge and orbital order in LaSr{sub 2}Mn{sub 2}O{sub 7}
Energy Technology Data Exchange (ETDEWEB)
Weber, Frank [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Materials Science Division, Argonne National Laboratory, Argonne IL (United States); Rosenkranz, Stephan; Castellan, John-Paul; Osborn, Ray; Zheng, Hong; Mitchell, John F. [Materials Science Division, Argonne National Laboratory, Argonne IL (United States); Chen, Ying; Chi, Songxue [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD (United States); Department of Materials Science and Engineering, University of Maryland (United States); Lynn, Jeffrey W. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD (United States); Reznik, Dmitry [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Department of Physics, University of Colorado (United States)
2012-07-01
The acoustic phonons in the 50% doped bilayer manganite LaSr{sub 2}Mn{sub 2}O{sub 7} exhibiting CE type charge order were investigated using inelastic neutron scattering. At the onset of charge ordering, we observe an abrupt increase (decrease) of the energies (linewidths) of the transverse acoustic phonon along (110), which crosses the CE ordering wave vector. This effect is, however, not localized at the CE ordering wave vector, but is observed over an extended range of momentum transfers, for which the phonon energy is lower than 15 meV. These observations indicate a reduced electron-phonon coupling due to a partial removal of the Fermi surface and provide direct evidence for a link between electron-phonon coupling and charge order in manganites. However, the observed response is not consistent with a standard charge-density-wave mechanism, clearly showing that the transition is unconventional.
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Zheng, H.; Mitchell, J. F.; Chen, Y.; Chi, S.; Lynn, J. W.; Reznik, D. (Materials Science Division); (Institut fur Festkorperphysik); (NIST); (Univ. Maryland); (Univ. Colorado, Boulder)
2011-11-09
We report an inelastic neutron scattering study of acoustic phonons in the charge and orbitally ordered bilayer manganite LaSr{sub 2}Mn{sub 2}O{sub 7}. For excitation energies less than 15 meV, we observe an abrupt increase (decrease) of the phonon energies (linewidths) of a transverse acoustic phonon branch at q=(h,h,0), h {le} 0.3, upon entering the low temperature charge and orbital ordered state (T{sub COO} = 225 K). This indicates a reduced electron-phonon coupling due to a decrease of electronic states at the Fermi level leading to a partial removal of the Fermi surface below T{sub COO} and provides direct experimental evidence for a link between electron-phonon coupling and charge order in manganites.
Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride.
Ambrosio, Antonio; Jauregui, Luis A; Dai, Siyuan; Chaudhary, Kundan; Tamagnone, Michele; Fogler, Michael M; Basov, Dimitri N; Capasso, Federico; Kim, Philip; Wilson, William L
2017-09-26
Mid-infrared nanoimaging and spectroscopy of two-dimensional (2D) materials have been limited so far to scattering-type scanning near-field optical microscopy (s-SNOM) experiments, where light from the sample is scattered by a metallic-coated atomic force microscope (AFM) tip interacting with the material at the nanoscale. These experiments have recently allowed imaging of plasmon polaritons in graphene as well as hyperbolic phonon polaritons in hexagonal boron nitride (hBN). Here we show that the high mechanical sensitivity of an AFM cantilever can be exploited for imaging hyperbolic phonon polaritons in hBN. In our imaging process, the lattice vibrations of hBN micrometer-sized flakes are locally enhanced by the launched phonon polaritons. These enhanced vibrations are coupled to the AFM tip in contact with the sample surface and recorded during scanning. Imaging resolution of Δ/20 is shown (Δ being the polaritonic fringes' separation distance), comparable to the best resolution in s-SNOM. Importantly, this detection mechanism is free from light background, and it is in fact the first photonless detection of phonon polaritons.
Electron-acoustic phonon interaction and mobility in stressed rectangular silicon nanowires
Zhu, Lin-Li
2015-01-01
We investigate the effects of pre-stress and surface tension on the electron-acoustic phonon scattering rate and the mobility of rectangular silicon nanowires. With the elastic theory and the interaction Hamiltonian for the deformation potential, which considers both the surface energy and the acoustoelastic effects, the phonon dispersion relation for a stressed nanowire under spatial confinement is derived. The subsequent analysis indicates that both surface tension and pre-stress can dramatically change the electron-acoustic phonon interaction. Under a negative (positive) surface tension and a tensile (compressive) pre-stress, the electron mobility is reduced (enhanced) due to the decrease (increase) of the phonon energy as well as the deformation-potential scattering rate. This study suggests an alternative approach based on the strain engineering to tune the speed and the drive current of low-dimensional electronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472243, 11302189, and 11321202), the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175), the Zhejiang Provincial Qianjiang Talent Program, China (Grant No. QJD1202012), and the Educational Commission of Zhejiang Province, China (Grant No. Y201223476).
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures
Energy Technology Data Exchange (ETDEWEB)
Sandip Mazumder; Ju Li
2010-06-30
The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion
Acoustic superfocusing by solid phononic crystals
Zhou, Xiaoming; Assouar, M. Badreddine; Oudich, Mourad
2014-12-01
We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity
DEFF Research Database (Denmark)
Langbein, W.; Hvam, Jørn Märcher
2001-01-01
In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does ...
Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity
DEFF Research Database (Denmark)
Langbein, W.; Hvam, Jørn Märcher
2001-01-01
In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does ...
Effects of phonon-phonon coupling on properties of pygmy resonance in 124-132Sn
Directory of Open Access Journals (Sweden)
Voronov V. V.
2012-12-01
Full Text Available Starting from an effective Skyrme interaction we study effects of phonon-phonon coupling on the low-energy electric dipole response in 124-132Sn. The QRPA calculations are performed within a finite rank separable approximation. The inclusion of two-phonon configurations gives a considerable contribution to low-lying strength. Comparison with available experimental data shows a reasonable agreement for the low-energy E1 strength distribution.
Leman, Steven W
2012-09-01
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Energy Technology Data Exchange (ETDEWEB)
Leman, Steven W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2012-09-15
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
DEFF Research Database (Denmark)
Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper
2013-01-01
by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e., a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential...
Mode-selective phonon excitation in gallium nitride using mid-infrared free-electron laser
Kagaya, Muneyuki; Yoshida, Kyohei; Zen, Heishun; Hachiya, Kan; Sagawa, Takashi; Ohgaki, Hideaki
2017-02-01
The single-phonon mode was selectively excited in a solid-state sample. A mid-infrared free-electron laser, which was tuned to the target phonon mode, was irradiated onto a crystal cooled to a cryogenic temperature, where modes other than the intended excitation were suppressed. An A 1(LO) vibrational mode excitation on GaN(0001) face was demonstrated. Anti-Stokes Raman scattering was used to observe the excited vibrational mode, and the appearance and disappearance of the scattering band at the target wavenumber were confirmed to correspond to on and off switching of the pump free-electron laser and were fixed to the sample vibrational mode. The sum-frequency generation signals of the pump and probe lasers overlapped the Raman signals and followed the wavenumber shift of the pump laser.
Ultrafast Optical Excitation of Coherent and Squeezed Phonons in SrTiO_3
Garrett, G. A.; Whitaker, J. F.; Merlin, R.
1998-03-01
We report on the impulsive excitation of coherent and squeezed phonon fields in SrTiO3 using, respectively, first-order and second-order stimulated Raman scattering.(osa.org/oearchive/source/2733.htm>Garrett et al)., Optics Express, to be published. Strontium titanate undergoes an antiferro-distortive phase transition at T_c≈ 110 K to a low temperature tetragonal structure. First-order Raman scattering is allowed only below T_c. Pump-probe spectra were obtained as a function of temperature and pump intensity. The frequency of the coherent (first-order) state is that of the A_1g-component of the soft mode associated with the phase transition. As in KTaO_3,(Garrett et al)., Science 275, 1638 (1997). the squeezed (second-order) field oscillates at a frequency corresponding to a strong, narrow peak in the density of states of the acoustic phonons.
Indirect exciton luminescense and Raman scattering in CdI 2
Hayashi, T.; Ohata, T.; Koshino, S.
1981-06-01
Intrinsic luminescence and Raman scattering in 4HCdI 2 have been investigated at 2 K. Weak emission bands observed near the absorption edge are attributed to the phonon-assistes indirect exciton luminescence. Several new Raman lines are observed under resonant excitation in addition to known lines. The symmetry of the phonon modes associated with the indirect transitions as well as with Raman scattering is discussed.
Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R
2014-11-21
We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.
Theory of temperature dependent phonon-renormalized properties
Monserrat, Bartomeu; Conduit, G. J.; Needs, R. J.
2013-01-01
We present a general harmonic theory for the temperature dependence of phonon-renormalized properties of solids. Firstly, we formulate a perturbation theory in phonon-phonon interactions to calculate the phonon renormalization of physical quantities. Secondly, we propose two new schemes for extrapolating phonon zero-point corrections from temperature dependent data that improve the accuracy by an order of magnitude compared to previous approaches. Finally, we consider the low-temperature limi...
Influence of phonons on semiconductor quantum emission
Energy Technology Data Exchange (ETDEWEB)
Feldtmann, Thomas
2009-07-06
A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)
Length-scale dependent phonon interactions
Srivastava, Gyaneshwar
2014-01-01
This book presents a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phono...
Watching surface waves in phononic crystals.
Wright, Oliver B; Matsuda, Osamu
2015-08-28
In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Single-photon indistinguishability: influence of phonons
DEFF Research Database (Denmark)
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka
2012-01-01
effects is important in linear optical quantum computing [1], where a device emitting fully coherent indistinguishable single photons on demand, is the essential ingredient. In this contribution we present a numerically exact simulation of the effect of phonons on the degree of indistinguishability......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... of photons emitted from a solid-state cavity QED system. Our model rigorously describes non-Markovian effects to all orders in the phonon coupling constant, being based on an exact diagonalization procedure accounting for the time evoluiton of one-time and two-time photon correlation funcitons. We compare...
