WorldWideScience

Sample records for high-alumina olivine tholeiite

  1. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes

    Science.gov (United States)

    Roeder, Peter; Gofton, Emma; Thornber, Carl

    2006-01-01

    The volume %, distribution, texture and composition of coexisting olivine, Cr-spinel and glass has been determined in quenched lava samples from Hawaii, Iceland and mid-oceanic ridges. The volume ratio of olivine to spinel varies from 60 to 2800 and samples with >0·02% spinel have a volume ratio of olivine to spinel of approximately 100. A plot of wt % MgO vs ppm Cr for natural and experimental basaltic glasses suggests that the general trend of the glasses can be explained by the crystallization of a cotectic ratio of olivine to spinel of about 100. One group of samples has an olivine to spinel ratio of approximately 100, with skeletal olivine phenocrysts and small (olivine phenocrysts. The large number of spinel crystals included within olivine phenocrysts is thought to be due to skeletal olivine phenocrysts coming into physical contact with spinel by synneusis during the chaotic conditions of ascent and extrusion. A second group of samples tend to have large olivine phenocrysts relatively free of included spinel, a few large (>100 μm) spinel crystals that show evidence of two stages of growth, and a volume ratio of olivine to spinel of 100 to well over 1000. The olivine and spinel in this group have crystallized more slowly with little physical interaction, and show evidence that they have accumulated in a magma chamber.

  2. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    Science.gov (United States)

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  3. Recent Development of High Alumina Refractories in China

    Institute of Scientific and Technical Information of China (English)

    WANGJin-xiang; LIUJie-hua

    1994-01-01

    The paper reviews the achievements which have been attained recently in China in high alumina refractories raw materials and their products,including 1) homogenization ,urification and electric fusion of high alumina raw materials and synthesizing of spinel from natural raw materials;2) processing principle and characteristics and microstructural features of creep-resistance high alu-mina brick ,alumina-magnesia-carbon brick and thermal shock resistanced high alumina brikc and their application in practice.

  4. High Alumina Refractory Mortars GB/T 2994-2008

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification, techni-cal requirements, test methods, quality appraisal pro-cedure, packing, marking, transportation, storage and quality certificate of high alumina refractory mortars.

  5. High Alumina Refractory Bricks for Electric Arc Furnace Roofs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Scope This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace roofs.

  6. Petrology of continental tholeiitic magmas forming a 350-km-long Mesozoic dyke swarm in NE Brazil: Constraints of geochemical and isotopic data

    Science.gov (United States)

    Ngonge, Emmanuel Donald; de Hollanda, Maria Helena Bezerra Maia; Archanjo, Carlos José; de Oliveira, Diógenes Custódio; Vasconcelos, Paulo Marcosde Paula; Muñoz, Patrício Rodrigo Montecinos

    2016-08-01

    The Ceará Mirim dyke swarm (northeastern Brazil) is composed of Cretaceous tholeiites with plagioclase, clinopyroxene (± olivine), Fe-Ti oxides and pigeonite in their groundmass. These tholeiites have been subdivided into three groups: high-Ti olivine tholeiites, evolved high-Ti tholeiites (TiO2 ≥ 1.5 wt.%; Ti/Y > 360), and low-Ti tholeiites (TiO2 ≤ 1.5 wt%; Ti/Y ≤ 360), with all exhibiting distinct degrees of enrichment in incompatible elements relative to Primitive Mantle. Negative Pb anomalies are found in all three groups, while Nb-Ta abundances similar to those of OIB-type magmas are found in the olivine tholeiites, with moderate to high depletions being observed, respectively, in the evolved high-Ti and low-Ti tholeiites. The low-Ti tholeiites exhibit some contamination with crustal (felsic) materials during ascent. The initial isotopic compositions of the olivine tholeiites show uniform and unradiogenic 87Sr/86Sr (~ 0.7035-0.7039) combined with (in part) radiogenic 143Nd/144Nd and 206Pb/204Pb (> 19.1) ratios, which together reveal a likely contribution of FOZO (FOcalZOne) component in their genesis. The other tholeiite groups show variable Sr-Nd ratios with relatively consistent 206Pb/204Pb ratios clustering towards an isotopically enriched mantle (EM1) component. Taken in conjunction with the Nb, this enriched signature reflects the involvement of a subduction-modified lithospheric mantle in the source of the evolved high-Ti and low-Ti tholeiites. Thus, we propose that FOZO and EMI components coexisted (including minor mixing with E-MORB magmas) and contributed in varying extents to the generation of the Ceará-Mirim dyke swarm primary melts, which segregated at 75 to 60 km in depth around the garnet-spinel facies transition zone. The mechanism that promoted melting was most likely non-plume related. We suggest that plate-boundary forces linked to the opening of the Atlantic Ocean promoted passive rifting and that the resulting asthenospheric

  7. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  8. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  9. Chinese Standards on Refractories Shaped Insulating Refractory Product-High Alumina Bricks

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,shape and dimension,technical requirements,test methods,quality appraisal procedure,packing,marking,transportation,storage,and quality certificate of high alumina insulating bricks. High alumina insulating bricks are used as working layer which contacts with fire directly,insulating layer,or inner lining of the kilns which does not react with the high temperature molten materials and corrosion gases.

  10. Tungsten diffusion in olivine

    Science.gov (United States)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  11. Trondhjemitic melts produced by in-situ differentiation of a tholeiitic lava flow, Reykjanes Peninsula, Iceland.

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2006-12-01

    How the continental crust began to form early in Earth's history is unconstrained. However, it is reasonable to presume that higher heat flow in the past, resulted in more frequent interaction of mantle plumes and mid- oceanic ridges. If true, then Iceland could be a good analogue for processes occurring on Earth at its youth stage. This is supported by the relatively high abundance of silicic rocks in Iceland but their rarity on other oceanic hot spots. The origin of Icelandic silicic rocks has been a subject of a lively debate but has been shown to be principally formed by partial melting of hydrothermally altered basaltic crust. However, in rare cases, their origin by fractional crystallization from mantle derived basalts is suggested. Segregation veins in lava flows frequently contain interstitial glasses of silicic compositions. Moreover, they allow an exceptional overview of the fractional crystallization mechanism. These veins form by gas filter pressing during cooling and degassing of solidifying lava flows, after approximately 50% fractional crystallization of anhydrous minerals. Pairs of samples, host lava and associated segregation veins, from Reykjanes Peninsula (Iceland), Lanzarote (Canary Island) and Masaya's volcano (Nicaragua), allow the assessment of a near-complete fractional crystallization of olivine tholeiitic basalt at pressure close to one atmosphere. Interstitial glass patches in segregation veins represent the final product of this process (80 97 % of fractional crystallization). These ultimate liquids are of granitic composition in the case of Lanzarote and Masaya but overwhelmingly trondhjemitic at Reykjanes. It appears that the initial K2O/Na2O of the basaltic liquid controls the evolution path of the residual liquid composition produced at pressure close to 0.1 MPa (1 bar). Granitic liquids are generated from basalts of high initial K2O/Na2O whereas low initial K2O/Na2O leads to trondhjemitic compositions. The trondhjemitic composition

  12. Olivine: a supergreen fuel

    NARCIS (Netherlands)

    Schuiling, R.D.

    2013-01-01

    The hydration and carbonation of olivine, the most common mineral on Earth, produce a large amount of heat. Unfortunately, the reaction is too slow for normal technological applications, but when thermally well isolated, most of this heat can be recovered, not only for space heating but even for the

  13. Microbial Weathering of Olivine

    Science.gov (United States)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  14. Effect of spinel content on the properties of phosphoric acid bonded high alumina castables

    Institute of Scientific and Technical Information of China (English)

    Zichun Yang; Hongwei Duan; Lin Li; Shuqin Li; Wen Ni

    2003-01-01

    In order to study the effect of fused spinel on the properties of phosphoric acid bonded high alumina castables, samples with different contents of fused spinel were prepared. The results show that when the contents of the fused spinel are between 8% and 16% (mass fraction), the castables have good properties. The castables overcome the shortages of the phosphoric acid bonded high alumina castables with bauxite cement as a hardening promoter. The experiments demonstrate that most of the service properties of the castables with fused spinel are better than those of the normal phosphoric acid bonded castables which use bauxite cement as a hardening promoter. The examination of the materials indicates that free MgO inclusions in the spinel powder can promote the hardening of the castables.

  15. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    Science.gov (United States)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2014-02-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at ~200 MPa.

  16. Enriched and depleted source components for tholeiitic and alkaline lavas from Zuni-Bandera, New Mexico: Inferences about intraplate processes and stratified lithosphere

    Science.gov (United States)

    Menzies, Martin A.; Kyle, Philip R.; Jones, Michael; Ingram, Gerry

    1991-07-01

    During the Pleistocene and Holocene, alkaline and tholeiitic magmas were erupted in the Zuni-Bandera volcanic field (ZBVF) on the western flanks of the Rio Grande Rift, New Mexico. While most of the alkaline basalts are magnesian (i.e., >8.0% MgO), the tholeiitic basalts show evidence of fractionation of olivine and clinopyroxene. The ZBVF lavas have intraplate chemistry similar to that of alkaline and tholeiitic basalts in other continental and oceanic environments, and Sr and Nd isotopes range from depleted compositions similar to mid-ocean ridge basalts to enriched compositions similar to ocean islands like Kerguelen. Slightly higher Th/Ta and Ba/Nb ratios in some of the ZBVF tholeiitic basalts correlate with isotopic ratios, and this may indicate minor involvement of a Th rich component (i.e., crust). Alternatively, such characteristics may merely reflect intraplate processes if one considers that the isotopic variation observed in the ZBVF is not that different from what is observed in Hawaiian basalts. Systematic changes in elemental and isotopic ratios with the degree of partial melting (Zr/Y) reveal that the geochemistry of the ZBVF magmas is dominated by two components: (1) a depleted mantle component which produced an enriched alkaline magma as a small degree melt (e.g., Ta/Yb=6.0; {La/Yb}N=60; Zr/Y=19; 87Sr/86Sr=0.703); and (2) an enriched mantle component which produced tholeiitic magmas as a larger degree melt (e.g., Ta/Yb <0.5{La/Yb}N < 15.0; Zr/Y=3-4; 87Sr/86Sr = 0.706). While the depleted component is interpreted to be MORB asthenosphere the enriched component is more problematical and may reside in plume-contaminated asthenosphere or stratified lithosphere. The lower lithosphere beneath the Proterozoic crust of the western USA appears to be chemically stratified and comprises a depleted peridotite protolith stabilized in the Proterozoic that may have been subsequently enriched due to interaction with fluids related to (1) suprasubduction processes

  17. The viscosity of planetary tholeiitic melts: A configurational entropy model

    Science.gov (United States)

    Sehlke, Alexander; Whittington, Alan G.

    2016-10-01

    The viscosity (η) of silicate melts is a fundamental physical property controlling mass transfer in magmatic systems. Viscosity can span many orders of magnitude, strongly depending on temperature and composition. Several models are available that describe this dependency for terrestrial melts quite well. Planetary basaltic lavas however are distinctly different in composition, being dominantly alkali-poor, iron-rich and/or highly magnesian. We measured the viscosity of 20 anhydrous tholeiitic melts, of which 15 represent known or estimated surface compositions of Mars, Mercury, the Moon, Io and Vesta, by concentric cylinder and parallel plate viscometry. The planetary basalts span a viscosity range of 2 orders of magnitude at liquidus temperatures and 4 orders of magnitude near the glass transition, and can be more or less viscous than terrestrial lavas. We find that current models under- and overestimate superliquidus viscosities by up to 2 orders of magnitude for these compositions, and deviate even more strongly from measured viscosities toward the glass transition. We used the Adam-Gibbs theory (A-G) to relate viscosity (η) to absolute temperature (T) and the configurational entropy of the system at that temperature (Sconf), which is in the form of log η =Ae +Be /TSconf . Heat capacities (CP) for glasses and liquids of our investigated compositions were calculated via available literature models. We show that the A-G theory is applicable to model the viscosity of individual complex tholeiitic melts containing 10 or more major oxides as well or better than the commonly used empirical equations. We successfully modeled the global viscosity data set using a constant Ae of -3.34 ± 0.22 log units and 12 adjustable sub-parameters, which capture the compositional and temperature dependence on melt viscosity. Seven sub-parameters account for the compositional dependence of Be and 5 for Sconf. Our model reproduces the 496 measured viscosity data points with a 1

  18. Effect of CaF2 on Interfacial Phenomena of High Alumina Refractories with Al Alloy

    Science.gov (United States)

    Koshy, Pramod; Gupta, Sushil; Sahajwalla, Veena; Edwards, Phil

    2008-08-01

    An experimental study was conducted to investigate the interfacial phenomena between Al-alloy and industrial grade high alumina refractories containing varying contents of CaF2 at 1250 °C. Interfacial reaction products and phases formed in the heat-treated refractory samples were characterized using electron probe microanalysis (EPMA) and X-ray diffraction (XRD), respectively, while interfacial phenomena including dynamic wetting behavior were analyzed using the sessile drop technique. Refractories containing less than 5 wt pct CaF2 showed good resistance to reactions with the molten alloy, due to the dominance of corundum, and the presence of anorthite at the interface. However, with a further increase in the additive content, a glassy matrix of anorthite with CaF2 was formed. Formation of this phase significantly increased the intensity of reactions resulting in the buildup of an interfacial layer. The study thus revealed the strong catalytic effect of CaF2 on reactions of high alumina refractories with Al-alloy.

  19. High Temperature Thermal Physical Properties of High-alumina Fibrous Insulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The thermal properties of high-alumina fibrous insulation which filled in metallic thermal protection system were investigated. The effective thermal conductivities of the fibrous insulation were measured under an atmospheric pressure from 10-2 to 105 Pa. In addition, the changes of the specific heat and Rosseland mean extinction coefficient were experimentally determined under various surrounding temperatures up to 973 K.The spectral extinction coefficients were obtained from transmittance data in the wavelength range of 2.5-25 μm using Beer's law. Rosseland mean extinction coefficients as a function of temperature were calculated based on spectral extinction coefficients at various temperatures. The results show that thermal conductivities of the sample increase with increasing temperature and pressure. Specific heat increases as temperature increases, which shows that the capacity of heat absorption increases gradually with temperature. Rosseland mean extinction coefficients of the sample decrease firstly and then increase with increasing the temperature.

  20. Micro-morphological changes prior to adhesive bonding: high-alumina and glassy-matrix ceramics

    Directory of Open Access Journals (Sweden)

    Marco Cícero Bottino

    2008-06-01

    Full Text Available The aim of this study was to qualitatively demonstrate surface micro-morphological changes after the employment of different surface conditioning methods on high-alumina and glassy-matrix dental ceramics. Three disc-shaped high-alumina specimens (In-Ceram Alumina, INC and 4 glassy-matrix ceramic specimens (Vitadur Alpha, V (diameter: 5 mm and height: 5 mm were manufactured. INC specimens were submitted to 3 different surface conditioning methods: INC1 - Polishing with silicon carbide papers (SiC; INC2 - Chairside air-borne particle abrasion (50 µm Al2O3; INC3 - Chairside silica coating (CoJet; 30 µm SiOx. Vitadur Alpha (V specimens were subjected to 4 different surface conditioning methods: V1 - Polishing with SiC papers; V2 - HF acid etching; V3 - Chairside air-borne particle abrasion (50 µm Al2O3; V4 - Chairside silica coating (30 µm SiOx. Following completion of the surface conditioning methods, the specimens were analyzed using SEM. After polishing with SiC, the surfaces of V specimens remained relatively smooth while those of INC exhibited topographic irregularities. Chairside air-abrasion with either aluminum oxide or silica particles produced retentive patterns on both INC and V specimens, with smoother patterns observed after silica coating. V specimens etched with HF presented a highly porous surface. Chairside tribochemical silica coating resulted in smoother surfaces with particles embedded on the surface even after air-blasting. Surface conditioning using air-borne particle abrasion with either 50 µm alumina or 30 µm silica particles exhibited qualitatively comparable rough surfaces for both INC and V. HF acid gel created the most micro-retentive surface for the glassy-matrix ceramic tested.

  1. Kimberlite Ascent: Insights from Olivine

    Science.gov (United States)

    Brett, C.; Russell, K.

    2009-05-01

    Olivine is ubiquitous in both extrusive and intrusive kimberlite deposits worldwide. Within kimberlite, it is mainly present as xenocrysts derived from the disaggregation of mantle-derived peridotitic xenoliths. Many textural and chemical features within the mantle-derived olivine xenocrysts result from post entrainment processes. On that basis, these features record physical and chemical changes attending kimberlite ascent and can be used to elucidate the transport and eruption of kimberlite magma. Our textural study of kimberlitic olivine is based on intrusive and pyroclastic kimberlite from the Diavik kimberlite cluster and from the Igwisi Hills kimberlitic lava flows. Based on these observations and the physical and chemical properties of olivine we derive a relative sequence of textural events. Textural features include: sealed cracks, healed cracks, phases trapping in cracks, rounded grains, overgrowths and phase trapping in overgrowths. These features record processes that operate in kimberlite during ascent, and from these features we create a summary model for kimberlite ascent: -- Olivine is incorporated into kimberlitic melts in peridotitic mantle xenoliths continuously during ascent. Xenolith incorporation is focused at the crack tip where the stress regime is highest. -- Shortly after the incorporation of these xenocrysts the tensile strength of the xenoliths is reached at a maximum of 2 km from its source. Disaggregation of mantle xenoliths (producing xenocrysts) is facilitated by expansion of the minerals within the xenoliths causing intra-crystal slip (i.e. along grain boundaries). -- Continued decompression causes olivine to also break in tension approximately 20 km from source. The void space produced by the failure of the crystals (inter-crystal cracks) is filled with melt and crystals consisting of primary carbonate (high-Sr), chromite and spinel crystals. The carbonate later crystallizes to produce sealed fractures. -- Mechanical rounding of

  2. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics : The effect of surface conditioning

    NARCIS (Netherlands)

    Felipe Valandro, Luiz; Ozcan, Mutlu; Bottino, Marco Cicero; Bottino, Marco Antonio; Scotti, Roberto; Della Bona, Alvaro

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  3. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia) ce

  4. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: The effect of surface conditioning

    NARCIS (Netherlands)

    Valandro, L.F.; Ozcan, M.; Bottino, M.C.; Bottino, M.A.; Scotti, R.; Della Bona, A.

    2006-01-01

    Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (in-Ceram Zirconia)

  5. Melt variability in percolated peridotite: an experimental study applied to reactive migration of tholeiitic basalt in the upper mantle

    Science.gov (United States)

    van den Bleeken, Greg; Müntener, Othmar; Ulmer, Peter

    2011-06-01

    as a consequence of reactive fractionation. Pervasive percolation of tholeiitic basalt through an upper-mantle thermal boundary layer can thus impose a high-Si `low-pressure' signature on MORB. This could explain opx + plag enrichment in shallow plagioclase peridotites and prolonged formation of olivine gabbros.

  6. Chloride Transport of High Alumina Cement Mortar Exposed to a Saline Solution

    Directory of Open Access Journals (Sweden)

    Hee Jun Yang

    2016-01-01

    Full Text Available Chloride transport in different types of high alumina cement (HAC mortar was investigated in this study. Three HAC cement types were used, ranging from 52.0 to 81.1% of aluminum oxides in clinker. For the development of the strength, the setting time of fresh mortar was measured immediately after mixing and the mortar compressive strength was cured in a wet chamber at 25 ± 2°C and then measured at 1–91 days. Simultaneously, to assess the rate of chloride transport in terms of diffusivity, the chloride profile was performed by an exposure test in this study, which was supported by further experimentation including an examination of the pore structure, chloride binding, and chemical composition (X-ray diffraction analysis. As a result, it was found that an increase in the Al2O3 content in the HAC clinker resulted in an increase in the diffusion coefficient and concentration of surface chloride due to increased binding of chloride. However, types of HAC did not affect the pore distribution in the cement matrix, except for macro pores.

  7. Effect of High Alumina Cement on Selected Foundry Properties of Ant-Hill Clay

    Directory of Open Access Journals (Sweden)

    Akeem Damilola AKINWEKOMI

    2012-11-01

    Full Text Available The effect of high alumina cement (HAC on some selected foundry properties of ant-hill clay was investigated. Pulverised clay, water and 5 to 40% HAC weight fractions were manually mixed, pressed and air dried at 110°C for twenty-four hours followed by firing in a kiln to 1100°C. For each property, four samples were prepared, tested and the average value reported. The results showed that the values of the investigated properties generally increased up to 15% HAC after which no significant improvement was observed. At an optimum 15% HAC, compressive strength increased from 4933.50 N/mm2 to 6457.25 N/mm2. In addition, refractoriness increased from 1450°C to 1600°C at this optimum weight percent. Apparent porosity was also observed to be improved in the tested samples. It was concluded that for a refractoriness value of 1600°C, the optimum mix of 15% HAC would be suitable for metallurgical furnace linings.

  8. Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties

    Institute of Scientific and Technical Information of China (English)

    Jagannath Pal; Satadal Ghorai; Bikash Nandi; Tapas Chakraborty; Goutam Das; T Venugopalan

    2015-01-01

    Pelletization of hematite ore requires high fineness and very high induration temperature (~1325 °C) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index (RDI) during low temperature (500−650 °C) reduction due to their volume expansion and lattice distortion. Noamundi (India) hematite ore contains very high Al2O3 (2.3%) with adverse ratio of alumina to silica (~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength (CCS). However, it shows very high RDI (77%). In order to reduce RDI, MgO in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI (26%and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility (70%−77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.

  9. Origin of olivine at Copernicus

    Science.gov (United States)

    Pieters, C. M.; Wilhelms, D. E.

    1985-02-01

    The central peaks of Copernicus are among the few lunar areas where near-infrared telescopic reflectance spectra indicate extensive exposures of olivine. Other parts of Copernicus crater and ejecta, which were derived from highland units in the upper parts of the target site, contain only low-Ca pyroxene as a mafic mineral. The exposure of compositionally distinct layers including the presence of extensive olivine may result from penetration to an anomalously deep layer of the crust or to the lunar mantle. It is suggested that the Procellarum basin and the younger, superposed Insularum basin have provided access to these normally deep-seated crustal or mantle materials by thinning the upper crustal material early in lunar history. The occurrences of olivine in portions of the compositionally heterogeneous Aristarchus Region, in a related geologic setting, may be due to the same sequence of early events.

  10. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration.

    Science.gov (United States)

    Sissmann, Olivier; Brunet, Fabrice; Martinez, Isabelle; Guyot, François; Verlaguet, Anne; Pinquier, Yves; Daval, Damien

    2014-05-20

    Batch experiments were conducted in water at 150 °C and PCO2 = 280 bar on a Mg-rich tholeiitic basalt (9.3 wt % MgO and 12.2 wt % CaO) composed of olivine, Ti-magnetite, plagioclase, and clinopyroxene. After 45 days of reaction, 56 wt % of the initial MgO had reacted with CO2 to form Fe-bearing magnesite, (Mg0.8Fe0.2)CO3, along with minor calcium carbonates. The substantial decrease in olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt % MgO) of similar grain size, only 5 wt % of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt was enhanced by a factor of ca. 40. This could be explained by differences in the chemical and textural properties of the secondary silica layer that covers reacted olivine grains in both types of sample. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks.

  11. Mineral magnetism of dusty olivine

    DEFF Research Database (Denmark)

    Lappe, Sophie-Charlotte L. L.; Church, Nathan S.; Kasama, Takeshi

    2011-01-01

    The magnetic properties of olivine-hosted Fe-Ni particles have been studied to assess the potential of "dusty olivine" to retain a pre-accretionary remanence in chondritic meteorites. Both body-centered (bcc) and face-centered cubic (fcc) Fe-Ni phases were formed by reduction of a terrestrial...... SD particles using electron holography is presented. Combining the volume information with constraints on coercivity, we calculate the thermal relaxation characteristics of the particles and demonstrate that the high-coercivity component of remanance would remain stable for 4.6 Ga, even...

  12. Supernova olivine from cometary dust

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (olivine (forsterite 83) grains olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  13. The most suitable techiniques and methods to identify high alumina cement and based portland cement in concretes

    OpenAIRE

    Blanco, M. T.; Puertas, F; Vázquez, T.; de la Fuente, A

    1992-01-01

    Instrumental techniques are indicated and the most adequated methodologies for determining the nature of the binder in concretes are explained. These methods are: a) Determination of the Silicic Moduli through chemical analysis of the sample. This test reveáis very different valúes between cement portland based concrete and high alumina cement based concretes. b) X-ray diffraction. It is considered as the best method. In the present paper the main diffraction Unes corresponding to...

  14. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Science.gov (United States)

    Schibille, Nadine

    2011-04-19

    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  15. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  16. Ferrobasalt-rhyolite immiscibility in tholeiitic volcanic and plutonic series (Invited)

    Science.gov (United States)

    Charlier, B.; Namur, O.; Kamenetsky, V. S.; Grove, T. L.

    2013-12-01

    One atmosphere experiments show that silicate liquid immiscibility develops between Fe-rich and Si-rich melts below 1000-1020°C in compositionally diverse lavas that represent classical tholeiitic trends, such as Mull, Iceland, Snake River Plain and Sept Iles. Extreme iron enrichment along the evolution trend is not necessary; immiscibility also develops during iron depletion and silica enrichment after Fe-Ti oxide saturation. Natural liquid lines of descent for major tholeiitic series also approach or intersect the experimentally-defined compositional space of immiscibility. The importance of ferrobasalt-rhyolite unmixing in both volcanic and plutonic environments is supported by worldwide occurrence of immiscible globules in the mesostasis of erupted basalts, and by unmixed melt inclusions in cumulus phases of major layered intrusions such as Sept Iles, Skaergaard and Sudbury. A clear case of liquid immiscibility is also recorded in intrusive tholeiitic gabbros from the Siberian Large Igneous Province and is evidenced by textures and compositions of millimeter-sized silicate melt pools trapped in native iron. An important implication of immiscibility in natural ferrobasaltic provinces is the development of a compositional gap characterized by the absence of intermediate compositions, a major feature observed in many tholeiitic provinces and referred to as the Daly gap. The compositions of experimental silica-rich immiscible melts coincide with those of natural rhyolites with high FeOtot and low Al2O3, which suggests a potential role for large-scale immiscibility in the petrogenesis of late-stage ferroan silicic melts. No evidence for the paired ferrobasaltic melt is observed in volcanic provinces, probably because of its uneruptable characteristics. Instead, Fe-Ti×P-rich gabbros crystallized at depth and are the cumulate products of immiscible Fe-rich melts in plutonic settings, a feature clearly evidenced in the Sept Iles intrusion. The production of

  17. Fertility of the Mantle beneath the Ocean Basins: Harzburgite, Lherzolite, and Eclogite in Depleted to Enriched Sources of Abyssal Tholeiites, Ocean Islands, and LIPs

    Science.gov (United States)

    Natland, J. H.; Anderson, D. L.

    2002-12-01

    Current models for the origin of MORB and OIB invoke different degrees of partial melting of a homogeneous lherzolitic source, and a heterogeneous deep mantle source, respectively. In the ocean basins, MORBs are only part of a spectrum of geochemically diverse depleted to enriched basalts that erupt at or near ridges, off-axis seamounts and large igneous provinces. Even at ridges, mantle is locally enriched (e.g. E-MORB). The gradation in compositions from MORB to slightly less depleted tholeiites at LIPS, to variably enriched tholeiitic and alkalic basalts, basanites and olivine nephelinites of many ocean islands requires only differences in depth and degree of partial melting of shallow mantle lherzolite upon which trace-element and isotopic heterogeneity are superimposed. Alkalic basalts and differentiates in the oceans occur along nearly every seamount ridge rising >2000 m above the seafloor, a distribution too extensive to be explained by any number of plumes; this makes a plume origin for similar lavas on linear island chains questionable. Tapping along fractures of a shallow asthenospheric layer of variably enriched and fertile mantle that develops beneath the lithosphere through time is more likely. The long-term differentiation of the Earth, magmatism, recycling, continental rifting, and subduction insure that the upper mantle cannot be well mixed and homogeneous, a common but fallacious assumption in much petrogenetic theory. Mantle major-element and isotopic heterogeneity and variable temperature is a consequence of plate tectonics. Every association of ultramafic rocks in the ocean crust, ophiolites, and xenolith suites demonstrates significant bulk heterogeneity that survives partial melting. Thus sources of modern abyssal tholeiites must be variably fertile with respect to a basaltic melt fraction, and range from average harzburgite to fertile lherzolite, on both local and regional scales. In addition, subduction guarantees that most abyssal basalt

  18. Production and Application of Henan Olivine

    Institute of Scientific and Technical Information of China (English)

    JIN Qinguo

    2002-01-01

    Henan olivine enjoys high reputation both at home and abroad due to its high performance. It is increasingly being used as mold sand for foundry ,filling materials and drawing-out agent for steel-making as well as raw materials in refractory industry. In the paper, specification,production and application of olivine originated in Henan province are introduced.

  19. Olivine-dominated Asteroids: Mineralogy and Origin

    CERN Document Server

    Sanchez, Juan A; Kelley, Michael S; Cloutis, Edward A; Bottke, William F; Nesvorný, David; Lucas, Michael P; Hardersen, Paul S; Gaffey, Michael J; Abell, Paul A; Corre, Lucille Le

    2013-01-01

    Olivine-dominated asteroids are a rare type of objects formed either in nebular processes or through magmatic differentiation. The analysis of meteorite samples suggest that at least 100 parent bodies in the main belt experienced partial or complete melting and differentiation before being disrupted. However, only a few olivine-dominated asteroids, representative of the mantle of disrupted differentiated bodies, are known to exist. Due to the paucity of these objects in the main belt their origin and evolution have been a matter of great debate over the years. In this work we present a detailed mineralogical analysis of twelve olivine-dominated asteroids. Within our sample we distinguish two classes, one that we call pure-olivine asteroids and another referred to as olivine-rich asteroids. For the pure-olivine asteroids the olivine chemistry was found to range from ~ Fo49 to Fo70, consistent with the values measured for brachinites and R chondrites. In the case of the olivine-rich asteroids we determined thei...

  20. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  1. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    Science.gov (United States)

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous

  2. North Kona slump: Submarine flank failure during the early(?) tholeiitic shield stage of Hualalai Volcano

    Science.gov (United States)

    Lipman, P.W.; Coombs, M.L.

    2006-01-01

    The North Kona slump is an elliptical region, about 20 by 60 km (1000-km2 area), of multiple, geometrically intricate benches and scarps, mostly at water depths of 2000–4500 m, on the west flank of Hualalai Volcano. Two dives up steep scarps in the slump area were made in September 2001, using the ROV Kaiko of the Japan Marine Science and Technology Center (JAMSTEC), as part of a collaborative Japan–USA project to improve understanding of the submarine flanks of Hawaiian volcanoes. Both dives, at water depths of 2700–4000 m, encountered pillow lavas draping the scarp-and-bench slopes. Intact to only slightly broken pillow lobes and cylinders that are downward elongate dominate on the steepest mid-sections of scarps, while more equant and spherical pillow shapes are common near the tops and bases of scarps and locally protrude through cover of muddy sediment on bench flats. Notably absent are subaerially erupted Hualalai lava flows, interbedded hyaloclastite pillow breccia, and/or coastal sandy sediment that might have accumulated downslope from an active coastline. The general structure of the North Kona flank is interpreted as an intricate assemblage of downdropped lenticular blocks, bounded by steeply dipping normal faults. The undisturbed pillow-lava drape indicates that slumping occurred during shield-stage tholeiitic volcanism. All analyzed samples of the pillow-lava drape are tholeiite, similar to published analyses from the submarine northwest rift zone of Hualālai. Relatively low sulfur (330–600 ppm) and water (0.18–0.47 wt.%) contents of glass rinds suggest that the eruptive sources were in shallow water, perhaps 500–1000-m depth. In contrast, saturation pressures calculated from carbon dioxide concentrations (100–190 ppm) indicate deeper equilibration, at or near sample sites at water depths of − 3900 to − 2800 m. Either vents close to the sample sites erupted mixtures of undegassed and degassed magmas, or volatiles were resorbed from

  3. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  4. Partitioning coefficients between olivine and silicate melts

    Science.gov (United States)

    Bédard, J. H.

    2005-08-01

    Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.

  5. Experimental Study of Olivine-rich Troctolites

    Science.gov (United States)

    Mu, S.; Faul, U.

    2014-12-01

    This experimental study is designed to complement field observations of olivine-rich troctolites in ophiolites and from mid-ocean ridges. The olivine-rich troctolites are characterized by high volume proportion of olivine with interstitial plagioclase and clinopyroxene. Typically the clinopyroxene occurs in the form of few large, poikilitic grains. The primary purpose of this study is to investigate the effects of cooling process on the geometry of the interstitial phases (clinopyroxene and plagioclase). Experiments are conducted in a piston cylinder apparatus by first annealing olivine plus a basaltic melt with a composition designed to be in equilibrium with four phases at ~ 1 GPa and 1250ºC. Initially, we anneal the olivine-basalt aggregates at 1350 °C and 0.7 GPa for one week to produce a steady state microstructure. At this temperature only olivine and minor opx are present as crystalline phases. We then cool the samples over two weeks below their solidus temperature, following different protocols. The post-run samples are sectioned, polished, and imaged at high resolution and analyzed by using a field emission SEM. Initial observations show that under certain conditions clinopyroxene nucleates distributed throughout the aggregate at many sites, forming relatively small, rounded to near euhedral grains. Under certain conditions few cpx grains nucleate and grow with a poikilitic shape, partially or fully enclosing olivine grains, as is observed in natural samples. As for partially molten aggregates quenched form the annealing temperature, the microstructure will be characterized by tracing phase boundaries on screen by using ImageJ software. The geometry of the interstitial phases will be quantified by determining the grain boundary wetness, in this case the ratio of the length of polyphase to single phase (olivine-olivine) boundaries. Compositional data will also be used to study the change in major element compositions before and after the cooling process.

  6. Interpretation of discordant 40Ar/39Ar age-spectra of mesozoic tholeiites from antarctica

    Science.gov (United States)

    Fleck, R.J.; Sutter, J.F.; Elliot, D.H.

    1977-01-01

    Conventional K-Ar ages of tholeiitic basalts of the Ferrar Group in the central Transantarctic Mountains indicate significant loss of radiogenic 40Ar from this unit over much of its outcrop area. Argon loss varies inversely with amount of devitrified matrix in the basalts, which have not been thermally or tectonically disturbed since extrusion. 40Ar/19Ar age-spectra of these tholeiites are generally discordant and indicate significant inhomogeneity in the distribution of radiogenic 40Ar with respect to 39Ar, but are distinctly different from release patterns of thermally disturbed samples. Amounts of argon redistribution vary directly with amounts of devitrification and are reflected in progressive modification of the age spectra. A model of redistribution of radiogenic 40Ar by devitrification of originally glassy matrix is suggested that is consistent with disturbance of the conventional K-Ar systematics as well as the 40Ar/39Ar age-spectra. Samples with substantial redistribution but minor loss of radiogenic argon yield age spectra whose apparent ages decrease from low-temperature to high-temperature steps, similar to those reported for some lunar basalts, breccias, and soils. Modification of all the age spectra is attributed to redistribution of radiogenic 40Ar during progressive devitrification, although 39Ar-recoil effects suggested by Turner and Cadogan (1974) may be a factor in some cases. Where devitrification involves most potassium sites within the basalt, 40Ar/39Ar age-plateaux may be formed that have no geologic significance. ?? 1977.

  7. Olivine-dominated asteroids: Mineralogy and origin

    OpenAIRE

    Sanchez, Juan A.; Reddy, Vishnu; Kelley, Michael S.; Cloutis, Edward A.; Bottke, William F.; Nesvorný, David; Lucas, Michael P.; Hardersen, Paul S.; Gaffey, Michael J.; Abell, Paul A.; Corre, Lucille Le

    2013-01-01

    Olivine-dominated asteroids are a rare type of objects formed either in nebular processes or through magmatic differentiation. The analysis of meteorite samples suggest that at least 100 parent bodies in the main belt experienced partial or complete melting and differentiation before being disrupted. However, only a few olivine-dominated asteroids, representative of the mantle of disrupted differentiated bodies, are known to exist. Due to the paucity of these objects in the main belt their or...

  8. Olivine in Almahata Sitta - Curiouser and Curiouser

    Science.gov (United States)

    Zolensky, M. E.; Herrin, J.; Mikouchi, T.; Satake, W.; Kurihara, T.; Sandford, S. A.; Milam, S. N.; Hagiya, K.; Ohsumi, K.; Friedrich, J. M.; Jeniskens, P.; Shaddad, M. H.; Le, L.; Robinson, G. A.

    2010-01-01

    Almahata Sitta (hereafter Alma) is an anomalous, polymict ureilite. Anomalous features include low abundance of olivine, large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and overall finegrained texture. Tomography suggests the presence of foliation, which is known from other ureilites. Alma pyroxenes and their interpretation are discussed in two companion abstracts. In this abstract we discuss the composition of olivine in Alma, which is indicative of the complexity of this meteorite.

  9. An Amoeboid Olivine Aggregate in LEW 85300

    Science.gov (United States)

    Komatsu, M. D.; Yamaguchi, A.; Fagan, T. J.; Zolensky, M. E.; Shiran, N.; Mikouchi, T.

    2016-01-01

    Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.

  10. Exsolved Ferromagnesian Olivine: Why Only in Divnoe?

    Science.gov (United States)

    Petaev, M. I.

    1995-09-01

    Recently Petaev and Brearley [1] showed that lamellar structure in olivine grains in the Divnoe meteorite was produced by the low-temperature exsolution of primary homogeneous grains. Exsolved olivine in Divnoe is in accordance with the thermodynamic model of olivine solid solution of [2], which predicts a miscibility gap in ferromagnesian olivines below ~340 degrees C within a compositional range that widens with decreasing temperature. Experiments on the coexistence of olivines having a range of compositions with aqueous solutions of (Fe,Mg)Cl2 [3] suggest that exsolution in ferromagnesian olivines could occur even at temperatures as high as ~400 - 450 degrees C. However, [1] remains the only observation of exsolution in natural olivines so far. This means either that (1) the exsolution in Divnoe olivine is unique, or (2) olivine grains in other slowly cooled coarse-grained rocks has not been studied closely enough to detect them. This work attempts to clarify the issue. Olivine grains from selected meteorites (Springwater pallasite, Lowitz mesosiderite, ALHA 84025 brachinite, Gorlovka H3-4 chondrite and Krymka L3 chondrite, and the Calcalong Creek lunar meteorite) and terrestrial rocks (San Carlos forsterite and Rockport fayalite) were studied by EPMA using the same equipment and technique as in [1]. Among meteorites, pallasites and mesosiderites are known to have slowest cooling rates at low temperatures. Olivines in the Springwater pallasite (Fa18) [4] and the Lowitz mesosiderite (Fa15-37) [5] are compositionally comparable with that of Divnoe (Fa23-29) [1], and it was expected that exsolved olivine grains would be found there. Olivines from other samples were studied for comparison. No lamellar structure was observed in BSE images of the olivine grains studied. The variations of Fa contents in olivine grains from all samples but Springwater and Lowitz meteorites display no regular pattern, and are basically within the 2sigma uncertainty range (+/-0.2 mole

  11. Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach

    Science.gov (United States)

    Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu

    2015-12-01

    Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential

  12. Differences between boninite and tholeiite primary magmas in Izu-Bonin-Mariana arc: constraints from an Os isotope perspective

    Science.gov (United States)

    Senda, R.; Shimizu, K.; Suzuki, K.

    2010-12-01

    Geochemical data of arc primary magmas provide information on how elements behave in the subduction system. In order to constrain Os behavior in a subduction system, Os isotope ratios of whole rock and chromium spinels (Cr-spinels) in boninites, a type of high-Mg andesite, and tholeiites from Izu-Bonin-Mariana (IBM) arc, have been determined. Cr-spinel crystallizes at an early stage of fractional crystallization and therefore can preserve primary information of its magma source. Furthermore Os is highly compatible in Cr-spinels, and thus Os isotope ratios determined from Cr-spinel in volcanic rocks provide information on the magmatic history and origin. We investigated the difference in Os isotopic compositions between the primary boninite and primary tholeiite in IBM arc to understand the behavior of Os during arc magma generation. The whole rock Os isotope ratios of both boninites (187Os/188Os = 0.1240-0.1828) and tholeiites (187Os/188Os = 0.1658-0.2832) are higher and more variable than those of Cr-spinels (from boninites: 187Os/188Os = 0.1229-0.1242, from tholeiites: 187Os/188Os = 0.1429-0.1512). In both cases, this is likely to be due to the rock assimilating crustal materials with more radiogenic Os isotope ratios than the mantle during magma ascent after Cr-spinel crystallization. The initial Os isotope ratios of Cr-spinel from boninites (187Os/188Os(i) = 0.1206-0.1242) are similar to those of abyssal peridotites from the forearc region of IBM [1]. This suggests that the Os in the boninite primary magma originates from unradiogenic depleted mantle, not from radiogenic fertile mantle or subducted materials. On the other hand, Os isotope ratios of Cr-spinels from tholeiites are higher than those from boninites. Crustal contamination possibly contributed to the more radiogenic Os isotopic composition of the tholeiite magma. The difference in Os isotope ratios between boninite and tholeiites indicate that they have a different origin and evolutionary history

  13. Raman spectra of shocked minerals. I. Olivine

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Celucci, T.A.

    1988-12-01

    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition. 54 references.

  14. Raman spectra of shocked minerals. I - Olivine

    Science.gov (United States)

    Heymann, D.; Celucci, T. A.

    1988-01-01

    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition.

  15. High Alumina Brick

    Institute of Scientific and Technical Information of China (English)

    Zhang xiaohui

    2007-01-01

    @@ 1 Theme and Scope This standard specifies the classification,dimensions,technical requirement,testing method,inspection principle,package,marking,packing,transportation,storage and quality certificate.

  16. Effect of Ground Limestone on Performance of High Alumina Cement%石灰石粉对高铝水泥性能的影响

    Institute of Scientific and Technical Information of China (English)

    肖佳; 勾成福; 邢昊; 许彩云; 金勇刚

    2011-01-01

    研究了石灰石粉对高铝水泥胶砂试件强度及孔结构的影响,分析了石灰石粉在高铝水泥水化过程中的作用.结果表明:高铝水泥胶砂试件抗折强度和抗压强度均随石灰石粉掺量(质量分数,下同)的增加呈现先升高后降低的趋势,各龄期(1,3,7,28 d)胶砂试件的抗折强度与抗压强度均在石灰石粉掺量为3%时达到最大值;适量石灰石粉掺入高铝水泥中可生成单碳型水化碳铝酸钙和氢氧化铝,提高胶砂试件的密实度和强度;高铝水泥胶砂试件28 d总孔隙率、大孔孔隙率和小孔孔隙率均随石灰石粉掺量的增加呈现先减小后增大的趋势,当石灰石粉掺量为3%时,胶砂试件各孔隙率均最小.%Effect of ground limestone on the strength and pore structure of high alumina cement mortar specimens was studied, and the role of ground limestone in the hydration process of high alumina cement was analyzed. The results show that the flexural and compressive strength of high alumina cement mortar specimens increase first and decrease later with increasing ground limestone use leveKby mass). When the ground limestone use level is 3%, the flexural and compressive strength of the specimens at 1,3*7,28 d reach the maximum. The formation of hydrated calcium monocarboaluminate and aluminum hydroxide improves the density and strength of the specimens when ground limestone substitutes a proper part of high alumina cement. The total porosity, macroporous porosity, small hole porosity of high alumina cement mortar specimens for 28 d decrease first and increase later with increasing ground limestone use level. When the ground limestone use level is 3%, The total porosity, macroporous porosity, small hole porosity of the specimen for 28 d reach the minimum.

  17. Mn based olivine electrode material with high power and energy.

    Science.gov (United States)

    Kim, Jongsoon; Seo, Dong-Hwa; Kim, Sung-Wook; Park, Young-Uk; Kang, Kisuk

    2010-02-28

    We report the Mn based olivine electrode material with high power and energy. Easier and more frequent nucleation by Fe and Co in Mn-based olivines significantly enhanced the rate capability as evidenced by the electrochemical results.

  18. Exploring Exogenic Sources for the Olivine on Asteroid (4) Vesta

    OpenAIRE

    Corre, Lucille Le; Reddy, Vishnu; Sanchez, Juan A.; Dunn, Tasha; Cloutis, Edward A.; Izawa, Matthew R. M.; Mann, Paul; Nathues, Andreas

    2015-01-01

    The detection of olivine on Vesta is interesting because it may provide critical insights into planetary differentiation early in our Solar System's history. Ground-based and Hubble Space Telescope (HST) observations of asteroid (4) Vesta have suggested the presence of olivine on the surface. These observations were reinforced by the discovery of olivine-rich HED meteorites from Vesta in recent years. However, analysis of data from NASA's Dawn spacecraft has shown that this olivine-bearing un...

  19. Direct shear of olivine single crystals

    Science.gov (United States)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2016-12-01

    Knowledge of the strengths of the individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominant slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000 ° to 1300 °C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 × 10-6 to 2.1 × 10-3 s-1. At high-temperature (≥1200 °C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  20. A Chemical Model of Micrometeorite Impact into Olivine

    Science.gov (United States)

    Sheffer, A. A.; Melosh, H. J.

    2005-01-01

    Laboratory simulations of space weathering using laser irradiation have been successful in reproducing space weathering characteristics such as the reduction of olivine to form nanophase iron particles. However, the chemistry of the reduction of Fe2+ in olivine to Fe metal has not been fully explored. We present a thermodynamic model of olivine undergoing post-impact cooling and decompression.

  1. Transmission electron microscopy of subsolidus oxidation and weathering of olivine

    Science.gov (United States)

    Banfield, J.F.; Veblen, D.R.; Jones, B.F.

    1990-01-01

    Olivine crystals in basaltic andesites which crop out in the Abert Rim, south-central Oregon have been studied by high-resolution and analytical transmission electron microscopy. The observations reveal three distinct assemblages of alteration products that seem to correspond to three episodes of olivine oxidation. The olivine crystals contain rare, dense arrays of coherently intergrown Ti-free magnetite and inclusions of a phase inferred to be amorphous silica. We interpret this first assemblage to be the product of an early subsolidus oxidation event in the lava. The second olivine alteration assemblage contains complex ordered intergrowths on (001) of forsterite-rich olivine and laihunite (distorted olivine structure with Fe3+ charge balanced by vacancies). Based on experimental results for laihunite synthesis (Kondoh et al. 1985), these intergrowths probably formed by olivine oxidation between 400 and 800??C. The third episode of alteration involves the destruction of olivine by low-temperature hydrothermal alteration and weathering. Elongate etch-pits and channels in the margins of fresh olivine crystals contain semi-oriented bands of smectite. Olivine weathers to smectite and hematite, and subsequently to arrays of oriented hematite crystals. The textures resemble those reported by Eggleton (1984) and Smith et al. (1987). We find no evidence for a metastable phase intermediate between olivine and smectite ("M" - Eggleton 1984). The presence of laihunite exerts a strong control on the geometry of olivine weathering. Single laihunite layers and laihunite-forsteritic olivine intergrowths increase the resistance of crystals to weathering. Preferential development of channels between laihunite layers occurs where growth of laihunite produced compositional variations in olivine, rather than where coherency-strain is associated with laihunite-olivine interfaces. ?? 1990 Springer-Verlag.

  2. Olivine sand from Kawashiri Beach in Kagoshima, Japan

    OpenAIRE

    MATSUI, Tomoaki; マツイ, トモアキ; 松井, 智彰

    2001-01-01

    The olivine sand from Kawashiri Beach was studied by chemical and X-ray analyses. At least six groups of olivine are mixed in the olivine sand in this region, and they are classified according to the composition of the silicate-melt inclusions in them. The composition of the olivine sand ranges from Fo_70 to Fo_75, and the sum of the Mn_2SiO_4 and Ca_2SiO_4 content is less than 1 (mol %). These crystal chemical data for the olivine sand not only provide basic mineralogical info...

  3. Chemoorganotrophic Bioleaching of Olivine for Nickel Recovery

    Directory of Open Access Journals (Sweden)

    Yi Wai Chiang

    2014-06-01

    Full Text Available Bioleaching of olivine, a natural nickel-containing magnesium-iron-silicate, was conducted by applying chemoorganotrophic bacteria and fungi. The tested fungus, Aspergillus niger, leached substantially more nickel from olivine than the tested bacterium, Paenibacillus mucilaginosus. Aspergillus niger also outperformed two other fungal species: Humicola grisae and Penicillium chrysogenum. Contrary to traditional acid leaching, the microorganisms leached nickel preferentially over magnesium and iron. An average selectivity factor of 2.2 was achieved for nickel compared to iron. The impact of ultrasonic conditioning on bioleaching was also tested, and it was found to substantially increase nickel extraction by A. niger. This is credited to an enhancement in the fungal growth rate, to the promotion of particle degradation, and to the detachment of the stagnant biofilm around the particles. Furthermore, ultrasonic conditioning enhanced the selectivity of A. niger for nickel over iron to a value of 3.5. Pre-carbonating the olivine mineral, to enhance mineral liberation and change metal speciation, was also attempted, but did not result in improvement as a consequence of the mild pH of chemoorganotrophic bioleaching.

  4. Igneous Rocks of the East Pacific Rise: The alkali volcanic suite appear to be differentiated from a tholeiitic basalt extruded from the mantle.

    Science.gov (United States)

    Engel, A E; Engel, C G

    1964-10-23

    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K(2)O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K(2)O by weight and more than 48 percent SiO(2). Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts. The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 10(4).

  5. Search for olivine spectral signatures on the surface of Vesta

    Science.gov (United States)

    Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.; McSween, H. Y.; Mittlefehldt, D. W.; Russell, C. T.; Raymond, C. A.; Sunshine, J.; McCord, T. B.

    2012-04-01

    The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of ground-based and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta's surface in the wavelength range from 0.25 to 5.1 µm during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes

  6. Search for Olivine Spectral Signatures on the Surface of Vesta

    Science.gov (United States)

    Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.; McSween, H. Y.; Mittlefehldt, D. W.; Russell, C. T.; Raymond, C. A.; Sunshine, J.; McCord, T. B.

    2012-01-01

    The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of groundbased and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta s surface in the wavelength range from 0.25 to 5.1 m during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes, olivines

  7. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  8. Load Relaxation of Olivine Single Crystals

    Science.gov (United States)

    Cooper, R. F.; Stone, D. S.; Plookphol, T.

    2016-12-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  9. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    Science.gov (United States)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  10. Mineralogical Comparison of Olivine in Shergottites and A Shocked L Chondrite: Implications for Shock Histories of Brown Olivine

    Science.gov (United States)

    Takenouchi, A.; Mikouchi, T.; Yamaguchi, A.; Zolensky, M. E.

    2015-01-01

    Most Martian meteorites are heavily shocked, exhibiting numerous shock features, for example undulatory extinction of olivine and pyroxene, the presence of diaplectic glass ("maskelynite") and the formation of shock melt. Among these shock features, olivine darkening ("brown" olivine) is unique in Martian meteorites because no other meteorite group shows such a feature. Although the presence of brown olivine in shergottites was reported thirty years ago, detailed observation by TEM has not been performed until the NWA 2737 chassignite was discovered, whose olivine is darkened, being completely black in hand specimen. Fe metal nano-particles were found in NWA 2737 olivine which are considered to have been formed by olivine reduction during heavy shock. Subsequently, magnetite nano-particles were also found in other Martian meteorites and the coexistence of Fe metal and magnetite nano-particles was reported in the NWA 1950 shergottite and some Fe metal nano-particles were mantled by magnetite. Therefore, the formation process of nano-particles seems to be complex. Because "brown" olivine is unique to Martian meteorites, they have a potential to constrain their shock conditions. In order to better understand the shock history of Martian meteorites, we compared olivine in several shergottites with that in a highly-shocked L chondrite which contains ringwoodite.

  11. Anisotropy of electrical conductivity in dry olivine

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, W L; Roberts, J J; Toffelmier, D A; Tyburczy, J A

    2005-04-13

    [1] The electrical conductivity ({sigma}) was measured for a single crystal of San Carlos olivine (Fo{sub 89.1}) for all three principal orientations over oxygen fugacities 10{sup -7} < fO{sub 2} < 10{sup 1} Pa at 1100, 1200, and 1300 C. Fe-doped Pt electrodes were used in conjunction with a conservative range of fO{sub 2}, T, and time to reduce Fe loss resulting in data that is {approx}0.15 log units higher in conductivity than previous studies. At 1200 C and fO{sub 2} = 10{sup -1} Pa, {sigma}{sub [100]} = 10{sup -2.27} S/m, {sigma}{sub [010]} = 10{sup -2.49} S/m, {sigma}{sub [001]} = 10{sup -2.40} S/m. The dependences of {sigma} on T and fO{sub 2} have been simultaneously modeled with undifferentiated mixed conduction of small polarons and Mg vacancies to obtain steady-state fO{sub 2}-independent activation energies: Ea{sub [100]} = 0.32 eV, Ea{sub [010]} = 0.56 eV, Ea{sub [001]} = 0.71 eV. A single crystal of dry olivine would provide a maximum of {approx}10{sup 0.4} S/m azimuthal {sigma} contrast for T < 1500 C. The anisotropic results are combined to create an isotropic model with Ea = 0.53 eV.

  12. From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution

    Science.gov (United States)

    Cucciniello, Ciro; Melluso, Leone; le Roex, Anton P.; Jourdan, Fred; Morra, Vincenzo; de'Gennaro, Roberto; Grifa, Celestino

    2017-03-01

    The Ankaratra volcanic field covers an area of 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504-0.71012), 143Nd/144Nd (0.51259-0.51244) and 206Pb/204Pb (17.705-18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar.

  13. Olivine in an unexpected location on Vesta's surface.

    Science.gov (United States)

    Ammannito, E; De Sanctis, M C; Palomba, E; Longobardo, A; Mittlefehldt, D W; McSween, H Y; Marchi, S; Capria, M T; Capaccioni, F; Frigeri, A; Pieters, C M; Ruesch, O; Tosi, F; Zambon, F; Carraro, F; Fonte, S; Hiesinger, H; Magni, G; McFadden, L A; Raymond, C A; Russell, C T; Sunshine, J M

    2013-12-05

    Olivine is a major component of the mantle of differentiated bodies, including Earth. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta, which is the lone surviving, large, differentiated, basaltic rocky protoplanet in the Solar System. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, typically with a concentration of less than 25 per cent by volume. Olivine was tentatively identified on Vesta, on the basis of spectral and colour data, but other observations did not confirm its presence. Here we report that olivine is indeed present locally on Vesta's surface but that, unexpectedly, it has not been found within the deep, south-pole basins, which are thought to be excavated mantle rocks. Instead, it occurs as near-surface materials in the northern hemisphere. Unlike the meteorites, the olivine-rich (more than 50 per cent by volume) material is not associated with diogenite but seems to be mixed with howardite, the most common surface material. Olivine is exposed in crater walls and in ejecta scattered diffusely over a broad area. The size of the olivine exposures and the absence of associated diogenite favour a mantle source, but the exposures are located far from the deep impact basins. The amount and distribution of observed olivine-rich material suggest a complex evolutionary history for Vesta.

  14. Dynamic recrystallization and grain growth in olivine rocks

    NARCIS (Netherlands)

    Kellermann Slotemaker, A.

    2006-01-01

    A mechanism based description of the rheology of olivine is essential for modeling of upper mantle geodynamics. Previously, mantle flow has been investigated using flow laws for grain size insensitive (GSI) dislocation creep and/or grain size sensitive (GSS) diffusion creep of olivine. Generally,

  15. Dynamic recrystallization and grain growth in olivine rocks

    NARCIS (Netherlands)

    Kellermann Slotemaker, A.

    2006-01-01

    A mechanism based description of the rheology of olivine is essential for modeling of upper mantle geodynamics. Previously, mantle flow has been investigated using flow laws for grain size insensitive (GSI) dislocation creep and/or grain size sensitive (GSS) diffusion creep of olivine. Generally, fl

  16. Olivine in the Southern Isidis Basin

    Science.gov (United States)

    2007-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this observation of the transition region between Libya Montes and the Isidis Basin on Mars at 17:16 UTC (12:16 p.m. EST) on January 2, 2007, near 3.6 degrees north latitude, 84.1 degrees east longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 11 kilometers (7 miles) wide at its narrowest point. The Isidis Basin resulted from of a gigantic impact on the surface of Mars early in the planet's history. The southern rim, where this target is located, is a region of complex geology and part of the planetary dichotomy boundary that separates the older southern highlands from the lower, younger northern plains. The image on the left was constructed from three visible wavelengths (RGB: 0.71, 0.60, 0.53 microns) and is a close approximation of how the surface would appear to the human eye. The image on the right was constructed from three infrared wavelengths (RGB: 2.49, 1.52, 1.08 microns) chosen to highlight variations in the mineralogy of the area. Of interest is that features in this image not only differ in color, but also in texture and morphology. The gray areas absorb similarly at all wavelengths used in this image, but display absorptions at other wavelengths related to the iron- and magesium-rich mineral pyroxene. The reddest areas absorb strongly at the wavelengths used for green and blue, which is attributable to another iron- and magesium-rich mineral, olivine. The brownish areas show subdued mineral absorptions and could represent some type of mixture between the other two materials. The presence of the mineral olivine is particularly interesting because olivine easily weathers to other minerals; thus, its presence indicates either the lack of weathering in this region or relatively recent exposure. CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and

  17. Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs.

    Science.gov (United States)

    Chen, Ming; El Goresy, Ahmed; Gillet, Philippe

    2004-10-19

    The first natural occurrence of ringwoodite lamellae was found in the olivine grains inside and in areas adjacent to the shock veins of a chondritic meteorite, and these lamellae show distinct growth mechanism. Inside the veins where pressure and temperature were higher than elsewhere, ringwoodite lamellae formed parallel to the [101] planes of olivine, whereas outside they lie parallel to the (100) plane of olivine. The lamellae replaced the host olivine from a few percent to complete. Formation of these lamellae relates to a diffusion-controlled growth of ringwoodite along shear-induced planar defects in olivine. The planar defects and ringwoodite lamellae parallel to the [101] planes of olivine should have been produced in higher shear stress and temperature region than that parallel to the (100) plane of olivine. This study suggests that the time duration of high pressure and temperature for the growth of ringwoodite lamellae might have lasted at least for several seconds, and that an intracrystalline transformation mechanism of ringwoodite in olivine could favorably operate in the subducting lithospheric slabs in the deep Earth.

  18. Exploring Exogenic Sources for the Olivine on Asteroid (4) Vesta

    CERN Document Server

    Corre, Lucille Le; Sanchez, Juan A; Dunn, Tasha; Cloutis, Edward A; Izawa, Matthew R M; Mann, Paul; Nathues, Andreas

    2015-01-01

    The detection of olivine on Vesta is interesting because it may provide critical insights into planetary differentiation early in our Solar System's history. Ground-based and Hubble Space Telescope (HST) observations of asteroid (4) Vesta have suggested the presence of olivine on the surface. These observations were reinforced by the discovery of olivine-rich HED meteorites from Vesta in recent years. However, analysis of data from NASA's Dawn spacecraft has shown that this olivine-bearing unit is actually impact melt in the ejecta of Oppia crater. The lack of widespread mantle olivine, exposed during the formation of the 19 km deep Rheasilvia basin on Vesta's South Pole, further complicated this picture. Ammannito et al., (2013a) reported the discovery of local scale olivine-rich units in the form of excavated material from the mantle using the Visible and InfraRed spectrometer (VIR) on Dawn. Here we explore alternative sources for the olivine in the northern hemisphere of Vesta by reanalyzing the data from ...

  19. Relative strengths of orthopyroxene and olivine at asthenospheric conditions

    Science.gov (United States)

    Holyoke, C. W., III; Raterron, P.; Girard, J.

    2014-12-01

    Orthopyroxene is the second most common mineral in the Earth's upper mantle. However, very little is known about its strength relative to olivine and clinopyroxene, both of which are well studied. Analyses of microstructures in peridotites containing orthopyroxene and olivine that were deformed at lithospheric conditions (relatively low temperatures and pressures) indicate that the orthopyroxene is stronger than surrounding olivine. In contrast, analyses of microstructures in asthenospheric peridotite xenoliths indicate that olivine and orthopyroxene have similar strengths. In order to better determine the pressure, temperature and strain rate sensitivity of the strength of orthopyroxene aggregates, we have performed an experimental study on stacked cylinders of orthopyroxene aggregates and olivine aggregates in the D-DIA. Cylinders of Bamble orthopyroxene (d~5-30 microns) or San Carlos olivine (d~25 microns) were hot-pressed in-situ at 1300oC for 1 hour prior to deformation. Although the assemblies and powders were dried at >100oC for >12 hours prior to installation in the apparatus, minor concentrations of water were observed (OPx ~ 500 H/106 Si; Ol ~ 200 H/106 Si). Multiple deformation steps were performed in each experiment over a range of strain rates (5x10-6 to 2x10-4/s) at a single temperature and pressure (T = 1000 - 1400oC and P = 2 - 5 GPa). At almost all conditions tested in these experiments, the orthopyroxene aggregates deformed at the same strain rate as the olivine cylinders, indicating both materials have the same stress exponent and very similar activation enthalpy. The microstructures observed in both the orthopyroxene and olivine cylinders are consistent with dislocation creep and lattice preferred orientations consistent with those observed in naturally deformed peridotites. These results indicate that at asthenospheric mantle conditions, the strengths of orthopyroxene and olivine in the dislocation creep field are very similar.

  20. The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario

    Science.gov (United States)

    Kendrick, J. L.; Jamieson, R. A.

    2016-09-01

    Orthopyroxene-oxide symplectites after olivine are among the most enigmatic features of corona assemblages in metagabbros. Two coronitic metagabbro bodies from the Algonquin suite in the Grenville Orogen, Ontario, contain exceptionally well preserved orthopyroxene + Fe-Ti oxide symplectite formed during prograde Ottawan (ca. 1060 Ma) granulite-facies metamorphism. Based on textural evidence, we propose a new hypothesis for the formation of these symplectites. Under oxidising conditions associated with fluid infiltration, magmatic olivine and ilmenite underwent a coupled reaction whereby magnetite produced by oxidation of olivine replaced adjacent igneous ilmenite. Ilmenite was re-precipitated as a fine-grained intergrowth with orthopyroxene and some magnetite in the former olivine sites. This hypothesis is supported by textural evidence showing partial replacement of magmatic ilmenite by magnetite and a close spatial association between magmatic oxides and orthopyroxene + Fe-Ti oxide symplectite, which locally radiates from ilmenite into olivine. Measured orthopyroxene/oxide ratios in the symplectite (20-35% oxides) agree with the ratio predicted from the proposed reaction (ca. 30%). Coronas and pseudomorphs formed during high-grade metamorphism, with increasing fO2 interpreted to result from fluid infiltration at near-peak conditions of ca. 13 kbar, 800 °C. The same samples contain red-brown fine-grained aggregates interpreted as iddingsite pseudomorphs after olivine. Raman spectroscopy suggests that the iddingsite consists largely of amorphous silica and Fe-hydroxide; textural evidence indicates that it formed by late-stage oxidation and hydration of olivine that survived earlier metamorphism. The unusual co-occurrence of granulite-facies pseudomorphs after olivine with an alteration product formed at near-surface conditions indicates that some olivine may survive protracted high-grade metamorphism in environments where fluid access is limited.

  1. Olivines for HEV and PHEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, K.; Charest, P.; Guerfi, A.; Dontigy, M.; Peticlerc, M. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)

    2007-07-01

    The successful commercialization of Lithium-ion gel polymer batteries for portable electronic devices has led to other applications where the thickness and weight of batteries are important. Lower cost cathode materials are required for large size applications such as plug-in hybrid electric vehicles (PHEV) and hybrid electric vehicles (HEV). The lithium iron phosphate (LiFePO{sub 4}) battery is a type of rechargeable lithium ion battery, which uses LiFePO{sub 4} as a cathode material. This paper presented electrochemical performances of several olivine families for HEV and PHEV applications. By using composite based on water soluble binder (WSB) and poly vinylidene fluoride PVDF binder, Li/LiFePO{sub 4}, Li/NG configuration cells, were evaluated. These cells contained a new gel polymer electrolyte with lithium hexafluorophosphate (LiPF{sub 6}) salt in ethylene carbonate/ethyl methyl carbonate electrolytes (EC/EMC). Charge-discharge cycling of the cells was conducting using the galvanostatic method and AC impedance spectroscopy was used to investigate the interface phenomena. The paper discussed the methodology as well as the results of the experimental. It was concluded that there is a good performance of Li/gel polymer/graphite based on WSB. 5 refs., 2 figs.

  2. Mn-Mg OLIVINES OF LANGBAN-TYPE AND THEIR

    African Journals Online (AJOL)

    mine, have a nearly ideal "picrotephroite" composition which is halfway between ... The iron and manganese ores, which are in proximity with each other but well .... From the chemical analysis of the studied Mn-Mg olivines, the numbers of.

  3. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-02-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  4. Thermo-Reflectance Spectra of Eros: Unambiguous Detection of Olivine

    Science.gov (United States)

    Lucey, P. G.; Hinrichs, J. L.; Urquhart-Kelly, M.; Wellnitz, D.; Bell, J. F., III; Clark, B. E.

    2001-01-01

    Olivine is readily detected on 433 Eros using the new thermo-reflectance spectral technique applied to near-IR spectra obtained at Eros by the NEAR spacecraft. Additional information is contained in the original extended abstract.

  5. Olivine and Pyroxene Compositions in Fine-Grained Chondritic Materials

    Science.gov (United States)

    Zolensky, Michael E.; Frank, D.

    2011-01-01

    Our analyses of the Wild-2 samples returned by the Stardust Mission have illuminated critical gaps in our understanding of related astromaterials. There is a very large database of olivine and low-calcium pyroxene compositions for coarse-grained components of chondrites, but a sparse database for anhydrous silicate matrix phases. In an accompanying figure, we present comparisons of Wild-2 olivine with the available chondrite matrix olivine major element data. We thus have begun a long-term project measuring minor as well as major element compositions for chondrite matrix and chondritic IDPs, and Wild 2 grains. Finally, we wish to re-investigate the changes to fine-grained olivine and low-Ca pyroxene composition with progressive thermal metamorphism. We have examined the LL3-4 chondrites which because of the Hayabusa Mission have become very interesting.

  6. Nondestructive Method for Bulk Chemical Characterization of Barred Olivine Chondrules

    Science.gov (United States)

    Montoya-Perez, M. A.; Cervantes-de la Cruz, K. E.; Ruvalcaba-Sil, J. L.

    2017-05-01

    This work develops a bulk chemical characterization of barred olivine chondrules based on the XRF analysis using a portable equipment at the National Research and Conservation Science Laboratory of Cultural Heritage (LANCIC-IF) in Mexico City.

  7. Aluminum speeds up the hydrothermal alteration of olivine

    Science.gov (United States)

    Andreani, Muriel; Daniel, Isabelle; Pollet-Villard, Marion

    2014-05-01

    The reactivity of ultramafic rocks toward hydrothermal fluids controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. Although aluminum is common in geological environments and in hydrothermal systems in particular, its role in serpentinization or olivine dissolution has not been investigated under hydrothermal conditions. Nevertheless, abundant Al supply is expected in fluids released from dehydration of metapelites in subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean ridges. Aluminum was also abundant in primitive environments of both the Earth and Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas. We have investigated the role of Al on the hydrothermal alteration of olivine in a series of experiments performed in a low-pressure diamond anvil cell while following the reaction progress in situ by optical imaging and Raman spectroscopy. Experiments were run for 4.5 to 7.5 days with two olivine grains reacted in saline water (0.5 molal NaCl) at 200°C and 300°C, and P=200 MPa. After two days, olivine crystals were fully transformed to an aluminous serpentine, also enriched in iron. The presence of Al in the hydrothermal fluid increases the rate of olivine serpentinization by more than one order of magnitude by enhancing olivine solubility and serpentine precipitation. The mechanism responsible for this increased solubility

  8. What olivine, the neglected mineral, tells us about kimberlite petrogenesis

    OpenAIRE

    Arndt, Nicholas; Boullier, Anne-Marie; Clement, J P; Clément, Jean-Pierre; Dubois, M.; Schissel, D.

    2006-01-01

    International audience; We report here the results of a petrographic and geochemical study of remarkably well-preserved kimberlites from the Kangamiut region in Greenland. The samples contain between 5 and 45% of olivine in the form of rounded ''nodules'', each 1 to 5 mm in diameter. Most originally were single crystals but many consist of polycrystalline, monomineralic aggregates. Olivine compositions vary widely from nodule to nodule (from Fo 81-93) but are constant within individual nodule...

  9. Space Weathering of Olivine: Samples, Experiments and Modeling

    Science.gov (United States)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2016-01-01

    Olivine is a major constituent of chondritic bodies and its response to space weathering processes likely dominates the optical properties of asteroid regoliths (e.g. S- and many C-type asteroids). Analyses of olivine in returned samples and laboratory experiments provide details and insights regarding the mechanisms and rates of space weathering. Analyses of olivine grains from lunar soils and asteroid Itokawa reveal that they display solar wind damaged rims that are typically not amorphized despite long surface exposure ages, which are inferred from solar flare track densities (up to 10 (sup 7 y)). The olivine damaged rim width rapidly approaches approximately 120 nm in approximately 10 (sup 6 y) and then reaches steady-state with longer exposure times. The damaged rims are nanocrystalline with high dislocation densities, but crystalline order exists up to the outermost exposed surface. Sparse nanophase Fe metal inclusions occur in the damaged rims and are believed to be produced during irradiation through preferential sputtering of oxygen from the rims. The observed space weathering effects in lunar and Itokawa olivine grains are difficult to reconcile with laboratory irradiation studies and our numerical models that indicate that olivine surfaces should readily blister and amorphize on relatively short time scales (less than 10 (sup 3 y)). These results suggest that it is not just the ion fluence alone, but other variable, the ion flux that controls the type and extent of irradiation damage that develops in olivine. This flux dependence argues for caution in extrapolating between high flux laboratory experiments and the natural case. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind processing of olivine.

  10. Synthesis of Mullite from High-alumina Fly Ash: a Case from the Jungar Power Plant in Inner Mongolia, Northern China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiangfeng; SHAO Longyi; LU Jing

    2008-01-01

    In this paper, an experimental study was conducted in order to test the feasibility of sintering mullite directly from the high-alumina fly ash, without adding any extra material. The results show that the mullite contents in most sintered samples are over 70%. The samples sintered from the beneficiated fly ash have a higher content of mullite than those from the as-received fly ash under the same synthetic conditions. To obtain an equal amount of mullite, a higher sintering temperature is needed for the beneficiated fly ash than for the as-received fly ash. Considering the physical properties of sintered mullite, the favorable sintering temperature is 1400 ℃ for the as-received fly ash and 1500 ℃ for the beneficiated fly ash. A higher sintering temperature and a shorter holding time are profitable to sintering mullite. The orthogonal test confirmed that the dominant factor affecting mullite synthesis is sintering temperature, and that the most profitable matching conditions are 200 MPa-1500 ℃-3 h for the as-received fly ash and 200 MPa-1500 ℃-4 h for the beneficiated fly ash.