Varshney, Dinesh; Yogi, A.; Choudhary, K. K.
2010-12-01
In this paper, we undertake a quantitative analysis of observed temperature-dependent in-plane normal state electrical resistivity of single crystal YBa 2Cu 4O 8. The analysis is within the framework of classical electron-phonon i.e., Bloch-Gruneisen model of resistivity. It is based on the inherent acoustic (low frequency) phonons ( ω ac) as well as high frequency optical phonons ( ω op), the contributions to the phonon resistivity were first estimated. The optical phonons of the oxygen breathing mode yields a relatively larger contribution to the resistivity compared to the contribution of acoustic phonons. Estimated contribution to in-plane electrical resistivity by considering both phonons i.e., ω ac and ω op, along with the zero-limited resistivity, when subtracted from single crystal data infers a quadratic temperature dependence over most of the temperature range [80 ⩽ T ⩽ 300]. Quadratic temperature dependence of ρ diff. = [ ρ exp - { ρ0 + ρ e-ph (= ρ ac + ρ op)}] is understood in terms of electron-electron inelastic scattering. The relevant energy gap expressions within the Nambu-Eliashberg approach are solved imposing experimental constraints on their solution (critical temperature T c). It is found that the indirect-exchange formalism provides a unique set of electronic parameters [electron-phonon ( λ ph), electron-charge fluctuations ( λ pl), electron-electron ( μ) and Coulomb screening parameter ( μ*)] which, in particular, reproduce the reported value of T c.
Strongly Nonlinear Transverse Perturbations in Phononic Crystals
Directory of Open Access Journals (Sweden)
S. Nikitenkova
2014-01-01
Full Text Available The dynamics of the surface heterogeneities formation in low-dimensional phononic crystals is studied. It is shown that phononic transverse perturbations in this medium are highly nonlinear. They can be described with the help of the Riemann wave and may form stable wave structures of the finite amplitude. The Riemann wave deformation is described analytically. The Riemann wave time existence up to the beginning of the gradient catastrophe is calculated.
Phonon Cooling by an Optomechanical Heat Pump.
Dong, Ying; Bariani, F; Meystre, P
2015-11-27
We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.
Tailorable Stimulated Brillouin Scattering in Nanoscale Silicon Waveguides
Shin, Heedeuk; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2013-01-01
While nanoscale modal confinement radically enhances a variety of nonlinear light-matter interactions within silicon waveguides, traveling-wave stimulated Brillouin scattering nonlinearities have never been observed in silicon nanophotonics. Through a new class of hybrid photonic-phononic waveguides, we demonstrate tailorable traveling-wave forward stimulated Brillouin scattering in nanophotonic silicon waveguides for the first time, yielding 3000 times stronger forward SBS responses than any previous waveguide system. Simulations reveal that a coherent combination of electrostrictive forces and radiation pressures are responsible for greatly enhanced photon-phonon coupling at nano-scales. Highly tailorable Brillouin nonlinearities are produced by engineering the structure of a membrane-suspended waveguide to yield Brillouin resonances from 1 to 18 GHz through high quality-factor (>1000) phonon modes. Such wideband and tailorable stimulated Brillouin scattering in silicon photonics could enable practical real...
Size and dimensionality dependent phonon conductivity in nanocomposites
Al-Otaibi, Jawaher; Srivastava, G. P.
2016-04-01
We have studied size and dimensionality dependent phonon conductivity of PbTe-PbSe nanocomposites by considering three configurations: superlattice, embedded nanowire and embedded nanodot. Calculations have been performed in the framework of an effective medium theory. The required bulk thermal conductivities of PbTe and PbSe are evaluated by using Callaway’s effective relaxation-time theory, and by accounting for relevant scattering mechanism including three-phonon Normal and Umklapp interactions involving acoustic as well as optical branches. The thermal interface resistance is computed using the diffuse mismatch theory. It is found that the size (thickness) and volume fraction of PbSe are the two main factors that control the effective thermal conductivity in these nanocomposites. In particular, for PbSe size d = 10 nm and volume fraction {{V}\\text{f}}=0.1 , our results predict significant reductions over the weighted average of room-temperature bulk results of 9%, 17% and 15% in the conductivity across the interfaces for the superlattice, embedded nanowire, and nanosphere structures, respectively. For a given {{V}\\text{f}} , an increase in d reduces the interface density Φ and the effective conductivity varies approximately as 1/\\sqrtΦ . It is shown that nanocompositing in any of the three configurations can beat the alloy limit for lattice thermal conductivity.
Ab initio transport calculations of molecular wires with electron-phonon couplings
Hirose, Kenji; Kobayashi, Nobuhiko
2009-03-01
Understanding of electron transport through nanostructures becomes important with the advancement of fabrication process to construct atomic-scale devices. Due to the drastic change of transport properties by contact conditions to electrodes in local electric fields, first-principles calculation approaches are indispensable to understand and characterize the transport properties of nanometer-scale molecular devices. Here we study the transport properties of molecular wires between metallic electrodes, especially focusing on the effects of contacts to electrodes and of the electron-phonon interactions. We use an ab initio calculation method based on the scattering waves, which are obtained by the recursion-transfer-matrix (RTM) method, combined with non-equilibrium Green's function (NEGF) method including the electron-phonon scatterings. We find that conductance shows exponential behaviors as a function of the length of molecular wires due to tunneling process determined by the HOMO-LUMO energy gap. From the voltage drop behaviors inside the molecular wires, we show that the contact resistances are dominant source for the bias drop and thus are related to local heating. We will present the electron-phonon coupling effects at contact on the inelastic scattering and discuss on the local heating and local temperature, comparing them with those of metallic atomic wires.
Giant suppression of phononic heat transport in a quantum magnet BiCu2PO6
Jeon, Byung-Gu; Koteswararao, B.; Park, C. B.; Shu, G. J.; Riggs, S. C.; Moon, E. G.; Chung, S. B.; Chou, F. C.; Kim, Kee Hoon
2016-11-01
Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15 K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by a factor of ~30 near the critical magnetic field of Hc ≅ 23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc.
Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang
2016-07-01
Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity.
Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A.; Han, Haoxue; Donadio, Davide; Volz, Sebastian
2016-07-01
Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.
Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A; Han, Haoxue; Donadio, Davide; Volz, Sebastian
2016-07-01
Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.
Electron-scattering mechanisms in single-crystal K sub 3 C sub 60
Energy Technology Data Exchange (ETDEWEB)
Crespi, V.H.; Hou, J.G.; Xiang, X.; Cohen, M.L.; Zettl, A. (Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States) Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))
1992-11-01
The temperature-dependent resistivity of single-crystal K{sub 3}C{sub 60} is studied from the point of view of electron-electron and electron-phonon scattering. The electron-phonon analysis suggests that conventional electron-phonon coupling would be sufficient to account for the superconductivity, with contributions to the coupling from both high-frequency intraball and low-frequency interball modes. The resistivity was also compared to a quadratic temperature dependence, suggestive of electron-electron scattering at anomalously high temperatures.
Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor
Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje
2015-11-01
The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.
Phonon spectroscopy in a Bi2Te3 nanowire array
Bessas, Dimitrios; Töllner, William; Aabdin, Zainul; Peranio, Nicola; Sergueev, Ilya; Wille, Hans-Christian; Eibl, Oliver; Nielsch, Kornelius; Hermann, Raphaël P.
2013-10-01
The lattice dynamics in an array of 56 nm diameter Bi2Te3 nanowires embedded in a self-ordered amorphous alumina membrane were investigated microscopically using 125Te nuclear inelastic scattering. The element specific density of phonon states is measured on nanowires in two perpendicular orientations and the speed of sound is extracted. Combined high energy synchrotron radiation diffraction and transmission electron microscopy was carried out on the same sample and the crystallinity was investigated. The nanowires grow almost perpendicular to the c-axis, partly with twinning. The average speed of sound in the 56 nm diameter Bi2Te3 nanowires is ~7% smaller with respect to bulk Bi2Te3 and a decrease in the macroscopic lattice thermal conductivity by ~13% due to nanostructuration and to the reduced speed of sound is predicted.
Acoustic cloaking by a near-zero-index phononic crystal
Zheng, Li-Yang
2014-04-21
Zero-refractive-index materials may lead to promising applications in various fields. Here, we design and fabricate a near Zero-Refractive-Index (ZRI) material using a phononic crystal (PC) composed of a square array of densely packed square iron rods in air. The dispersion relation exhibits a nearly flat band across the Brillouin zone at the reduced frequency f = 0.5443c/a, which is due to Fabry-Perot (FP) resonance. By using a retrieval method, we find that both the effective mass density and the reciprocal of the effective bulk modulus are close to zero at frequencies near the flat band. We also propose an equivalent tube network model to explain the mechanisms of the near ZRI effect. This FP-resonance-induced near ZRI material offers intriguing wave manipulation properties. We demonstrate both numerically and experimentally its ability to shield a scattering obstacle and guide acoustic waves through a bent structure.
Phonon triggered rhombohedral lattice distortion in vanadium at high pressure
Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; Aracne, Chantel M.; Ruddle, David G.; Krisch, Michael
2016-01-01
In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V. PMID:27539662
Engineering the hypersonic phononic band gap of hybrid Bragg stacks.
Schneider, Dirk; Liaqat, Faroha; El Boudouti, El Houssaine; El Hassouani, Youssef; Djafari-Rouhani, Bahram; Tremel, Wolfgang; Butt, Hans-Jürgen; Fytas, George
2012-06-13
We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one-dimensional crystals forward to a detailed understanding, a precondition to engineer dispersion relations in such structures.
Survey of background scattering from materials found in small-angle neutron scattering
Barker, J. G.; Mildner, D. F. R.