  11. THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES

    Directory of Open Access Journals (Sweden)

    Sasan Otroj

    2011-12-01

    Full Text Available The self-flow characteristics and properties of high-alumina low-cement refractory castables added with nano-titania particles are investigated. For this reason, the reactive alumina in the castable composition is substituted by nano-titania powder in 0-1 %wt. range. The microstructures, phase composition, physical and mechanical properties of these refractory castables at different temperatures are studied. The results show that the addition of nano-titania particles has great effect on the self-flow characteristics, phase composition, physical and mechanical properties of these refractory castables. With increase of nano-titania particles in castable composition, the self-flow value and working time tend to decrease. With addition of 0.5 wt.% nano-titania in the castable composition, the mechanical strength of castable in all firing temperatures tends to increase. It is attributed to the formation of CA6 phase and enhanced ceramic bonding. Nano-titania particles can act as a nucleating agent for hibonite phase and decrease the formation temperature of hibonite. Because of perovskite phase formation, the addition of 1 wt.% nano-titania can decrease the mechanical strength of castable after firing.

  12. Olivine Instability: An Experimental View of Mechanism of Deep Earthquakes

    Science.gov (United States)

    Long, H.; Weidner, D.; Li, L.; Chen, J.; Wang, L.

    2007-12-01

    Olivine (¦Á-(Mg,Fe)2SiO4) is the major constituent of the upper mantle and the ocean lithosphere. In subduction zone, where the earthquakes happen, the rheology of slab is mainly controlled by that of olivine. Several different mechanisms for deep focus earthquakes have been suggested, which include olivine instability (Bridgman, 1936; Orowan, 1960; Post, 1977; Ogawa, 1987; Hobbs and Ord, 1988; Kao and Chen, 1995), shear-induced melting (Griggs, 1954, 1972; Griggs and Handin, 1960; Griggs and Baker, 1969), phase transformation (Bridgman, 1945; Benioff, 1963; Meade and Jeanloz, 1989), dehydration of hydrous specimens (Meade and Jeanloz, 1991), and olivine metastability-induced anticrack (Green and Houston, 1995). Since the low temperature of the ¡°cold¡± slab, which can be as low as 600¡ãC in transition zone, olivine may still exist there and thus its shear instability may still be the possible mechanism for the deep-focus earthquakes. In our experimental study on deformation of San Carlos olivine at subduction zone conditions carried out on a D-DIA apparatus, Sam85 at X17B2, NSLS, we observed that the transitional temperature between regimes of insensitive to temperature and sensitive to temperature can be as high as 900¡ãC or even higher for the annealed polycrystal olivine sample, while that for unannealed sample can be as low as 450¡ãC. Our results for the unannealed sample are consistent to the result of Raterron et al (2004), which is concluded from the relaxation experiments. The annealed and unannealed olivine can be present the natural olivine in non-fault systems and that in pre-existing fault systems in subduction zone, respectively. We therefore propose a new olivine instability model with a ¡°sandwich¡± formation for the deep focus earthquakes: In this model the pre-existing fault system is surrounded by the no-fault systems. When the slab dives down, the olivine in both systems undergoes a stress- build-up process and can hold very high

  13. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    Science.gov (United States)

    Helz, R. T.; Cottrell, E.; Brounce, M. N.; Kelley, K. A.

    2017-03-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems. The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060-1500 ppm S), with Fe+ 3/FeT = 0.160-0.175. Matrix glasses are degassed (mostly S glasses within clumps of olivine crystals locally show intermediate levels of sulfur and Fe+ 3/FeT ratio. The correlation suggests that (1) the 1959 magma was significantly reduced by sulfur degassing during the eruption and (2) the melts originally had Fe+ 3/FeT ≥ 0.175, consistent with

  14. Minor elements in relict olivine grains of deep-sea spheres: Match with Mg-rich olivines from C2 meteorites

    Science.gov (United States)

    Smith, J. V.; Steele, I. M.; Brownlee, D. E.

    1984-01-01

    The bulk composition and relict minerals of meteoroid ablation spheres from deep sea sediments can be related to the parental material, and bulk compositions and elemental ratios favor a CI/CM affinity for most spheres. Although largely melted, some deep sea spheres (DSS) have retained rare grains apparently unmodified chemically by ablation heating or seawater alteration. Minor elements in relict olivines for comparison with compositions of olivines in known meteorites were analyzed. All relict olivines are very Mg rich. No terrestrial olivines match the chemical features which reinforces other evidence for an extraterrestrial origin. There is no match with achondritic olivines. Mg rich olivines occur in all types of carbonaceous meteorites, but the minor elements of most DSS olivines do not match with those for Allende (C3) olivines, and fit poorly with those of Murchison (C2) olivines. There is a good fit for Fe and Cr with those of the olivines in the unusual Belgica 7904 (C2) meteorite (3). It seems likely that the relict olivines of at least many deep sea spheres are chemically related to olivines in at least one C2 meteorite.

  15. Extraction of in situ cosmogenic 14C from olivine

    Science.gov (United States)

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  16. Nickel Extraction from Olivine: Effect of Carbonation Pre-Treatment

    Directory of Open Access Journals (Sweden)

    Rafael M. Santos

    2015-09-01

    Full Text Available In this work, we explore a novel mineral processing approach using carbon dioxide to promote mineral alterations that lead to improved extractability of nickel from olivine ((Mg,Fe2SiO4. The precept is that by altering the morphology and the mineralogy of the ore via mineral carbonation, the comminution requirements and the acid consumption during hydrometallurgical processing can be reduced. Furthermore, carbonation pre-treatment can lead to mineral liberation and concentration of metals in physically separable phases. In a first processing step, olivine is fully carbonated at high CO2 partial pressures (35 bar and optimal temperature (200 °C with the addition of pH buffering agents. This leads to a powdery product containing high carbonate content. The main products of the carbonation reaction include quasi-amorphous colloidal silica, chromium-rich metallic particles, and ferro-magnesite ((Mg1−x,FexCO3. Carbonated olivine was subsequently leached using an array of inorganic and organic acids to test their leaching efficiency. Compared to leaching from untreated olivine, the percentage of nickel extracted from carbonated olivine by acid leaching was significantly increased. It is anticipated that the mineral carbonation pre-treatment approach may also be applicable to other ultrabasic and lateritic ores.

  17. Reversibility of Lpo in Olivine during Deformation at High Pressure

    Science.gov (United States)

    Li, L.; Weidner, D. J.

    2014-12-01

    Olivine texture has been reported as an important contributor to the seismic anisotropy in the upper mantle. Experimental studies of deformation of olivine have also shown flow-driven lattice preferred orientation. In this study, we focus on in situ control and monitoring of LPO formation of olivine using synchrotron X-ray radiation coupled with DDIA multi-anvil deformation device. Using an energy-dispersive X-ray coupled a 10-element SSD detector; we apply a sinusoidal stress on the sample, which allows identification of growth of LPO in the specimen with relative robust signal even with small strain fields. Our data show palpable correlations among stress, strain and LPO as well as the variations among sub-grains marked by individual (hkl). This study is to demonstrate the versatile functions of X-ray for characterizing the deformation study of minerals.

  18. An olivine-free mantle source of Hawaiian shield basalts.

    Science.gov (United States)

    Sobolev, Alexander V; Hofmann, Albrecht W; Sobolev, Stephan V; Nikogosian, Igor K

    2005-03-31

    More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations.

  19. Applicability of Henry's Law to helium solubility in olivine

    Science.gov (United States)

    Jackson, C.; Parman, S. W.; Kelley, S. P.; Cooper, R. F.

    2013-12-01

    Applicability of Henry's Law to helium solubility in olivine We have experimentally determined helium solubility in San Carlos olivine across a range of helium partial pressures (PHe) with the goal of quantifying how noble gases behave during partial melting of peridotite. Helium solubility in olivine correlates linearly with PHe between 55 and 1680 bar. This linear relationship suggests Henry's Law is applicable to helium dissolution into olivine up to 1680 bar PHe, providing a basis for extrapolation of solubility relationships determined at high PHe to natural systems. This is the first demonstration of Henry's Law for helium dissolution into olivine. Averaging all the data of the PHe series yields a Henry's coefficient of 3.8(×3.1)×10-12 mol g-1 bar-1. However, the population of Henry's coefficients shows a positive skew (skewness = 1.17), i.e. the data are skewed to higher values. This skew is reflected in the large standard deviation of the population of Henry's coefficients. Averaging the median values from each experiment yields a lower Henry's coefficient and standard deviation: 3.2(× 2.3)×10-12 mol g-1 bar-1. Combining the presently determined helium Henry's coefficient for olivine with previous determinations of helium Henry's coefficients for basaltic melts (e.g. 1) yields a partition coefficient of ~10-4. This value is similar to previous determinations obtained at higher PHe (2). The applicability of Henry's Law here suggests helium is incorporated onto relatively abundant sites within olivine that are not saturated by 1680 bar PHe or ~5×10-9 mol g-1. Large radius vacancies, i.e. oxygen vacancies, are energetically favorable sites for noble gas dissolution (3). However, oxygen vacancies are not abundant enough in San Carlos olivine to account for this solubility (e.g. 4), suggesting the 3x10-12 mol g-1 bar-1 Henry's coefficient is associated with interstitial dissolution of helium. Helium was dissolved into olivine using an externally heated

  20. Some aspects of the volcanology and geochemistry of the Tengger Caldera, Java, Indonesia: eruption of a K-rich tholeiitic series

    Science.gov (United States)

    van Gerven, M.; Pichler, H.

    The Tengger Caldera together with the active Mount Bromo is situated in Java, Indonesia. Though activity of Mt Bromo has been recorded since 1804, little modern petrographic and geochemical data is available. In this study we provide a detailed petrographic and stratigraphic description of the two major caldera units, i.e. the "pre-caldera formation" and the "post-caldera formation". A zonal arrangement of the alkali content of the Sunda arc volcanoes, i.e. an increase of the alkali content in the lavas across the arc from the trench to the backarc basin, has been noticed for many years. In contrast to the common classification of the geochemistry and magmatic affinity of the Javanese volcanoes related to the depth of the Benioff zone (100-150 km for tholeiitic rocks and 150-250 km for calc-alkaline rocks), we found a tholeiitic trend expressed by increasing FeO∗/MgO with increasing SiO 2 and an average {Zr}/{Y} ratio of 4.9 for the Tengger Caldera volcanics (Benioff zone depth ca 200 km), despite high alkali contents (K 2O > 2 wt%). These features characterize the Tengger Caldera volcanics as medium to high-K tholeiitic andesites and basaltic andesites.

  1. Geochemistry of tholeiitic to alkaline lavas from the east of Lake Van (Turkey): Implications for a late Cretaceous mature supra-subduction zone environment

    Science.gov (United States)

    Özdemir, Yavuz

    2016-08-01

    Arc-related rocks of the Yüksekova Complex extend from Kahramanmaraş to Hakkari throughout the Southeast Anatolia representing the remnants of the Southern Branch of Neotethys. The volcanic members of this zone from the eastern parts of Lake Van suggest three different types of rock chemistry; tholeiitic (type I), calc-alkaline (type II) and alkaline (type III). Tholeiitic and calc-alkaline members suggest a subduction-related environment with their HFS and LIL element distributions. RE and trace element systematics and modelings indicate that i) the intermediate and the felsic calc-alkaline rocks are the result of fractional crystallization from a basic endmember, ii) alkaline members have originated from enriched mantle source relative to the tholeiitic and calc-alkaline lavas. Overall data from Yüksekova Complex suggest a mature supra-subduction zone environment within the southern Neotethyan Ocean during Upper Cretaceous time. The existence of Lutetian OIB like asthenospheric lavas at the upper parts of the ophiolitic assemblage in the eastern parts of Lake Van proposes the end of the normal ophiolite formation and the possible continuation of the magmatism with OIB like lavas during Middle Eocene.

  2. 40Ar/39Ar ages and Sr-Nd-Pb isotopic compositions of alkaline and tholeiitic rocks from the northern Deccan Traps

    Science.gov (United States)

    Marzoli, A.; Parisio, L.; Jourdan, F.; Melluso, L.; Sethna, S. F.; Bellieni, G.

    2015-12-01

    The Deccan large igneous province in India was emplaced close to the Cretaceous-Paleogene boundary (K-Pg; 66.0 Ma) and is formed by tholeiitic and alkaline rocks. Definition of the origin of Deccan magmatism and of its environmental impact relies on precise and accurate geochronological analyses. We present new 40Ar/39Ar ages from the northern sector of the province. In this area, tholeiitic and alkaline rocks were contemporaneously emplaced at 66.60±0.35 to 65.25±0.29 Ma in the Phenai Mata area, while rocks from Rajpipla and Mt. Pavagadh yielded ages ranging from 66.40±2.80 to 64.90±0.80 Ma. Indistinguishable ages for alkaline and tholeiitic magmatism, coupled with distinct major and trace element and Sr-Nd-Pb isotopic compositions suggest that distinct mantle sources, necessary for the two magmatic series were synchronously active. The new ages are compared with previous ages, which were carefully screened and filtered and then recalculated in order to be comparable. The entire data set of geochronological data does not support a time-related migration of the magmatism related to the northward Indian Plate movement relative to the Reunion mantle plume. The main phase of magmatism, including the newly dated rocks from the Northern Deccan occurred across the K-Pg boundary, confirming a causal link between the emplacement of the province and the K-Pg mass extinction.

  3. Factors affecting the direct mineralization of CO2 with olivine

    Institute of Scientific and Technical Information of China (English)

    Soonchul Kwon; Maohong Fan; Herbert F. M. DaCosta; Armistead G. Russell

    2011-01-01

    Olivine,one of the most abundant minerals existing in nature,is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas.Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage.Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities.Other operation conditions including reaction temperature,initial CO2 concentration,residence time corresponding to the flow rate of CO2 gas stream,and water vapor concentration also considerably affect the performance of the technology.

  4. A Survey of Olivine Alteration Products Using Raman Spectroscopy

    Science.gov (United States)

    Kuebler, K.; Jolliff, B. L.; Wang, A.; Haskin, L. A.

    2004-01-01

    Identification of mineral alteration products will aid in the crucial task of interpreting past Martian environmental conditions, especially aqueous environments. Olivine has been identified at the surface of Mars and is readily altered in aqueous environments. Using Raman spectroscopy, we studied three rocks with altered olivine and compared the data with mineral chemistry from electron microprobe analysis. Although the alteration in all three samples has loosely been called iddingsite their appearances and modes of occurrences differ as described. Alteration products in all three samples are likely fine-grained mixtures.

  5. Factors affecting the direct mineralization of CO2 with olivine.

    Science.gov (United States)

    Kwon, Soonchul; Fan, Maohong; DaCosta, Herbert F M; Russell, Armistead G

    2011-01-01

    Olivine, one of the most abundant minerals existing in nature, is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas. Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage. Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities. Other operation conditions including reaction temperature, initial CO2 concentration, residence time corresponding to the flow rate of CO2 gas stream, and water vapor concentration also considerably affect the performance of the technology.

  6. Arsenic Sorption on Mechanically Activated Magnetite and Olivine

    Directory of Open Access Journals (Sweden)

    Zdenka Bujňáková

    2012-12-01

    Full Text Available Arsenic sorption on mechanically activated minerals such as magnetite Fe3O4 (Kiruna, Sweden and olivine (Mg,Fe2SiO4 (Ǻheim,Norway has been studied and compared in this work. Experiments were carried out with non-activated and mechanically activatedsamples. The activation of both minerals was performed in a planetary mill at different milling conditions. The specific surface areaand consequent sorption activity were enhanced by mechanical activation. The using of olivine seems to be better than magnetite fromthe point of view of milling time, which is necessary for achievement of the same sorption effect.

  7. The complex relationship between olivine abundance and thermal inertia on Mars

    Science.gov (United States)

    Hanna, Romy D.; Hamilton, Victoria E.; Putzig, Nathaniel E.

    2016-07-01

    We examine four olivine-bearing regions at a variety of spatial scales with thermal infrared, visible to near-infrared, and visible imagery data to investigate the hypothesis that the relationship between olivine abundance and thermal inertia (i.e., effective particle size) can be used to infer the occurrence of olivine chemical alteration during sediment production on Mars. As in previous work, Nili Fossae and Isidis Planitia show a positive correlation between thermal inertia and olivine abundance in Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) data, which could be interpreted as indicating olivine chemical weathering. However, geomorphological analysis reveals that relatively olivine-poor sediments are not derived from adjacent olivine-rich materials, and therefore, chemical weathering cannot be inferred based on the olivine-thermal inertia relationship alone. We identify two areas (Terra Cimmeria and Argyre Planitia) with significant olivine abundance and thermal inertias consistent with sand, but no adjacent rocky (parent) units having even greater olivine abundances. More broadly, global analysis with TES reveals that the most typical olivine abundance on Mars is ~5-7% and that olivine-bearing (5-25%) materials have a wide range of thermal inertias, commonly 25-600 J m-2 K-1 s-1/2. TES also indicates that the majority of olivine-rich (>25%) materials have apparent thermal inertias less than 400 J m-2 K-1 s-1/2. In summary, we find that the relationship between thermal inertia and olivine abundance alone cannot be used in infer olivine weathering in the examined areas, that olivine-bearing materials have a large range of thermal intertias, and therefore that a complex relationship between olivine abundance and thermal inertia exists on Mars.

  8. Olivine-melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES

    Science.gov (United States)

    Helz, Rosalind L.; Cottrell, Elizabeth; Brounce, Maryjo N.; Kelley, Katherine A.

    2017-01-01

    The 1959 summit eruption of Kīlauea Volcano exhibited high lava fountains of gas-rich, primitive magma, containing olivine + chromian spinel in highly vesicular brown glass. Microprobe analysis of these samples shows that euhedral rims on olivine phenocrysts, in direct contact with glass, vary significantly in forsterite (Fo) content, at constant major-element melt composition, as do unzoned groundmass olivine crystals. Ferric/total iron (Fe+ 3/FeT)ratios for matrix and interstitial glasses, plus olivine-hosted glass inclusions in eight 1959 scoria samples have been determined by micro X-ray absorption near-edge structure spectroscopy (μ-XANES). These data show that much of the variation in Fo content reflects variation in oxidation state of iron in the melt, which varies with sulfur concentration in the glass and (locally) with proximity to scoria edges in contact with air. Data for 24 olivine-melt pairs in the better-equilibrated samples from later in the eruption show KD averaging 0.280 ± 0.03 for the exchange of Fe and Mg between olivine and melt, somewhat displaced from the value of 0.30 ± 0.03 given by Roeder and Emslie (1970). This may reflect the low SiO2 content of the 1959 magmas, which is lower than that in most Kīlauea tholeiites. More broadly, we show the potential of μ-XANES and electron microprobe to revisit and refine the value of KD in natural systems.The observed variations of Fe+ 3/FeT ratios in the glasses reflect two distinct processes. The main process, sulfur degassing, produces steady decrease of the Fe+ 3/FeT ratio. Melt inclusions in olivine are high in sulfur (1060–1500 ppm S), with Fe+ 3/FeT = 0.160–0.175. Matrix glasses are degassed (mostly S units above the fayalite-magnetite-quartz (FMQ) buffer at 1 atm and magmatic temperature of 1200 °C.The second process is interaction between the melts and atmospheric oxygen, which results in higher Fe+ 3/FeT ratios. Detailed μ-XANES traverses show gradients in Fe+ 3

  9. Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin

    Science.gov (United States)

    Mittlefehldt, David W.; Herrin, J. S.

    2010-01-01

    Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous

  10. Influence of aluminum on the hydrothermal alteration rate of olivine

    Science.gov (United States)

    Andreani, M.; Daniel, I.; Pollet-Villard, M.

    2013-12-01

    The reactivity of ultramafic rocks under hydrothermal conditions controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. Although aluminum is common in geological environments and in hydrothermal systems in particular, its role in serpentinization or olivine dissolution has not been investigated under hydrothermal conditions. Nevertheless, abundant Al supply is expected in fluids released from dehydration of metapelites in subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean ridges. Aluminum was also abundant in primitive environments of both the Earth and Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas. We have investigated the role of Al on the hydrothermal alteration of olivine in a series of experiments performed in a low-pressure diamond anvil cell while following the reaction progress in situ by optical imaging and by confocal Raman spectroscopy. Experiments were run for 4.5 to 7.5 days with two olivine grains reacted in saline water (0.5 molal NaCl) at 200°C and 300°C, and P=200 MPa. After two days, olivine crystals were fully transformed to an aluminous serpentine, also enriched in iron. The very fast precipitation of serpentine may inhibit magnetite nucleation here. However, this does not rule out an H2 production since serpentines classically incorporate non negligible amount of ferric iron in their structure. The

  11. Environmental monitoring at the Seqi olivine mine 2010

    DEFF Research Database (Denmark)

    Søndergaard, Jens; Asmund, Gert

    The olivine mine at Seqi in West Greenland operated between 2005 and 2010. Since 2004, environmental monitoring studies have been conducted at Seqi every year in order to assess premining conditions and subsequently the impact from mining during operation. This report contains the results from...

  12. A Study of Olivine Alteration to Iddingsite Using Raman Spectroscopy

    Science.gov (United States)

    Kuebler, K. E.; Wang, Alian; Haskin, L. A.; Jolliff, B. L.

    2003-01-01

    A crucial task of Mars surface science is to determine past environmental conditions, especially aqueous environments and their nature. Identification of mineral alteration by water is one way to do this. Recent work interprets TES spectra as indicating altered basalt on Mars. Olivine, a primary basaltic mineral, is easily altered by aqueous solutions. Alteration assemblages of olivine may be specific to deuteric, hydrothermal, surface water, or metamorphic environments. Raman spectra are produced by molecular vibrations and provide direct means for studying and identifying alteration products. Here, we present a combined study of changes in the chemical composition and Raman spectra of an olivine as it alters to iddingsite. Iddingsite is found in some SNC meteorites and is presumably present on Mars. The term 'iddingsite' has been used as a catch-all term to describe reddish alteration products of olivine, although some authors ascribe a narrower definition: an angstrom-scale intergrowth of goethite and smectite (presumably saponite) formed in an oxidizing and fluid-rich environment. Alteration conserves Fe (albeit oxidized) but requires addition of Al and H2O and removal of Mg and Si. The smectite that forms may be removed by continued alteration. Dehydration of the goethite forms hematite. Our purpose is to study the mineral assemblage, determine the structural and chemical variability of the components with respect to the degree of alteration, and to find spectral indicators of alteration that will be useful during in-situ analyses on Mars.

  13. Effect of secondary phase formation on the carbonation of olivine.

    Science.gov (United States)

    King, Helen E; Plümper, Oliver; Putnis, Andrew

    2010-08-15

    Large-scale olivine carbonation has been proposed as a potential method for sequestering CO(2) emissions. For in situ carbonation techniques, understanding the relationship between the formation of carbonate and other phases is important to predict the impact of possible passivating layers on the reaction. Therefore, we have conducted reactions of olivine with carbonated saline solutions in unstirred batch reactors. Altering the reaction conditions changed the Mg-carbonate morphology. We propose that this corresponded to changes in the ability of the system to precipitate hydromagnesite or magnesite. During high-temperature reactions (200 degrees C), an amorphous silica-enriched phase was precipitated that was transformed to lizardite as the reaction progressed. Hematite was also precipitated in the initial stages of these reactions but dissolved as the reaction proceeded. Comparison of the experimental observations with reaction models indicates that the reactions are governed by the interfacial fluid composition. The presence of a new Mg-silicate phase and the formation of secondary products at the olivine surface are likely to limit the extent of olivine to carbonate conversion.

  14. Hypersthene-ilmenite(/magnetite) symplectites in coronitic olivine-gabbronorites

    NARCIS (Netherlands)

    Zeck, H.P.; Shenouda, H.H.; Rønsbo, J.G.; Poorter, R.P.E.

    1982-01-01

    Symplectitic intergrowths of hypersthene (host) with ilmenite and minor magnetite (vermicules) in a gabbroic sill from the Precambrian of southwest Sweden occur as replacement products of olivine, and are thought to have formed simulataneously with the replacement of nearby crystals of ilmenite and

  15. Characteristic Textures of Recrystallized, Peritectic, and Primary Magmatic Olivine in Experimental Samples and Natural Volcanic Rocks

    OpenAIRE

    Erdmann, Saskia; Scaillet, Bruno; Martel, Caroline; Cadoux, Anita

    2014-01-01

    International audience; Olivine textures are potentially important recorders of olivine origin and crystallization conditions. Primary magmatic and xenocrystic origins are commonly considered for olivine from ultramafic to intermediate magmas, while secondary olivine origins (i.e. crystals formed by recrystallization or peritectic reaction) are rarely considered in the interpretation of magmatic phenocrysts. The main aim of our study was to determine textures that are characteristic for secon...

  16. Lattice preferred orientations of olivine in the schistosed antigorite serpentinite

    Science.gov (United States)

    Soda, Y.; Ando, J.; Mizukami, T.; Morishita, T.

    2011-12-01

    The lattice preferred orientation (LPO) of the schistosed antigorite serpentinite is considered as causes of the seismic anisotropy observed at the subduction zones (Katayama et al., 2009; Jung, 2011) and the natural examples are reported by several researchers (Bezacier et al., 2010; Hirauchi et al., 2010; Soda and Takagi, 2010). Formation process of the antigorite LPO is unclear, especially at primary serpentinized stage. To understand the development of micro-structures of antigorite serpentinite, we made structural analyses of serpentinite schist and the former peridotite fabric. Samples were taken from lenticular serpentinite bodies (growth in pressure shadows and pull-apart of olivine porphyroclast. In the less serpentinized part, antigorite blades are crystallized along the grain boundary of olivine. We measure the LPOs of coarse olivine grains in the serpentinite schist using a u-stage. The X, Y and Z directions represent directions of lineation, normal to lineation within the foliation and normal to foliation, respectively. The LPOs of olivine show point maximum or partial girdle distribution, and these concentrated crystal axes are incongruous with X, Y and Z direction. The a[100] axes of olivine are parallel to the serpentinite foliation, and form a point maximum several degrees away from the Y direction. The b[010] axes and the c[001] axes are concentrated Z and X direction forming a partial girdle normal to Y direction, respectively. Boudier et al. (2010) have reported the topotactic relationship between olivine and antigorite. They show that the (100)ol is parallel to the (001)atg or the (010)ol is parallel to the (001)atg. And, the a[100] axes of olivine are normal to serpentinite foliation with point maximum in the thin section scale. However, in the case of this study, the simple topotactic relationship does not connect the fabric in the thin section scale of serpentinite schist. Although, more detail analysis need to discuss the formation of

  17. Corona textures in Proterozoic olivine melanorites of the equeefa suite, Natal metamorphic province, South-Africa

    CSIR Research Space (South Africa)

    Grantham, GH

    1993-01-01

    Full Text Available Olivine-plagioclase and phlogopite-plagioclase coronas have been identified from olivine melanorites of the mid- to late Proterozoic Equeefa Suite in southern Natal, South Africa. Olivine, in contact with plagioclase, is mantled by a shell of clear...

  18. Evidence for equilibrium conditions during the partitioning of nickel between olivine and komatiite liquids.

    Science.gov (United States)

    Budahn, J.R.

    1986-01-01

    Olivine-liquid partition coefficients for Ni(DNi), calculated from Ni vs MgO abundance variations in komatiite series basalts, compare favourably with experimentally determined values, if Ni variations in olivine-controlled basalts can be modelled with an equation that assumes equilibrium between the entire olivine crystal and its coexisting liquid.-J.A.Z.

  19. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    Science.gov (United States)

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique.

  20. Exsolution of ferromagnesian olivine in the Divnoe meteorite

    Science.gov (United States)

    Petaev, M. I.; Brearley, A. J.

    1994-07-01

    The Divnoe meteorite is a granoblastic olivine-rich primitive achondrite whose textural and mineralogical characteristics suggest extensive recrystallization during slow cooling in the temperature range from approximately 1000 to approximately 500 C and lower. Olivine grains in this meteorite show a lamellar appearance in BSE images, caused by minor micrometer-scale chemical variations in Fe, Mg, and Mn contents between adjacent lamellae. Ten grains of lamellar olivine were studied in detail by Electron Probe Microanalysis (EPMA) and optical microscopy and two of these by Transmission Electron Microscopy (TEM). The olivine grains studied are essentially free of minor elements (Ti, Al, Cr, Ni, Ca, Na) except for Mn, and fall in the compositional range found by an earlier study. While the compositional ranges of Fe-poor and Fe-rich lamellae overlap, the differences between lamellae richest and poorest in Fe are quite similar, suggestive of their formation by an equilibrium process. Fine-scale microprobing has confirmed earlier compositional data, but has reduced lamella thicknesses to a few micrometers, which is in a good agreement with TEM observations. The structural and compositional data obtained strongly suggest that the lamellar structure in these olivine grains was produced by an exsolution process, which is in qualitative agreement with a recent thermodynamic analysis of phrase relations in the system Mg2SiO4-FeSiO2. Cracks in Fe-rich lamellae could result from expansion during the exsolution process due to the volume difference between Fe-rich and Fe-poor lamellae.

  1. The influence of source heterogeneity on the U-Th-Pa-Ra disequilibria in post-glacial tholeiites from Iceland

    Science.gov (United States)

    Koornneef, J. M.; Stracke, A.; Bourdon, B.; Grönvold, K.

    2012-06-01

    We investigate the relative influence of mantle upwelling velocity and source heterogeneity on the melting rates recorded by 230Th-238U, 231Pa-235U and 226Ra-230Th disequilibria in post-glacial tholeiites from Iceland's main rift areas. The measured (230Th/238U) ratios range from 1.085 to 1.247, the (231Pa/235U) ratios from 1.333 to 1.925, and the (226Ra/230Th) ratios from 0.801 to 1.218. A general positive correlation between 230Th excesses and distance from the inferred plume centre is consistent with a model of decreasing mantle upwelling velocity with increasing distance from the plume axis. However, the model is not substantiated by the (231Pa/235U) data as the correlation with distance from the plume centre is weak. On the scale of individual eruption centres, the observed U-series are influenced by variations in melt transport time, source porosity, and local variations in mantle upwelling velocity. Broad correlations between (230Th/238U) and (231Pa/235U) and highly incompatible trace element ratios for samples from the Western Volcanic Zone provide, however, evidence for a significant underlying effect of source heterogeneity on the U-series data. Low 230Th and 231Pa excesses in enriched samples from the Western Volcanic Zone with high U/Th, Nb/U and Nb/La indicate that partial melts from an enriched source component, characterised by high melt productivity but low bulk DU/DTh, influence the U-series systematics of the erupted melts. These results re-affirm the presence of comparatively larger abundances of enriched material in the mantle source beneath the South Western Rift of Iceland, which has been suggested based on relationships between highly incompatible element and Pb isotope ratios in Icelandic basalts. Overall, our results highlight the importance of lithological heterogeneity on the melting behaviour of the upper mantle and the composition of oceanic basalts.

  2. Olivine and Carbonate Globules in ALH84001: A Terrestrial Analog, and Implications for Water on Mars

    Science.gov (United States)

    Treiman, A. H.

    2005-01-01

    Carbonate globules in ALH84001 are associated with small olivine grains an unexpected finding because the olivines equilibrated at high T while the carbonate is chemically zoned and unequilibrated. A possible explanation comes from a terrestrial analog on Spitsbergen (Norway), where some carbonate globules grew in cavities left by aqueous dissolution of olivine. For ALH84001, the same process may have acted, with larger olivines dissolved out and smaller ones shielded inside orthopyroxene. Carbonate would have been deposited in holes where the olivine had been. Later shocks crushed remaining void space, and mobilized feldspathic glass around the carbonates.

  3. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  4. Biosygnatures on olivines in search of past life on Mars

    Science.gov (United States)

    Jakus, Natalia; Manecki, Maciej; Faehnrich, Karol; Młynarska, Maria; Słupski, Paweł

    2017-04-01

    Biosignatures indicate past and present activity of living organisms. Only inorganic biosignatures, e.g. results of interactions between the minerals and the microorganisms in Martian soils could resist harsh environmental conditions on Mars. However, it may be difficult to distinguish the traces of the organism activities from the effects of "natural" chemical and physical processes. In this study, an acidiophilic, chemoautotrophic, iron-oxidizing bacteria Acidithiobacillus ferrooxidans were incubated with magnesium-iron silicate (olivine) crystals to identify the potential development of biogenic textures on the surface. The Mg-rich olivines were separated from the gabbro rock (Trodos, Cyprus). The isometric crystals were up to 2 mm in size. All the grains were cleaned in ultrasonic bath and fixed on the epoxy stubs. This enabled the observation of the very same surfaces before and after the experiments allowing inspection of natural etch pits and weathering patterns present before inoculation as well as the forms resulting from the experiments. The stubs with the olivines were sterilized with ethanol prior to the experiments. Bacteria were isolated from old pyrite mine in Klucze near Olkusz (Southern Poland). A liquid media K9 was used through the experiments (Silverman and Ludgren, 1959). The experiments were run in triplicates. Olivine grains were placed in the inoculated medium and incubated for 7 days at 28 C. An abiotic experiment was run as control. Additionally, the experiments in modified (iron deficient) medium were designed to stimulate potential active scavenging for Fe by bacteria-mediated dissolution. In the Fe-deficient medium, the negligible amount of iron was present only to initiate the bacteria growth: the only source of Fe was the olivine grain throughout the experiment. After 7 days of incubation the olivine grains were removed and air-dried. The alterations of the crystals by both, purely inorganic and biologically mediated dissolution were

  5. Effect of water activity on rates of serpentinization of olivine

    Science.gov (United States)

    Lamadrid, Hector M.; Rimstidt, J. Donald; Schwarzenbach, Esther M.; Klein, Frieder; Ulrich, Sarah; Dolocan, Andrei; Bodnar, Robert J.

    2017-07-01

    The hydrothermal alteration of mantle rocks (referred to as serpentinization) occurs in submarine environments extending from mid-ocean ridges to subduction zones. Serpentinization affects the physical and chemical properties of oceanic lithosphere, represents one of the major mechanisms driving mass exchange between the mantle and the Earth's surface, and is central to current origin of life hypotheses as well as the search for microbial life on the icy moons of Jupiter and Saturn. In spite of increasing interest in the serpentinization process by researchers in diverse fields, the rates of serpentinization and the controlling factors are poorly understood. Here we use a novel in situ experimental method involving olivine micro-reactors and show that the rate of serpentinization is strongly controlled by the salinity (water activity) of the reacting fluid and demonstrate that the rate of serpentinization of olivine slows down as salinity increases and H2O activity decreases.

  6. Olivine and pyroxene diversity in the crust of Mars.

    Science.gov (United States)

    Mustard, J F; Poulet, F; Gendrin, A; Bibring, J-P; Langevin, Y; Gondet, B; Mangold, N; Bellucci, G; Altieri, F

    2005-03-11

    Data from the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) on the Mars Express spacecraft identify the distinct mafic, rock-forming minerals olivine, low-calcium pyroxene (LCP), and high-calcium pyroxene (HCP) on the surface of Mars. Olivine- and HCP-rich regions are found in deposits that span the age range of geologic units. However, LCP-rich regions are found only in the ancient Noachian-aged units, which suggests that melts for these deposits were derived from a mantle depleted in aluminum and calcium. Extended dark regions in the northern plains exhibit no evidence of strong mafic absorptions or absorptions due to hydrated materials.

  7. Waveform effects of a metastable olivine tongue in subducting slabs

    Science.gov (United States)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  8. Waveform effects of a metastable olivine tongue in subducting slabs

    Science.gov (United States)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  9. Olivine crystals align during diffusion creep of Earth's upper mantle.

    Science.gov (United States)

    Miyazaki, Tomonori; Sueyoshi, Kenta; Hiraga, Takehiko

    2013-10-17

    The crystallographic preferred orientation (CPO) of olivine produced during dislocation creep is considered to be the primary cause of elastic anisotropy in Earth's upper mantle and is often used to determine the direction of mantle flow. A fundamental question remains, however, as to whether the alignment of olivine crystals is uniquely produced by dislocation creep. Here we report the development of CPO in iron-free olivine (that is, forsterite) during diffusion creep; the intensity and pattern of CPO depend on temperature and the presence of melt, which control the appearance of crystallographic planes on grain boundaries. Grain boundary sliding on these crystallography-controlled boundaries accommodated by diffusion contributes to grain rotation, resulting in a CPO. We show that strong radial anisotropy is anticipated at temperatures corresponding to depths where melting initiates to depths where strongly anisotropic and low seismic velocities are detected. Conversely, weak anisotropy is anticipated at temperatures corresponding to depths where almost isotropic mantle is found. We propose diffusion creep to be the primary means of mantle flow.

  10. Optical spectroscopic characterizations of laser irradiated olivine grains

    Science.gov (United States)

    Yang, Yazhou; Zhang, Hao; Wang, Ziwei; Yuan, Ye; Li, Shaolin; Hsu, Weibiao; Liu, Chujian

    2017-01-01

    Context. Visible and near-infrared spectra of asteroids are known to be susceptible to nanophase irons produced by space weathering processes, thus making mineral identifications difficult. Mid-infrared spectroscopy may retain more mineral features owing to its lattice vibrational nature. Aims: We investigate the structure and reflectance spectral feature changes of olivine grains before and after simulated space weathering. Methods: We irradiate olivine grains by using pulsed laser to simulate varying degrees of micrometeorite bombardments. Reflectance measurements from 0.5 to 25 μm and radiative transfer calculations were carried out in order to compare them with each other. Results: Both the experimental simulations and modeling results indicate that the mid-infrared spectral features of olivine grains can survive the intense irradiations. Although the Christansen Feature is slightly shifted to longer wavelength, major vibrational bands remain essentially unchanged, because the lattice structure is quite immune to even the strongest irradiations, as revealed by both the X-ray diffraction and Raman scattering measurements. Conclusions: Mid-infrared spectroscopy is much more immune to productions of nanophase irons and amorphous materials and thus may be used more reliably in remote detections of minerals on asteroid surfaces.

  11. The effect of water on the electrical conductivity of olivine.

    Science.gov (United States)

    Wang, Duojun; Mookherjee, Mainak; Xu, Yousheng; Karato, Shun-ichiro

    2006-10-26

    It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals--for example, plastic deformation and melting temperature--and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth's mantle by direct sampling provides only a limited data set from shallow regions (olivine, the most abundant mineral in the Earth's mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873-1,273 K for water contents of 0.01-0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations suggests that the typical oceanic asthenosphere contains approximately 10(-2) wt% water, whereas the water content in the continental upper mantle is less than approximately 10(-3) wt%.

  12. Modeling the competing phase transition pathways in nanoscale olivine electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang Ming, E-mail: tang25@llnl.go [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Carter, W. Craig [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Belak, James F. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Chiang, Yet-Ming [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-30

    Recent experimental developments reveal that nanoscale lithium iron phosphate (LiFePO{sub 4}) olivine particles exhibit very different phase transition behavior from the bulk olivine phase. A crystalline-to-amorphous phase transition has been observed in nanosized particles in competition with the equilibrium phase transition between the lithium-rich and lithium-poor olivine phases. Here we apply a diffuse-interface (phase-field) model to study the kinetics of the different phase transition pathways in nanosized LiFePO{sub 4} particles upon delithiation. We find that the nucleation and growth kinetics of the crystalline-to-crystalline and crystalline-to-amorphous phase transformations are sensitive to the applied electrical overpotential and particle size, which collectively determine the preferred phase transition pathway. While the crystalline-to-crystalline phase transition is favored by either faster nucleation or growth kinetics at low or high overpotentials, particle amorphization dominates at intermediate overpotentials. Decreasing particle size expands the overpotential region in which amorphization is preferred. The asymmetry in the nucleation energy barriers for amorphization and recrystallization results in a phase transition hysteresis that should promote the accumulation of the amorphous phase in electrodes after repeated electrochemical cycling. The predicted overpotential- and size-dependent phase transition behavior of nanoscale LiFePO{sub 4} particles is consistent with experimental observations.

  13. Ringwoodite growth rates from olivine with ~75 ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, Wyatt L. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division; Sharp, Thomas G. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration; Mosenfelder, Jed L. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences; Leinenweber, Kurt [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration

    2013-04-15

    It has been previously demonstrated that as little as 300 ppmw H2O increases wadsleyite and ringwoodite growth rates to magnitudes that are inconsistent with the metastable olivine hypothesis. To further test this hypothesis, we present new ringwoodite growth rate measurements from olivine with ~75 ppmw H2O at 18 GPa and 700, 900, and 1100 °C. These growth rates are nearly identical to those from olivine with ~300 ppmw H2O, and significantly higher than those from nominally anhydrous olivine. We infer that transformation of olivine with 75-300 ppmw H2O is primarily enhanced by hydrolytic weakening of reaction rims, which reduces the elastic strain-energy barrier to growth. We present a new method for fitting nonlinear nominally anhydrous data, to demonstrate that reduction of growth rates by elastic strain energy is an additional requirement for metastable olivine. In conclusion, based on previous thermokinetic modeling, these enhanced growth rates are inconsistent with the persistence of metastable olivine wedges into the mantle transition zone. Metastable persistence of olivine into the mantle transition-zone would therefore require < 75 ppmw H2O.

  14. From olivine to ringwoodite: a TEM study of a complex process

    Science.gov (United States)

    Pittarello, Lidia; Ji, Gang; Yamaguchi, Akira; Schryvers, Dominique; Debaille, Vinciane; Claeys, Philippe

    2015-05-01

    The study of shock metamorphism of olivine might help to constrain impact events in the history of meteorites. Although shock features in olivine are well known, so far, there are processes that are not yet completely understood. In shock veins, olivine clasts with a complex structure, with a ringwoodite rim and a dense network of lamellae of unidentified nature in the core, have been reported in the literature. A highly shocked (S5-6), L6 meteorite, Asuka 09584, which was recently collected in Antarctica by a Belgian-Japanese joint expedition, contains this type of shocked olivine clasts and has been, therefore, selected for detailed investigations of these features by transmission electron microscopy (TEM). Petrographic, geochemical, and crystallographic studies showed that the rim of these shocked clasts consists of an aggregate of nanocrystals of ringwoodite, with lower Mg/Fe ratio than the unshocked olivine. The clast's core consists of an aggregate of iso-oriented grains of olivine and wadsleyite, with higher Mg/Fe ratio than the unshocked olivine. This aggregate is crosscut by veinlets of nanocrystals of olivine, with extremely low Mg/Fe ratio. The formation of the ringwoodite rim is likely due to solid-state, diffusion-controlled, transformation from olivine under high-temperature conditions. The aggregate of iso-oriented olivine and wadsleyite crystals is interpreted to have formed also by a solid-state process, likely by coherent intracrystalline nucleation. Following the compression, shock release is believed to have caused opening of cracks and fractures in olivine and formation of olivine melt, which has lately crystallized under postshock equilibrium pressure conditions as olivine.

  15. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    Science.gov (United States)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  16. Phosphorus zoning in olivine of Kilauea Iki lava lake, Hawaii

    Science.gov (United States)

    Fabbrizio, Alessandro; Beckett, John R.; Baker, Michael B.; Stolper, Edward M.

    2010-05-01

    Kilauea Iki lava lake was formed when the lavas of the 1959 summit eruption of Kilauea volcano ponded in Kilauea Iki pit crater, as described by [1]. The main chamber of this lake has been drilled repeatedly from 1960 to 1981 as the lake has cooled and crystallized and partial descriptions of core can be found in [2-7]. The bulk of the core consists of a gray, olivine-phyric basalt matrix [3]. Rapid diffusion of divalent cations through olivine at magmatic temperatures can delete information on early-formed zoning and thus information on early magmatic history, recorded in olivine during its growth, is often largely lost [8-11]. In the last years many studies [8-11] have shown that natural olivine, terrestrial and extraterrestrial, from several localities and rock types can preserve a complex zoning in P (sometimes associated with Cr and Al). Simple crystallization experiments conducted by [10] and [11] were able to replicate these features (i.e., sector and oscillatory zoning). Here, we describe P, Cr and Al zoning in olivine from the 1981 drilling of Kilauea Iki lava lake hole #1 (KI81-1) [6]. Kα X-ray intensity maps and major and minor element quantitative analyses were obtained using the Caltech JEOL JXA-8200 electron microprobe. We acquired P, Cr, Al, Fe and Ti X-ray maps simultaneously at 15 kV and 400 nA, a beam diameter of 1 μm, pixel spacing of 1-2 μm, and count times of 420-1500 msec/step were used depending on the dimension of the crystal. 15 kV and 40 nA with a beam diameter of 1 μm were used to collect quantitative analyses. P2O5 contents of the Iki olivines range from below detection limit to 0.30 wt%. Zoning in phosphorus, based on X-ray intensity maps, was observed in all olivines we examined. The P zoning patterns of the olivines display several styles. P shows oscillatory zoning comparable to that seen in terrestrial and extraterrestrial igneous olivines and in experimentally grown olivine [8-11]; high P regions, inside the crystals, outline

  17. Characteristics and geological significance of olivine xenocrysts in Cenozoic volcanic rocks from western Qinling

    Institute of Scientific and Technical Information of China (English)

    SU Benxun; ZHANG Hongfu; XIAO Yan; ZHAO Xinmiao

    2006-01-01

    Cenozoic volcanic rocks from the Haoti, Dangchang County of the western Qinling Mountains, contain a few clearlyzoned olivines. These olivines are relatively big in grain sizes and usually have cracks or broken features. Their cores have similar compositions (Mg# = 90.4- 91.0) to those for the peridotitic xenoliths entrained in host volcanic rocks and their rims are close to the compositions of olivine phenocrysts (Mg# = 85.5 81.9). The CaO contents in these zoned olivines are lower than 0.1%. These features demonstrate that the clearly zoned olivines are xenocrysts and disaggregated from mantle peridotites. The zoned texture was the result of the interaction between the olivine and host magma. Available data show that the volcanic rocks would have been derived from the mantle source metasomatized by subducted hydrathermally-altered oceanic crust. The formation of these Cenozoic volcanic rocks was perhaps related to the rapid uplift of the Tibetan Plateau.

  18. Multiple formation mechanisms of ferrous olivine in CV carbonaceous chondrites during fluid-assisted metamorphism

    OpenAIRE

    Krot, Alexander N.; Petaev,Michail I.; Bland, Phil A.

    2004-01-01

    The CV carbonaceous chondrites experienced alteration that resulted in formation of secondary ferrous olivine (Fa40-100), salite-hedenbergite pyroxenes (Fs10-50Wo45-50), wollastonite, andradite, nepheline, sodalite, phyllosilicates, magnetite, Fe,Ni-sulfides and Ni-rich metal in their Ca,Al-rich inclusions, amoeboid olivine ag-gregates, chondrules, and matrices. It has previously been suggested that fibrous ferrous olivine in dark inclusions in CV chondrites formed by dehydration of phyllosil...

  19. Resistivity Measurement of Molten Olivine in a Laser-Heated Diamond Anvil Cell

    Institute of Scientific and Technical Information of China (English)

    LI Ming; GAO Chun-Xiao; MA Yan-Zhang; HE Chun-Yuan; HAO Ai-Min; ZHANG Dong-Mei; LI Yan-Chun; LIU Jing; WANG Duo-Jun

    2007-01-01

    The electrical conductivity of molten olivine is studied up to 3720 K and 13.2 GPa.The results indicate that the electrical conductivity of molten olivine exhibits the perfect Arrhenivs behaviour.The activation energy as well as temperature effect is much smaller than that of the solid olivine.It is expected that the high conductivity zone in the mantle is almost independent of the melting based on our experimental data.

  20. Olivine-Wadsleyite-Pyroxene Epitaxy: Element and Volatile Distributions at the 410km Discontinuity

    Science.gov (United States)

    Smyth, J. R.; Miyajima, N.; Huss, G. R.; Hellebrand, E.; Rubie, D. C.; Frost, D. J.

    2010-12-01

    We have synthesized hydrous peridotite-composition samples at 13GPa and 1400C with co-existing coarse grains (~100 micrometer) of olivine, wadsleyite, clinoenstatite, and melt in a multi-anvil press. The olivine grains contain fine-scale lamellae of wadsleyite and clinoenstatite that likely resulted from small temperature fluctuations during the four-hour experiment. Major-element compositions were determined by electron microprobe and H contents by secondary ion mass spectroscopy (SIMS). The olivine is about Fo93 in composition and contains about 650 ppm by weight H2O. The wadsleyite is about Fo87 in composition and contains about 1650 weight percent H2O. The clinoenstatite is about En96 in composition and about 440 ppm H2O. High resolution transmission electron microscopy of the lamellae and host show that the olivine and wadsleyite share their close-packed oxygen planes so that the wadsleyite lamellae are nearly planar and perpendicular to the [1 0 0] of olivine. The wadsleyite lamellae thus have their [1 0 1] and [1 0 -1] directions parallel to the [1 0 0] of olivine. Additionally, a second orientation relation with the [001] of olivine parallel to [100] of wadsleyite is also found as are incoherent blebs of wadsleyite in olivine. The coexisting melt phase quenched to a feathery mass of mostly wadsleyite crystals. Neither a quenched glass phase nor a nominally hydrous phase was observed. The lamellae indicate that the olivine-wadsleyite transformation can proceed effectively by coherent mechanisms that could potentially preserve lattice preferred orientation. The observed rapid coherent inversion from olivine to wadsleyite means that a metastable preservation of olivine below 410 km is unlikely under slightly hydrous conditions. The distribution of H among the nominally anhydrous phases implies that dehydration of peridotites by partial melting is inefficient so that complete dehydration of subducting slabs is unlikely. SEM-BSE image of wadsleyite (W) blebs and

  1. Calc-alkali rocks derived from tholeiite magma in Hakone volcano; pyroxene crystallization trends and pyroxene geothermometry to estimate the magma temperature

    Science.gov (United States)

    Ishii, T.

    2012-12-01

    Calc-alkali rocks are widely distributed in the island arcs. The several models of their magma-genesis were proposed by many geoscientists (e.g. Kuno 1950, Osborn 1959, Sakuyama 1981, Tatsumi 2011) on the bases of precise petrological investigations. Crystallization trends of rock forming minerals (pyroxene, feldspar etc.) in the individual lava flow of the hydrous tholeiitic magma are represented by chemical zoning from phenocryst through microphenocryst to the groundmass in each lava. Those trends indicate degassing (or dehydrating) trends of erupted lava (Ishii 1991). Crystallization trend of minerals of hydrous magma in the subvolcanic magma reservoir is represented by core of phenocrysts throughout lava-flow strata in each volcano. Those trends indicate water-enrichment (or hydrating) trend in the magma reservoir. On the bases of the detailed analyses of the pyroxene crystallization sequences as well as estimated magmatic temperatures using pyroxene geothermometer, for calc-alkali rocks from the Central Cone (CC) in the Hakone volcano, the following working hypothesis is suggested, i.e. those calc-alkali rocks are induced by magma mixing between high temperature (about 1120 Degree Centigrade) tholeiite magma and low temperature (about 970 Degree Centigrade) magma, the latter is originated from fractional crystallization of the primitive high temperature hydras island-arc tholeiite magma within magma reservoir under closed environment for water. Reference Ishii, T., 1991. Lava-flow and subvolcanic magma reservoir composition trends in the Ca-poor pyroxenes of Hakone Volcano, Japan. Jour. Petrol., 32, 429-450 Kuno, H., 1950. Petrology of Hakone volcano and the adjacent areas, Japan. Bull. Geol. Soc. Am., 61, 957-1019. Sakuyama, M., 1981. Petrological study of the Myoko and Kurohime volcanoes, Japan: crystallization sequence and evidence for magma mixing. Jour. Petrol., 22, 553-583. Osborn, E. F., 1959. Role of oxygen pressure in the crystallization and

  2. Spatially-variable carbonation reactions in polycrystalline olivine

    Science.gov (United States)

    Wells, Rachel K.; Xiong, Wei; Sesti, Erika; Cui, Jinlei; Giammar, Daniel; Skemer, Philip; Hayes, Sophia E.; Conradi, Mark S.

    2017-05-01

    Carbon dioxide (CO2) injection into olivine-rich mafic and ultramafic rocks is expected to result in the precipitation of divalent metal carbonate minerals, permanently storing the CO2 underground. Previous experiments that used unconsolidated forsterite (Mg2SiO4) particles in experimental investigations of reactions with water and carbon dioxide have been useful for determining the identity, rates of formation, and spatial location of carbonate mineral reaction products. However there remains a need for information regarding the influence of the internal pore structure and grain boundary surfaces on the extent and locations of these reactions in dense aggregates. We conducted several experiments at 100 °C and 100 bar CO2 using sintered San Carlos olivine (Fo90) and pure forsterite (Fo100) cylinders, and we documented the type and spatial distribution of the reaction products. Timing of carbonation was measured using in-situ 13C NMR spectroscopy without removing the sample from the reactor. Ex-situ solid-state NMR spectroscopy, Raman spectroscopy, and electron microscopy were used to examine reacted samples and precipitates. Within 15 days, magnesite is observed only on the surface of Fo90. After 53 and 102 days of reaction, magnesite and amorphous silica are observed as a crust around the entire Fo100 cylinder and as isolated layers within the sample. The spatial transition from an amorphous silica layer to the host Fo100 indicates that the development of amorphous silica did not impede further forsterite dissolution. While earlier studies documented localized reactions at the grain scale, the development of distinct zones of magnesite and amorphous silica suggest that divalent metal cations are mobile during carbonation of olivine. Grain boundaries, pore structure, and geochemical gradients strongly influence the locations of silicate mineral dissolution and carbonate mineral precipitation even in the absence of advective transport or confinement. The clear

  3. Environmental monitoring at the Seqi olivine mine 2010

    DEFF Research Database (Denmark)

    Søndergaard, Jens; Asmund, Gert

    The olivine mine at Seqi in West Greenland operated between 2005 and 2010. Since 2004, environmental monitoring studies have been conducted at Seqi every year in order to assess premining conditions and subsequently the impact from mining during operation. This report contains the results from......) in 2010. Consequently, the environmental impact of the mine at Seqi has decreased and is considered insignificant for the Niaquungunaq fjord system....... monitoring studies conducted in 2010. Results from previous years have shown that operation of the mine caused levels of some elements, particularly chromium and nickel, to increase in lichens, blue mussels and seaweed within the surrounding area compared to pre-mining conditions. The main source...

  4. An Improved Experimental Calibration of the Olivine-Spinel Geothermometer

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    The calibration of the olivine-spinel geothermometer by Fabries(1979) is commonly adopted by a number of petrologists.But the temperatures calculated in this way for ultramafic focks are significantly lower than those obtained by the pyroxene geothermometers.These O1-Sp temperatures are also lower than those measured experi-mentally in the natural system (four-phase lherzolite).Different rates of cation diffusion cannot fully account for these differences.The temperature deviation is actually related to the inconsistencies between natural and experimental data which support the calibration .A re-evaluation of the calibration is proposed on the basis of a set of new experimental data.

  5. Olivine-type NaCd(AsO4).

    Science.gov (United States)

    Weil, Matthias

    2013-10-05

    The title compound, sodium cadmium orthoarsenate, adopts the olivine [Mg2(SiO4)] structure type in space group Pnma, with Na (site symmetry -1) and Cd (.m.) replacing the two Mg positions, and the AsO4 tetra-hedron (.m.) the SiO4 tetra-hedron. The crystal structure is made up of a nearly hexa-gonal closed-packed arrangement of O atoms stacked along [001]. The Na and Cd atoms occupy one half of the octa-hedral voids in alternate layers stacked along [100], and one eighth of the tetra-hedral voids are occupied by As atoms.

  6. Olivine Major and Trace Element Compositions in Southern Payenia Basalts, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Portnyagin, Maxim; Hoernle, Kaj;

    2015-01-01

    Olivine major and trace element compositions from 12 basalts from the southern Payenia volcanic province in Argentina have been analyzed by electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The olivines have high Fe/Mn and low Ca/Fe and many fall at the end...... by subduction-zone fluids and/or melts. The increasing contributions from the pyroxene-rich source in the southern Payenia basalts are correlated with an increasing Fe-enrichment, which caused the olivines to have lower forsterite contents at a given Ni content. Al-in-olivine crystallization temperatures...

  7. Olivine-metal mixtures: Spectral reflectance properties and application to asteroid reflectance spectra

    Science.gov (United States)

    Cloutis, Edward A.; Sanchez, Juan A.; Reddy, Vishnu; Gaffey, Michael J.; Binzel, Richard P.; Burbine, Thomas H.; Hardersen, Paul S.; Hiroi, Takahiro; Lucey, Paul G.; Sunshine, Jessica M.; Tait, Kimberly T.

    2015-05-01

    Olivine-rich asteroids appear to be common in the main asteroid belt as well as present in the near-Earth asteroid population. There are a number of meteorite classes that are dominated by olivine ± metal. To determine whether relationships exist between these asteroids and meteorites, we spectrally characterized a number of olivine + meteoritic metal powder intimate and areal mixtures, pallasite slabs, and olivine powders on a metal slab. Our goal is to understand the spectral characteristics of olivine + metal assemblages and develop spectral metrics that can be used to analyze reflectance spectra of olivine-dominated asteroids. We found that the major olivine absorption band in the 1 μm region is resolvable in intimate mixtures for metal abundances as high as ∼90 wt.%. The wavelength position of the 1 μm region olivine absorption band center is sensitive to Fa content but insensitive to other variables. However, the band minimum position moves to shorter wavelengths with increasing metal abundance due to changes in spectral slope. The full width at half maximum (FWHM) of this band and reflectance at 1.8 μm are both most sensitive to olivine Fa content, metal abundance, and grain size, and much less to the presence of nanophase iron that reddens spectra. Reflectance at 0.56 μm and the 1.8/0.56 μm reflectance ratio are sensitive to these same parameters as well as to nanophase iron-associated spectral reddening. The wavelength position of the local reflectance maximum in the 0.7 μm region moves to longer wavelengths with increasing metal abundance and is most useful for constraining metal abundance in high metal-content mixtures. Pallasite slab spectra differ in a number of respects from powdered assemblages and multiple spectral parameters can be used to discriminate them. The spectra of increasingly fine-grained olivine + metal assemblages and those involving low-Fa olivine show increasing spectral dominance by metal. Systematic application of multiple

  8. 高铝中钛高炉渣脱硫的动力学机制%Desulphurization Dynamics Mechanism of Blast Furnace Slag With Medium Titanium and High Alumina Content

    Institute of Scientific and Technical Information of China (English)

    张淑会; 穆红旺; 孙艳芹; 吕庆

    2012-01-01

    以现场高炉渣化学成分为基准,利用纯化学试剂制备试验渣样,研究了高铝中钛型高炉渣脱硫的动力学过程,确定了其脱硫的动力学参数。结果表明,当反应温度一定时,铁水中硫含量w([S])随脱硫反应时间的延长而降低。试验条件下,高铝中钛渣脱硫过程属于二级反应,其限制性环节是硫在熔渣中的扩散。熔渣中硫的传质系数βS随着温度的升高而增大,硫在熔渣中的扩散活化能ED为127.03kJ/mol。%On the basis of the compositions of blast furnace(BF) slag at field,the desulphurization dynamics process was researched for BF slag with medium titanium and high alumina content,which was fabricated from pure chemical agents.The dynamics parameters of desulphurization were obtained.Results show that the sulfur content in liquid iron(w([S])) decreases with the elongation of desulphurization reaction time when the temperature is constant.Under the experimental conditions,the desulphurization process of BF slag with medium titanium and high alumina content belongs to second-order reaction,the restricted step of which is sulfur diffusion in the fused slag.The mass transfer coefficient(βS) rises with increasing the reaction,and the diffusion activation energy(ED) of sulfur element in fused slag is 127.03 kJ/mol.

  9. Modeling dynamic recrystallization of olivine aggregates deformed in simple shear

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, H.-R. [Department of Geology and Geophysics, University of California, Berkeley (United States); Tome, C. N. [Materials, Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    1999-11-10

    Experiments by Zhang and Karato [1995] have shown that in simple shear dislocation creep of olivine at low strains, an asymmetric texture develops with a [100] maximum rotated away from the shear direction against the sense of shear. At large strain where recrystallization is pervasive, the texture pattern is symmetrical, and [100] is parallel to the shear direction. The deformation texture can be adequately modeled with a viscoplastic self-consistent polycrystal plasticity theory. This model can be expanded to include recrystallization, treating the process as a balance of boundary migration (growth of relatively underformed grains at the expense of highly deformed grains) and nucleation (strain-free nuclei replacing highly deformed grains). If nucleation dominates over growth, the model predicts a change from the asymmetric to the symmetric texture as recrystallization proceeds and stabilization in the ''easy slip'' orientation for the dominant (010)[100] slip system. This result is in accordance with the experiments and suggests that the most highly deformed orientation components dominate the recrystallization texture. The empirical model will be useful to simulate more adequately the development of anisotropy in the mantle where olivine is largely recrystallized. (c) 1999 American Geophysical Union.

  10. Extended solid solutions and coherent transformations in nanoscale olivine cathodes.

    Science.gov (United States)

    Ravnsbæk, D B; Xiang, K; Xing, W; Borkiewicz, O J; Wiaderek, K M; Gionet, P; Chapman, K W; Chupas, P J; Chiang, Y-M

    2014-03-12

    Nanoparticle LiFePO4, the basis for an entire class of high power Li-ion batteries, has recently been shown to exist in binary lithiated/delithiated states at intermediate states of charge. The Mn-bearing version, LiMn(y)Fe(1-y)PO4, exhibits even higher rate capability as a lithium battery cathode than LiFePO4 of comparable particle size. To gain insight into the cause(s) of this desirable performance, the electrochemically driven phase transformation during battery charge and discharge of nanoscale LiMn0.4Fe0.6PO4 of three different average particle sizes, 52, 106, and 152 nm, is investigated by operando synchrotron radiation powder X-ray diffraction. In stark contrast to the binary lithiation states of pure LiFePO4 revealed in recent investigations, the formations of metastable solid solutions covering a remarkable wide compositional range, including while in two-phase coexistence, are observed. Detailed analysis correlates this behavior with small elastic misfits between phases compared to either pure LiFePO4 or LiMnPO4. On the basis of time- and state-of-charge dependence of the olivine structure parameters, we propose a coherent transformation mechanism. These findings illustrate a second, completely different phase transformation mode for pure well-ordered nanoscale olivines compared to the well-studied case of LiFePO4.

  11. TEMPERATURE-DEPENDENT INFRARED OPTICAL CONSTANTS OF OLIVINE AND ENSTATITE

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, S. [National Astronomical Observatory of Japan (NAOJ), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mutschke, H. [Astrophysikalisches Institut und Universitäts-Sternwarte, Schillergässchen 2-3, D-07745 Jena (Germany); Posch, Th., E-mail: simon.zeidler@nao.ac.jp, E-mail: harald.mutschke@uni-jena.de, E-mail: thomas.posch@univie.ac.at [Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria)

    2015-01-10

    Since the Infrared Space Observatory (ISO) mission, it has become clear that dust in circumstellar disks and outflows consists partly of crystalline silicates of pyroxene and olivine type. An exact mineralogical analysis of the dust infrared emission spectra relies on laboratory spectra, which, however, have been mostly measured at room temperature so far. Given that infrared spectral features depend on the thermal excitation of the crystal's vibrational modes, laboratory spectra measured at various (low and high) temperatures, corresponding to the thermal conditions at different distances from the star, can improve the accuracy of such analyses considerably. We have measured the complex refractive index in a temperature range of 10-973 K for one mineral of each of those types of silicate, i.e., for an olivine and an enstatite of typical (terrestrial) composition. Thus, our data extend the temperature range of previous data to higher values and the compositional range to higher iron contents. We analyze the temperature dependence of oscillator frequencies and damping parameters governing the spectral characteristics of the bands and calculate absorption cross-sectional spectra that can be compared with astronomical emission spectra. We demonstrate the usefulness of our new data by comparing spectra calculated for a 100 K dust temperature with the ISO SWS spectrum of IRAS 09425-6040.

  12. Phosphorus as indicator of magmatic olivine residence time, morphology and growth rate

    Science.gov (United States)

    Sobolev, Alexander; Batanova, Valentina

    2015-04-01

    Phosphorus is among of slowest elements by diffusion rate in silicate melts and crystals (e.g. Spandler et al, 2007). In the same time it is moderately incompatible to compatible with olivine (Brunet & Chazot, 2001; Grant & Kohn, 2013). This makes phosphorus valuable tracer of olivine crystallization in natural conditions. Indeed, it is shown that natural magmatic olivine crystals commonly posses strong and complicated zoning in phosphorus (Milman-Barris et al, 2008; Welsch et al, 2014). In this paper we intend to review phosphorus behavior in olivine in published experimental and natural olivine studies and present large set of new EPMA data on phosphorus zoning in olivine phenocrysts from MORBs, OIBs, komatiites and kimberlites. We will show that sharp olivine zones enriched in phosphorus by a factor of 10-20 over prediction by equilibrium partition may be due to formation of P-rich boundary layer on the interface of fast growing olivine. This is proved by finding of small-size (normally 10 mkm or less) exceptionally P-rich melt inclusions in olivine, which are otherwise similar in composition to typical melt. These observations could provide potential olivine growth speedometer. We will also demonstrate, that sharp zoning in phosphorus may provide valuable information on the residence time of olivine crystals in different environments: magma chambers and conduits as well as mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491. References: Spandler, et al, 2007, Nature, v. 447, p. 303-306; Brunet & Chazot, 2001, Chemical Geology, v. 176, p. 51-72; Grant & Kohn, 2013, American Mineralogist, v. 98, p. 1860-1869; Milman-Barris et al, 2008, Contr. Min. Petrol. v. 155, p.739-765; Welsch et al, 2014, Geology, v. 42, p.867-870.

  13. The mode of emplacement of Neogene flood basalts in Eastern Iceland: Facies architecture and structure of the Hólmar and Grjótá olivine basalt groups

    Science.gov (United States)

    Óskarsson, Birgir V.; Riishuus, Morten S.

    2013-11-01

    Hólmar and Grjótá are two stratigraphically distinct transitional alkaline olivine basalt lava groups within the westward-dipping Neogene flood basalts of eastern Iceland. The Hólmar olivine basalt group, separated from the overlying Grjótá olivine basalt group by only a few tholeiite flows, can be traced over 80 km north-south, with thicknesses varying from ~ 250 m where thickest to ~ 30 m where thinnest. The Grjótá group can be traced over 50 km also north-south, reaching thicknesses of ~ 250 m and thinning down-dip to ~ 10 m. In contrast to other groups in eastern Iceland that thicken down-dip, the studied olivine basalt groups thicken up-dip. The groups filled topographic confinements and formed aprons around central volcanoes. We have estimated the minimum volumes to be ~ 119 km3 for Hólmar and ~ 86 km3 for Grjótá. Scoria cones are found in the Hólmar group, and two thick olivine dolerite sills cross-cut the Hólmar group and probably belong to the plumbing system that fed the Grjótá group. The architecture of the lava groups are near identical. The architecture is compound, with lobes stacked horizontally and vertically, varying from 1-15 m thick and 2-200 m long, but do also encompass a number of thicker (15-20 m) and more extensive (> 1 km long) lava lobe in the stacks. Filled lava tubes are commonly observed within the lava flows. The constituent lobes of the flows are often directly emplaced or welded together, suggesting rapid buildup, but are also found interbedded with redbeds and thicker tuff deposits, and occasionally preserve tree molds. The internal structure follows the characteristics for lava lobe morphology in general, with an upper vesicular crust forming half to one third of the total thickness, a massive core with abundant vesicle cylinders, and a thin basal vesicular crust. Flow tops are of the pahoehoe type, seldom found with scoria or clinker. Inflation structures such as tumuli and inflation clefts were identified in the

  14. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    Science.gov (United States)

    Stille, P.; Tatsumoto, M.

    1985-01-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.

  15. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere.

    Science.gov (United States)

    Yoshino, Takashi; Matsuzaki, Takuya; Yamashita, Shigeru; Katsura, Tomoo

    2006-10-26

    The oceanic asthenosphere is observed to have high electrical conductivity, which is highly anisotropic in some locations. In the directions parallel and normal to the plate motion, the conductivity is of the order of 10(-1) and 10(-2) S m(-1), respectively, which cannot be explained by the conductivity of anhydrous olivine. But because hydrogen can be incorporated in olivine at mantle pressures, this observation has been attributed to olivine hydration, which might cause anisotropically high conductivity by proton migration. To examine this hypothesis, here we report the effect of water on electrical conductivity and its anisotropy for hydrogen-doped and undoped olivine at 500-1,500 K and 3 GPa. The hydrous olivine has much higher conductivity and lower activation energy than anhydrous olivine in the investigated temperature range. Nevertheless, extrapolation of the experimental results suggests that conductivity of hydrous olivine at the top of the asthenosphere should be nearly isotropic and only of the order of 10(-2) S m(-1). Our data indicate that the hydration of olivine cannot account for the geophysical observations, which instead may be explained by the presence of partial melt elongated in the direction of plate motion.

  16. Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC

    CERN Document Server

    Thangjam, Guneshwar; Mengel, Kurt; Hoffmann, Martin; Schäfer, Michael; Reddy, Vishnu; Cloutis, Edward A; Christensen, Ulrich; Sierks, Holger; Corre, Lucille Le; Vincent, Jean-Baptiste; Russell, Christopher T

    2014-01-01

    We present an analysis of the olivine-rich exposures at Bellicia and Arruntia craters using Dawn Framing Camera (FC) color data. Our results confirm the existence of olivine-rich materials at these localities as described by Ammannito et al. (2013a) using Visual Infrared Spectrometer (VIR) data. Analyzing laboratory spectra of various Howardite-Eucrite-Diogenite meteorites, high-Ca pyroxenes, olivines and olivine-orthopyroxene mixtures, we derive three FC spectral band parameters that are indicators of olivine-rich materials. Combining the three band parameters allows us, for the first time, to reliably identify sites showing modal olivine contents >40%. The olivine-rich exposures at Bellicia and Arruntia are mapped using higher spatial resolution FC data. The exposures are located on the slopes of outer/inner crater walls, on the floor of Arruntia, in the ejecta, as well as in nearby fresh small impact craters. The spatial extent of the exposures ranges from a few hundred meters to few kilometers. The olivin...