2015-01-01
Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088
Phonons in orientationally disordered neopentane C(CD[sub 3])[sub 4
Energy Technology Data Exchange (ETDEWEB)
Debeau, M.; Depondt, P.; Hennion, B. (Lab. Leon Brillouin, CEN Saclay, 91 -Gif-sur-Yvette (France)); Reichardt, W. (Kernforschungszentrum, Karlsruhe (Germany). INFP)
1993-07-01
The phonons of deuteriated neopentane C(CD[sub 3])[sub 4] single crystals in the orientationally disordered phase were measured at T=173 K by coherent inelastic neutron scattering, yielding very broad bands that spread, at a given energy, over a large portion of the Brillouin zone while sitting on an intense background. No librational mode was detected. Selection rule violations, presumably linked to disorder, were observed. The elastic constants are discussed in terms or rotational-translational coupling, and inelastic scattering results are compared with the molecular center of mass translational disorder as obtained from diffraction experiments providing a confirmation of a previous interpretation of these experiments. (orig.).
Lüer, Larry; Gadermaier, Christoph; Crochet, Jared; Hertel, Tobias; Brida, Daniele; Lanzani, Guglielmo
2009-03-27
We excite and detect coherent phonons in semiconducting (6,5) carbon nanotubes via a sub-10-fs pump-probe technique. Simulation of the amplitude and phase profile via time-dependent wave packet theory yields excellent agreement with experimental results under the assumption of molecular excitonic states and allows determining the electron-phonon coupling strength for the two dominant vibrational modes.
Neutron scattering treatise on materials science and technology
Kostorz, G
1979-01-01
Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
Narayani Choudhury; S L Chaplot
2008-10-01
We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in various thermodynamic properties. The role of theoretical lattice dynamics calculations in the planning, interpretation and analysis of neutron experiments are discussed. These studies provide important insights in understanding various anomalous behaviour including pressure-induced amorphization, phonon and elastic instabilities, prediction of novel high pressure phase transitions, high pressure{temperature melting, etc.
Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses
Merlin, Roberto
2006-03-01
Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an
Energy Technology Data Exchange (ETDEWEB)
Pejova, Biljana, E-mail: biljana@pmf.ukim.mk
2014-05-01
Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample. - Graphical abstract: Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: competition between phonon confinement and strain-related effects. - Highlights: • Phonon confinement vs. strain-induced effects in ZnSe 3D QD assemblies were studied. • Shifts of the 1LO band result from an intricate compromise between the two effects. • SO and theoretically forbidden TO modes were
White-light emission by phonon assisted coherent mixing of excitons in Au8-CdS hybrid nanorods
Rath, S.; Halder, O.; Pradhani, A.; Satpati, B.; Maity, A.; Chini, T. K.; Gogurla, N.; Ray, S. K.
2016-12-01
Gold cluster (Au8) coated CdS hybrid nanorods (HNRs), synthesized using a sonication assisted assembly route, exhibit phonon assisted coherent mixing of excitons. As observed from optical absorption, Raman scattering, x-ray diffraction and transmission electron microscopic studies, the Au8 modulates the crystal—and electronic—structure of the CdS nanorods, effecting enhancement of exciton-phonon (e-p) interactions. The e-p interaction and entropy effect mediated phase matching of the excitonic transitions, leading—via cooperative and coherent mixing of the excitons’ color—to the emission of white light, has been confirmed from room temperature and time resolved photoluminescence measurements.
Inelastic light scattering in low dimensional semiconductors
Watt, M
1988-01-01
frequencies of the surface phonon peaks showed good agreement with calculated frequencies based on vibrations in small, geometrically-regular crystals. The main contribution of this work is the study of the surface phonons of the GaAs quantum cylinders. This is the first time that surface phonons have been observed in small fabricated samples: all previous work has involved specially-prepared crystalline powders or else comparatively large slab geometries. The conclusion that can be drawn from this work is that the cylinders are not only well-defined (as observed from the SEM micrographs) but they are also crystalline. The implication is that such structures can now be fabricated at a sufficiently high level to allow progress in prototype devices such as the quantum dot laser. Raman scattering is a powerful technique with which to study the lattice vibrations of semiconductors. Investigations of the phonons of GalnAs-InP heterostructures have shown that although the phonons in GalnAs quantum wells resembled t...
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling
Coherent phonons in carbon based nanostructures
Sanders, G. D.; Nugraha, A. R. T.; Sato, K.; Kim, J.-H.; Lim, Y.-S.; Kono, J.; Saito, R.; Stanton, C. J.
2014-06-01
We have developed a theory for the generation and detection of coherent phonons in carbon based nanotstructures such as single walled nanotubes (SWNTs), graphene, and graphene nanoribbons. Coherent phonons are generated via the deformation potential electron/hole-phonon interaction with ultrafast photo-excited carriers. They modulate the reflectance or absorption of an optical probe pules on a THz time scale and might be useful for optical modulators. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire Brillouin zone while the phonon states are treated using valence force field models which include bond stretching, in-plane and out-of-plane bond bending, and bond twisting interactions up to fourth neighbor distances. We compare our theory to experiments for the low frequency radial breathing mode (RBM) in micelle suspended single-walled nanotubes (SWNTs). The analysis of such data provides a wealth of information on the dynamics and interplay of photons, phonons and electrons in these carbon based nanostructures.
Ionizing particle detection based on phononic crystals
Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.
2015-08-01
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Ionizing particle detection based on phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)
2015-08-14
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Enhanced electron-phonon coupling in graphene with periodically distorted lattice
Pomarico, E.; Mitrano, M.; Bromberger, H.; Sentef, M. A.; Al-Temimy, A.; Coletti, C.; Stöhr, A.; Link, S.; Starke, U.; Cacho, C.; Chapman, R.; Springate, E.; Cavalleri, A.; Gierz, I.
2017-01-01
Electron-phonon coupling directly determines the stability of cooperative order in solids, including superconductivity, charge, and spin density waves. Therefore, the ability to enhance or reduce electron-phonon coupling by optical driving may open up new possibilities to steer materials' functionalities, potentially at high speeds. Here, we explore the response of bilayer graphene to dynamical modulation of the lattice, achieved by driving optically active in-plane bond stretching vibrations with femtosecond midinfrared pulses. The driven state is studied by two different ultrafast spectroscopic techniques. First, terahertz time-domain spectroscopy reveals that the Drude scattering rate decreases upon driving. Second, the relaxation rate of hot quasiparticles, as measured by time- and angle-resolved photoemission spectroscopy, increases. These two independent observations are quantitatively consistent with one another and can be explained by a transient threefold enhancement of the electron-phonon coupling constant. The findings reported here provide useful perspective for related experiments, which reported the enhancement of superconductivity in alkali-doped fullerites when a similar phonon mode was driven.
Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors.
Reznik, D; Pintschovius, L; Ito, M; Iikubo, S; Sato, M; Goka, H; Fujita, M; Yamada, K; Gu, G D; Tranquada, J M
2006-04-27
The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron-lattice coupling. The conventional superconductor MgB2 has a very strong electron-lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu-O bond-stretching phonon in the copper oxide superconductors La(2-x)Sr(x)CuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La(1.875)Ba(0.125)CuO4 and La(1.48)Nd(0.4)Sr(0.12)CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron-phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron-phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.
Phonon dispersions in graphene sheet and single-walled carbon nanotubes
Indian Academy of Sciences (India)
Dinesh Kumar; Veena Verma; H S Bhatti; Keya Dharamvir
2013-12-01
In the present research paper, phonons in graphene sheet have been calculated by constructing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic X-ray scattering as well as first principle calculations. At point, for graphene, the optical modes (degenerate) lie near 1685 cm−1. The frequency regimes are easily distinguishable. The lowfrequency ($ → 0$) modes are derived from acoustic branches of the sheet. The radial modes can be identified with → 584 cm−1. High-frequency regime is above 1200 cm−1 (i.e. ZO mode) and consists of TO and LO modes. The phonons in a nanotube can be derived from zone folding method using phonons of a single layer of the hexagonal sheet. The present work aims to explore the agreement between theory and experiment. A better knowledge of the phonon dispersion of graphene is highly desirable to model and understand the properties of carbon nanotubes. The development and production of carbon nanotubes (CNTs) for possible applications need reliable and quick analytical characterization. Our results may serve as an accurate tool for the spectroscopic determination of the tube radii and chiralities.
Studies of Water V. Five Phonons in Protonic Semiconductor Lattice Model of Pure Liquid Water
Jie, Binbin; Sah, Chihtang
2017-07-01
We report physics based confirmation (~1% RMS deviation), by existing experimental data, of proton-prohol (proton-hole) ion product (pH) and mobilities in pure liquid water (0-100{}{{o}}C, 1-atm pressure) anticipated from our melted-ice Hexagonal-Close-Packed (H{}2O){}4 Lattice Model. Five phonons are identified. (1) A propagating protonic phonon (520.9 meV from lone-pair-blue-shifted stretching mode of isolated water molecule) absorbed to generate a proton-prohol pair or detrap a tightly-bound proton. (2) Two (173.4 and 196.6 meV) bending-breathing protonic-proholic or protonic phonons absorbed during de-trapping-limited proton or proton-prohol mobilities. (3) Two propagating oxygenic-wateric Debye-Dispersive phonons (30.3 and 27.5 meV) absorbed during scattering-limited proton or proton-prohol mobilities. Summer School in Theoretical Physics funded by the National Natural Science Foundation of China, on Soft Materials Physics, hosted by the Physics Department of Xiamen University, China, during August 1 to 14, 2016. This was also just presented at the 2017 March Meeting (March 14 to 16) of the American Physical Society in New Orleans, USA.
Self-consistent phonons in MgSiO3 perovskite
Zhang, D.; Sun, T.; Wentzcovitch, R. M.