  17. Termination and hydration of forsteritic olivine (0 1 0) surface

    Science.gov (United States)

    Yan, Hongping; Park, Changyong; Ahn, Gun; Hong, Seungbum; Keane, Denis T.; Kenney-Benson, Curtis; Chow, Paul; Xiao, Yuming; Shen, Guoyin

    2014-11-01

    Termination and hydration of the forsteritic (Fo90Fa10) olivine (0 1 0) surface have been investigated with high-resolution specular X-ray reflectivity and Atomic Force Microscopy. The surface was prepared by polishing a naturally grown {0 1 0} face, from which we found the polished surface in acidic (pH 3.5) alumina suspension exhibits regular steps while the basic (pH 9.5) silica polished surface is irregularly roughened, indicating there are two distinguishable mechanochemical processes for the surface dissolution. The quantitative interpretation of the regular steps from the alumina-polished surface suggests that the observed step heights correspond to multiples of crystallographic unit cell. Only this atomically terraced surface is investigated with the high-resolution X-ray reflectivity (HRXR) to determine the surface termination and hydration. The basic silica paste polished surface turned out too rough to measure with X-ray reflectivity. HRXR reveals that the alumina polished olivine (0 1 0) surface in pure water is terminated at a plane including half-occupied metal ion sites (M1), an oxygen vacancy site, and a silicate tetrahedral unit with one of its apices pointing outward with respect to the surface. An ideal termination with the oxygen vacancy would fulfill the stoichiometry of the formula unit; however, in the observation, the vacancy site is filled by an adsorbed water species and about a quarter of the remaining metal ions are further depleted. The terminating plane generates two distinct atomic layers in the laterally averaged electron density profile, on which two highly ordered adsorbed water layers are formed. The first layer formation is likely through the direct interaction with the M1 plane and the second layer is likely through the hydrogen bonding interaction with the first water layer. With this multilayered adsorbed water structure, the surface metal ion is partially hydrated by the vacancy-filling water species and adsorbed water

  18. The Mn-Fe negative correlation in olivines in ALHA 77257 ureilite

    Science.gov (United States)

    Miyamoto, M.; Furuta, T.; Fujii, N.; Mckay, D. S.; Lofgren, G. E.; Duke, M. B.

    1993-01-01

    An electron probe microanalyzer is used to measure the Mn, Fe, and oxygen zoning profiles of olivines in the ALHA 77257 ureilite. This is done to study the effects of reduction on the Mn-Fe value, as ureilite olivines exhibit thin reduced rims. Since the Mn content gradually increases toward the rim of ureilite olivines, while the Fa (= 100 x Fe/(Mg + Fe), mol percent) component decreases, the Mn-Fe content of olivine is likely related to redox conditions. The results of melting experiments suggest that the Mn-Fe positive correlation is related to temperature and that the negative correlation of Mn-Fe in olivine and low-Ca pyroxene is related to reduction.

  19. PartialLy Shock-Transformed Olivine in Shocked Chondrites: Mechanisms of Solid-State Transformation

    Science.gov (United States)

    Sharp, T. G.; Xie, Z.

    2007-12-01

    High-pressure minerals, produced by shock meta-morphism, are common in and around melt veins in highly shocked chondrites. These minerals either crys-tallized from silicate melt in the shock-vein or formed by solid- state transformation of host-rock fragments entrained in the melt or along shock-vein margins. Olivine- ringwoodite transformation kinetics can be used to constrain shock duration if one knows P-T conditions and transformation mechanisms. Here we examine the solid-state transformation of olivine to ringwoodite and the formation of ringwoodite lamellae in Tenham. Partially transformed olivines show a variety of ringwoodite textures. Some have granular textures whereas others have straight or curved ringwoodite lamellae, made up of distinct (1 to 2 ?m) crystals. Many of these polycrystalline ringwoodite lamellae occur in pairs. Where these paired lamellae cross the are offset, suggesting that the lamellae are associated with shearing. Electron diffraction reveals that the ringwoodites in the polycrystalline lamellae, occur in roughly the same crystallographic orientation, defining a lattice-preferred orientation. TEM also shows that the remnant olivine is highly deformed, with high densities of complex dislocations. This olivine has a poorly organized sub-grain structure that grades into polycrystalline olivine. The nearby untransformed olivine is also highly de-formed, but less than the partially transformed olivine. TEM images of complex dislocation and sub-grain microstructures suggests that the transformation of olivine to ringwoodite involves extensive deformation. High densities of dislocations provide potential sites for heterogeneous nucleation of ringwoodite and may enhance Fe-Mg inter-diffusion. The differential stress at the initial stage of the shock results in high strains and local heating. The paired ringwoodite lamellae in olivine appear to result from shearing and possibly shear heating, where nucleation occurs on both sides of a shear

  20. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra

    Science.gov (United States)

    Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.

    2011-01-01

    A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.

  1. Collisional Processing of Comet Surfaces: Impact Experiments into Olivine

    Science.gov (United States)

    Lederer, S. M.; Jensen, E. A.; Cintala, M. J.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Wooden, D. H.; Fernandez, Y. R.; Zolensky, M. E.

    2011-01-01

    A new paradigm has emerged where 3.9 Ga ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. In addition, objects in the Kuiper Belt are believed to undergo extensive collisional processing while in the Kuiper Belt. Physical manifestations of shock effects (e.g., planar dislocations) in minerals typically found in comets will be correlated with spectral changes (e.g. reddening, loss and shift of peaks, new signatures) to allow astronomers to better understand geophysical impact processing that has occurred on small bodies. Targets will include solid and granular olivine (forsterite), impacted over a range of impact speeds with the Experimental Impact Laboratory at NASA JSC. Analyses include quantification of the dependence of the spectral changes with respect to impact speed, texture of the target, and temperature.

  2. Additional Sr Isotopic Heterogeneity in Zagami Olivine-Rich Lithology

    Science.gov (United States)

    Misawa, K.; Niihara, T.; Shih, C.-Y; Reese, Y. D.; Nyquist, L. E.; Yoneda, S.; Yamashita, H.

    2012-01-01

    Prior isotopic analyses of Zagami have established differing initial Sr-87/Sr-86 (ISr) ratios of among Zagami lithologies, fine-grained (FG), coarse-grained (CG), and dark mottled lithologies (DML)]. The Zagami sample (KPM-NLH000057) newly allocated from the Kanagawa Prefectural Museum of Natural History contained DML and the Ol-rich lithology which included more ferroan olivines (Ol-rich: Fa(sub 97- 99) vs late-stage melt pockets: Fa(sub 90-97)]). We have combined mineralogy-petrology and Rb-Sr isotopic studies on the Kanagawa Zagami sample, which will provide additional clues to the genesis of enriched shergottites and to the evolution of Martian crust and mantle

  3. The distribution of olivine in the crater Copernicus

    Science.gov (United States)

    Lucey, Paul G.; Hawke, B. R.; Horton, Keith

    1991-01-01

    Multispectral imaging in the visible and near-IR at four wavelengths (0.73, 0.96, 1.45, and 1.99 micron) of Copernicus crater has been used to map the distribution of olivine-rich, pyroxene-poor material known previously to occur in the central peak complex. Three additional portions of the crater exhibit spectral characteristics similar to those of the central peaks, strongly suggesting the presence of material similar to that exposed in the central peaks. These areas are a scarp forming a portion of the northern rim of Copernicus, and two slump blocks in the north wall which may have been derived from the same portion of the ejecta now exposed in the rim scarp. These occurrences decrease the minimum allowable depth for this unusual material in the Copernicus target site though still represent some of the deepest material exposed by Copernicus.

  4. Ringwoodite lamellae in olivine: Clues to olivine–ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs

    OpenAIRE

    Chen, Ming; Goresy, Ahmed El; Gillet, Philippe

    2004-01-01

    The first natural occurrence of ringwoodite lamellae was found in the olivine grains inside and in areas adjacent to the shock veins of a chondritic meteorite, and these lamellae show distinct growth mechanism. Inside the veins where pressure and temperature were higher than elsewhere, ringwoodite lamellae formed parallel to the {101} planes of olivine, whereas outside they lie parallel to the (100) plane of olivine. The lamellae replaced the host olivine from a few percent to complete. Forma...

  5. Olivine friction at the base of oceanic seismogenic zones

    Science.gov (United States)

    Boettcher, M.S.; Hirth, G.; Evans, B. M.

    2007-01-01

    We investigate the strength and frictional behavior of olivine aggregates at temperatures and effective confining pressures similar to those at the base of the seismogenic zone on a typical ridge transform fault. Triaxial compression tests were conducted on dry olivine powder (grain size ???60 ??m) at effective confining pressures between 50 and 300 MPa (using Argon as a pore fluid), temperatures between 600??C and 1000??C, and axial displacement rates from 0.06 to 60 ??m/s (axial strain rates from 3 ?? 10-6 to 3 ?? 10-3 s-1). Yielding shows a negative pressure dependence, consistent with predictions for shear enhanced compaction and with the observation that samples exhibit compaction during the initial stages of the experiments. A combination of mechanical data and microstructural observations demonstrate that deformation was accommodated by frictional processes. Sample strengths were pressure-dependent and nearly independent of temperature. Localized shear zones formed in initially homogeneous aggregates early in the experiments. The frictional response to changes in loading rate is well described by rate and state constitutive laws, with a transition from velocity-weakening to velocity-strengthening at 1000??C. Microstructural observations and physical models indicate that plastic yielding of asperities at high temperatures and low axial strain rates stabilizes frictional sliding. Extrapolation of our experimental data to geologic strain rates indicates that a transition from velocity weakening to velocity strengthening occurs at approximately 600??C, consistent with the focal depths of earthquakes in the oceanic lithosphere. Copyright 2007 by the American Geophysical Union.

  6. Abiotic methane formation during experimental serpentinization of olivine

    Science.gov (United States)

    McCollom, Thomas M.

    2016-12-01

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH4). In many cases, the CH4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH4 synthesis have been observed. Here, the potential for abiotic formation of CH4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13C-labeled inorganic carbon source was used to unambiguously determine the origin of CH4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH4 was observed in one experiment performed under conditions that allowed an H2-rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH4.

  7. Martian Dunite NWA 2737: Petrographic Constraints on Geological History, Shock Events, and Olivine Color

    Energy Technology Data Exchange (ETDEWEB)

    Treiman,A.; Dyar, M.; McCanta, M.; Noble, S.; Pieters, C.

    2007-01-01

    Meteorite Northwest Africa (NWA) 2737 is the second known chassignite, an olivine-rich igneous rock with mineral compositions and isotopic ratios that suggest it formed on Mars. NWA 2737 consists of ?85% vol. olivine (Mg, molar Mg/(Mg + Fe), of 78.3 {+-} 0.4%), which is notable because it is black in hand sample and brown in thin section. Other minerals include chromite, pyroxenes (augite, pigeonite, orthopyroxene), and diaplectic glass of alkali-feldspar composition. Aqueous alteration is minimal and appears only as slight dissolution of glass. NWA 2737 formed by accumulation of olivine and chromite from a basaltic magma; the other minerals represent magma trapped among the cumulus grains. Minerals are compositionally homogeneous, consistent with chemical equilibration in late and postigneous cooling. Two-pyroxene thermometry gives equilibration temperatures 1150 C, implying a significant time spent at the basalt solidus. Olivine-spinel-pyroxene equilibria give ?825 C (possibly the T of mesostasis crystallization) at an oxidation state of QMF-1. This oxidation state is consistent with low Fe3+ in olivine (determined by EMP, Moessbauer spectra, and synchrotron micro-XANES spectroscopy) and with {approx}10% of the iron in pyroxene being Fe3+. NWA 2737 experienced two shock events. The first shock, to stage S5-S6, affected the olivine by producing in it planar deformation features, intense mosaicism and lattice strain, and abundant droplets of iron-nickel metal, 5-15 nm in diameter. At this stage the olivine became deeply colored, i.e., strongly absorbing at visible and near-infrared (NIR) wavelengths. This shock event and its thermal pulse probably occurred at {approx}170 Ma, the Ar-Ar age of NWA 2737. The colored olivine is cut by ribbons of coarser, uncolored olivine with long axes along [100] and shorter axes on {l_brace}021{r_brace} planes: These are consistent with the easy slip law for olivine [100]{l_brace}021{r_brace}, which is activated at moderate strain

  8. Effect of Sulfur on Siderophile Element Partitioning Between Olivine and Martian Primary Melt

    Science.gov (United States)

    Usui, T.; Shearer, C. K.; Righter, K.; Jones, J. H.

    2011-01-01

    Since olivine is a common early crystallizing phase in basaltic magmas that have produced planetary and asteroidal crusts, a number of experimental studies have investigated elemental partitioning between olivine and silicate melt [e.g., 1, 2, 3]. In particular, olivine/melt partition coefficients of Ni and Co (DNi and DCo) have been intensively studied because these elements are preferentially partitioned into olivine and thus provide a uniquely useful insight into the basalt petrogenesis [e.g., 4, 5]. However, none of these experimental studies are consistent with incompatible signatures of Co [e.g., 6, 7, 8] and Ni [7] in olivines from Martian meteorites. Chemical analyses of undegassed MORB samples suggest that S dissolved in silicate melts can reduce DNi up to 50 % compared to S-free experimental systems [9]. High S solubility (up to 4000 ppm) for primitive shergottite melts [10] implies that S might have significantly influenced the Ni and Co partitioning into shergottite olivines. This study conducts melting experiments on Martian magmatic conditions to investigate the effect of S on the partitioning of siderophile elements between olivine and Martian primary melt.

  9. H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2014-01-01

    Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s.

  10. Transfer of olivine crystallographic orientation through a cycle of serpentinisation and dehydration

    Science.gov (United States)

    Dunkel, Kristina G.; Austrheim, Håkon; Ildefonse, Benoit; Jamtveit, Bjørn

    2017-08-01

    Our ability to decipher the mechanisms behind metamorphic transformation processes depends in a major way on the extent to which crystallographic and microstructural information is transferred from one stage to another. Within the Leka Ophiolite Complex in the Central Norwegian Caledonides, prograde olivine veins that formed by dehydration of serpentinite veins in dunites exhibit a characteristic distribution of microstructures: The outer part of the veins comprises coarse-grained olivine that forms an unusual, brick-like microstructure. The inner part of the veins, surrounding a central fault, is composed of fine-grained olivine. Where the fault movement included a dilational component, optically clear, equant olivine occurs in the centre. Electron backscatter diffraction mapping reveals that the vein olivine has inherited its crystallographic preferred orientation (CPO) from the olivine in the porphyroclastic host rock; however, misorientation is weaker and associated to different rotation axes. We propose that prograde olivine grew epitaxially on relics of mantle olivine and thereby acquired its CPO. Growth towards pre-existing microfractures along which serpentinisation had occurred led to straight grain boundaries and a brick-like microstructure in the veins. When dehydration embrittlement induced slip, a strong strain localisation on discrete fault planes prevented distortion of the CPO due to cataclastic deformation; grain size reduction did not significantly modify the olivine CPO. This illustrates how a CPO can be preserved though an entire metamorphic cycle, including hydration, dehydration, and deformation processes, and that the CPO and the microstructures (e.g. grain shape) of one phase do not necessarily record the same event.

  11. Structure of the chondrules and the chemical composition of olivine in meteorite Jesenice

    Directory of Open Access Journals (Sweden)

    Bojan Ambrožič

    2013-06-01

    Full Text Available This paper presents a mineralogical analysis of various chondrule types and chemical analysis of olivine indifferent parts of meteorite Jesenice. Quantitative energy-dispersive X-ray spectroscopy with a scanning electronmicroscope was used in the analyses. The results showed that the chemical composition of the olivine was homogeneousthroughout the meteorite with an average olivine composition of Fa 26.4 ± 0.6. The results of this study werein agreement with previous study of the meteorite, which showed that the meteorite Jesenice was an equilibratedL chondrite.

  12. Crystal settling and crystal growth of olivine in magmatic differentiation - the Murotomisaki Gabbroic Complex, Shikoku, Japan

    OpenAIRE

    Hoshide, Takashi; Obata, Masaaki; Akatsuka, Takashi

    2006-01-01

    The Murotomisaki Gabbroic Complex is a sill-like layered intrusion of up to 220 m in thickness and is located at Cape Muroto, Kochi Prefecture, Japan. There are several olivine-rich zones within the intrusion, which may have been formed through accumulation of olivine crystals. However, up to now it has not been clear as to whether all of the olivine-rich zones formed in this way. To clarify this, we reinvestigated the layered structure by collecting a consistent data set of modal composition...

  13. The evolution of Neoproterozoic magmatism in Southernmost Brazil: shoshonitic, high-K tholeiitic and silica-saturated, sodic alkaline volcanism in post-collisional basins

    Directory of Open Access Journals (Sweden)

    Sommer Carlos A.

    2006-01-01

    Full Text Available The Neoproterozoic shoshonitic and mildly alkaline bimodal volcanism of Southernmost Brazil is represented by rock assemblages associated to sedimentary successions, deposited in strike-slip basins formed at the post-collisional stages of the Brasilian/Pan-African orogenic cycle. The best-preserved volcano sedimentary associations occur in the Camaquã and Campo Alegre Basins, respectively in the Sul-riograndense and Catarinense Shields and are outside the main shear belts or overlying the unaffected basement areas. These basins are characterized by alternation of volcanic cycles and siliciclastic sedimentation developed dominantly on a continental setting under subaerial conditions. This volcanism and the coeval plutonism evolved from high-K tholeiitic and calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, and its evolution were developed during at least 60 Ma. The compositional variation and evolution of post-collisional magmatism in southern Brazil are interpreted as the result mainly of melting of a heterogeneous mantle source, which includes garnet-phlogopite-bearing peridotites, veined-peridotites with abundant hydrated phases, such as amphibole, apatite and phlogopite, and eventually with the addition of an asthenospheric component. The subduction-related metasomatic character of post-collisional magmatism mantle sources in southern Brazil is put in evidence by Nb-negative anomalies and isotope features typical of EM1 sources.

  14. Geochemical characteristics of aluminum depleted and undepleted komatiites and HREE-enriched low-Ti tholeiites, western Abitibi greenstone belt: A heterogeneous mantle plume-convergent margin environment

    Science.gov (United States)

    Fan, J.; Kerrich, R.

    1997-11-01

    A compositionally diverse suite of komatiites, komatiitic basalts, and basalts coexist in the Tisdale volcanic assemblage of the late-Archean (˜2.7 Ga) Abitibi greenstone belt. The komatiites are characterized by a spectrum of REE patterns, from low total REE contents (9 ppm) and pronounced convex-up patterns to greater total REE (18 ppm) and approximately flat-distributions. Thorium and niobium are codepleted with LREE. Komatiites with the most convex-up patterns have low Al 2O 3 (4.7 wt%) contents and Al 2O 3/TiO 2(12) ratios; they are interpreted to be the Al-depleted variety of komatiite derived from a depleted mantle source. Those komatiites and komatiitic basalts with flatter REE patterns are characterized by greater Al 2O 3 (7.0 wt%) and near chondritic Al 2O 3/TiO 2 (20) ratios; they are interpreted to be Al-undepleted komatiites generated from trace element undepleted mantle. For the komatiites and komatiitic basalts collectively, Gd/Ybn ratios are negatively correlated with La/Smn, but positively with MgO and Ni. The spectrum of patterns is interpreted as mixing between Al, HREE, Y-depleted, and Sc-depleted komatiites and Al-undepleted komatiites in a heterogeneous mantle plume. Auminum-depleted komatiites are characterized by negative Zr and Hf anomalies, consistent with majorite garnet-liquid D's for HFSE and REEs, signifying melt segregation at depths of >400 km. Tisdale Al-undepleted komatiites and komatiitic basalts have small negative to zero Zr(Hf)/MREE fractionation, signifying melt segregation in or above the garnet stability field. Collectively, the komatiites have correlations of Zr/Zr∗ and Hf/Hf ∗ with Gd/Ybn, and hence the Zr(Hf)/MREE fractionations are unlikely to have stemmed from alteration or crustal contamination. Two types of basalts are present. Type I basalts are Mg-tholeiites with near flat REE and primitive mantle normalized patterns, compositionally similar to abundant Mg-tholeiites associated with both Al-undepleted and Al

  15. An Olivine-Rich Crater in Tyrrhena Terra

    Science.gov (United States)

    2008-01-01

    This image of the ejecta of a crater in the Tyrrhena Terra region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0328 UTC on February 23, 2007 (10:28 p.m. EST on February 22, 2007), near 13 degrees south latitude, 67 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The region covered is roughly 9 kilometers (5.6 miles) wide at its narrowest point. Named for a classic albedo feature, Tyrrhena Terra is an extensive, heavily-cratered part of Mars' southern highlands, some 2,300 kilometers (1,430 miles) at its broadest extent. It is located to the northeast of the Hellas basin. The region imaged by CRISM is to the north of Hellas Planitia and just east of the crater Huygens in Tyrrhena Terra's western end. The uppermost image in the montage above reveals the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM image is located inside a large, flat-floored crater measuring about 52 kilometers (32 miles) across. The image includes a small crater and its ejecta blanket, an apron of material thrown out during a crater's formation, both located inside the larger crater. The lower left image is an infrared false-color image that reveals the extent of the ejecta blanket. It also includes ejecta from another small crater located just east of the CRISM image. The lower right image shows the strengths of mineral absorptions, and reveals the composition of the ejecta and surrounding material. The ejecta surrounding the small impact crater is thickest at the crater's rim, and becomes thinner to discontinuous at the blanket's outer edge. This small crater's ejecta blanket shows an enhanced spectral signature of the mineral olivine, as does the ejecta from the small crater just out of view to the east. In contrast the surrounding material is rich in the volcanic mineral

  16. Metastable olivine wedge beneath northeast China and its applications

    Science.gov (United States)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  17. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin; Basaltes de bassin arriere-arc de l`Eocene-Miocene et tholeiites d`arc insulaire associees du nord Sulawesi (Indonesie): implications pour l`evolution geodynamique du bassin des Celebes

    Energy Technology Data Exchange (ETDEWEB)

    Rangin, C. [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Maury, R.C.; Bellon, H.; Cotten, J. [Universite de Bretagne Occidentale, 29 - Brest (France); Polve, M. [Universite Paul Sabatier, 31 - Toulouse (France); Priadi, B.; Soeria-Atmadja, R. [Department of Geology, ITB, Bandung (Indonesia); Joron, J.L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules

    1997-12-31

    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors) 37 refs.

  18. Trace element composition of olivine - implications for the evolution of the olivine gabbro-troctolite-hosted Voisey's Bay Ni-Cu-Co sulfide deposit, Labrador

    Science.gov (United States)

    Bulle, F.; Layne, G. D.

    2011-12-01

    The Mesoproterozoic Voisey's Bay intrusion is part of the Nain Plutonic Suite, which transects the 1.85 Ga collisional boundary between the Proterozoic Churchill Province and the Archean Nain Province in Eastern Labrador. The intrusion comprises a group of troctolitic to olivine gabbroic bodies linked by olivine gabbro dikes; together these rocks host the world-class Voisey's Bay Ni-Cu-Co sulfide deposit. Zones of massive and disseminated sulfide mineralization (Reid Brook, Discovery Hill, Mini-Ovoid and Ovoid) occur within a dike and at the entry line of this dike into a larger intrusion termed the Eastern Deeps [1, 2, 3]. At least two pulses of magma have generated the intrusion and the associated sulfide mineralization; an initial surge that achieved sulfide saturation by interacting with upper crustal rocks, and a later pulse of fresh, undepleted magma that forced the initial magma upwards and both remobilized the immiscible sulfide liquid and upgraded it in metal content [1, 2, 3]. Previous research [1, 2] has shown that the Ni content of olivine from the distinct sulfide-bearing host rocks is highly variable, and also indicative of both magma mixing and interaction of silicate magmas with sulfide. To further validate the significance of the olivine chemistry as a tracer for ore-forming petrological processes, we have determined the abundances of Cr, Mn, Co, Ni, Zn in olivines from the various mafic lithologies of the Eastern Deeps intrusion using Secondary Ion Mass Spectrometry. We present systematic variations in Mn, Co, Ni and Zn with Fo-content in olivines for both sulfide-free and sulfide-bearing zones. Olivines from mineralized and brecciated troctolitic/gabbroic zones display significantly higher Mn (up to 11,000 ppm) and Zn (up to 550 ppm) concentrations than those from nominally barren counterparts. The barren troctolite, broadly termed normal troctolite (NT), is a petrographically homogenous plagioclase and olivine cumulate. However, olivine

  19. Tholeiitic and calc-alkaline magma series at Adatara volcano, northesast Japan. ; Evolution mechanisms and genetic relationship. Tohoku Nippon, Adatara kazan ni okeru soreaito, karuku alkaline magma keiretsu. ; Sono shinka mechanism to seiin kankei

    Energy Technology Data Exchange (ETDEWEB)

    Fujinawa, A. (Ibaraki University, Ibaraki (Japan). Faculty of Science)

    1991-07-15

    In this report, the generation and evolution processes of coexisting low-alkali tholeiitic and calc-alkaline magmas at Adatara volcano is discussed on the basis of petrological data, and a reasonable petrological model is proposed. For the tholeiitic suite, variations of major-, trace- and rare earth-elements and Sr isotopic compositions are explained with the fractional crystallization hypothesis. These are mineralogical observations supporting this hypothesis. In contrast, for calc-alkaline suite, compositional variations of considerable numbers of major-elements and trace-elements are explained with the fractional crystallization model, but wide variations of Ni and Cr, and light REE heavy-REE ratios are inconsistent with this model. It is considered that other processes, such as mixing of magmas, assimilation and gaseous transfer, may have operated as additional processes. Also, mineralogical data are compatible with this view. 62 refs., 8 figs., 2 tabs.

  20. Water in Pyroxene and Olivine from Martian Meteorites

    Science.gov (United States)

    Peslier, A. H.

    2012-01-01

    Water in the interior of terrestrial planets can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) like olivine, pyroxene, or feldspar [1-3]. Although these minerals contain only tens to hundreds of ppm H2O, this water can amount to at least one ocean in mass when added at planetary scales because of the modal dominance of NAM in the mantle and crust [4]. Moreover these trace amounts of water can have drastic effects on melting temperature, rheology, electrical and heat conductivity, and seismic wave attenuation [5]. There is presently a debate on how much water is present in the martian mantle. Secondary ionization mass spectrometry (SIMS) studies of NAM [6], amphiboles and glass in melt inclusions [7-10], and apatites [11, 12] from Martian meteorites report finding as much water as in the same phases from Earth's igneous rocks. Most martian hydrous minerals, however, generally have the relevant sites filled with Cl and F instead of H [13, 14], and experiments using Cl [15] in parent melts can reproduce Martian basalt compositions as well as those with water [16]. We are in the process of analyzing Martian meteorite minerals by Fourier transform infrared spectrometry (FTIR) in order to constrain the role of water in this planet s formation and magmatic evolution

  1. Palisades sill: Origin of the olivine zone by separate magmatic injection rather than gravity settling

    Energy Technology Data Exchange (ETDEWEB)

    Husch, J.M. (Rider College, Lawrenceville, NJ (USA))

    1990-08-01

    The still widely cited view of the Palisades sill, northeastern United States, being differentiated largely by vertically directed olivine-dominated frationation is not supported by available structural, petrographic, and geochemical data. Rather, the sill can be viewed as a sheetlike composite intrusion, possibly made up of multiple magma types common to the Mesozoic eastern North America magmatic province. The famous olivine zone of the Palisades sill may have resulted from a separate late intrusion of olivine-normative magma and not from gravity-controlled, olivine-accumulation processes. Pyroxene-dominated fractionation accounts for much of the vertical and lateral compositional variations in the Palisades sill and other related intrusions from the province.

  2. Palisades sill: Origin of the olivine zone by separate magmatic injection rather than gravity settling

    Science.gov (United States)

    Husch, Jonathan M.

    1990-08-01

    The still widely cited view of the Palisades sill, northeastern United States, being differentiated largely by vertically directed, olivine-dominated fractionation is not supported by available structural, petrographic, and geochemical data. Rather, the sill can be viewed as a sheetlike composite intrusion, possibly made up of multiple magma types common to the Mesozoic eastern North America magmatic province. The famous olivine zone of the Palisades sill may have resulted from a separate late intrusion of olivine-normative magma and not from gravity-controlled, olivine-accumulation processes. Pyroxene-dominated fractionation accounts for much of the vertical and lateral compositional variations in the Palisades sill and other related intrusions from the province.

  3. Olivine-Orthopyroxene Equilibrium in Metal-rich Systems: Applications to Achondrites and Equilibrated Chondrites

    Science.gov (United States)

    Lauretta, D. S.; Benedix, G. K.; McCoy, T. J.

    2003-01-01

    Olivine and orthopyroxene are major minerals in every type of stony meteorite. The majority of achondritic meteorites and silicate-bearing iron meteorites have experienced high temperatures. If these temperatures persisted for an extended period of time then the iron contents of olivine and orthopyroxene should be in equilibrium. In their study of ungrouped clasts and chondritic meteorites, suggested that the equilibrium compositions of olivine and orthopyroxene should fall on a mixing line between LL chondrites and aubrites. Here we show that this is not necessarily the case and that a range of FeO contents in olivine and orthopyroxene can be in equilibrium with each other. The key parameters that determine the equilibrium Fe content in these minerals are temperature, oxygen fugacity (fO2), and silica activity (aSiO2).

  4. Differences in morphological properties between the olivine group minerals formed in natural and industrial processes

    Directory of Open Access Journals (Sweden)

    Dević S.

    2007-01-01

    Full Text Available Olivines are a large isomorphic series of minerals, belonging to silicates group. Regardless of their chemical composition, any of these minerals can be formed both in natural and industrial processes. The aim of this work is to describe these minerals and differences of morphological properties between the olivines formed in nature, and those formed as byproducts of some industrial processes , as Process Metalurgy-Ironmaking. The olivines whose formation is tied to rock masses (natural process and the olivines genetically tied to industrial processes of black metallurgy slags (process metallurgy-Ironmaking are shown in this paper. The morphological properties of these minerals and their differences have been analyzed by optical microscopy in refracted and in reflected light. .

  5. Exsolutions of Diopside and Magnetite in Olivine from Mantle Dunite, Luobusa Ophiolite, Tibet, China

    Institute of Scientific and Technical Information of China (English)

    REN Yufeng; CHEN Fangyuan; YANG Jingsui; GAO Yuanhong

    2008-01-01

    The exsolutions of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (>95%) + chromite (1%-4%) + diopside (<1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angled. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3,9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%-5.27%, which is quite similar to those of amphibole. Diopside is anhedral filling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines,sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and Al and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAl2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na+,Al3+, Ca2+, Fe3+, Cr3+. With temperature

  6. Olivine Microstructures in the Miller Range 99301 (LL6) Ordinary Chondrite

    Science.gov (United States)

    Hutson, M. L.; Hugo, R.; Ruzicka, A. M.; Rubin, A. E.

    2009-03-01

    We used Transmission Electron Microscope (TEM) imaging to examine microstructures in MIL 99301 (LL6) olivine grains in order to understand more fully this meteorite’s deformation and thermal history.

  7. Effect of Mineral Reaction on the Deformation of Plagioclase-Olivine Aggregates

    Science.gov (United States)

    de Ronde, A.; Stünitz, H.; Tullis, J.

    2003-12-01

    There have been many studies that have described the relative timing of deformation and metamorphism in natural rocks, but there are few studies that have analysed the interrelationship of the processes that produce simultaneous deformation and chemical reactions. We studied the physical and microstructural relationships between the processes of deformation and chemical reaction by performing simple shear deformation experiments on plagioclase-olivine aggregates. Our study shows that deformation and reaction processes are strongly related by a mutual positive feedback, and point out possible mechanisms for shear localization in the upper mantle lithosphere during subduction and extension. Shear deformation experiments were carried out on dry plagioclase-olivine mixtures (4-10 μ m grain sizes, +/-50-50 vol.% olivine-plagioclase ratio) in a Griggs apparatus under a constant applied shear strain rate of ˜5*10-5s-1 at 900° C and 1.0-1.6 GPa confining pressures. We have studied the plagioclase-olivine deformation in presence and absence of reaction by choosing plagioclase to be of labradorite (An60) and anorthite (An92) composition. At 1.0-1.6 GPa confining pressures, the anorthite-olivine samples react to spinel-pyroxene bearing assemblages, whereas the labradorite-olivine samples do not. Labradorite and anorthite are expected to have fairly similar deformation behaviour. Effect of reaction on deformation: In the absence of reaction, labradorite-olivine mixtures are so strong at the chosen experimental conditions that they hardly deform plastically. In contrast, anorthite-olivine mixtures deformed at the same temperature and strain rate react during deformation, producing a stress maximum ( ˜375 MPa) followed by a significant stress decrease. Regardless of the chosen confining pressure, reacting samples commonly weaken towards a shear stress of ˜275 MPa. The plagioclase-olivine reaction strongly reduces the grain size of the samples (down to 0.1 μ m), and causes

  8. Multi-stage kimberlite evolution tracked in zoned olivine from the Benfontein sill, South Africa

    Science.gov (United States)

    Howarth, Geoffrey H.; Taylor, Lawrence A.

    2016-10-01

    Olivine is the dominant mineral present in kimberlite magmas; however, due to the volatile-rich nature of most kimberlites, they rarely survive late-stage serpentinisation. Here we present major and trace element data for a rare example of ultra-fresh olivine in a macrocrystic calcite kimberlite from the Benfontein kimberlite sill complex. Olivines are characterised by xenocrystic cores surrounded by multiple growth zones representing melt crystallisation and late-stage equilibration. Two distinct core populations are distinguished: Type 1) low Fo (88-89), Ni-rich, Ca- and Na-rich cores, interpreted here to be the result of carbonate-silicate metasomatism potentially as part of the earliest stages of kimberlite magmatism, and Type 2) high Fo (91-93), Ni-rich, low-Ca cores derived from a typical garnet peridotite mantle source. In both cases, the cores have transitional margins (Fo89-90) representing equilibration with a proto-kimberlite melt. Trace element concentrations, in particular Cr, of these transition zones suggest formation of the proto-kimberlite melt through assimilation of orthopyroxene from the surrounding garnet peridotite lithology. Trace element trends in the surrounding melt-zone olivine (Fo87-90) suggest evolution of the kimberlite through progressive olivine crystallisation. The final stages of olivine growth are represented by Fe-rich (Fo85) and P-rich olivine indicating kimberlite evolution to mafic compositions. Fine (evolution back to Fe-poor carbonatitic melts. We present a step-by-step model for kimberlite magma genesis and evolution from mantle to crust tracked by the chemistry of olivines in the Benfontein kimberlite. These steps include early stages of metasomatism and mantle assimilation followed by direct crystallisation of the kimberlite melt and late-stage equilibration with the evolved carbonatitic residual liquids. The Ca contents of the Type 1 xenocrystic olivines are the highest yet measured for mantle olivines, and do not

  9. Space Weathering of Olivine in Lunar Soils: A Comparison to Itokawa Regolith Samples

    Science.gov (United States)

    Keller, L. P.; Berger, E. L.

    2014-01-01

    Regolith particles from airless bodies preserve a record of the space weathering processes that occurred during their surface exposure history. These processes have major implications for interpreting remote-sensing data from airless bodies. Solar wind irradiation effects occur in the rims of exposed grains, and impact processes result in the accumulation of vapordeposited elements and other surface-adhering materials. The grains returned from the surface of Itokawa by the Hayabusa mission allow the space weathering "style" of a chondritic, asteroidal "soil" to be compared to the lunar case. Here, we present new studies of space-weathered olivine grains from lunar soils, and compare these results to olivine grains from Itokawa. Samples and Methods: We analyzed microtome thin sections of olivine grains from the 20-45 micron fractions of three lunar soils: 71061, 71501 and 10084 (immature, submature and mature, respectively). Imaging and analytical data were obtained using a JEOL 2500SE 200kV field-emission scanning-transmission electron microscope equipped with a thin-window energy-dispersive x-ray spectrometer. Similar analyses were obtained from three Hayabusa olivine grains. Results and Discussion: We observed lunar grains showing a range of solar flare track densities (from olivines all show disordered, highly strained, nanocrystalline rims up to 150-nm thick. The disordered rim thickness is positively correlated with solar flare track density. All of the disordered rims are overlain by a Si-rich amorphous layer, ranging up to 50-nm thick, enriched in elements that are not derived from the host olivine (e.g., Ca, Al, and Ti). The outmost layer represents impact-generated vapor deposits typically observed on other lunar soil grains. The Hayabusa olivine grains show track densities olivines in immature and submature lunar soils and indicate surface exposures of approx. 10(exp 5) years. The outermost few nanometers of the disordered rims on Hayabusa olivines are

  10. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry

    OpenAIRE

    De Hoog, Cees-Jan; Gall, Louise; Cornell, David H.

    2010-01-01

    Trace-element compositions of olivine from 75 mantle rocks of diverse origin, including xenoliths from kimberlites, basaltic lavas and orogenic peridotites, were determined by laser ablation ICP-MS to study systematic variations between mantle lithologies, partitioning mechanisms in olivine and their potential for geothermobarometry and unravelling mantle processes. Samples were selected to cover a wide range of forsterite contents (89.1-93.4), equilibration temperatures and pressures (750-14...

  11. Origin of olivine megacrysts and the groundmass crystallization of the Dar al Gani 476 shergottite

    OpenAIRE

    Koizumi,Eisuke; Mikouchi, Takashi; Monkawa,Akira; Miyamoto,Masamichi

    2004-01-01

    The DaG 476 martian meteorite shows a porphyritic texture with megacrysts of olivine and orthopyroxene set in a groundmass of pyroxene and maskelynite. Previous studies on major and trace elements and isotopes of this meteorite implied a relationship to other martian meteorites. However, the origin of the olivine and orthopyroxene megacrysts is still under dispute, and therefore the formation of DaG 476 is unclear, although this sample is one of the most important martian meteorites. We perfo...

  12. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    Science.gov (United States)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  13. Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites

    Science.gov (United States)

    Libourel, Guy; Chaussidon, Marc

    2011-01-01

    Chondrules are the major high temperature components of chondritic meteorites which accreted a few millions years after the oldest solids of the solar system, the calcium-aluminum-rich inclusions, were condensed from the nebula gas. Chondrules formed during brief heating events by incomplete melting of solid dust precursors in the protoplanetary disk. Petrographic, compositional and isotopic arguments allowed the identification of metal-bearing Mg-rich olivine aggregates among the precursors of magnesian type I chondrules. Two very different settings can be considered for the formation of these Mg-rich olivines: either a nebular setting corresponding mostly to condensation-evaporation processes in the nebular gas or a planetary setting corresponding mostly to differentiation processes in a planetesimal. An ion microprobe survey of Mg-rich olivines of a set of type I chondrules and isolated olivines from unequilibrated ordinary chondrites and carbonaceous chondrites revealed the existence of several modes in the distribution of the ∆17O values and the presence of a large range of mass fractionation (several ‰) within each mode. The chemistry and the oxygen isotopic compositions indicate that Mg-rich olivines are unlikely to be of nebular origin (i.e., solar nebula condensates) but are more likely debris of broken differentiated planetesimals (each of them being characterized by a given ∆17O). Mg-rich olivines could have crystallized from magma ocean-like environments on partially molten planetesimals undergoing metal-silicate differentiation processes. Considering the very old age of chondrules, Mg-rich olivine grains or aggregates might be considered as millimeter-sized fragments from disrupted first-generation differentiated planetesimals. Finally, the finding of only a small number of discrete ∆17O modes for Mg-rich olivines grains or aggregates in a given chondrite suggests that these shattered fragments have not been efficiently mixed in the disk and

  14. The problem of the origin of symplectites in olivine-bearing lunar rocks

    Science.gov (United States)

    Bell, P. M.; Mao, H. K.; Roedder, E.; Weiblen, P. W.

    1975-01-01

    In a study of its origin in olivine-bearing lunar rocks, symplectite is grouped into the following types: (1) very abundant blebs in olivine phenocrysts, (2) scattered blebs in dunite, (3) scattered elongated masses along grain boundaries in troctolite, (4) scattered mosaic assemblages of coarser minerology along grain boundaries, (5) very abundant needle-like arrays, and (6) very abundant grains dispersed in rows. Four theories are proposed to explain the various symplectite distributions.

  15. Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt

    CERN Document Server

    de Vries, B L; Blommaert, J A D L; Waelkens, C; Waters, L B F M; Vandenbussche, B; Min, M; Olofsson, G; Dominik, C; Decin, L; Barlow, M J; Brandeker, A; Di Francesco, J; Glauser, A M; Greaves, J; Harvey, P M; Holland, W S; Ivison, R J; Liseau, R; Pantin, E E; Pilbratt, G L; Royer, P; Sibthorpe, B; 10.1038/nature11469

    2012-01-01

    Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals has been done for the protoplanetary disk HD100546 and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x<0.29). In the cold outskirts of the Beta Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of Beta Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper b...

  16. Synthesis of crystallographically oriented olivine aggregates using colloidal processing in a strong magnetic field

    Science.gov (United States)

    Koizumi, Sanae; Suzuki, Tohru S.; Sakka, Yoshio; Yabe, Kosuke; Hiraga, Takehiko

    2016-11-01

    This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained ( 120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold covered with a solid-liquid separation filter during drainage of the solvent. The resultant aligned consolidated aggregate is then isostatically pressed and vacuum sintered. We find that (1) preparation of fully reacted olivine particles, with less propensity to coalesce; (2) preparation of a suspension with highly dispersed particles; and (3) application of a certain strength of the magnetic field are essential to obtain well-sintered and well-aligned aggregates. High density (i.e., olivine aggregates were successfully synthesized with uniaxially aligned a- and c-axes, respectively. Attempts to uniaxially align the magnetization hard axis and to triaxially align Fe-bearing olivine by rotating the suspension in the magnetic field succeeded in obtaining weakly developed CPO aggregates.

  17. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle.

    Science.gov (United States)

    Cordier, Patrick; Demouchy, Sylvie; Beausir, Benoît; Taupin, Vincent; Barou, Fabrice; Fressengeas, Claude

    2014-03-06

    Mantle flow involves large strains of polymineral aggregates. The strongly anisotropic plastic response of each individual grain in the aggregate results from the interactions between neighbouring grains and the continuity of material displacement across the grain boundaries. Orthorhombic olivine, which is the dominant mineral phase of the Earth's upper mantle, does not exhibit enough slip systems to accommodate a general deformation state by intracrystalline slip without inducing damage. Here we show that a more general description of the deformation process that includes the motion of rotational defects referred to as disclinations can solve the olivine deformation paradox. We use high-resolution electron backscattering diffraction (EBSD) maps of deformed olivine aggregates to resolve the disclinations. The disclinations are found to decorate grain boundaries in olivine samples deformed experimentally and in nature. We present a disclination-based model of a high-angle tilt boundary in olivine, which demonstrates that an applied shear induces grain-boundary migration through disclination motion. This new approach clarifies grain-boundary-mediated plasticity in polycrystalline aggregates. By providing the missing mechanism for describing plastic flow in olivine, this work will permit multiscale modelling of the rheology of the upper mantle, from the atomic scale to the scale of the flow.

  18. The aluminum-in-olivine thermometer for mantle peridotites - Experimental versus empirical calibration and potential applications

    Science.gov (United States)

    Bussweiler, Y.; Brey, G. P.; Pearson, D. G.; Stachel, T.; Stern, R. A.; Hardman, M. F.; Kjarsgaard, B. A.; Jackson, S. E.

    2017-02-01

    This study provides an experimental calibration of the empirical Al-in-olivine thermometer for mantle peridotites proposed by De Hoog et al. (2010). We report Al concentrations measured by secondary ion mass spectrometry (SIMS) in olivines produced in the original high-pressure, high-temperature, four-phase lherzolite experiments by Brey et al. (1990). These reversed experiments were used for the calibration of the two-pyroxene thermometer and Al-in-orthopyroxene barometer by Brey and Köhler (1990). The experimental conditions of the runs investigated here range from 28 to 60 kbar and 1000 to 1300 °C. Olivine compositions from this range of experiments have Al concentrations that are consistent, within analytical uncertainties, with those predicted by the empirical calibration of the Al-in-olivine thermometer for mantle peridotites. Fitting the experimental data to a thermometer equation, using the least squares method, results in the expression: This version of the Al-in-olivine thermometer appears to be applicable to garnet peridotites (lherzolites and harzburgites) well outside the range of experimental conditions investigated here. However, the thermometer is not applicable to spinel-bearing peridotites. We provide new trace element criteria to distinguish between olivine from garnet-, garnet-spinel-, and spinel-facies peridotites. The estimated accuracy of the thermometer is ± 20 °C. Thus, the thermometer could serve as a useful tool in settings where two-pyroxene thermometry cannot be applied, such as garnet harzburgites and single inclusions in diamond.

  19. Relict Olivines in Micrometeorites: Precursors and Interactions in the Earth’s Atmosphere

    Science.gov (United States)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Fernandes, D.; Plane, J. M. C.; Feng, W.; Taylor, S.; Carrillo-Sánchez, J. D.

    2016-11-01

    Antarctica micrometeorites (˜1200) and cosmic spherules (˜5000) from deep sea sediments are studied using electron microscopy to identify Mg-rich olivine grains in order to determine the nature of the particle precursors. Mg-rich olivine (FeO grains enclosed in 162 micrometeorites of different types—unmelted, scoriaceous, and porphyritic—in this study. Forsterites in micrometeorites of different types are crystallized during their formation in solar nebula; their closest analogues are chondrule components of CV-type chondrites or volatile rich CM chondrites. The forsteritic olivines are suggested to have originated from a cluster of closely related carbonaceous asteroids that have Mg-rich olivines in the narrow range of CaO (0.1-0.3wt%), Al2O3 (0.0-0.3wt%), MnO (0.0-0.3wt%), and Cr2O3 (0.1-0.7wt%). Numerical simulations carried out with the Chemical Ablation Model (CABMOD) enable us to define the physical conditions of atmospheric entry that preserve the original compositions of the Mg-rich olivines in these particles. The chemical compositions of relict olivines affirm the role of heating at peak temperatures and the cooling rates of the micrometeorites. This modeling approach provides a foundation for understanding the ablation of the particles and the circumstances in which the relict grains tend to survive.

  20. Chemical profiles along olivine crystallographic axes: a record of the melt-rock interaction sequence forming Hole U1309D Olivine-rich troctolites (Atlantis Massif, MAR, 30°N)

    Science.gov (United States)

    Ferrando, Carlotta; Godard, Marguerite; Ildefonse, Benoit; Rampone, Elisabetta

    2017-04-01

    The gabbroic section drilled at IODP Hole U1309D (Mid-Atlantic Ridge, IODP Expeditions 304, 305) comprises a whole range of modes from primitive olivine-rich troctolites to evolved gabbros. These series occur as discrete alternating intervals of variable composition and thickness at different depths. High MgO contents and a relatively large proportion of olivine-rich lithologies (up to 90% modal olivine) characterize this gabbroic section. Contacts between olivine-rich troctolites and neighboring coarse grained olivine gabbros are sharp, with the exception of the contacts between olivine-rich intervals and cross-cutting gabbroic veins, which are diffuse and characterized by progressive variations in plagioclase content. Olivine-rich troctolites are heterogeneously distributed along the borehole and show variable modal composition: centimeter to decimeter scale dunitic (90% olivine), troctolitic (enriched in plagioclase) and wehrlitic (enriched in clinopyroxene) domains were identified. Previous in-situ trace element geochemistry and crystallographic preferred orientation measurements of olivine-rich troctolites indicated that they record extensive melt impregnation of pre-existing olivine-rich material, either mantle rocks or dunitic cumulate. We performed a detailed multi-scale petro-structural and geochemical study on selected samples of well-preserved olivine-rich troctolites with the aim to unravel the sequence of re-equilibration processes and better constrain the local conditions driving the formation of these rocks. Processed EBSD maps show variable textures at single sample scale. All identified domains are characterized by coarse grained and deformed olivines, and small rounded undeformed olivines. Coarse grained and small rounded olivines have the same major and trace element compositions. Small olivines are interpreted as relicts after dissolution of coarse grained olivines. Clinopyroxene, plagioclase, and minor orthopyroxene are present as interstitial

  1. Magmatic sulfide-rich nickel-copper deposits related to picrite and (or) tholeiitic basalt dike-sill complexes-A preliminary deposit model

    Science.gov (United States)

    Schulz, Klaus J.; Chandler, Val W.; Nicholson, Suzanne W.; Piatak, Nadine M.; Seal, Robert R., II; Woodruff, Laurel G.; Zientek, Michael L.

    2010-01-01

    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (?) platinum-group elements (PGEs), account for approximately 60 percent of the world's Ni production and are active exploration targets in the United States and elsewhere. On the basis of their principal metal production, magmatic sulfide deposits in mafic rocks can be divided into two major types: those that are sulfide-rich, typically with 10 to 90 percent sulfide minerals, and have economic value primarily because of their Ni and Cu contents; and those that are sulfide-poor, typically with 0.5 to 5 percent sulfide minerals, and are exploited principally for PGE. Because the purpose of this deposit model is to facilitate the assessment for undiscovered, potentially economic magmatic Ni-Cu?PGE sulfide deposits in the United States, it addresses only those deposits of economic significance that are likely to occur in the United States on the basis of known geology. Thus, this model focuses on deposits hosted by small- to medium-sized mafic and (or) ultramafic dikes and sills that are related to picrite and tholeiitic basalt magmatic systems generally emplaced in continental settings as a component of large igneous provinces (LIPs). World-class examples (those containing greater than 1 million tons Ni) of this deposit type include deposits at Noril'sk-Talnakh (Russia), Jinchuan (China), Pechenga (Russia), Voisey's Bay (Canada), and Kabanga (Tanzania). In the United States, this deposit type is represented by the Eagle deposit in northern Michigan, currently under development by Kennecott Minerals.

  2. Robust 24 ± 6 ka 40Ar/39Ar age of a low-potassium tholeiitic basalt in the Lassen region of NE California

    Science.gov (United States)

    Turrin, Brent D.; Muffler, L. J. Patrick; Clynne, Michael A.; Champion, Duane E.

    2007-01-01

    40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.

  3. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    Science.gov (United States)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  4. Olivine-type nanosheets for lithium ion battery cathodes.

    Science.gov (United States)

    Rui, Xianhong; Zhao, Xiaoxu; Lu, Ziyang; Tan, Huiteng; Sim, Daohao; Hng, Huey Hoon; Yazami, Rachid; Lim, Tuti Mariana; Yan, Qingyu

    2013-06-25

    Olivine-type LiMPO4 (M = Fe, Mn, Co, Ni) has become of great interest as cathodes for next-generation high-power lithium-ion batteries. Nevertheless, this family of compounds suffers from poor electronic conductivities and sluggish lithium diffusion in the [010] direction. Here, we develop a liquid-phase exfoliation approach combined with a solvothermal lithiation process in high-pressure high-temperature (HPHT) supercritical fluids for the fabrication of ultrathin LiMPO4 nanosheets (thickness: 3.7-4.6 nm) with exposed (010) surface facets. Importantly, the HPHT solvothermal lithiation could produce monodisperse nanosheets while the traditional high-temperature calcination, which is necessary for cathode materials based on high-quality crystals, leads the formation of large grains and aggregation of the nanosheets. The as-synthesized nanosheets have features of high contact area with the electrolyte and fast lithium transport (time diffusion constant in at the microsecond level). The estimated diffusion time for Li(+) to diffuse over a [010]-thickness of <5 nm (L) was calculated to be less than 25, 2.5, and 250 μs for LiFePO4, LiMnPO4, and LiCoPO4 nanosheets, respectively, via the equation of t = L(2)/D. These values are about 5 orders of magnitude lower than the corresponding bulk materials. This results in high energy densities and excellent rate capabilities (e.g., 18 kW kg(-1) and 90 Wh kg(-1) at a 80 C rate for LiFePO4 nanosheets).

  5. Laboratory measurements of the viscous anisotropy of olivine aggregates.

    Science.gov (United States)

    Hansen, L N; Zimmerman, M E; Kohlstedt, D L

    2012-12-20

    A marked anisotropy in viscosity develops in Earth's mantle as deformation strongly aligns the crystallographic axes of the individual grains that comprise the rocks. On the basis of geodynamic simulations, processes significantly affected by viscous anisotropy include post-glacial rebound, foundering of lithosphere and melt production above subduction zones. However, an estimate of the magnitude of viscous anisotropy based on the results of deformation experiments on single crystals differs by three orders of magnitude from that obtained by grain-scale numerical models of deforming aggregates with strong crystallographic alignment. Complicating matters, recent experiments indicate that deformation of the uppermost mantle is dominated by dislocation-accommodated grain-boundary sliding, a mechanism not activated in experiments on single crystals and not included in numerical models. Here, using direct measurements of the viscous anisotropy of highly deformed polycrystalline olivine, we demonstrate a significant directional dependence of viscosity. Specifically, shear viscosities measured in high-strain torsion experiments are 15 times smaller than normal viscosities measured in subsequent tension tests performed parallel to the torsion axis. This anisotropy is approximately an order of magnitude larger than that predicted by grain-scale simulations. These results indicate that dislocation-accommodated grain-boundary sliding produces an appreciable anisotropy in rock viscosity. We propose that crystallographic alignment imparts viscous anisotropy because the rate of deformation is limited by the movement of dislocations through the interiors of the crystallographically aligned grains. The maximum degree of anisotropy is reached at geologically low shear strain (of about ten) such that deforming regions of the upper mantle will exhibit significant viscous anisotropy.

  6. Power law olivine crystal size distributions in lithospheric mantle xenoliths

    Science.gov (United States)

    Armienti, P.; Tarquini, S.

    2002-12-01

    Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.

  7. Synthesis and structural characterization of manganese olivine lithium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Robles, Joel O. [Basic Science Department, IIT, Universidad Autónoma de Ciudad Juárez, Av. del Charro 460 norte Cd. Juárez, Chih. C.P. 32310 (Mexico); Fuentes Cobas, Luis E. [Centro de Investigación en Materiales Avanzados CIMAV, Complejo Industrial, M. Cervantes 120, Chihuahua C.P. 31109 (Mexico); Díaz de la Torre, Sebastián [Instituto Politécnico Nacional, Centro de Investigación e Innovación Tecnológica CIITEC, Azcapotzalco, México, D.F. C.P. 02250 (Mexico); Camacho Montes, Héctor, E-mail: hcamacho@uacj.mx [Basic Science Department, IIT, Universidad Autónoma de Ciudad Juárez, Av. del Charro 460 norte Cd. Juárez, Chih. C.P. 32310 (Mexico); Elizalde Galindo, José T.; García Casillas, Perla E.; Rodríguez González, Claudia A. [Basic Science Department, IIT, Universidad Autónoma de Ciudad Juárez, Av. del Charro 460 norte Cd. Juárez, Chih. C.P. 32310 (Mexico); Álvarez Contreras, Lorena [Centro de Investigación en Materiales Avanzados CIMAV, Complejo Industrial, M. Cervantes 120, Chihuahua C.P. 31109 (Mexico)

    2015-09-15

    Highlights: • LiMnPO{sub 4} was obtained by sol gel method and crystallization in reducing atmosphere. • Magnetic and electric properties are reported for LiMnPO{sub 4}. • Electrochemical properties are also found and enhanced by adding carbon. • SEM and HRTEM show the submicron powder nature. • The multifunctional behavior of LiMnPO{sub 4} is experimentally demonstrated. - Abstract: The manganese olivine lithium phosphate is a multifunctional material. If carbon is added to form a composite LiMnPO{sub 4}–C, electrochemical properties can be enhanced, making this material a good candidate for battery cathode. High magnetic susceptibility is reported for this compound at room temperature. In this work, the magnetic response was measured through a Field Cooling/Zero Field Cooling technique at temperature below 100 K. Weak ferroelectric properties at room temperature were measured. Even though, the promising applications and the interesting properties of this system, the attention received in the literature is relatively low. The synthesis of this material is difficult because of the rapid manganese oxidation and the need of a reducing atmosphere. In fact, only few authors report the synthesis of the pure phase. In the present work, nanostructured LiMnPO{sub 4} is obtained by sol gel chemical method and according to X-ray diffraction patterns, pure LiMnPO{sub 4} is obtained after calcination in a reducing atmosphere (10% H{sub 2} – 90% Ar). Nanostructured LiMnPO{sub 4} is a material with very interesting properties that deserves attentions.

  8. Reaction rim growth on olivine in silicic melts: Implications for magma mixing

    Science.gov (United States)

    Coombs, Michelle L.; Gardner, James E.

    2004-01-01

    Finely crystalline amphibole or pyroxene rims that form during reaction between silicic host melt and cognate olivine xenocrysts, newly introduced during magma mixing events, can provide information about the timing between mixing and volcanic eruptions. We investigated rim growth experimentally by placing forsteritic olivine in rhyolitic and rhyodacitic melts for times between 25 and 622 h at 50 and 150 MPa, H2O-saturated, at the Ni-NiO buffer. Rims of orthopyroxene microlites formed from high-silica rhyolite and rhyodacite melts at 885°C and 50 MPa, and in the rhyolite at 150 MPa and 885°C. Rims of amphibole with lesser orthopyroxene formed in the rhyolite at 150 MPa and 800°C and in the rhyodacite at 150 MPa and 885°C. Irregular, convolute olivine edges and mass balance between olivine, melt, and rim phases show that olivine partly dissolved at all conditions. Iron-rich zones at the exteriors of olivines, which increased in width parabolically with time, show that Fe-Mg interdiffusion occurring in olivines was not outpaced by olivine dissolution. Linear increases of the square of rim widths with time suggest that diffusion within the melt is the rate-controlling process for olivine dissolution and rim growth. Rims grew one-half to one order-of-magnitude faster when melt water contents were doubled, unless conditions were far above the liquidus. Rim growth rate in rhyolite increases from 0.055 ± 0.01 µm2/h at 885°C and 50 MPa to 0.64 ± 0.13 µm2/h at 800°C and 150 MPa. Melt composition has a lesser effect on rim growth rates, with growth rate increasing as melt SiO2 content decreases. Pyroxene rims on olivines in andesite erupted from Arenal volcano (Costa Rica) grew at a rate of 3.0 ± 0.2 µm2/h over an eleven-year period. This rate is faster than those of the experiments due to lower melt viscosity and higher temperatures, and suggests that a magma mixing event preceded the start of the eruption by days.

  9. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    Science.gov (United States)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  10. Melt/rock reaction at oceanic peridotite/gabbro transition as revealed by trace element chemistry of olivine

    Science.gov (United States)

    Rampone, Elisabetta; Borghini, Giulio; Godard, Marguerite; Ildefonse, Benoit; Crispini, Laura; Fumagalli, Patrizia

    2016-10-01

    Several recent studies have documented that reactions between melt and crystal mush in primitive gabbroic rocks (via reactive porous flow) have an important control in the formation of the lower oceanic crust and the evolution of MORBs. In this context, olivine-rich rocks can form either by fractional crystallization of primitive melts or by open system reactive percolation of pre-existing (possibly mantle-derived) olivine matrix. To address this question, we performed in-situ trace element analyses (by LA-ICP-MS) of olivine from the Erro-Tobbio ophiolite Unit (Ligurian Alps), where mantle peridotites show gradational contacts with an hectometer-scale body of troctolites and plagioclase wehrlites, and both are cut by later decameter-wide lenses and dykes of olivine gabbros. Previous studies inferred that troctolites and olivine gabbros represent variably differentiated crystallization products from primitive MORB-type melts. Olivines in the three rock types (mantle peridotites, troctolites, olivine gabbros) exhibit distinct geochemical signature and well-defined elemental correlations. As expected, compatible elements (e.g. Ni) show the highest concentrations in peridotites (2580-2730 ppm), intermediate in troctolites (2050-2230 ppm) and lowest in gabbros (1355-1420 ppm), whereas moderate incompatible elements (e.g. Mn, Zn) show the opposite behaviour. By contrast, highly incompatible elements like Zr, Hf, Ti, HREE are variably enriched in olivines of troctolites, and the enrichment in absolute concentrations is coupled to development of significant HFSE/REE fractionation (ZrN/NdN up to 80). AFC modelling shows that such large ZrN/NdN ratios in olivines are consistent with a process of olivine assimilation and plagioclase crystallization at decreasing melt mass, in agreement with textural observations. In-situ trace element geochemistry of olivine, combined with microstructural investigations, thus appears a powerful tool to investigate reactive percolation and the

  11. In situ SIMS oxygen isotope analysis of olivine in the Tibetan mantle xenoliths

    Science.gov (United States)

    Zhao, Zhidan; Zhu, Di-Cheng; Liu, Dong; Mo, Xuanxue

    2016-04-01

    Although the mantle-derived xenoliths from Lhasa terrane provide a means of directly investigating the mantle underlying the southern part of the plateau, they were rarely found in the region. The only case of mantle xenoliths came from the Sailipu ultrapotassic volcanic rocks, erupted at ˜17 Ma, which have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). A further study by Liu et al.(2014) of in-situ oxygen isotope of olivine crystals in Sailipu mantle xenoliths identify a metasomatized mantle reservoir that interpreted as the sub-arc lithospheric mantle, with anomalously enriched oxygen isotopes (δ18O=8.03). Here we present oxygen isotopes data on the Sailipu mantle xenolith olivines, using different method of sample preparation. Mantle xenoliths (less than 1 cm in diameter) together originally with their host volcanic rocks were prepared in epoxy adjacent to grains of a San Carlos olivine intralaboratory standard and then polished to a flat and smooth surface. Oxygen isotope compositions of olivines occurs both in mantle xenolith and as phenocryst in the host rock, were analyzed in situ using CAMECA SIMS-1280 ion microprobe at the Institute of Geology and Geophysics, Chinese Academy of Sciences. We also performed traditional oxygen isotope analysis on three olivine phenocrysts separates from the host lava. Our new data show: (1) The mantle xenolith olivines have typical mantle oxygen isotopic composition (δ18O=4.8-8.0‰ with average of 5.5±0.2‰ n=105) with variety Fo#(78-90), (2) Oxygen isotopes of situ olivine phenocrysts in the Sailipu lavas (δ18O=7.1-9.2‰ Fo#=70-84, n=66), are similar to that of the whole rock (δ18O=7.0-9.4‰ Fo#=64-74, n=8, Zhao et al., 2009), and three olivine phenocryst grains (δ18O=7.2-7.8); (3) The intralaboratory standard of San Carlos olivine can be a suitable standard using for analyzing olivines with Fo not only

  12. Shock-induced fine-grained recrystallization of olivine - Evidence against subsolidus reduction of Fe/2+/

    Science.gov (United States)

    Ahrens, T. J.; Tsay, F.-D.; Live, D. H.

    1976-01-01

    Electron spin resonance (ESR) studies have been carried out on three single grains of terrestrial olivine (Fo90) shock loaded along the 010 line to peak pressures of 280, 330, and 440 kbar. The results indicate that neither metallic Fe similar to that observed in returned lunar soils nor paramagnetic Fe(3+) caused by oxidation of Fe(2+) has been produced in these shock experiments. Trace amounts of Mn (2+) have been detected in both shocked and unshocked olivine. The ESR signals of Mn(2+) show spectral features which are found to correlate with the degree of shock-induced recrystallization observed petrographically. The increasing mass fraction of recrystallized olivine correlates with increasing shock pressures. This phenomenon is modelled assuming it results from the progressive effect of the shock-induced transformation of the olivine to a yet unknown high-pressure phase and its subsequent reversion to the low-pressure olivine phase. The mass fraction of recrystallized material is predicted to be nearly linear with shock pressure.

  13. Exsolution of ilmenite and Cr-Ti magnetite from olivine of garnet-wehrlite

    Institute of Scientific and Technical Information of China (English)

    LIU; Xiangwen; JIN; Zhenmin; QU; Jing

    2005-01-01

    Exsolution of rod-like ilmenite (Ilm) and Cr-Ti magnetite (Mt) have been found in olivine of garnet-wehrlite from the core of Chinese Continental Sciences Drilling (CCSD). Their composition, morphology, crystal structure and their topotaxies with host olivine have been studied in detail by the transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) technique. It shows that rod-like Ilm exsolution reported in this paper has similar characteristic with that of Alpe Arami olivine, while Cr-Ti magnetite exsolution mentioned in this paper has large discrepancy with chromite exsolution in Alpe Arami olivine. These observations suggest that both of the exsolutions found in this paper should be solid solution phases in β-olivine at their first period, then experiencing decomposition of solid solution and therefore forming Ilm and Cr-Ti magnetite exsolution with the pressure decreasing. So, this garnet-wehrlite perhaps had been ever located in mantle transition zone with a minimum depth of 300 km.

  14. Geometrical track parameters in the pallasite olivine: Identification of the cosmic ray heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, Moscow 119991 (Russian Federation)], E-mail: cosmo@geokhi.ru; Polukhina, N.G.; Starkov, N.I. [Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, Moscow 119991 (Russian Federation); Kalinina, G.V.; Ivliev, A. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, Moscow 119991 (Russian Federation); Aleksandrov, A.B.; Goncharova, L.A.; Tarasova, I. Yu. [Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, Moscow 119991 (Russian Federation)

    2008-08-15

    The geometry characteristics of chemically etched tracks in the not annealed olivine crystals from pallasite meteorites are investigated with the search and identification goal of fossil tracks of galactic cosmic ray heavy and superheavy nuclei. The chosen methodology is based on precise measurements of the nucleus track parameters in the course of chemical etching of the olivine crystals. Geometric parameters of individual tracks are traced and measured in course of their step-by-step chemical etching by using a modern high-precision, completely automated facility PAVICOM designed at the Lebedev Physical Institute of Russian Academy of Sciences. A method of the layer-by-layer removal of olivine material is employed, which allows the tracks to be studied over the whole crystal volume under study. It is planned to measure the next main parameters: the cone length and diameters of etched track within the initial, high-energy section of its formation; the total residual range and diameters, corresponding to saturation zone of the primary ionization; and the etching rate along the different parts of tracks, the starting inter-volume olivine crystal point for which were fixed. The preliminary experimental results obtained for 42 tracks, detected and analyzed in the Marjalahti pallasite olivine crystals, are presented.

  15. A High Voltage Olivine Cathode for Application in Lithium-Ion Batteries.

    Science.gov (United States)

    Di Lecce, Daniele; Brescia, Rosaria; Scarpellini, Alice; Prato, Mirko; Hassoun, Jusef

    2016-01-01

    A new olivine composition (i.e., LiFe0.25 Mn0.5 Co0.25 PO4) is proposed as electrode material with increased energy density for application in lithium-ion batteries. The new formulation increases the working voltage and induces different electrochemical behavior with respect to bare olivine materials based on Fe. The study provides deep insight into the features of the Fe(3+) /Fe(2+), Mn(3+)/Mn(2+), and Co(3+)/Co(2+) redox couples within the olivine lattice in terms of electrochemical activity, Li(+) transport properties, and Li-cell behavior. The electrochemical characterization clearly reveals the voltage signatures corresponding to the various metals; however, the Mn(3+)/Mn(2+) process has higher intrinsic polarization with respect to Fe(3+)/Fe(2+) and Co(3+)/Co(2+). This issue is efficiently mitigated by carbon coating the material, resulting in enhanced electrochemical performances.

  16. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing.

    Science.gov (United States)

    Idrissi, Hosni; Bollinger, Caroline; Boioli, Francesca; Schryvers, Dominique; Cordier, Patrick

    2016-03-01

    The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.

  17. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of springwater pallasite

    Science.gov (United States)

    Zhou, Y.; Steele, Ian M.

    1993-01-01

    The pallasites, consisting mainly of Fe-Ni metal and olivine, are thought to represent the interior of a planetary body which slowly cooled from high temperature. Although the olivines are nearly homogeneous, ion microprobe studies revealed variations of Ca, Ti, Co, Cr, and Ni near grain edges. These variations were thought to represent diffusion in response to falling temperature of the parent body. Pallasite cooling rates have been estimated based on kamacite taenite textures but results differ by x100. In principle elemental profiles in olivine can allow estimates of cooling rate if diffusion coefficients are known; in addition, given a cooling rate, diffusion coefficients could be derived. Data are presented which show that apparent diffusion profiles can be measured for Al, Ca, Cr, and Mn which qualitatively agree with expected diffusion rates and have the potential of providing independent estimates of pallasite cooling rates.

  18. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides

    Science.gov (United States)

    Singer, R. B.

    1981-01-01

    Near-infrared spectral reflectance data are presented for systematic variations in weight percent of two component mixtures of ferromagnesium and iron oxide minerals used to study the dark materials on Mars. Olivine spectral features are greatly reduced in contrast by admixture of other phases but remain distinctive even for low olivine contents. Clinopyroxene and orthopyroxene mixtures show resolved pyroxene absorptions near 2 microns. Limonite greatly modifies pyroxene and olivine reflectance, but does not fully eliminate distinctive spectral characteristics. Using only spectral data in the 1 micron region, it is difficult to differentiate orthopyroxene and limonite in a mixture. All composite mineral absorptions were either weaker than or intermediate in strength to the end-member absorptions and have bandwidths greater than or equal to those for the end members. In general, spectral properties in an intimate mixture combine in a complex, nonadditive manner, with features demonstrating a regular but usually nonlinear variation as a function of end-member phase proportions.

  19. Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo

    2017-07-27

    Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm(3) of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm(3) of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017. Published by Elsevier Ltd.

  20. Beryllium diffusion in olivine: A new tool to investigate timescales of magmatic processes

    Science.gov (United States)

    Jollands, Michael C.; Burnham, Antony D.; O'Neill, Hugh St. C.; Hermann, Joerg; Qian, Qing

    2016-09-01

    The diffusion of beryllium (Be) in pure synthetic forsterite (fo100) and San Carlos olivine (fo90) was studied between 950-1475 °C at atmospheric pressure, as a function of silica activity (aSiO2), crystallographic orientation, oxygen fugacity (fO2, for diffusion in San Carlos olivine) and water fugacity (fH2O, at 1.15 GPa pressure (P)). The diffusivity of Be in olivine is faster than that of Mg2+ or Fe2+ but slower than that of H+, and appears to be insensitive to aSiO2, fH2O and P, but is highly anisotropic, with diffusivities described by:

  1. Peridotite hosted chromite, magnesite and olivine deposits of West Anatolia: A review

    Science.gov (United States)

    Zedef, Veysel

    2016-04-01

    Turkey has important chromite, magnesite and olivine deposits within peridotite host rocks. The peridotites (harzburgite, verlite, lherzolite and dunite) are mostly serpentinised as a result of metasomatic reaction of olivine and pyroxene minerals with percolating water. The serpentinites are generally an important part of ophiolitic complexes which displays a discontinuous belts all over the country. The chromite deposits are often related to cumulates and tectonites (as Alpine and/or podiform type deposits) and despite their small reserves, their grade can reach up to 58 %. In most deposits, a little enrichment efforts, the grade of chromite can easily be reached from 25 % to 40-45 %. The magnesite deposits of West Anatolia is especially concentrated in three provinces. These provinces are Konya, Kutahya and Eskisehir. The magnesites are of cryptocrystalline type and, like chromite deposits, their reserve are small but have high grade with low FeO-CaO and high MgO ratio. Once again, these deposits are found within serpentinised peridotites of ultramafic belts. The total (proven and inferred) magnesite reserves are approximately 200 million tons, and these are mostly cryptocrystalline character. A small amount of sedimentary magnesite deposits also present in Denizli (SW Anatolia) and Erzincan (Eastern Anatolia). The olivine deposits are found within peridotites of Western Anatolia. Especially, the Kızıldag olivine deposits (located between the border of Antalya and Konya provinces) are noteworthy with its huge (9 billion tons) reserves. The main olivine mineral is forsterite (Mg2SiO4) which has economically important when compared to other olivine mineral fayalite. The deposits have no quality problem but have a serious disadvantages since its location far from the ports and railway stations.