2012-12-01
There are numerous materials under conditions of interest for which MD is required but still too demanding for first principles. In these cases 1) phonon-phonon interactions are non-negligible, 2) the material is on the verge of mechanical and/or vibrational instabilities, 3) or the material is stabilized by anharmonic fluctuations at high temperatures. MD is suitable for investigating these states as intrinsic anharmonic effects caused by phonon-phonon interactions are naturally included, but the requirement on size and length of the simulations call for more efficient and accurate approaches for phase space sampling. Indeed, MD needs thousands of atoms and 10^4 to 10^5 picosenconds of simulations for thorough sampling of phase space and accurate free energy calculations (e.g. in thermodynamical integration method). Nevertheless, we note that none of these states can be physical-properly addressed by quasi-harmonic approximation (QHA) approach. This is because QHA overlooks the intrinsic harmonicity and only suits mechanically and dynamically stable phases with a limited range in temperature (Up to approximately 2/3 of the melting temperature). Recently, a new breed of methods for calculating anharmonic vibrational spectra has been developed. These methods use MD to extract phonon frequencies renormalized by phonon-phonon interactions (self-consistent phonons - SCPh). More than one procedure to extract SCPh frequencies has been introduced and applied to solids with lattice structures relatively simple compared to those of silicate minerals. Here, we developed an efficient approach that can offer SCPh dispersions in materials with complex crystal lattice structures containing tens of atoms per primitive cell. First-principles MD simulations on supercells containing hundreds of atoms permits the extraction of dynamical matrices and force-constant matrices that can be Fourier interpolated to produce SCPh dispersions. Thoroughly sampling of these dispersions
Harwell, K. E.; Farmer, W. M.; Hornkohl, J. O.; Stallings, E.
1981-03-01
During the past three years, personnel have developed a unique three-component laser velocimeter for the in situ measurement of particle and/or gas velocities in flow fields produced behind bodies at high angles of attack and in jet exhaust plumes. This report describes the development of the laser velocimeter and its subsequent application of the measurement of the velocity distribution and vortex structure in free jets and in flows over missiles at high angles of attack.
Liu, Yun; Chen, Sow-Hsin; Berti, Debora; Baglioni, Piero; Alatas, Ahmet; Sinn, Harald; Alp, Ercan; Said, Ayman
2005-12-01
The phonon propagation and damping along the axial direction of films of aligned 40wt% calf-thymus DNA rods are studied by inelastic x-ray scattering (IXS). The IXS spectra are analyzed with the generalized three effective eigenmode theory, from which we extract the dynamic structure factor S (Q,E) as a function of transferred energy E =ℏω, and the magnitude of the transferred wave vector Q. S (Q,E) of a DNA sample typically consists of three peaks, one central Rayleigh scattering peak, and two symmetric Stokes and anti-Stokes Brillouin side peaks. By analyzing the Brillouin peaks, the phonon excitation energy and damping can be extracted at different Q values from about 4 to 30nm-1. A high-frequency sound speed is obtained from the initial slope of the linear portion of the dispersion relation below Q =4nm-1. The high-frequency sound speed obtained in this Q range is 3100m /s, which is about twice faster than the ultrasound speed of 1800m/s, measured by Brillouin light scattering at Q ˜0.01nm-1 at the similar hydration level. Our observations provide further evidence of the strong coupling between the internal dynamics of a DNA molecule and the dynamics of the solvent. The effect on damping and propagation of phonons along the axial direction of DNA rods due to divalent and trivalent counterions has been studied. It is found that the added multivalent counterions introduce stronger phonon damping. The phonons at the range between ˜12.5 and ˜22.5nm-1 are overdamped by the added counterions according to our model analyses. The intermediate scattering function is extracted and it shows a clear two-step relaxation with the fast relaxation time ranging from 0.1 to 4ps.
Energy Technology Data Exchange (ETDEWEB)
Hata, S., E-mail: hata.satoshi.207@m.kyushu-u.ac.jp [Department of Electrical and Materials Science, Kyushu University, Kasuga, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Miyazaki, H. [Mel-Build, Nishi-ku, Fukuoka 819-0052 (Japan); Miyazaki, S. [FEI Company Japan Ltd., Minato-ku, Tokyo 108-0075 (Japan); Mitsuhara, M. [Department of Electrical and Materials Science, Kyushu University, Kasuga, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Tanaka, M.; Kaneko, K.; Higashida, K. [Department of Materials Science and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Ikeda, K.; Nakashima, H. [Department of Electrical and Materials Science, Kyushu University, Kasuga, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Matsumura, S. [Department of Applied Physics and Nuclear Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Barnard, J.S. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Sharp, J.H. [Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)
2011-07-15
Electron tomography requires a wide angular range of specimen-tilt for a reliable three-dimensional (3D) reconstruction. Although specimen holders are commercially available for tomography, they have several limitations, including tilting capability in only one or two axes at most, e.g. tilt-rotate. For amorphous specimens, the image contrast depends on mass and thickness only and the single-tilt holder is adequate for most tomographic image acquisitions. On the other hand, for crystalline materials where image contrast is strongly dependent on diffraction conditions, current commercially available tomography holders are inadequate, because they lack tilt capability in all three orthogonal axes needed to maintain a constant diffraction condition over the whole tilt range. We have developed a high-angle triple-axis (HATA) tomography specimen holder capable of high-angle tilting for the primary horizontal axis with tilting capability in the other (orthogonal) horizontal and vertical axes. This allows the user to trim the specimen tilt to obtain the desired diffraction condition over the whole tilt range of the tomography series. To demonstrate its capabilities, we have used this triple-axis tomography holder with a dual-axis tilt series (the specimen was rotated by 90{sup o} ex-situ between series) to obtain tomographic reconstructions of dislocation arrangements in plastically deformed austenitic steel foils. -- Highlights: {yields} A double tilt-rotate specimen holder for diffraction contrast imaging in electron tomography. {yields} Precise alignment of a diffraction condition for tilt-series acquisition of TEM/STEM images. {yields} Complete visualization of 3D dislocation arrangements by dual-axis STEM tomography.
Phonon tunneling through a double barrier system
Energy Technology Data Exchange (ETDEWEB)
Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)
2015-04-15
The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.
Demystifying umklapp vs normal scattering in lattice thermal conductivity
Maznev, A. A.; Wright, O. B.
2014-11-01
We discuss the textbook presentation of the concept of umklapp vs normal phonon-phonon scattering processes in the context of lattice thermal conductivity. A simplistic picture, in which the "momentum conservation" in a normal process leads to the conservation of the heat flux, is only valid within the single-velocity Debye model of phonon dispersion. Outside this model, the simple "momentum conservation" argument is demonstrably inaccurate and leads to conceptual confusion. Whether or not an individual scattering event changes the direction of the energy flow is determined by the phonon group velocity, which, unlike the quasimomentum, is a uniquely defined quantity independent of the choice of the primitive cell in reciprocal space. Furthermore, the statement that normal processes do not lead to a finite thermal conductivity when umklapp processes are absent is a statistical statement that applies to a phonon distribution rather than to individual scattering events. It is also important to understand that once umklapp processes are present, both normal and umklapp processes contribute to thermal resistance. A nuanced explanation of the subject would help avoid confusion of the student and establish a connection with cutting edge research.
Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns
Energy Technology Data Exchange (ETDEWEB)
Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Trampert, A.; Jahn, U. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)
2007-08-15
A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E{sub 2} phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E{sub 2} peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Toward quantitative modeling of silicon phononic thermocrystals
Energy Technology Data Exchange (ETDEWEB)
Lacatena, V. [STMicroelectronics, 850, rue Jean Monnet, F-38926 Crolles (France); IEMN UMR CNRS 8520, Institut d' Electronique, de Microélectronique et de Nanotechnologie, Avenue Poincaré, F-59652 Villeneuve d' Ascq (France); Haras, M.; Robillard, J.-F., E-mail: jean-francois.robillard@isen.iemn.univ-lille1.fr; Dubois, E. [IEMN UMR CNRS 8520, Institut d' Electronique, de Microélectronique et de Nanotechnologie, Avenue Poincaré, F-59652 Villeneuve d' Ascq (France); Monfray, S.; Skotnicki, T. [STMicroelectronics, 850, rue Jean Monnet, F-38926 Crolles (France)
2015-03-16
The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.
A chip-integrated coherent photonic-phononic memory
Merklein, Moritz; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J
2016-01-01
Controlling and manipulating quanta of coherent acoustic vibrations - phonons - in integrated circuits has recently drawn a lot of attention, as phonons can function as unique links between radiofrequency and optical signals and access quantum regimes. It has been shown that radiofrequency signals can be controlled and stored via piezo-electrically actuated coherent phonons. Coherent phonons, however, can also be directly excited by optical photons through strong acousto-optic coupling in integrated circuits that guide photons as well as phonons. These hypersound phonons have similar wavelength as the exciting optical field but travel at a 5-orders of magnitude lower velocity. This allows the realization of a coherent optical buffer, a long time desired yet elusive device for on-chip optical signal processing. In this letter we demonstrate a coherent on-chip memory storing the entire coherent information carried by light, phase and amplitude, as acoustic phonons. The photonic-phononic memory provides GHz-band...
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons
Sanders, G. D.; Stanton, C. J.; Nugraha, A. R. T.; Saito, R.
2013-03-01
We have performed theoretical studies on generating and detecting coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. A microscopic theory incorporating electronic states, phonon modes, optical matrix elements, and electron-phonon interaction matrix elements allows us to calculate the coherent phonon spectrum. The coherent phonon amplitudes satisfy a driven oscillator equation with a driving term that depends on photoexcited carrier density. We study the coherent phonon spectrum for nanotubes of different chirality and for armchair and zigzag graphene nanoribbons. We compare our results with a simpler, effective mass theory where we find reasonable agreement with the main features of our computed coherent phonon spectrum. Supported by NSF through grants OISE-0968405 and DMR-1105437 and MEXT through grant No. 20241023
Energy Technology Data Exchange (ETDEWEB)
Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.
2016-08-15
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Infrared spectroscopic study of carrier scattering in gated CVD graphene
Yu, Kwangnam; Kim, Jiho; Kim, Joo Youn; Lee, Wonki; Hwang, Jun Yeon; Hwang, E. H.; Choi, E. J.
2016-12-01
We measured Drude absorption of gated CVD graphene using far-infrared transmission spectroscopy and determined the carrier scattering rate (γ ) as a function of the varied carrier density (n ). The n -dependent γ (n ) was obtained for a series of conditions systematically changed as (10 K, vacuum) → (300 K, vacuum) → (300 K, ambient pressure), which reveals that (1) at low-T, charged impurity (=A /√{n } ) and short-range defect (=B √{n } ) are the major scattering sources which constitute the total scattering γ =A /√{n }+B √{n } , (2) among various kinds of phonons populated at room-T , surface polar phonon of the SiO2 substrate is the dominantly scattering source, and (3) in air, the gas molecules adsorbed on graphene play a dual role in carrier scattering as charged impurity center and resonant scattering center. We present the absolute scattering strengths of those individual scattering sources, which provides the complete map of scattering mechanism of CVD graphene. This scattering map allows us to find out practical measures to suppress the individual scatterings, the mobility gains accompanied by them, and finally the ultimate attainable carrier mobility for CVD graphene.
Phonon-Josephson resonances in atomtronic circuits
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
Non-Reciprocal Brillouiin Scattering Induced Transparency
Kim, JunHwan; Han, Kewen; Wang, Hailin; Bahl, Gaurav
2014-01-01
Electromagnetically induced transparency (EIT) [1, 2] provides a powerful mechanism for controlling light propagation in a dielectric medium, and for producing both slow and fast light. EIT traditionally arises from destructive interference induced by a nonradiative coherence in an atomic system. Stimulated Brillouin scattering (SBS) of light from propagating hypersonic acoustic waves [3] has also been used successfully for the generation of slow and fast light [4-7]. However, EIT-type processes based on SBS were considered infeasible because of the short coherence lifetime of hypersonic phonons. Here, we demonstrate a new Brillouin scattering induced transparency (BSIT) phenomenon generated by acousto-optic interaction of light with long-lived propagating phonons [8, 9]. This transparency is intrinsically non-reciprocal due to the stringent phase-matching requirements. We demonstrate BSIT in a silica microresonator having a specific, naturally occurring, forward-SBS phase-matched modal configuration [8, 9]. ...
Energy Technology Data Exchange (ETDEWEB)
Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)
2014-07-21
Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.
Phonon-assisted intersubband transitions in wurtzite GaN/InxGa1-xN quantum wells
Institute of Scientific and Technical Information of China (English)
Zhu Jun; Ban Shi-Liang; Ha Si-Hua
2012-01-01
A detailed numerical calculation on the phonon-assisted intersubband transition rates of electrons in wurtzite GaN/InxGa1-xN quantum wells is presented. The quantum-confined Stark effect,induced by the built-in electric field,and the ternary mixed crystal effect are considered.The electron states are obtained by iteratively solving the coupled Schr(o)dinger and Poisson equations.The dispersion properties of each type of phonon modes are considered in the derivation of Fermi's golden rule to evaluate the transition rates.It is indicated that the interface and halfspace phonon scattering play an important role in the process of 1-2 radiative transition.The transition rate is also greatly reduced by the built-in electric field.This work can be helpful for the structural design and simulation of new semiconductor lasers.
A possible high-mobility signal in bulk MoTe2: Temperature independent weak phonon decay
Directory of Open Access Journals (Sweden)
Titao Li
2016-11-01
Full Text Available Layered transition metal dichalcogenides (TMDs have attracted great attention due to their non-zero bandgap for potential application in high carrier mobility devices. Recent studies demonstrate that the carrier mobility of MoTe2 would decrease by orders of magnitude when used for few-layer transistors. As phonon scattering has a significant influence on carrier mobility of layered material, here, we first reported temperature-dependent Raman spectra of bulk 2H-MoTe2 from 80 to 300 K and discovered that the phonon lifetime of both E12g and A1g vibration modes are independent with temperature. These results were explained by the weak phonon decay in MoTe2. Our results imply the existence of a carrier mobility higher than the theoretical value in intrinsic bulk 2H-MoTe2 and the feasibility to obtain MoTe2-based transistors with sufficiently high carrier mobility.
Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene
Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting
2015-06-01
We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.
Time-Resolved Phonons as a Microscopic Probe for Solid State Processes
Eckold, Götz
Phonons reflect most directly the chemical interactions in solids. Hence, time-resolved, lattice-dynamical experiments yield detailed information about the trajectories and mechanisms of solid state reactions on a microscopic scale. The experimental determination of phonons in a wide range of wave vectors and frequencies is a domain of inelastic neutron scattering and requires usually rather long counting times. Real-time investigations therefore need sophisticated techniques in order to access the time regime down to microseconds. In the present contribution, the state of the art of time-resolved inelastic neutrons scattering (TRINS) is reviewed and its capability for the exploration of microscopic mechanisms of chemical processes and phase transitions in solids is demonstrated using two different examples. Demixing processes in model systems are used to show that the evolution of lattice dynamics allows one to distinguish clearly between the mechanisms of nucleation and growth on the one hand, and spinodal decomposition, on the other hand. In the latter case, the interatomic interactions and, hence, the phonon spectra, vary on a time scale of seconds while the average structure of the product phases as reflected by Bragg diffraction needs much longer times to evolve.
Structure factors and phonon dispersion in liquid Li0.61Na0.39 alloy
Indian Academy of Sciences (India)
Arun Pratap; Kirit N Lad; K G Raval
2004-08-01
The phonon spectra for liquid Li and Na have been computed through the phenomenological model of Bhatia and Singh for disordered systems like liquids and glasses and the obtained results have been compared with the available data obtained by inelastic neutron scattering (INS) and inelastic X-ray scattering (IXS) experiments. The effective pair potentials and their space derivatives are important ingredients in the computation of the dispersion curves. The pair potentials are obtained using the pseudo-potential theory. The empty core model proposed by Ashcroft is widely used for pseudo-potential calculations for alkali metals. But, it is thought to be unsuitable for Li because of its simple 1s electronic structure. However, it can be used with an additional term known as Born–Mayer (BM) core term. The influence of the BM core term on the phonon dispersion is discussed. The same pseudo-potential formalism has been employed to obtain the dispersion relation in liquid Li0.61Na0.39 alloy. Apart from the phonon spectra, the Ashcroft–Langreth structure factors in the alloy are derived in the Percus–Yevick approximation.
Magnetic Oscillation of Optical Phonon in ABA- and ABC-Stacked Trilayer Graphene
Cong, Chunxiao; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting
2015-01-01
We present a comparative measurement of the G-peak oscillations of phonon frequency, Raman intensity and linewidth in the Magneto-Raman scattering of optical E2g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behaviour between the electronic excitations and the E2g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the...
Resonant Raman scattering in GaSe and GaS/sub x/Se/sub 1-x/
Energy Technology Data Exchange (ETDEWEB)
Chiang, T.C.; Camassel, J.; Voitchovsky, J.P.; Shen, Y.R.
1976-07-01
Multiphonon resonant Raman scattering up to four phonons in GaSe and one and two phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1 - x/ crystals with x less than or equal to 0.23 were investigated. The results can be explained by a simple theory in which the dispersion of the resonance behavior is mainly dominated by resonances with the 1s direct exciton state.
Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.
2016-02-01
This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly
Soft-mode behaviour of phonons in the CDW systems NbSe{sub 2} and TiSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Hott, Roland; Heid, Rolf; Bohnen, Klaus-Peter [Karlsruhe Institute of Technology, Institut fuer Festkoerperphysik, Karlsruhe (Germany); Weber, Frank A.; Rosenkranz, Stephan; Castellan, John-Paul A.; Osborn, Ray [Neutron and X-ray Scattering Group, Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)
2010-07-01
We investigated the soft-mode behaviour of phonons in the CDW systems NbSe{sub 2} and TiSe{sub 2} both theoretically in DFT-based ab-initio phonon calculations and experimentally by means of X-ray scattering. For NbSe{sub 2}, our calculations predict the development of a phonon instability on reduction of the thermal broadening of the electronic states, in good agreement with the experimental findings. For TiSe{sub 2}, our theoretical description correctly indicates a softening of the phonon dispersions in the experimentally observed critical regions of the Brillouin zone. However, the effect predicted here by our DFT-description appears to be too weak to explain the experimentally observed CDW instability.
Yi, Kyung-Soo; Kim, Hye-Jung
2017-02-01
We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.
Manipulating Heat Flow through 3 Dimensional Nanoscale Phononic Crystal Structure
2014-06-02
SUBJECT TERMS phonon transport , Thermoelectric, nano structures, nano photonics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...conductivity is also studied. 15. SUBJECT TERMS phonon transport , Thermoelectric, nano structures, nano photonics 16. SECURITY CLASSIFICATION OF: 17...but not yet published L-N Yang, J Chen, N Yang, and B Li, Manipulating Graphene Thermal Conductivity by Phononic
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; Yartsev, Arkady
2017-01-01
Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V−1 s−1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3. PMID:28176755
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; Yartsev, Arkady
2017-02-01
Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V-1 s-1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3.
Phonon bottleneck in p-type Ge/Si quantum dots
Energy Technology Data Exchange (ETDEWEB)
Yakimov, A. I., E-mail: yakimov@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Kirienko, V. V.; Armbrister, V. A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Bloshkin, A. A.; Dvurechenskii, A. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)
2015-11-23
We study the effect of quantum dot size on the mid-infrared photo- and dark current, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage and the growth temperature during molecular beam epitaxy of Ge/Si(001) system in the Stranski-Krastanov growth mode. In all samples, we observed the general tendency: with decreasing the size of the dots, the dark current and hole capture probability are reduced, while the photoconductive gain and photoresponse are enhanced. Suppression of the hole capture probability in small-sized quantum dots is attributed to a quenched electron-phonon scattering due to phonon bottleneck.