  2. Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars

    Science.gov (United States)

    Edwards, C. S.; Christensen, P. R.; Hamilton, V. E.

    2008-11-01

    Several localized outcrops of olivine-enriched bedrock have been previously identified in the Ganges and Eos Chasma area on the eastern end of Valles Marineris with the Thermal Emission Imaging System multispectral images. These outcrops form a layer in the walls of Ganges Chasma and appear to be the remnants of a once continuous unit, which was mapped over ~100 km. In this study we further characterize the composition (forsterite content of ~0.68), olivine abundance (10 to >15%), thermal inertia (>600 JK-1 m-2 s-1/2, consistent with in-place rocky material), vertical dimension (~60 to ~220 m), extent (>1100 km laterally), volume (~9.9 × 104 km3), dip (~0.013°NE), and continuity of this layer utilizing Thermal Emission Spectrometer hyperspectral, Thermal Emission Imaging System multispectral, and Mars Orbiter Laser Altimeter elevation data. Morphologic data from high-resolution imagery display a relatively unmantled, rough, and pitted surface associated with the olivine-enriched material, consistent with thermal inertia data. Four possibilities for the origin of the olivine-enriched unit are (1) volcanism associated with tectonic rifting of the Valles Marineris system, (2) a volcaniclastic flow deposit, (3) an intrusive mafic sill, or (4) a discrete episode in Martian history during which flood lavas were erupted onto the surface. The most likely origin is an eruptive event consisting of compositionally uniform flood lavas originating from a primitive mantle source region, possibly associated with the initiation of Tharsis volcanism. This unit is one of the largest continuous compositional units found on Mars and is strikingly similar to other olivine-enriched deposits identified in previous studies where compositional, morphologic, and thermophysical similarities are observed. These similarities may indicate that there was a period in early Martian history, where compositionally uniform and extensive olivine-enriched flood basalts were erupted on the Martian

  3. Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt.

    Science.gov (United States)

    de Vries, B L; Acke, B; Blommaert, J A D L; Waelkens, C; Waters, L B F M; Vandenbussche, B; Min, M; Olofsson, G; Dominik, C; Decin, L; Barlow, M J; Brandeker, A; Di Francesco, J; Glauser, A M; Greaves, J; Harvey, P M; Holland, W S; Ivison, R J; Liseau, R; Pantin, E E; Pilbratt, G L; Royer, P; Sibthorpe, B

    2012-10-04

    Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids (x ≈ 0.29). In the cold outskirts of the β Pictoris system, an analogue to the young Solar System, olivine crystals were detected but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets. Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of β Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 ± 0.001) and show that they make up 3.6 ± 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System, even though β Pictoris is more massive and more luminous and has a different planetary system architecture.

  4. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    Science.gov (United States)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial

  5. First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths.

    Science.gov (United States)

    Korsakov, Andrey V; Golovin, Alexander V; De Gussem, Kris; Sharygin, Igor S; Vandenabeele, Peter

    2009-08-01

    For the first time burkeite was observed as a daughter phase in the melt inclusions in olivine by Raman spectroscopy. The olivine comes from sheared lherzolite xenoliths from the Udachnaya-East kimberlite pipe (Yakutia, Russia). This anhydrous sulfate-carbonate mineral (Na(6)(CO(3))(SO(4))(2)) is generally considered to be a characteristic mineral in saline soils or in continental lacustrine evaporite deposits. Recently, however, this mineral was identified in hydrothermal fluids. Our observations indicate that burkeite can also be formed from a mantle-derived melt.

  6. Short- and long-term olivine weathering in Svalbard: implications for Mars.

    Science.gov (United States)

    Hausrath, E M; Treiman, A H; Vicenzi, E; Bish, D L; Blake, D; Sarrazin, P; Hoehler, T; Midtkandal, I; Steele, A; Brantley, S L

    2008-12-01

    Liquid water is essential to life as we know it on Earth; therefore, the search for water on Mars is a critical component of the search for life. Olivine, a mineral identified as present on Mars, has been proposed as an indicator of the duration and characteristics of water because it dissolves quickly, particularly under low-pH conditions. The duration of olivine persistence relative to glass under conditions of aqueous alteration reflects the pH and temperature of the reacting fluids. In this paper, we investigate the utility of 3 methodologies to detect silicate weathering in a Mars analog environment (Sverrefjell volcano, Svalbard). CheMin, a miniature X-ray diffraction instrument developed for flight on NASA's upcoming Mars Science Laboratory, was deployed on Svalbard and was successful in detecting olivine and weathering products. The persistence of olivine and glass in Svalbard rocks was also investigated via laboratory observations of weathered hand samples as well as an in situ burial experiment. Observations of hand samples are consistent with the inference that olivine persists longer than glass at near-zero temperatures in the presence of solutions at pH approximately 7-9 on Svalbard, whereas in hydrothermally altered zones, glass has persisted longer than olivine in the presence of fluids at similar pH at approximately 50 degrees C. Analysis of the surfaces of olivine and glass samples, which were buried on Sverrefjell for 1 year and then retrieved, documented only minor incipient weathering, though these results suggest the importance of biological impacts. The 3 types of observations (CheMin, laboratory observations of hand samples, burial experiments) of weathering of olivine and glass at Svalbard show promise for interpretation of weathering on Mars. Furthermore, the weathering relationships observed on Svalbard are consistent with laboratory-measured dissolution rates, which suggests that relative mineral dissolution rates in the laboratory, in

  7. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Science.gov (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  8. Electrically driven green, olivine, and amber color nanopyramid light emitting diodes.

    Science.gov (United States)

    Chang, Shih-Pang; Chang, Jet-Rung; Sou, Kuok-Pan; Liu, Mei-Chun; Cheng, Yuh-Jen; Kuo, Hao-Chung; Chang, Chun-Yen

    2013-10-07

    We report the fabrication and studies of electrically driven green, olivine, and amber color nanopyramid GaN light emitting diodes (LEDs). InGaN/GaN multiple quantum wells (MQWs) were grown on the nanopyramid semipolar facets. Compared with the commonly used (0001) c-plane MQWs, the semipolar facet has lower piezoelectric field, resulting in much faster radiative recombination efficiency. This is important for high In content MQWs. The measured internal quantum efficiencies for green, olivine, and amber color LED are 30%, 25%, and 21%, respectively. The radiative and non-radiative lifetime of the semipolar MQWs are also investigated.

  9. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

    DEFF Research Database (Denmark)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.;

    2015-01-01

    of previous studies.Olivine-rich materials from the Vaca Muerta, Mount Padbury and Lamont mesosiderites, and from two related dunites (NWA 2968 and NWA 3329), have Δ17O values within error of the mesosiderite average. This indicates that these olivine-rich materials are co-genetic with other mesosiderite...

  10. Electrical relaxation studies of olivine type nanocrystalline LiMPO4 (M=Ni, Mn and Co) materials

    Science.gov (United States)

    Cheruku, Rajesh; Kruthika, G.; Govindaraj, G.; Vijayan, Lakshmi

    2015-11-01

    The olivine type LiMPO4 (M=Ni, Mn and Co) materials were synthesized by solution combustion technique using glycine as fuel. The structural characterizations were explored to confirm the phase formation of materials. The scanning electron microscope was used to identify the morphology of olivine materials. The local structure and chemical bonding between MO6 octahedral and (PO4)3- tetrahedral groups were probed by Raman spectroscopy. Grain and grain boundaries were contributed for ion relaxation and dc conduction in olivine materials. Two orders of enhancement in ionic conductivity was observed in these olivine materials than the reported value. Among all the explored olivine samples, LiMnPO4 showed highest enhancement in conductivity due to weak Li-O bonding and largest unit cell volume.

  11. Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta's collisional history and from impact simulations

    CERN Document Server

    Turrini, D; Consolmagno, G; Sirono, S; Pirani, S

    2016-01-01

    The survival of asteroid Vesta during the violent early history of the Solar System is a pivotal constraint on theories of planetary formation. Particularly important from this perspective is the amount of olivine excavated from the vestan mantle by impacts, as this constrains both the interior structure of Vesta and the number of major impacts the asteroid suffered during its life. The NASA Dawn mission revealed that olivine is present on Vesta's surface in limited quantities, concentrated in small patches at a handful of sites and interpreted as the result of the excavation of endogenous olivine. Later works raised the possibility that the olivine had an exogenous origin, based on the geologic and spectral features of the deposits. In this work we quantitatively explore the proposed scenario of a exogenous origin for the detected olivine to investigate whether its presence on Vesta can be explained as a natural outcome of the collisional history of the asteroid. We took advantage of the impact contamination...

  12. Numerical Simulation of Solidification of Chondrules: Formation of Olivine Bars in Mg_2SiO_4-Fe_2SiO_4 System

    Science.gov (United States)

    Miura, H.; Tsukamoto, K.

    2012-03-01

    We numerically simulated formation of olivine bars observed in barred olivine chondrules. The parallel set of bars was reproduced from a platy seed crystal by morphological instability. The calculated Mg/Fe zoning is compared with experiments.

  13. The development of microtextures and dislocation substructures in naturally deformed olivines from various geological environments

    NARCIS (Netherlands)

    Buiskool Toxopeus, J.M.A.

    1978-01-01

    High voltage electron microscopy and petrofabric analysis techniques are used to distinguish dislocation substructures and preferred orientation patterns of the mineral olivine in naturally deformed peridotites. In order to obtain information over a wide field in which different types of deformation

  14. Phosphorus-rich olivine overgrowths: Evidence for additional impact to the Main Group pallasite parent body

    Science.gov (United States)

    Fowler-Gerace, Neva; Tait, Kimberly

    2015-04-01

    Phosphorus-rich olivine (1-7 wt% P2O5) is a metastable phase known from fewer than a dozen meteoritic or terrestrial occurrences. We have thoroughly examined P-rich olivine in the Springwater pallasite to characterise its distribution, textural relationships, and geochemical signature. P-rich olivine is abundant in Springwater as randomly distributed millimetre-scale partial overgrowths on the nominally P-free forsterite crystals. Geochemical analyses support the substitution mechanism of P into the tetrahedral Si site with octahedral site vacancies for charge balance; observed trace element variations, on the other hand, are not related to P substitution. Element mapping reveals fine-scale oscillatory P zoning in unusual serrate patterns, indicating rapid crystal nucleation from a melt and a subsequently variable rate of crystallisation. We constrain P-rich olivine formation in Springwater to at least 10-100 Myr subsequent to the introduction of the metal but before cooling below 700°C. Because the P-rich overgrowths overprint specific host grain boundary modifications, we suggest an impact to the Main Group pallasite parent body may have triggered the episode of extremely rapid cooling necessary to crystallise and preserve this rare phase.

  15. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction.

    Science.gov (United States)

    Wallis, David; Hansen, Lars N; Ben Britton, T; Wilkinson, Angus J

    2016-09-01

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation.

  16. Herschel/PACS observations of the 69 $\\mu m$ band of crystalline olivine around evolved stars

    CERN Document Server

    Blommaert, J A D L; Waters, L B F M; Waelkens, C; Min, M; Van Winckel, H; Molster, F; Decin, L; Groenewegen, M A T; Barlow, M; García-Lario, P; Kerschbaum, F; Posch, Th; Royer, P; Ueta, T; Vandenbussche, B; Van de Steene, G; van Hoof, P

    2014-01-01

    We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $\\mu$m. This wavelength range covers the 69 $\\mu$m band of crystalline olivine ($\\text{Mg}_{2-2x}\\text{Fe}_{(2x)}\\text{SiO}_{4}$). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $\\dot M \\ge 10^{-5}$ M$_\\odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $\\mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $\\mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sourc...

  17. Evidence of phase nucleation during olivine diffusion creep: A new perspective for mantle strain localisation

    Science.gov (United States)

    Précigout, Jacques; Stünitz, Holger

    2016-12-01

    For the past decades, grain size reduction leading to diffusion creep in olivine is believed to be a very important process for strain localisation in the lithospheric mantle. However, the mechanisms of grain size reduction in this regime are still poorly understood (e.g., Platt, 2015). Here we show new experimental results that document grain size reduction and material weakening during wet olivine diffusion creep. While occurring for both, mono-phase and two-phase aggregates, grain size reduction is coeval with strain localisation and local phase mixing in olivine-pyroxene aggregates. Based on evidence of fluid inclusions and cracks filled with a fine-grained phase mixture, we conclude that grain size reduces as a result of fluid-assisted nucleation that takes place in the presence of an aqueous fluid during diffusion creep. Cavitation induced by grain boundary sliding (creep cavitation) can be inferred, and may play a critical role for olivine grain size reduction. Amongst their implications for rock rheology in general, our findings highlight a key process for strain localisation in the ductile uppermost mantle.

  18. Chlorine/Bromine Ratios in Fracture-filling Aqueous Alteration Products in Nakhla Olivine

    Science.gov (United States)

    Sutton, S. R.; Rao, M. N.; Dreibus, G.; McKay, D. S.; Waenke, H.; Wentworth, S.; Newville, M.; Trainor, T.; Flynn, G. J.

    2002-01-01

    The Cl/Br ratios in fracture-filling materials in veins in Nakhla olivine was determined using x-ray microprobe (Br) and EDX (Cl) techniques. The Cl/Br ratio of 55 (standard deviation: 13) shows that the secondary altered material is pristine, extraterrestrial and akin to the Martian soil. Additional information is contained in the original extended abstract.

  19. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NARCIS (Netherlands)

    Lim, L. F.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.; Burt, B. J.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy [1]. Analysis of its visible/near-IR spectrum [2] led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-

  20. Distribution of Olivine and Pyroxene Derived from Clementine Data in Crater Copernicus

    Institute of Scientific and Technical Information of China (English)

    Fujiang Liu; Rong Yang; Ying Zhang; Le Qiao; Shun Wang; Yang Yang; Xiaopan Wang

    2011-01-01

    In order to derive the distribution of olivine and pyroxene in Crater Copernicus,we compute two band ratios (950/750 and 2 000/1500 nm),percent content of elements (Al%,Ca%,Mg%,FeO%) and maturity (Is/FeO) based on Clementine UVVIS and NIR image data.The central peaks of Copernicus,which are known to be olivine-rich or pyroxene-rich,are chosen as "ground truth" andROIs used to derive the distribution of olivine and pyroxene with a decision tree and spectral angle mapper (SAM).Additionally,we compared previous works and the extraction results coming from the decision tree and the SAM method.The extraction of olivine by both decision tree and SAM agrees well with the previous works' descriptions,and the result by SAM is more accurate than that by decision tree because spectral features are fully used in SAM.For pyroxene extraction,there is a difference between SAM and the decision tree; one of the reasons is that the decision tree does not fully take advantage of spectral features but is only based on statistics.SAM uses band indices that can be easily extended to other areas on the Moon.

  1. Space weathering simulations through controlled growth of iron nanoparticles on olivine

    CERN Document Server

    Kohout, T; Filip, J; Britt, D; Bradley, T; Tuček, J; Skála, R; Kletetschka, G; Kašlík, J; Malina, O; Šišková, K; Zbořil, R

    2014-01-01

    Airless planetary bodies are directly exposed to space weathering. The main spectral effects of space weathering are darkening, reduction in intensity of silicate mineral absorption bands, and an increase in the spectral slope towards longer wavelengths (reddening). Production of nanophase metallic iron (npFe$^{0}$) during space weathering plays major role in these spectral changes. A laboratory procedure for the controlled production of npFe$^{0}$ in silicate mineral powders has been developed. The method is based on a two-step thermal treatment of low-iron olivine, first in ambient air and then in hydrogen atmosphere. Through this process, a series of olivine powder samples was prepared with varying amounts of npFe$^{0}$ in the 7-20 nm size range. A logarithmic trend is observed between amount of npFe$^{0}$ and darkening, reduction of 1 um olivine absorption band, reddening, and 1 um band width. Olivine with a population of physically larger npFe$^{0}$ particles follows spectral trends similar to other samp...

  2. Charge spectrum of galactic cosmic ray nuclei as measured in meteorite olivines

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, Andrei B; Bagulya, Aleksandr V; Vladimirov, Mikhail S; Goncharova, Lyudmila A; Konovalova, Nina S; Okat' eva, Natal' ya M; Polukhina, Natal' ya G; Rusetskii, Aleksei S; Starkov, Nikolai I [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Ivliev, Aleksandr I; Kalinina, Galina V; Kashkarov, Leonid L [V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-11-15

    This paper presents experimental results on galactic cosmic ray nuclei in olivine crystals from the Marjalahti and Eagle Station pallasites. The charge spectrum of the nuclei is measured to be in good agreement with the experimental data from the HEAO-3 and ARIEL-6 satellite missions. (instruments and methods of investigation)

  3. Boron abundances and isotopic ratios of olivine grains on Itokawa returned by the Hayabusa spacecraft

    Science.gov (United States)

    Fujiya, Wataru; Hoppe, Peter; Ott, Ulrich

    2016-09-01

    We report the B abundances and isotopic ratios of two olivine grains from the S-type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic-ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic-ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.

  4. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NARCIS (Netherlands)

    Lim, L. F.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.; Burt, B. J.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy [1]. Analysis of its visible/near-IR spectrum [2] led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data

  5. Spinel from Apollo 12 Olivine Mare Basalts: Chemical Systematics of Selected Major, Minor, and Trace Elements

    Science.gov (United States)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Spilde, M. N.

    2002-01-01

    Spinels from Apollo 12 Olivine basalts have been studied by Electron and Ion microprobe techniques. The zoning trends of major, minor and trace elements provide new insights into the conditions under which planetary basalts form. Additional information is contained in the original extended abstract.

  6. Development of olivine crystallographic preferred orientation in response to strain-induced fabric geometry

    Science.gov (United States)

    Chatzaras, Vasileios; Kruckenberg, Seth C.; Cohen, Shaina M.; Medaris, L. Gordon, Jr.; Withers, Anthony C.; Bagley, Brian

    2016-04-01

    The effect of finite strain ellipsoid geometry on crystallographic preferred orientation (CPO) is well known for crustal minerals (e.g., quartz, calcite, biotite, and hornblende). In the upper mantle, however, it remains poorly constrained how strain and fabric may affect olivine CPO. We present data from a suite of 40 spinel peridotite xenoliths from Marie Byrd Land (west Antarctica), which support an interpretation that fabric geometry rather than deformation conditions control the development of olivine CPO. We use X-ray computed tomography (XRCT) to quantitatively determine spinel fabric (orientation and geometry). Olivine CPOs, determined by Electron Backscattered Diffraction (EBSD), are plotted with respect to the XRCT-derived spinel foliation and lineation; this approach allows for the accurate, and unbiased, identification of CPO symmetries and types in mantle xenoliths. The combined XRCT and EBSD data show that the xenoliths are characterized by a range of fabric geometries (from oblate to prolate) and olivine CPO patterns; we recognize the A-type, axial-[010], axial-[100], and B-type patterns. The mantle xenoliths equilibrated at temperatures 779-1198 oC, as determined by 2-Px geothermometry. Using a geotherm consistent with the stability of spinel in all xenoliths, the range of equilibration temperatures occurs at depths between 39 and 72 km. Olivine recrystallized grain size piezometry reveals differential stresses ranging 2-60 MPa. Analysis of low-angle misorientation axes show a wide range in the distribution of rotation axes, with dominant {0kl}[100] slip. We use Fourier Transform Infrared (FTIR) spectroscopy to estimate the water content in the xenolith with the B-type CPO pattern. FTIR analysis shows that the equilibrium H concentration in olivine is low (4-13 ppm H2O). Combining these data, we observe that olivine CPO symmetry is controlled neither by the deformation conditions (stress, temperature, pressure, water content) for the range of

  7. Estudo por microscopia eletrônica das transformações durante a queima de argilas altamente aluminosas brasileiras Electron microscopy study of the transformations during firing of Brazilian high-alumina clays

    Directory of Open Access Journals (Sweden)

    H. S. Santos

    2006-06-01

    Full Text Available Duas argilas altamente aluminosas gibbsíticas, utilizadas em produtos refratários, foram estudadas por métodos óptico-eletrônicos, com a finalidade de caracterizar a seqüência de fases formadas durante transformações térmica. As argilas na forma de pós foram queimadas sobre placas de platina entre 200 ºC e 1500 ºC e com resfriamento programado. Após o aquecimento a 300 ºC, foi possível distinguir no microscópio eletrônico de transmissão entre cristais hexagonais de gibbsita e de caulinita, tendo o mesmo tamanho e forma. As transformações de fase da gibbsita e os cristais de caulinita pouco defeituosos seguem series independentes até 1100 ºC / 1200 ºC. Foi fácil distinguir morfologicamente os pseudomorfos das aluminas-chi e -kapa dos pseudomorfos dos cristais da caulinita e da metacaulinita no intervalo 400 ºC / 800 ºC. Cristais de espinélio alongados podem ser caracterizados dentro dos pseudomorfos da metacaulinita a 900 ºC. A mulita, em ambas as argilas, aumenta em teor e nas dimensões dos cristais de 900 ºC / 1550 ºC, enquanto o teor de alumina-alfa cresce até 1300 ºC e decresce em seguida até 1550 ºC, indicando haver interações entre as diversas fases, especialmente entre sílica e alumina-alfa.Two high alumina gibbsitic / kaolinite clays, extensively used in Brazil for refractory products, were studied to characterize the phase sequences formed during thermal transformation employing electron optical methods. The clays as powders were fired on platinum foils between 200 ºC and 1500 ºC and program cooled. After heating at 300 ºC, it is possible to distinguish in the TEM, between gibbsite and kaolinite crystals of the same hexagonal size and shape. The phase changes of gibbsite and the low-defect kaolinite crystals follow independent series up to 1100 ºC / 1200 ºC. Morphologically it is easy to distinguish at 400 ºC - 800 ºC interval -chi and kappa-alumina pseudomorphs from kaolinite crystals and

  8. Experiments and geochemical modelling of CO{sub 2} sequestration by olivine: Potential, quantification

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B., E-mail: Bruno.Garcia@ifp.fr [Institut Francais du Petrole, 1 et 4 Avenue du Bois Preau, 92852 Rueil Malmaison (France); Beaumont, V.; Perfetti, E.; Rouchon, V.; Blanchet, D. [Institut Francais du Petrole, 1 et 4 Avenue du Bois Preau, 92852 Rueil Malmaison (France); Oger, P.; Dromart, G. [Universite de Lyon, CNRS, UMR 5570, ENS de Lyon, Site Monod, 15 Parvis Rene Descartes BP 7000, Lyon F-69342 (France); Huc, A.-Y.; Haeseler, F. [Institut Francais du Petrole, 1 et 4 Avenue du Bois Preau, 92852 Rueil Malmaison (France)

    2010-09-15

    Aqueous solutions equilibrated with supercritical CO{sub 2} (150 deg. C and total pressure of 150 bar) were investigated in order to characterize their respective conditions of carbonation. Dissolution of olivine and subsequent precipitation of magnesite with a net consumption of CO{sub 2} were expected. A quantified pure mineral phase (powders with different olivine grain diameter [20-80 {mu}m], [80-125 {mu}m], [125-200 {mu}m] and [>200 {mu}m]), and CO{sub 2} (as dried ice) were placed in closed-batch reactors (soft Au tubes) in the presence of solutions. Different salinities (from 0 to 3400 mM) and different ratios of solution/solid (mineral phase) (from 0.1 to 10) were investigated. Experiments were performed over periods from 2 to 8 weeks. Final solid products were quantified by the Rock-Eval 6 technique, and identified using X-ray diffraction, Raman spectroscopy, electron microprobe and scanning electron microscopy. Gaseous compounds were quantified by a vacuum line equipped with a Toepler pump and identified and measured by gas chromatography (GC). Carbon mass balances were calculated. Olivine reacted completely with CO{sub 2}, trapping up to 57 {+-} 2% (eqC of initial CO{sub 2}) as magnesite; some amorphous silica also formed. Olivine grain diameter and solution/mineral ratios appeared to be the primary controls on the reaction, salinity acting as a second order parameter. During the experiments, fluid analyses may not be performed with approach adopted but, geochemical modelling was attempted to give information about the solution composition. This showed an interesting mineral matrix evolution. Under the experimental conditions, olivine appeared to be a good candidate for CO{sub 2} trapping into a geologically stable carbonate, magnesite. The possible use of mafic and ultramafic rocks for CO{sub 2} sequestration is discussed.

  9. How do olivines record magmatic events? Insights from major and trace element zoning

    Science.gov (United States)

    de Maisonneuve, C. Bouvet; Costa, F.; Huber, C.; Vonlanthen, P.; Bachmann, O.; Dungan, M. A.

    2016-06-01

    Reconciling the diverse records of magmatic events preserved by multiple crystals and minerals in the same sample is often challenging. In the case of basaltic-andesites from Volcán Llaima (Chile), Mg zoning in olivine is always simpler than Ca zoning in plagioclase. A model that explains a number of chemical patterns is that Llaima magmas stall in the upper crust, where they undergo decompression crystallization and form crystal-mush bodies. Frequent magma inputs from deeper reservoirs provide the potential for remobilization and eruption. The records of multiple recharge events in Llaima plagioclase versus an apparent maximum of one such event in coexisting olivine are addressed by using trace element zoning in olivine phenocrysts. We have integrated elements that (1) respond to changes in magma composition due to recharge or mixing (Mg, Fe, Ni, Mn, ±Ca), with (2) elements that are incorporated during rapid, disequilibrium crystal growth (P, Ti, Sc, V, Al). A more complex history is obtained when these elements are evaluated considering their partition coefficients, diffusivities, and crystal growth rates. The olivine archive can then be reconciled with the plagioclase archive of magma reservoir processes. Olivine (and plagioclase) phenocrysts may experience up to three or more recharge events between nucleation and eruption. Diffusion modeling of major and trace element zoning in two dimensions using a new lattice Boltzmann model suggests that recharge events occur on the order of months to a couple of years prior to eruption, whereas crystal residence times are more likely to be on the order of a few years to decades.

  10. Diffusivity of hydrogen in iron-bearing olivine at 3 GPa

    Science.gov (United States)

    Demouchy, Sylvie; Thoraval, Catherine; Bolfan-Casanova, Nathalie; Manthilake, Geeth

    2016-11-01

    The kinetics of hydrogenation of dry iron-bearing olivine single crystals was determined by performing hydration experiments under hydrothermal conditions at high pressure. The experiments were performed in a multi-anvil press at 3 GPa, for a temperature range between 900 and 1200 °C and for various durations. The oxygen fugacity was buffered along Ni-NiO joint. Polarized Fourier transform infrared spectroscopy and recent empirical calibration were used to quantify the hydroxyl distributions in the samples along crystallographic axes after the experiments. The chemical diffusion coefficients are similar (barely slower) than in olivine hydrated at lower pressure (0.2 and 0.3 GPa) for the same diffusion mechanism. Under the given experimental conditions, the anisotropy of diffusion is the same as for proton-vacancy mechanism, with diffusion along the [0 0 1] axis faster than along the [1 0 0]. However, the anisotropy at 3 GPa is weaker compared to measurements at lower pressures and the analysis of concentration profiles using 3D models shows that an isotropic solution could also be relevant. Fits of the diffusion data to an Arrhenius law yield activation energies for the slightly faster [0 0 1] axis of the crystallographic axes around 198 ± 5 kJ mol-1, a value only slightly lower than the results from previous experimental studies for natural iron-bearing olivine hydrogenated at lower confining pressure. At 3 GPa, hydrogenation can be well approximated by a single mechanism controlled by coupled diffusion of protons and octahedral vacancies (di- and tri-valent ions). The diffusion rates are fast enough to alter hydrogen concentration within olivine in xenoliths ascending from the mantle or experiencing hydrogen-rich metasomatism events, but too slow to permit complete homogenization of hydrogen in olivine-rich rocks at kilometer scale in less than one My.

  11. Notes on Some Crystals of San Carlos Olivine and EPMA Standards

    Science.gov (United States)

    Fournelle, J.

    2009-12-01

    Natural Fo-rich olivine, of mantle xenolith origin, is a standard in many electron microprobe labs. Many labs use the San Carlos Fo90.1 standard developed by Gene Jarosewich and co-workers (1980) at the Smithsonian: USNM 111312/444. I recently encountered non-USNM-distributed crystals of San Carlos olivine, being utilized in scientific research (not for EPMA standards). EPMA of these showed slight but consistent differences: one set was more Fe-rich (Fo89.2) and the other, more Mg-rich (F91.1). This led to some further investigation of USNM San Carlos and the range of compositions of grains potentially used by EPMA labs for standards. Larger crystals of non-USNM San Carlos olivine are available commercially. Three 1-2 mm crystals from one source were analyzed by EPMA for Si, Mg and Fe, and a consistent value of Fo89.2 (±0.2) was found. Six 1 cm-size crystals from another source were analyzed and a range of compositions from Fo90.5 to Fo91.4 was found (average Fo91.1 ±0.3). 30-40 points per crystal were measured in all these cases. What then is the range of variability possible in the USNM San Carlos olivine standard? Amelia Logan of the Smithsonian supplied 2 small vials of the USNM111312/44 material. Jarosewich et al (1980) calculated "Boyd homogeneity indices" for USNM standards, with 100 measurements on 10 grains of each standard, and values mount of at least 25 grains of USNM 111312/444 San Carlos olivine be made available to any EPMA lab for a short period of time, to run as a primary standard, to compare one's own few grains with and decide whether or not those grains' composition are of the exact composition being used, or whether small modifications might be justified.

  12. New insights into the Aeolian Islands and other arc source compositions from high-precision olivine chemistry

    Science.gov (United States)

    Zamboni, Denis; Trela, Jarek; Gazel, Esteban; Sobolev, Alexander V.; Cannatelli, Claudia; Lucchi, Federico; Batanova, Valentina G.; De Vivo, Benedetto

    2017-02-01

    The Aeolian arc (Italy) is characterized by some of the strongest along-the-arc geochemical variations in the planet, making it an ideal location to study the effect of subducting components in modifying the mantle source of island arc melts. Here, we use high-precision element concentrations in primitive phenocrystic olivine from basalts along the arc to elucidate the effects of mantle source modification by the subduction process. Olivines from this arc have Ni concentrations and Fe/Mn ratios that show similarity to peridotite sources that melted to produce mid-ocean ridge basalts. Nevertheless, they also have systematically lower Ca concentrations and Fe/Mn ratios that broadly overlap with olivines from the available global arc array. These phenocrysts also do not show significant variations in Ca as a function of olivine forsterite content. The global data suggest that all olivines crystallizing from island-arc melts have suppressed Ca concentrations and Fe/Mn ratios, relative to olivines derived from melts at intraplate and mid-ocean ridge settings suggesting elevated H2O concentrations and higher oxidation state of the equilibrium melts. Based on olivine chemistry, we interpret a predominantly peridotite source (fluxed by subduction fluids) beneath the Aeolian Arc and also for other examples of arc-related lavas.

  13. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.

    Science.gov (United States)

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-10-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.

  14. Olivine in Martian Meteorite Allan Hills 84001: Evidence for a High-Temperature Origin and Implications for Signs of Life

    Science.gov (United States)

    Shearer, C. K.; Leshin, L. A.; Adcock, C. T.

    1999-01-01

    Olivine from Martian meteorite Allan Hills (ALH) 84001 occurs as clusters within orthopyroxene adjacent to fractures containing disrupted carbonate globules and feldspathic shock glass. The inclusions are irregular in shape and range in size from approx. 40 microns to submicrometer. Some of the inclusions are elongate and boudinage-like. The olivine grains are in sharp contact with the enclosing orthopyroxene and often contain small inclusions of chromite The olivine exhibits a very limited range of composition from Fo(sub 65) to Fo(sub 66) (n = 25). The delta(sup 18)O values of the olivine and orthopyroxene analyzed by ion microprobe range from +4.3 to +5.3% and are indistinguishable from each other within analytical uncertainty. The mineral chemistries, O-isotopic data, and textural relationships indicate that the olivine inclusions were produced at a temperature greater than 800 C. It is unlikely that the olivines formed during the same event that gave rise to the carbonates in ALH 84001, which have more elevated and variable delta(sup 18)O values, and were probably formed from fluids that were not in isotopic equilibrium with the orthopyroxene or olivine The reactions most likely instrumental in the formation of olivine could be either the dehydration of hydrous silicates that formed during carbonate precipitation or the reduction of orthopyroxene and spinel If the olivine was formed by either reaction during a postcarbonate beating event, the implications are profound with regards to the interpretations of McKay et al. Due to the low diffusion rates in carbonates, this rapid, high-temperature event would have resulted in the preservation of the fine-scale carbonate zoning' while partially devolatilizing select carbonate compositions on a submicrometer scale. This may have resulted in the formation of the minute magnetite grains that McKay et al attributed to biogenic activity.

  15. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.: a pot experiment.

    Directory of Open Access Journals (Sweden)

    Hein F M ten Berge

    Full Text Available Mineral carbonation of basic silicate minerals regulates atmospheric CO(2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2 sequestration ('enhanced weathering'. While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L., weathering during 32 weeks was inferred from bioavailability of magnesium (Mg in soil and plant. Olivine doses were equivalent to 1630 (OLIV1, 8150, 40700 and 204000 (OLIV4 kg ha(-1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6% and plant K concentration (+16.5% in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1 (14.8% of dose, OLIV1 to 2240 kg ha(-1 (1.1%, OLIV4. This corresponds to gross CO(2 sequestration of 290 to 2690 kg ha(-1 (29 10(3 to 269 10(3 kg km(-2. Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  16. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    Science.gov (United States)

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  17. Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta's collisional history and from impact simulations

    Science.gov (United States)

    Turrini, D.; Svetsov, V.; Consolmagno, G.; Sirono, S.; Pirani, S.