Indian Academy of Sciences (India)
Mohan Kumar Kuntumalla; Harish Ojha; Vadali Venkata Satya Siva Srikanth
2013-11-01
It is difficult to detect -SiC using micro-Raman scattering, if it is surrounded by carbon medium. Here, -SiC is identified in the presence of a relatable surrounding diamond medium using subtle, but discernible Raman surface phonons. In this study, diamond/-SiC nanocomposite thin film system is considered in which nanosized -SiC crystallites are surrounded by a relatable nanodiamond medium that leads to the appearance of a weak Raman surface phonon band at about 855 cm-1. Change in the nature of the surrounding material structure and its volume content when relatable, will affect the resultant Raman response of -SiC phase as seen in the present case of diamond/-SiC nanocomposite thin films.
Phonon-assisted coherent control of injected carriers in indirect bandgap semiconductors
Rioux, Julien; Nastos, Fred; Sipe, John E.
2007-03-01
Charge and spin currents can be generated in direct semiconductors by quantum interference between one- and two-photon absorption. For semiconductors such as Si and Ge, optical injection of carriers over the indirect bandgap must be assisted by momentum transfer from phonon scattering. We consider the optical properties for such 1+2 photon processes in the presence of the electron-phonon interaction. The latter is modelled by acoustic deformation potential. Indirect transitions involve double Brillouin zone integrations, which are computed by a linearized tetrahedron method. We compare our results to those for bulk GaAs. M.J. Stevens, R.D.R. Bhat, A. Najmaie, H.M. van Driel, J.E. Sipe and A.L. Smirl, in Optics of Semiconductors and Their Nanostructures, edited by H. Kalt and M. Hetterich (Springer, Berlin, 2004), vol. 146 of Springer Series in Solid-State Sciences, p. 209.
Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul
2006-03-30
The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.
Orbital angular momentum mode division filtering for photon-phonon coupling
Zhu, Zhi-Han; Sheng, Li-Wen; Lv, Zhi-Wei; He, Wei-Ming; Gao, Wei
2017-01-01
Stimulated Brillouin scattering (SBS), a fundamental nonlinear interaction between light and acoustic waves occurring in any transparency material, has been broadly studied for several decades and gained rapid progress in integrated photonics recently. However, the SBS noise arising from the unwanted coupling between photons and spontaneous non-coherent phonons in media is inevitable. Here, we propose and experimentally demonstrate this obstacle can be overcome via a method called orbital angular momentum mode division filtering. Owing to the introduction of a new distinguishable degree-of-freedom, even extremely weak signals can be discriminated and separated from a strong noise produced in SBS processes. The mechanism demonstrated in this proof-of-principle work provides a practical way for quasi-noise-free photonic-phononic operation, which is still valid in waveguides supporting multi-orthogonal spatial modes, permits more flexibility and robustness for future SBS devices. PMID:28071736
Twisting phonons in complex crystals with quasi-one-dimensional substructures.
Chen, Xi; Weathers, Annie; Carrete, Jesús; Mukhopadhyay, Saikat; Delaire, Olivier; Stewart, Derek A; Mingo, Natalio; Girard, Steven N; Ma, Jie; Abernathy, Douglas L; Yan, Jiaqiang; Sheshka, Raman; Sellan, Daniel P; Meng, Fei; Jin, Song; Zhou, Jianshi; Shi, Li
2015-04-15
A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.
Universality of the Phonon-Roton Spectrum in Liquids and Superfluidity of 4He
Bobrov, Viktor; Trigger, Sergey; Litinski, Daniel
2016-06-01
Based on numerous experimental data on inelastic neutron and X-ray scattering in liquids, we assert that the phonon-roton spectrum of collective excitations, predicted by Landau for superfluid helium, is a universal property of the liquid state. We show that the existence of the roton minimum in the spectrum of collective excitations is caused by the short-range order in liquids. Using the virial theorem, we assume that one more branch of excitations should exist in He II, whose energy spectrum differs from the phonon-roton spectrum. Such excitations are associated with the pole of single-particle Green function, which can have a gap at small values of momenta.
Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator
An, Kyongmo; Olsson, Kevin S.; Weathers, Annie; Sullivan, Sean; Chen, Xi; Li, Xiang; Marshall, Luke G.; Ma, Xin; Klimovich, Nikita; Zhou, Jianshi; Shi, Li; Li, Xiaoqin
2016-09-01
The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y3Fe5O12 , has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.
Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities
Efetov, Dmitri K.; Kim, Philip
2010-12-01
We report on the temperature dependent electron transport in graphene at different carrier densities n. Employing an electrolytic gate, we demonstrate that n can be adjusted up to 4×1014cm-2 for both electrons and holes. The measured sample resistivity ρ increases linearly with temperature T in the high temperature limit, indicating that a quasiclassical phonon distribution is responsible for the electron scattering. As T decreases, the resistivity decreases more rapidly following ρ(T)˜T4. This low temperature behavior can be described by a Bloch-Grüneisen model taking into account the quantum distribution of the two-dimensional acoustic phonons in graphene. We map out the density dependence of the characteristic temperature ΘBG defining the crossover between the two distinct regimes, and show that, for all n, ρ(T) scales as a universal function of the normalized temperature T/ΘBG.
Coupling between crystal field transitions and phonons in the 4f-electron system CeCu 2
Schedler, R.; Witte, U.; Loewenhaupt, M.; Kulda, J.
2003-07-01
In general, elementary excitations like phonons and crystal field (CF) transitions are considered decoupled and the determination and interpretation of the measured spectra of both phenomena, i.e. the phonon dispersion relations and the CF level schemes are made independently of each other. A signature of a strong coupling between both phenomena is the observation of an unusual behaviour in both subsystems. In this paper, we present inelastic neutron scattering results on the rare earth compound CeCu 2. This substance shows a orthorhombic CeCu 2 structure with 18 phonon modes and a splitting of the J= {5}/{2} ground state multiplet of the Ce 3+ ions into 3 doublets. The assumption of a coupling between a CF transition connecting the two excited CF states and phonons was put forward from the results of inelastic neutron data on a polycrystalline sample. This assumption is now confirmed by inelastic neutron spectra on a single crystal showing unusual phonon energy shifts and line widths as well as a strong broadening of the CF excitations.
Lattice dynamics of xenotime: The phonon dispersion relations and density of states of LuPO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Nipko, J.C.; Loong, C. [Argonne National Laboratory, Argonne, Illinois 60439-4814 (United States); Loewenhaupt, M. [Technische Universitaet Dresden, Dresden (Germany); Braden, M.; Reichardt, W. [Forschungszentrum Karlsruhe, INFP, D-76021, Karlsruhe (Germany); Boatner, L.A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056 (United States)
1997-11-01
LuPO{sub 4} is the nonmagnetic end member of a series of rare-earth phosphates with a common zircon-type crystal structure. The phonon-dispersion curves of LuPO{sub 4} along the [x,0,0], [x,x,0], and [0,0,x] symmetry directions were measured by neutron triple-axis spectroscopy using single-crystal samples. The phonon density of states was determined by time-of-flight neutron scattering using polycrystalline samples. Phonons involving mainly motions of rare-earth ions were found to be well separated in energy from those of the P and O vibrations. A large gap in the phonon-frequency-distribution function, which divides the O-P-O bending-type motions from the P-O stretches, was observed. All of the experimental results were satisfactorily accounted for by lattice-dynamic shell-model calculations. LuPO{sub 4} is a host material for the incorporation of rare-earth ions to produce activated luminescence. Information regarding the phonon and thermodynamic properties of LuPO{sub 4} is pertinent to extended investigations of additional rare-earth spin-lattice interactions in other zircon-structure rare-earth orthophosphates. {copyright} {ital 1997} {ital The American Physical Society}
Confocal Raman depth-scanning spectroscopic study of phonon-plasmon modes in GaN epilayers
Strelchuk, V. V.; Bryksa, V. P.; Avramenko, K. A.; Valakh, M. Ya.; Belyaev, A. E.; Mazur, Yu. I.; Ware, M. E.; DeCuir, E. A.; Salamo, G. J.
2011-06-01
Coupled longitudinal-optical (LO)-phonon-plasmon excitations were studied using confocal micro-Raman spectroscopy. The high-quality Si-doped GaN epilayers were grown in a Gunn diode structure on (0001) sapphire substrates by plasma assisted molecular beam epitaxy. Depth-profiled Raman spectra exhibit a spatial variation of both low, ω-, and high, ω+, frequency coupled phonon-plasmon modes (CPPMs) in the n-GaN layers. To describe the features of the CPPMs in the Raman spectra a self-consistent model that includes both the electro-optic and deformation-potential as well as charge-density fluctuation mechanisms as important processes for light scattering in n-GaN has been proposed. An agreement between the theoretical and experimental line shapes of the Raman spectra is obtained. From the best line-shape fitting of the CPPMs the depth profiles of the plasmon and phonon damping, plasmon frequency, free carrier concentrations, and electron mobility as well as the contributions of the electron-phonon interaction and charge density fluctuations to the Raman cross section in the GaN layers are determined. It is found that these depth profiles exhibit considerable nonuniformity and change at different laser pump-power excitations. Despite the high electron concentration in the n+-GaN layers, a strong peak of the unscreened A1(LO) phonon is also observed. A possible origin for the appearance of this mode is discussed.
Experimentally accessible signatures of Auger scattering in graphene
Winzer, Torben; Jago, Roland; Malic, Ermin
2016-12-01
The gapless and linear electronic band structure of graphene opens up Auger scattering channels bridging the valence and the conduction band and changing the charge carrier density. Here, we reveal experimentally accessible signatures of Auger scattering in optically excited graphene. To be able to focus on signatures of Auger scattering, we apply a low excitation energy, weak pump fluences, and a cryostatic temperature, so that all relevant processes lie energetically below the optical phonon threshold. In this regime, carrier-phonon scattering is strongly suppressed and Coulomb processes govern the carrier dynamics. Depending on the excitation regime, we find an accumulation or depletion of the carrier occupation close to the Dirac point. This reflects well the behavior predicted from Auger-dominated carrier dynamics. Based on this observation, we propose a multicolor pump-probe experiment to uncover the extreme importance of Auger channels for the nonequilibrium dynamics in graphene.
Parity-Time Synthetic Phononic Media
DEFF Research Database (Denmark)
Christensen, Johan; Willatzen, Morten; Velasco, V. R.
2016-01-01
, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....
Synthetic thermoelectric materials comprising phononic crystals
El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang
2013-08-13
Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.
Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.
Patrick, Christopher E; Giustino, Feliciano
2014-09-10
We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.
The phonon and thermal properties of a ladder nanostructure
Directory of Open Access Journals (Sweden)
M Mardaani
2011-12-01
Full Text Available In this paper, we study the phonon thermal properties of a ladder nanostructure in harmonic approximation. We present a model consisting of two infinite chains with different masses. Then, we investigate the effect of different masses on the phonon spectrum. Moreover, as a specific case, in the absence of the second neighbor interaction, we calculate the phonon density of states/modes. Finally, we consider the thermal conductivity of the system. The results show that the phonon spectrum shifts down to the lower frequencies by increasing the masses. Furthermore, a frequency gap appears in the phonon spectrum. By increasing the springs constants, the thermal conductance decreases.
Multiphonon Resonance Raman Scattering in InGaN
Energy Technology Data Exchange (ETDEWEB)
Ager III, J.W.; Walukiewicz, W.; Shan, W.; Yu, K.M.; Li, S.X.; Haller, E.E.; Lu, H.; Schaff, W.J.
2005-06-28
In In{sub x}Ga{sub 1-x}N epitaxial films with 0.37 < x < 1 and free electron concentrations in the 10{sup 18} cm{sup -3} range, strong resonant Raman scattering of A{sub 1}(LO) phonon is observed for laser excitation in Raman scattering when excited above the direct band gaps. Examination of films with direct band gaps between 0.7 and 1.9 eV using laser energies from 1.9 to 2.7 eV shows that the resonance is broad, extending to up to 2 eV above the direct gap. Multiphonon Raman scattering with up to 5 LO phonons is also observed for excitation close to resonance in alloy samples; this is the highest number of phonon overtones ever observed for multiphonon scattering in a III-V compound under ambient conditions. Coupling of the electron plasmon to the LO phonon to form a longitudinal plasmon coupled mode of the type which is observed in the Raman spectra of n-GaN, appears not to occur in In{sub x}Ga{sub 1-x}N for x > 0.37.
Mahdouani, M.; Bourguiga, R.
2017-02-01
We present a theoretical study of two specific dynamical optical properties, namely Auger and surface electron-phonon interaction processes in monolayer graphene on polar substrates such as SiO2 , HfO2 , SiC and hexagonal BN. Thus the eigenenergies have been derived from the tight-binding Hamiltonian in monolayer graphene. Our results indicate that both Auger and electron-surface phonon interaction processes depend on the polar substrate. Such polar substrates allow for the presence of polar optical phonons localized near the graphene-substrate interface which could be a significant scattering source for graphene carriers across the long-range Fröhlich coupling. Furthermore, the linear, gapless band structure of graphene provides ideal conditions for Auger processes which are Auger recombination (AR) and impact ionization (IMI). These processes are of fundamental interest because they strongly influence the relaxation dynamics of carriers. Likewise, we have investigated the effect of various dielectrics on both Auger and electron-surface phonon scattering rates in single layer graphene by varying the temperature, the charge carrier density and the physical separation between the interface of the dielectric substrate and graphene.
Multiphonon resonances in the Debye-Waller factor of atom surface scattering.
Brenig, W
2004-02-06
He atom surface scattering by dispersionless phonons is treated employing coupled channel (CC) calculations. At low energies, they predict a behavior opposite to perturbative Born or "exponentiated" Born approximation: strong resonant phonon stimulated elastic and inhibited inelastic scattering. The corresponding resonances have not been observed in earlier CC results since these have considered only the temperature dependence of the Debye-Waller factor at higher energy or omitted the attractive well. The resonances can be interpreted in terms of bound states in the attractive well with several excited vibrational quanta. They may be observable for, e.g., He scattering by a cold Xe/Cu surface.
Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid
DEFF Research Database (Denmark)
Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd
2017-01-01
A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...... the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation...
Phonon transport in single-layer M o1 -xWxS2 alloy embedded with W S2 nanodomains
Gu, Xiaokun; Yang, Ronggui
2016-08-01
Two-dimensional (2D) transition metal dichalcogenides have shown numerous interesting physical and chemical properties, making them promising materials for electronic, optoelectronic, and energy applications. Tuning thermal conductivity of 2D materials could expand their applicability in many of these fields. In this paper, we propose a strategy of using alloying and nanodomains to suppress the thermal conductivity of 2D materials. To predict the thermal conductivity of a 2D alloy embedded with nanodomains, we employ the Green's function approach to assess the phonon scattering strength due to alloying and nanodomain embedding. Our first-principles-driven phonon Boltzmann transport equation calculations show that the thermal conductivity of single-layer Mo S2 can be reduced to less than one-tenth of its intrinsic thermal conductivity after alloying with W and introducing nanodomains due to the strong scattering for both high- and low-frequency phonons. Strategies to further reduce thermal conductivity are also discussed.
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd
2013-01-01
Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated...
Energy Technology Data Exchange (ETDEWEB)
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Yin, Wenhao; Huang, Rong; Qi, Ruijuan; Duan, Chungang
2016-09-01
With the development of spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM), high angle annular dark filed (HAADF) imaging technique has been widely applied in the microstructure characterization of various advanced materials with atomic resolution. However, current qualitative interpretation of the HAADF image is not enough to extract all the useful information. Here a modified peaks finding method was proposed to quantify the HAADF-STEM image to extract structural and chemical information. Firstly, an automatic segmentation technique including numerical filters and watershed algorithm was used to define the sub-areas for each atomic column. Then a 2D Gaussian fitting was carried out to determine the atomic column positions precisely, which provides the geometric information at the unit-cell scale. Furthermore, a self-adaptive integration based on the column position and the covariance of statistical Gaussian distribution were performed. The integrated intensities show very high sensitivity on the mean atomic number with improved signal-to-noise (S/N) ratio. Consequently, the polarization map and strain distributions were rebuilt from a HAADF-STEM image of the rhombohedral and tetragonal BiFeO3 interface and a MnO2 monolayer in LaAlO3 /SrMnO3 /SrTiO3 heterostructure was discerned from its neighbor TiO2 layers. Microsc. Res. Tech. 79:820-826, 2016. © 2016 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Carter, Jennifer L.W., E-mail: jennifer.w.carter@case.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 44321 (United States); Sosa, John M. [Center for Accelerated Maturation of Materials, The Ohio State University, Columbus, OH 44321 (United States); Shade, Paul A. [Air Force Research Laboratory, Materials & Manufacturing Directorate, AFRL/RXCM, Wright-Patterson AFB, Dayton, OH 45433 (United States); Fraser, Hamish L. [Center for Accelerated Maturation of Materials, The Ohio State University, Columbus, OH 44321 (United States); Uchic, Michael D. [Air Force Research Laboratory, Materials & Manufacturing Directorate, AFRL/RXCM, Wright-Patterson AFB, Dayton, OH 45433 (United States); Mills, Michael J. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 44321 (United States)
2015-07-29
Focused ion beam (FIB) based serial sectioning was utilized to characterize the morphology of two high angle grain boundaries (HAGB) in a nickel based superalloy, one that experienced grain boundary sliding (GBS) and the other experienced strain accumulation, during elevated temperature constant stress loading conditions. A custom script was utilized to serial section and collect ion-induced secondary electron images from the FIB-SEM system. The MATLAB based MIPAR{sup TM} software was utilized to align, segment and reconstruct 3D volumes from the sectioned images. Analysis of the 3D data indicates that the HAGB that exhibited GBS had microscale curvature that was planar in nature, and local serrations on the order of ±150 nm. In contrast, the HAGB that exhibited strain accumulation was not planar and had local serrations an order of magnitude greater than the other grain boundary. It is hypothesized that the serrations and the local grain boundary network are key factors in determining which grain boundaries experience GBS during creep deformation.
Phonon density of states in nanocrystalline 57Fe
Indian Academy of Sciences (India)
Ranber Singh; S Prakash; R Meyer; P Entel
2003-03-01
The Born–von Karman model is used to calculate phonon density of states (DOS) of nanocrystalline bcc Fe. It is found that there is an anisotropic stiffening in the interatomic force constants and hence there is shrinking in the nearest-neighbour distances in the nanophase. This leads to additional vibrational modes above the bulk phonons near the bottom of the phonon band. It is found that the high energy phonon modes of nanophase Fe are the surface modes. The calculated phonon DOS closely agree with the experimental data except a peak at 37 meV. The calculated phonon dispersion relations are also compared with those of the bulk phonons and anomalous behaviour is discussed in detail. The speciﬁc heat in nanophase enhances as compared to bulk phase at low temperatures and the calculated Debye temperature agrees with the experimental results. It is predicted that the nanocrystalline Fe may consist of about 14 GPa pressure.
Carrier-phonon interactions in hybrid halide perovskites probed with ultrafast anisotropy studies
Rivett, Jasmine P. H.; Richter, Johannes M.; Price, Michael B.; Credgington, Dan; Deschler, Felix
2016-09-01
Hybrid halide perovskites are at the frontier of optoelectronic research due to their excellent semiconductor properties and solution processability. For this reason, much attention has recently been focused on understanding photoexcited charge-carrier generation and recombination in these materials. Conversely, very few studies have so far been devoted to understanding carrier-carrier and carrier-phonon scattering mechanisms in these materials. This is surprising given that carrier scattering mechanisms fundamentally limit charge-carrier motilities and therefore the performance of photovoltaic devices. We apply linear polarization selective transient absorption measurements to polycrystalline CH3NH3PbBr3 hybrid halide perovskite films as an effective way of studying the scattering processes in these materials. Comparison of the photo induced bleach signals obtained when the linear polarizations of the pump and probe are aligned either parallel or perpendicular to one another, reveal a significant difference in spectral intensity and shape within the first few hundred femtoseconds after photoexcitation.
Lattice and Molecular Vibrations in Single Crystal I2 at 77 K by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Smith, H. G.; Nielsen, Mourits; Clark, C. B.
1975-01-01
Phonon dispersion curves of single crystal iodine at 77 K have been measured by one-phonon coherent inelastic neutron scattering techniques. The data are analysed in terms of two Buckingham-six intermolecular potentials; one to represent the shortest intermolecular interaction (3.5 Å) and the oth...... to represent the more distant interactions. Moderate agreement is obtained between the observed and calculated frequencies, but it also oappears necessary to treat the second-nearest-neighbor interaction (3.97 Å) separately from the van der Waals interactions (distances ⩾ 4.2 Å).......Phonon dispersion curves of single crystal iodine at 77 K have been measured by one-phonon coherent inelastic neutron scattering techniques. The data are analysed in terms of two Buckingham-six intermolecular potentials; one to represent the shortest intermolecular interaction (3.5 Å) and the other...
Observation of Low-Energy Einstein Phonon and Superconductivity in Single-Crystalline LaBe13
Hidaka, Hiroyuki; Shimizu, Yusei; Yamazaki, Seigo; Miura, Naoyuki; Nagata, Ryoma; Tabata, Chihiro; Mombetsu, Shota; Yanagisawa, Tatsuya; Amitsuka, Hiroshi
2017-02-01
The thermal and electrical transport properties of single-crystalline LaBe13 have been investigated by specific-heat (C) and electrical-resistivity (ρ) measurements. The specific-heat measurements in a wide temperature range revealed the presence of a hump anomaly near 40 K in the C(T)/T curve, indicating that LaBe13 has a low-energy Einstein-like-phonon mode with a characteristic temperature of ˜177 K. In addition, a superconducting transition was observed in the ρ measurements at the transition temperature of 0.53 K, which is higher than the value of 0.27 K reported previously by Bonville et al. Furthermore, an unusual T3 dependence was found in ρ(T) below ˜50 K, in contrast to the behavior expected from the electron-electron scattering or the electron-Debye phonon scattering.
Energy Technology Data Exchange (ETDEWEB)
Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.
2016-08-16
A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.
Raman-scattering probe of anharmonic effects in GaAs
Verma, Prabhat; Abbi, S. C.; Jain, K. P.
1995-06-01
A comparative study of anharmonic effects in various structural forms of GaAs, namely crystalline, disordered and ion-implanted, and pulse laser annealed (PLA), using temperature-dependent Raman scattering, is reported for various phonon modes over the temperature range 10-300 K. The disordered and PLA samples are found to have greater anharmonicity than crystalline GaAs. The localized vibrational mode in PLA GaAs shows shorter relaxation time than the LO-phonon mode.
Liu, S Y; Lei, X. L.; Horing, Norman J. M.
2011-01-01
Considering screeening of electron scattering interactions in terms of the finite-temperature STLS theory and solving the linearized Boltzmann equation (with no appeal to a relaxation time approximation), we present a theoretical analysis of the low-temperature Seebeck effect in two-dimensional semiconductors with dilute electron densities. We find that the temperature ($T$) dependencies of the diffusion and phonon-drag thermoelectric powers ($S_d$ and $S_g$) can no longer be described by the...
Inelastic X-ray scattering measurement of electronic order in Bi2212
Bonnoit, Craig; Gardner, Dillong; Said, Ayman; Gu, Genda; Tranquada, John; Lee, Young
2013-03-01
We present inelastic x-ray scattering measurements on superconducting Bi2212, showing evidence for a phonon anomaly associated with an underlying electronic density-wave state. We observe an broadening of the longitudinal acoustic phonon at a wavevector comparable to the antinodal nesting wavevector, near (1/4,1/4,0) in orthorhombic notation. An observed asymmetry between phonon creation and annihilation processes indicates breaking of time reversal and inversion symmetry as temperature is lowered. These measurements are consistent with prior work on single layer Bi2201, indicating universality of these features in the family of Bi-based high-Tc materials.
An experimental study of an airfoil with a bio-inspired leading edge device at high angles of attack
Mandadzhiev, Boris A.; Lynch, Michael K.; Chamorro, Leonardo P.; Wissa, Aimy A.
2017-09-01
Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. Deployable aerodynamic surfaces from the wing leading or trailing edges are often used to extend the aerodynamic envelope (e.g. slats and flaps). Birds have also evolved feathers at the leading edge (LE) of their wings, known as the alula, which enables them to perform high angles of attack maneuvers. In this study, a series of wind tunnel experiments are performed to quantify the effect of various deployment parameters of an alula-like LE device on the aerodynamic performance of a cambered airfoil (S1223) at stall and post stall conditions. The alula relative angle of attack, measured from the mean chord of the airfoil, is varied to modulate tip-vortex strength, while the alula deflection angle is varied to modulate the distance between the tip vortex and the wing surface. Integrated lift force measurements were collected at various alula-inspired device configurations. The effect of the alula-inspired device on the boundary layer velocity profile and turbulence intensity were investigated through hot-wire anemometer measurements. Results show that as alula deflection angle increases, the lift coefficient also increase especially at lower alula relative angles of attack. Moreover, at post stall wing angles of attack, the wake velocity deficit is reduced in the presence of alula device, confirming the mitigation of the wing adverse pressure gradient. The results are in strong agreement with measurements taken on bird wings showing delayed flow reversal and extended range of operational angles of attack. An engineered alula-inspired device has the potential to improve mission adaptability in small unmanned air vehicles during low Reynolds number flight.
Structural Properties and Phonon dispertion of NACl
Directory of Open Access Journals (Sweden)
R. Khoda-Bakhsh
2001-06-01
Full Text Available Although many phenomena in condensed matter Physics can be understood on the basis of a model, there are also considerable number of physical properties of solid which can not be explained except in the framework of lattice dynamics. We have calculated the phonon frequencies of Na Cl, using an approach which is a combination of frozen phonon and force constants methods in the framework of density functional pseudopotential theory. The dispersion relation curves, were calculated along symmetry direction Δ, Σ and Ù. We also calculated Grunesein parameters for all modes at X and L points in Brillion zone. The calcutions are made in the framework of density functional and pseudopotential theory, using super cell method, with the valence orbitals expanded in plane waves.
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons
Sanders, G. D.; Nugraha, A. R. T.; Sato, K.; Kim, J.-H.; Kono, J.; Saito, R.; Stanton, C. J.
2013-04-01
We survey our recent theoretical studies on the generation and detection of coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. We present a microscopic theory for the electronic states, phonon modes, optical matrix elements and electron-phonon interaction matrix elements that allows us to calculate the coherent phonon spectrum. An extended tight-binding (ETB) model has been used for the electronic structure and a valence force field (VFF) model has been used for the phonon modes. The coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on the photoexcited carrier density. We discuss the dependence of the coherent phonon spectrum on the nanotube chirality and type, and also on the graphene nanoribbon mod number and class (armchair versus zigzag). We compare these results with a simpler effective mass theory where reasonable agreement with the main features of the coherent phonon spectrum is found. In particular, the effective mass theory helps us to understand the initial phase of the coherent phonon oscillations for a given nanotube chirality and type. We compare these results to two different experiments for nanotubes: (i) micelle suspended tubes and (ii) aligned nanotube films. In the case of graphene nanoribbons, there are no experimental observations to date. We also discuss, based on the evaluation of the electron-phonon interaction matrix elements, the initial phase of the coherent phonon amplitude and its dependence on the chirality and type. Finally, we discuss previously unpublished results for coherent phonon amplitudes in zigzag nanoribbons obtained using an effective mass theory.
Electron-phonon coupling and the soft phonon mode in TiSe{<_2}.
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Karapetrov, G.; Hott, R.; Heid, R.; Bohnen, K.-P.; Alatas, A. (Materials Science Division); ( XSD); (Institut fur Festkorperphysik)
2011-01-01
We report high-resolution inelastic x-ray measurements of the soft phonon mode in the charge-density-wave compound TiSe{sub 2}. We observe a complete softening of a transverse optic phonon at the L point, i.e., q = (0.5,0,0.5), at T {approx} T{sub CDW}. Detailed ab initio calculations for the electronic and lattice dynamical properties of TiSe{sub 2} are in quantitative agreement with experimental frequencies for the soft phonon mode. The observed broad range of renormalized phonon frequencies, (0.3,0,0.5) {<=} q {<=} (0.5,0,0.5), is directly related to a broad peak in the electronic susceptibility stabilizing the charge-density-wave ordered state. Our analysis demonstrates that a conventional electron-phonon coupling mechanism can explain a structural instability and the charge-density-wave order in TiSe{sub 2} although other mechanisms might further boost the transition temperature.
Quantum mode phonon forces between chainmolecules
DEFF Research Database (Denmark)
Bohr, Jakob
2001-01-01
A phenomenological description of the contributions of phonons to molecular force is developed. It uses an approximation to consider macromolecules as solid continua. The molecular modes of a molecule can then be characterized by a Debye-like description of the partition function. The resulting b....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....