    2016-12-01

    The survival of asteroid Vesta during the violent early history of the Solar System is a pivotal constraint on theories of planetary formation. Particularly important from this perspective is the amount of olivine excavated from the vestan mantle by impacts, as this constrains both the interior structure of Vesta and the number of major impacts the asteroid suffered during its life. The NASA Dawn mission revealed that olivine is present on Vesta's surface in limited quantities, concentrated in small patches at a handful of sites not associated with the two large impact basins Rheasilvia and Veneneia. The first detections were interpreted as the result of the excavation of endogenous olivine, even if the depth at which the detected olivine originated was a matter of debate. Later works raised instead the possibility that the olivine had an exogenous origin, based on the geologic and spectral features of the deposits. In this work, we quantitatively explore the proposed scenario of a exogenous origin for the detected vestan olivine to investigate whether its presence on Vesta can be explained as a natural outcome of the collisional history of the asteroid over the last one or more billion years. To perform this study we took advantage of the impact contamination model previously developed to study the origin and amount of dark and hydrated materials observed by Dawn on Vesta, a model we updated by performing dedicated hydrocode impact simulations. We show that the exogenous delivery of olivine by the same impacts that shaped the vestan surface can offer a viable explanation for the currently identified olivine-rich sites without violating the constraint posed by the lack of global olivine signatures on Vesta. Our results indicate that no mantle excavation is in principle required to explain the observations of the Dawn mission and support the idea that the vestan crust could be thicker than indicated by simple geochemical models based on the Howardite

  18. Rapid growth of phosphorus-rich olivine in mantle xenolith from Middle Atlas Mountains (Morocco, Africa)

    Science.gov (United States)

    Baziotis, Ioannis; Mavrogonatos, Konstantinos; Flemetakis, Stamatios; Papoutsa, Angeliki; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2016-04-01

    Phosphorus(P)-rich zones in olivine may reflect incorporation of P in excess of equilibrium partitioning during rapid growth (e.g. Milman-Barris et al. 2008). We investigated a mantle xenolith from Middle Atlas Mountains (Morocco) by optical microscopy and electron microprobe. It contains spinel-bearing lherzolite and orthopyroxenite layers, cross-cut by veins dominated by glass and secondary phases including P-rich olivines. The host lava, presumed to be alkali basalt (El Messbahi et al. 2015), is present on the margins of the hand sample but not included in our thin section. The studied melt veins (MV) generally contain Ol+Gl+Cpx+Pl+Spl±Ap. Olivines in the MV have (Fo72.1-83.4) with 0.02-0.3 wt.% P2O5; olivines with P2O5 >0.1 wt.% are Fo75.3 -82.8. Some olivine grains are inclusion-free; others contain rounded glass inclusions or subhedral spinel or ilmenite inclusions. Olivines is generally found in contact with plagioclase and glass. Glass (5-15 vol%) has variable composition with P2O5 up to 1.52 wt.%, K2O 1.65-2.37 wt%, CaO 6.39-9.55 wt%, Na2O 0.78-6.70 wt% and SiO2 45.2-49.6 wt%. Where glass is in contact with matrix olivine, Fe-rich outer rims on olivine indicate mineral-melt reaction. In MgO variation diagrams, glass compositions display a coherent single trend for all oxides, with the exception of a discrete low-Na group. Clinopyroxene is present both as isolated subhedral to euhedral crystals within the MV and as replacive rims on matrix minerals. Very fine-grained dendritic clinopyroxene quench crystals up to 10 μm long are also present. Plagioclase occurs as prismatic, flow-oriented crystals parallel or sub-parallel to the layering. Spinel shows anhedral and euhedral shapes and occurs both as inclusions in olivine and as discrete grains associated with plagioclase and glass. Spinel in contact with glass shows a spongy outer rim and normal zonation towards Fe-rich rim compositions. Apatite is found mostly as very small crystals embedded in glass. High

  19. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry

    Science.gov (United States)

    Howarth, Geoffrey H.; Harris, Chris

    2017-10-01

    Continental Flood Basalts (CFB) result from voluminous outpourings of magma that often precede continental break-up. Notwithstanding the petrogenetic importance of CFBs, the nature of the mantle source for such magmas is contentious, particularly with regard to picrites with Ni-rich olivine phenocrysts. Previous studies have suggested that Ni-rich olivines associated with plume volcanism in regions of thickened (>90 km) lithosphere are related to either source mineralogy differences (peridotite versus pyroxenite) or change in olivine-melt partitioning due to pressure increase. In order to evaluate these two hypotheses, we present trace element data for olivines from the Karoo CFB Tuli and Mwenezi picrites and the Etendeka CFB Horingbaai/LTZ-L type picrites, all of which erupted in regions of thickened (>90 km) lithosphere in southern Africa. Karoo picrite olivines are Ni-rich, Ca- and Mn-poor, and have low (1.4) 100*Mn/Fe, which is more consistent with high temperature melting of a dominantly peridotitic source. We also show that the Karoo and Etendeka olivines are characterized by distinct Mn/Zn ratios of 15, respectively. In addition, bulk rock geochemical data compilations and previously reported olivine δ18O for Karoo and Etendeka CFBs are discussed in order to further constrain source components based on previously described pyroxenite melt geochemical indices such as MgO-CaO systematics, FeO/MnO, Zn/Fe, and FC3MS (FeO/CaO-3*MgO/SiO2). These geochemical indices suggest a pyroxenite-dominated source for Karoo CFBs as well as for Etendeka ferropicrites whereas a peridotite-dominated source is indicated for Etendeka Horingbaai/LTZ-L type picrites analyzed in this study. Based on our data, Ni-enrichment of olivine in plume-related magmas in regions of thickened lithosphere in southern Africa is not ubiquitous. We therefore suggest that mineralogical variation of the source is a more likely major control of olivine chemistry and parent melt variations for Karoo

  20. Grafted NiO on natural olivine for dry reforming of methane

    Directory of Open Access Journals (Sweden)

    Grafted NiO on natural olivine for dry reforming of methane C Courson, L Udron, C Petit and A Kiennemann Sci. Technol. Adv. Mater. 3 No 3 (June 2002 271-282 Abstract | References Full text: Acrobat PDF (1.10 MB

    2002-01-01

    Full Text Available Natural olivine is used for gasification of biomass in a fluidised bed. Characterisations by X-ray diffraction and electron microscopies (SEM and TEM have proved the presence of a (Mg,Fe2SiO4 structure (Mg/Fe ratio: 9/1 with a rather broad distribution in elemental composition. Temperature programmed reduction has revealed equally the presence of iron oxides outside of this structure. The nature of free iron oxides can be both modified by increasing the temperature of calcination and confirmed by measurements of magnetism.The introduction of nickel oxide upon natural olivine is obtained by impregnation with a nitrate salt. The type of interaction of nickel oxide with olivine is different depending upon the preparation method and the calcination temperature. For calcination at 1100 °C, the effects of the amount of NiO and the number of impregnation have been studied. At a high temperature of calcination (1400 °C, NiO is integrated into the olivine structure and the amount of free iron increases. Integrated NiO on olivine is non-reducible, resulting in an inactive catalyst. At lower calcination temperatures grafted NiO is formed, a species which is reduced under catalytic test conditions without aggregation of particles. A single impregnation of nickel (5.5 wt% of NiO gives a stable catalyst activated directly under reaction conditions (CH4+CO2 yielding 96% CO and 76% H2. Catalysts with lower amounts of NiO or a double impregnation of nickel salt lead to a less stable system.Analysis reveals that no change in olivine structure nor size of nickel deposit occurs under test conditions. Equally there are no carbon deposits formed on these catalysts. A model of the evolution of each catalytic system arising from the different preparation methods is proposed. The observed deactivation of such catalysts is attributed to the increase in the amount of free iron, which favours the oxidative properties of the catalytic system.

  1. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  2. A novel route for FePO4 olivine synthesis from sarcopside oxidation

    Science.gov (United States)

    Crouzet, Camille; Recham, Nadir; Brunet, Fabrice; Findling, Nathaniel; David, Rénald; Sougrati, Moulay-Tahar

    2016-12-01

    Heterosite FePO4 is synthesized for the first time by direct thermal oxidation of sarcopside Fe3(PO4)2. Both FePO4 and Fe3(PO4)2 have a pseudo olivine structure. Complete isostructural conversion of sarcopside into FePO4 is achieved at a temperature of 450 °C within 3 days according to the reaction Fe3(PO4)2 + ¾ O2 → 2 FePO4 + ½ Fe2O3 which leads to the extraction of iron from the sarcopside structure. Appropriate heating ramp must be applied in order to avoid the crystallization of Fe7(PO4)6. Electrochemical performances of the oxidation product are consistent with those of olivine FePO4.

  3. Origins and Distribution of Chondritic Olivine Inferred from Wild 2 and Chondrite Matrix

    Science.gov (United States)

    Frank, D. R.; Zolensky, M. E.

    2014-01-01

    To date, only 180 particle impact tracks from Wild 2 have been extracted from the Stardust aerogel collector and even fewer have been thoroughly characterized. In order to provide a cohesive compositional dataset that can be compared to the meteorite record, we have made both major and minor element analyses (TEM/EDXS) of olivine and low-Ca pyroxene for 39 particles harvested from 26 tracks. However, the dearth of equivalent analyses for these phases in chondrite matrix hinders their comparison to the Wild 2 samples. To properly permit comparison of chondritic olivine and pyroxene to the Wild 2 samples, we have also provided a large, comprehensive EPMA dataset (greater than10(exp 3) analyses) of analogous grains (5-30 micrometers) isolated in L/LL3.0-4, CI, CM, CR, CH, CO, CV, Acfer 094, EH3, EL6, and Kakangari matrix

  4. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    Science.gov (United States)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  5. The olivine-dominated composition of the Eureka family of Mars Trojan asteroids

    Science.gov (United States)

    Borisov, G.; Christou, A.; Bagnulo, S.; Cellino, A.; Kwiatkowski, T.; Dell'Oro, A.

    2017-04-01

    We have used the XSHOOTER echelle spectrograph on the European Southern Obseratory (ESO) Very Large Telescope (VLT) to obtain UVB-VIS-NIR (ultraviolet-blue (UVB), visible (VIS) and near-infrared (NIR)) reflectance spectra of two members of the Eureka family of L5 Mars Trojans, in order to test a genetic relationship to Eureka. In addition to obtaining spectra, we also carried out VRI photometry of one of the VLT targets using the 2-m telescope at the Bulgarian National Astronomical Observatory - Rozhen and the two-channel focal reducer. We found that these asteroids belong to the olivine-dominated A, or Sa, taxonomic class. As Eureka itself is also an olivine-dominated asteroid, it is likely that all family asteroids share a common origin and composition. We discuss the significance of these results in terms of the origin of the martian Trojan population.

  6. Ar-Ar and Rb-Sr Ages of the Tissint Olivine-phyric Martian Shergottite

    Science.gov (United States)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Shih, C.-Y.; Turin, B.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III; Agee, C.

    2013-01-01

    The fifth martian meteorite fall, Tissint, is an olivine-phyric shergottite that contains olivine macrocrysts (approximately 1.5 mm) [1]. [2] reported the Sm-Nd age of Tissint as 596 plus or minus 23 Ma along with Rb-Sr data that defined no isochron. [3] reported Lu-Hf and Sm-Nd ages of 583 plus or minus 86 Ma and 616 plus or minus 67 Ma, respectively. The cosmic-ray exposure ages of Tissint are 1.10 plus or minus 0.15 Ma based on 10Be [4], and 1.0-1.1 Ma, based on 3He, 21Ne, and 38Ar [5,6].We report Ar-Ar ages and Rb-Sr data.

  7. Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine

    Science.gov (United States)

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.; Gao, S.; Huang, S.

    2011-01-01

    Diffusion plays an important role in Earth sciences to estimate the timescales of geological processes such as erosion, sediment burial, and magma cooling. In igneous systems, these diffusive processes are recorded in the form of crystal zoning. However, meaningful interpretation of these signatures is often hampered by the fact that they cannot be unambiguously ascribed to a single process (e.g., magmatic fractionation, diffusion limited transport in the crystal or in the liquid). Here we show that Mg and Fe isotope fractionations in olivine crystals can be used to trace diffusive processes in magmatic systems. Over sixty olivine fragments from Hawaiian basalts show isotopically fractionated Mg and Fe relative to basalts worldwide, with up to 0.4??? variation in 26Mg/24Mg ratios and 1.6??? variation in 56Fe/54Fe ratios. The linearly and negatively correlated Mg and Fe isotopic compositions [i.e., ??56Fe=(??3.3??0.3)????26Mg], co-variations of Mg and Fe isotopic compositions with Fe/Mg ratios of olivine fragments, and modeling results based on Mg and Fe elemental profiles demonstrate the coupled Mg and Fe isotope fractionation to be a manifestation of Mg-Fe inter-diffusion in zoned olivines during magmatic differentiation. This characteristic can be used to constrain the nature of mineral zoning in igneous and metamorphic rocks, and hence determine the residence times of crystals in magmas, the composition of primary melts, and the duration of metamorphic events. With improvements in methodology, in situ isotope mapping will become an essential tool of petrology to identify diffusion in crystals. ?? 2011 Elsevier B.V.

  8. Deformation history of Pinatubo peridotite xenoliths: constraints from microstructural observation and determination of olivine slip systems

    Science.gov (United States)

    Yamamoto, Takafumi; Ando, Jun-ichi; Tomioka, Naotaka; Kobayashi, Tetsuo

    2016-11-01

    The deformation history of the Pinatubo peridotite xenoliths was estimated on the basis of the microstructural observations and the determination of olivine slip systems. The latter was performed by using three methods: lattice-preferred orientation (LPO), crystallographic analysis of subgrain boundaries, and direct characterization of dislocations. The Pinatubo peridotites are composed of coarse olivine grains containing numerous fluid inclusions and some fine aggregates of orthopyroxene and amphibole grains, which implies intense fluid-rock interaction. The development of euhedral fine recrystallized olivine grains along the healed cracks within the coarse olivine grains suggests that the strain-free grains were nucleated and grew during static recovery. The LPO patterns and the analyses of subgrain boundaries indicate the activation of a [100]{0kl} slip system that developed under high temperature, low pressure, and dry deformation conditions. Although dislocations showing the [100]{0kl} slip system are dominantly observed, the other slip systems which could be formed by the deformation under moderate-high water content and lower-temperature conditions are also developed. The discrepancy between the results of dislocation characterization and the other two methods might have been caused by fulfilling the von Mises criterion or overprinting dislocation microstructures. Either way, the possible deformation history of the Pinatubo peridotites can be explained by the following scenario. The peridotites plastically moved from the back-arc to the fore-arc adjacent region, where CO2-rich saline fluid was trapped, by the corner flow of a mantle wedge. They were then annealed and metasomatized during entrapment of the upwelling magma.

  9. Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China

    Science.gov (United States)

    Guo, Guolin; Liu, Xiaodong; Yang, Jingsui; Pan, Jiayong; Fan, Xiujun; Zhou, Wenting; Duan, Gehong

    2016-11-01

    The peridotites of the Northeastern Jiangxi Province Ophiolite (NJO), including dunite, harzburgite and clinopyroxene-bearing harzburgite, are strongly altered under serpentinization, except for minor aggregations of partially-altered olivines, chromian spinels and pyroxenes. The forsterite content of olivines in dunites (Fo 93.6) is slightly higher than in harzburgites (Fo 91.4). Chromian spinels in harzburgites and dunites are very refractory, with restricted chemical compositions of high-Cr varieties. The unaltered cores of chromian spinels have low Al2O3 and TiO2 content, and display a large range of Mg# (100× [Mg/(Mg + Fe)], 41-64) and Cr# (100× [Cr/(Cr + Al)], 53-83) values, suggesting that the peridotites originated from a highly-depleted mantle. The spinels plotted in "olivine-spinel mantle array" (OSMA) diagram and Cr# versus. Mg# diagram both indicate the peridotite of NJO experienced a >25 % partial melting. The positive correlation between the Cr# and the TiO2 content probably resulted from the reaction between boninitic melt and mantle peridotite, as a consequence of melt-mantle interaction within the arc setting. The oxygen fugacity (ƒO2), calculated using chromian spinel-olivine pairs, indicates that the peridotites in the NJO were formed under relatively low oxidizing conditions quite different from those commonly found in supra-subductions zones (SSZ). This might be explained by the reaction between fore-arc magmas and residual mantle in a back-arc oceanic basin during a rapid subduction process. The Neoproterozoic subduction between the Yangtze and Cathaysia blocks was therefore probably rapid, and the addition of water and other volatiles to the mantle wedge beneath the island arc would have enhanced melting, leading to the production of highly depleted boninitic melts.

  10. Relict olivines in micrometeorites: Precursors and interactions in the earth`s atmosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Dey, S.; Fernandes, D.; Plane, J.M.C.; Feng, W.; Taylor, S.; Carrillo-Sanchez, J.D.

    cluster of closely related carbonaceous asteroids that have Mg-rich olivines in the narrow range of CaO (0.1-0.3wt%), Al2 O3 (0.0-0.3wt%), MnO (0.0-0.3wt%), and Cr2 O3 (0.1-0.7wt%). Numerical simulations carried out with the Chemical Ablation Model (CABMOD...

  11. Constraints from Naturally Deformed Peridotites on Controls on Olivine Lattice Preferred Orientation

    Science.gov (United States)

    Bernard, R. E.; Behr, W. M.

    2016-12-01

    Seismic anisotropy in the upper mantle is produced primarily by lattice preferred orientations (LPO) in olivine formed during viscous deformation. Because seismic anisotropy is one of the principal means of characterizing upper mantle flow directions, it is critical to understand how LPO is affected by deformation conditions. Laboratory experiments suggest that water content and stress magnitude each play key roles in the development of LPO in olivine under experimental conditions, but it is unclear to what extent these results apply to natural conditions. We use peridotite xenoliths from a wide range of tectonic settings (Lunar Craters, Geronimo, and San Carlos volcanic fields in the Basin and Range; Cima and Deadman Lake volcanic fields in the Mojave; the Navajo Volcanic field in the Colorado Plateau; and the Potrillo volcanic field in the Rio Grande Rift region) to investigate correlations between water content, stress, and olivine LPO in natural rocks. Water contents were measured using Secondary Ion Mass Spectrometry, stress magnitudes using paleopiezometry, and LPOs using electron backscatter diffraction. The samples examined exhibit a range of fabric types, including A-, B-, C-, and E-type LPOs. Mojave xenoliths show no difference in water content between A- and E-type LPO; instead, differences in fabric type appear to reflect variations in strain magnitude. Samples from the Navajo volcanic field do show a correlation between water influx and stress magnitude as they exhibit abundant hydrous minerals and high water contents, stress magnitudes greater than 250 MPa and B-type olivine LPOs. Additional results from other xenolith suites will be presented at the meeting.

  12. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We present a new 3-D anisotropic P-wave velocity (Vp) model for the crust and upper mantle of the Japan subduction zone obtained by inverting a large number of high-quality P-wave traveltime data of local earthquakes and teleseismic events. By assuming orthorhombic anisotropy with a vertical symmetry axis existing in the modeling space, isotropic Vp tomography and 3-D Vp azimuthal and radial anisotropies are determined simultaneously. According to a simple flow field and the obtained Vp anisotropic tomography, we estimate the distribution of olivine fabrics in the mantle wedge. Our results show that the forearc mantle wedge above the subducting Pacific slab beneath NE Japan exhibits an azimuthal anisotropy with trench-parallel fast velocity directions (FVDs) and Vhf > Vv > Vhs (here Vv is Vp in the vertical direction, Vhf and Vhs are P-wave velocities in the fast and slow directions in the horizontal plane), where B-type olivine fabric with vertical trench-parallel flow may dominate. Such an anisotropic feature is not obvious in the forearc mantle wedge above the Philippine Sea (PHS) slab under SW Japan, probably due to higher temperatures and more fluids there associated with the young and warm PHS slab subduction. Trench-normal FVDs and Vhf > Vv > Vhs are generally revealed in the mantle wedge beneath the arc and backarc in Japan, where E-type olivine fabric with FVD-parallel horizontal flow may dominate. Beneath western Honshu, however, the mantle wedge exhibits an anisotropy of Vv > Vhf > Vhs and so C-type olivine fabric may dominate, suggesting that the water content is the highest there, because both the PHS and Pacific slabs exist there and their dehydration reactions release abundant fluids to the overlying mantle wedge.

  13. Deformation history of Pinatubo peridotite xenoliths: constraints from microstructural observation and determination of olivine slip systems

    Science.gov (United States)

    Yamamoto, Takafumi; Ando, Jun-ichi; Tomioka, Naotaka; Kobayashi, Tetsuo

    2017-04-01

    The deformation history of the Pinatubo peridotite xenoliths was estimated on the basis of the microstructural observations and the determination of olivine slip systems. The latter was performed by using three methods: lattice-preferred orientation (LPO), crystallographic analysis of subgrain boundaries, and direct characterization of dislocations. The Pinatubo peridotites are composed of coarse olivine grains containing numerous fluid inclusions and some fine aggregates of orthopyroxene and amphibole grains, which implies intense fluid-rock interaction. The development of euhedral fine recrystallized olivine grains along the healed cracks within the coarse olivine grains suggests that the strain-free grains were nucleated and grew during static recovery. The LPO patterns and the analyses of subgrain boundaries indicate the activation of a [100]{0 kl} slip system that developed under high temperature, low pressure, and dry deformation conditions. Although dislocations showing the [100]{0 kl} slip system are dominantly observed, the other slip systems which could be formed by the deformation under moderate-high water content and lower-temperature conditions are also developed. The discrepancy between the results of dislocation characterization and the other two methods might have been caused by fulfilling the von Mises criterion or overprinting dislocation microstructures. Either way, the possible deformation history of the Pinatubo peridotites can be explained by the following scenario. The peridotites plastically moved from the back-arc to the fore-arc adjacent region, where CO2-rich saline fluid was trapped, by the corner flow of a mantle wedge. They were then annealed and metasomatized during entrapment of the upwelling magma.

  14. Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China

    Science.gov (United States)

    Guo, Guolin; Liu, Xiaodong; Yang, Jingsui; Pan, Jiayong; Fan, Xiujun; Zhou, Wenting; Duan, Gehong

    2017-06-01

    The peridotites of the Northeastern Jiangxi Province Ophiolite (NJO), including dunite, harzburgite and clinopyroxene-bearing harzburgite, are strongly altered under serpentinization, except for minor aggregations of partially-altered olivines, chromian spinels and pyroxenes. The forsterite content of olivines in dunites (Fo 93.6) is slightly higher than in harzburgites (Fo 91.4). Chromian spinels in harzburgites and dunites are very refractory, with restricted chemical compositions of high-Cr varieties. The unaltered cores of chromian spinels have low Al2O3 and TiO2 content, and display a large range of Mg# (100× [Mg/(Mg + Fe)], 41-64) and Cr# (100× [Cr/(Cr + Al)], 53-83) values, suggesting that the peridotites originated from a highly-depleted mantle. The spinels plotted in "olivine-spinel mantle array" (OSMA) diagram and Cr# versus. Mg# diagram both indicate the peridotite of NJO experienced a >25 % partial melting. The positive correlation between the Cr# and the TiO2 content probably resulted from the reaction between boninitic melt and mantle peridotite, as a consequence of melt-mantle interaction within the arc setting. The oxygen fugacity (ƒO2), calculated using chromian spinel-olivine pairs, indicates that the peridotites in the NJO were formed under relatively low oxidizing conditions quite different from those commonly found in supra-subductions zones (SSZ). This might be explained by the reaction between fore-arc magmas and residual mantle in a back-arc oceanic basin during a rapid subduction process. The Neoproterozoic subduction between the Yangtze and Cathaysia blocks was therefore probably rapid, and the addition of water and other volatiles to the mantle wedge beneath the island arc would have enhanced melting, leading to the production of highly depleted boninitic melts.

  15. Shock-induced ringwoodite rims around olivine fragments in melt vein of Antarctic chondrite GRV022321 : Transforma-tion Mechanism

    Science.gov (United States)

    Xie, Z.; Liu, X.; Sharp, T. G.; De Carli, P. S.

    2011-12-01

    Here we report electron microprobe (EMAP), Raman spectroscopy, and FIB-transmission electron microscopy (TEM) results of the ringwoodite rims around olivine cores in shock-induced melt veins of the Antarctic chondrites GRV022321. The purpose of this study is to elucidate the mechanisms of transformation and Mg-Fe diffusion of the olivine to ringwoodite, and estimate the shock duration using kinetics. GRV022321 chondrite has a network of black veins which enclose abundant host-rock fragments of olivine, partially trans-formed to ringwoodite. Most of the enclosed fragments have sizes ranging from 5 μm to 30 μm, with a brighter rim up to several μm wide and a dark core in reflected light and BSE images. The Raman data reveal that the rim mineral is ringwoodite, and the core minerals are dominated by olivine with minor ringwoodite. EMAP data confirm that the ringwoodite in rim is richer in fay-lite (Fa50) than the olivine core (Fa10). The olivine-rich cores are heterogeneous with variable BSE contrast, and some points have the same Fa value as the host olivine Fa 23. The occurrence of the rounded and smooth grains of partially transformed olivine embedded in the fine matrix in shock-induced melt veins indicates that they were host-rock fragments entrained into the shock melt. The rims of these entrained oli-vines transformed to ringwoodite by solid-state transformation. The variable extent of transformation is likely a result of local temperature variations within the entrained olivines, with the hotter rim regions transforming to ringwoodite. Iron partitioned into the ringwoodite from the cooler olivine core by Mg-Fe interdiffusion. This Fe interdiffusion implies that either the diffusion was very rapid or that the shock duration was very long. We are using ringwoodite growth rates and Fe-Mg diffusion to explore transformation temperatures and times for the growth of fayalite-rich ringwoodite rims. This will be discussed in the context of impact processes.

  16. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    Science.gov (United States)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2017-03-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  17. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions

    Science.gov (United States)

    Kuebler, K.; Jolliff, B. J.; Wang, Alian; Haskin, L. A.

    2005-01-01

    Olivine and pyroxene are two major basaltic minerals that have been identified at Gusev Crater and Meridiani Planum by the Mars Exploration Rovers. Full petrologic characterization of a sample (rock or soil), however, requires determining the range of mineral compositions, extent of zoning, range of grain sizes, mineral associations, presence of xenocrysts, etc. Information of this sort will aid the interpretation of sample crystallization and differentiation histories and help discriminate between lithologies. In Raman spectroscopic experiments, minerals are identified by their spectral patterns and mineral compositions can be inferred from the peak positions. Instruments currently in use or slated for impending surface exploration missions provide only average elemental compositions for relatively large rock or soil targets or bulk mineral analysis. No techniques currently in use or scheduled for flight can characterize both structure and composition of individual mineral grains, in-situ, like the Mars Microbeam Raman Spectrometer (MMRS). The MMRS is designed to take 100 spectra along a 1 cm linear traverse on the surface of a sample, with contributions from one or a few mineral phases per spectrum. We presented a method to extract structural and compositional information from the Raman spectra of quadrilateral pyroxenes. The pyroxene calibration was applied to a Raman spectroscopic study of Martian meteorite EETA79001 along with a preliminary olivine calibration, where we demonstrated the capability to discriminate related lithologies using Raman point counts. This paper presents an improved olivine calibration that will further aid sample characterization and the study of alteration processes.

  18. Synchrotron X-Ray Diffraction Studies of Olivine from Comet Wild 2

    Science.gov (United States)

    2008-01-01

    We have analyzed a collection of the Comet Wild 2 coma grains returned by the NASA Stardust Mission, using micro-area Laue diffraction equipment. The purpose of the diffraction experiment is to permit the structure refinement of olivine including site occupancies. In addition to the intrinsic importance of the olivine structures for revealing the thermal history of Wild 2 materials, we wish to test reports that olivine recovered after hypervelocity capture in silica aerogel has undergone a basic structural change due to capture heating [1]. The diffraction equipment placed at beam line BL- 4B1 of PF, KEK was developed with a micropinhole and an imaging plate (Fuji Co. Ltd.) using the Laue method combined with polychromatic X-ray of synchrotron radiation operated at energy of 2.5 GeV. The incident beam is limited to 1.6 m in diameter by a micropinhole set just upstream of the sample [2, 3]. It is essential to apply a microbeam to obtain diffracted intensities with high signal to noise ratios. This equipment has been successfully applied to various extraterrestrial materials, including meteorites and interplanetary dust particles [4]. The Laue pattern of the sample C2067,1,111,4 (Fig. 1) was successfully taken on an imaging plate after a 120 minute exposure (Fig. 2).

  19. CaYGaO{sub 4}; a fully ordered novel olivine type gallate

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Ryan; Zhu, Sarah Jiaxin; Zheng, Shou-Tian; Bu, Xianhui; Derakhshan, Shahab, E-mail: shahab.derakhshan@csulb.edu

    2014-12-15

    Highlights: • CaYGaO{sub 4} and its Fe-doped samples were synthesized. • The crystal structure was determined by single crystal X-ray diffraction method. • The cations are fully ordered. • The ordering feature in octahedral voids is different from all other known olivines. • The unit cell dimensions and the phase range of the doped variants were investigated. - Abstract: CaYGaO{sub 4} was synthesized by conventional solid-state method. Its crystal structure was determined by single-crystal X-ray diffraction technique to be olivine structure type. CaYGaO{sub 4} comprises an orthorhombic space group Pnma, with lattice constants of a = 11.3484(1) Å, b = 6.5712(6) Å and c = 5.2818(8) Å. All three cations occupy their specific atomic positions and the structure is fully ordered. The crystallographic ordering scheme in the new gallate system, is different from those reported for the previously studied silicate and germanate olivines. The partial replacement of the Ga{sup 3+} by Fe{sup 3+} ions could be achieved, resulting in a series of solid solutions with the chemical composition of CaYGa{sub 1−x}Fe{sub x}O{sub 4} (0 < x ⩽ 0.50). The unit cell volumes of the doped variants are consistent with Vegard’s law.

  20. Syndeformation Chrome Spinels Inclusions in the Plastically Deformed Olivine Aggregates (Kraka Ophiolites, the Southern Urals

    Directory of Open Access Journals (Sweden)

    D. E. Saveliev

    2015-12-01

    Full Text Available This article presents the results of structural, petrographic, mineralogical and chemical studies of dunite veinlets in spinel peridotite from the Kraka ophiolites. It is demonstrated that plastic deformation of polycrystalline olivine, which form dunite, was accompanied by precipitation of impurities (aluminum and chrome as newly formed chrome spinels. The thinnest acicular inclusions of 0.3-0.5 micron thick are aligned in olivine grains along [010] axis. Bigger elongated irregular chrome spinel grains usually occur along grain and sub-grain olivine boundaries, and, occasionally, inside the grains along [100] axis. Alteration from the fine xenomorphic grains of chrome spinels to the bigger idiomorphic crystals was observed. Analogically to dynamic ageing (dispersion hardening in metals, the structural and chemical alterations in dunites are interpreted as deformation induced segregation of impurities. It is suggested that the euhedral chrome spinel grains typical for ophiolitic dunites were formed by coalescence and spheroidization. This process may be a key factor in the formation of ophiolitic chrome ore deposits.

  1. Morphological changes of olivine grains reacted with amino acid solutions by impact process

    Science.gov (United States)

    Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-10-01

    Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.

  2. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    Science.gov (United States)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  3. Striped iron zoning of olivine induced by dislocation creep in deformed peridotites.

    Science.gov (United States)

    Ando, J; Shibata, Y; Okajima, Y; Kanagawa, K; Furusho, M; Tomioka, N

    Deformation of solid materials affects not only their microstructures, but also their microchemistries. Although chemical unmixing of initially homogeneous multicomponent solids is known to occur during deformation by diffusion creep, there has been no report on their chemical zoning due to deformation by dislocation creep, in either natural samples or laboratory experiments. Here we report striped iron zoning of olivine ((Mg,Fe)2SiO4) in deformed peridotites, where the iron concentration increases at subgrain boundaries composed of edge dislocations. We infer that this zoning is probably formed by alignment of edge dislocations dragging a so-called Cottrell 'atmosphere' of solute atoms (iron in this case) into subgrain boundaries during deformation of the olivine by dislocation creep. We have found that the iron zoning does not develop in laboratory experiments of high strain rates where dislocations move too fast to drag the Cottrell atmosphere. This phenomenon might have important implications for the generation of deep-focus earthquakes, as transformation of olivine to high-pressure phases preferentially occurs in high-iron regions, and therefore along subgrain boundaries which would be preferentially aligned in plastically deformed mantle peridotites.

  4. Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta's collisional history and from impact simulations

    OpenAIRE

    Turrini, D.; Svetsov, V.; Consolmagno, G.; Sirono, S.; S. Pirani

    2016-01-01

    The survival of asteroid Vesta during the violent early history of the Solar System is a pivotal constraint on theories of planetary formation. Particularly important from this perspective is the amount of olivine excavated from the vestan mantle by impacts, as this constrains both the interior structure of Vesta and the number of major impacts the asteroid suffered during its life. The NASA Dawn mission revealed that olivine is present on Vesta's surface in limited quantities, concentrated i...

  5. Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones

    Science.gov (United States)

    Park, Munjae; Jung, Haemyeong

    2017-07-01

    Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), dislocation-accommodated grain-boundary sliding (D-type), and combination of dislocation and diffusion creep (E-type), respectively.

  6. Investigation of Usability as Industrial Raw Material of Olivine Occurrences: A Case Study from Gelendost - Isparta, Southwestern Turkey

    Science.gov (United States)

    Cengiz, Oya; Kurşunluoğlu, Mustafa

    2016-10-01

    Olivine occurrences are located in the northwest of Madenli and Eğirler villages in Gelendost-Isparta, Southwestern Turkey. The aim of this study is to investigate usability as an industrial raw material of olivine formations in the peridotite. For this purpose, geological, mineralogical and geochemical properties of olivine-rich rocks outcropping in the field were examined. Allochthonous units belonging to Beyşehir-Hoyran Nappes are formed in the Upper Eocene settlement aged Şarkikaraağaç Ophiolites, the Upper Cretaceous Eğirler Formation that contains wild flysch, and the Upper Triassic Deliktaş Formation that consists of recrystallized massive limestone. The Anamas-Akseki Autochthonous units are the Jurassic-Cretaceous Hacıalabaz formation, which consists of dolomite and limestone, the Neogene deposits and the Quaternary alluvium. Harzburgite and dunite are observed in peridotite at the bottom of Şarkikaraağaç Ophiolite. They are dominant rocks of olivine occurrences in the field and include mainly olivine, enstatite, stockwork and vein magnesite, and locally chromite. The concentrations of major oxides for harzburgite samples vary between 41.98 and 44.59% SiO2, between 41.32 to 45.74% MgO, and between 8.75 and 9.82% Fe2O3. The samples ranged from 0.1-4.50% loss on ignition of significance for their usability. Major oxide contents and loss on ignition values of olivine-rich harzburgite samples in the study area partly comply with the standard values that have been determined to be suitable for usage in industry. Consequently, olivine occurrences in the study area are used as olivine sand in industry.

  7. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    Science.gov (United States)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  8. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    Science.gov (United States)

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  9. Investigation of olivine and orthopyroxene grain boundaries by atom probe tomography

    Science.gov (United States)

    Krawczynski, M.; Skemer, P. A.; Bachhav, M.; Dong, Y.; Marquis, E. A.

    2016-12-01

    Accurate chemical analysis at grain boundaries is challenging by traditional microscopic techniques, especially for poor conducting geological samples. Atom probe tomography (APT) is a unique technique that can elucidate chemistry and 3-D distribution of elements within a sample volume at the sub-nanometer length scale. With advances in laser and sample preparation techniques in the last decade, APT is now successfully applied to a wide range of poor conducting materials like metal oxides, ceramics, and biological minerals. In this study, we apply the APT technique to investigate the grain boundary chemistry of orthopyroxene (opx) and olivine. These minerals are the most abundant in the upper mantle and their grain boundaries may be important geochemical reservoirs in Earth. Moreover, physical properties such as grain boundary diffusivity, conductivity, and mobility, are likely influenced by the presence or absence of impurities. Single crystals of opx and olivine grains, separated from a San Carlos xenolith, were deformed at 1 GPa and 1500 K. Plastic deformation promoted dynamic recrystallization, creating new grain boundaries within a chemically homogeneous medium. Needle shaped specimens of opx-opx and olivine-olivine grain boundaries were prepared using standard lift out techniques and a dual beam focused ion beam (FIB). APT analyses were performed in laser mode with laser energy of 50 pJ/pulse, repetition rate of 200 kHz, and detection rate of 1%. A 3-D distribution of elements was reconstructed and 1-D profiles across the grain boundary have been calculated. Fe, Al, and Ca show enrichments at the grain boundaries for both phases, consistent with previous studies that used STEM/EDX or EPMA techniques. Although qualitatively similar, the spatial resolution of the APT method is significantly better than other methods, and our data show that the grain-boundary enrichment of minor elements in both olivine and pyroxene compositions is limited to a region no greater

  10. Shrinkage Cracking: A mechanism for self-sustaining carbon mineralization reactions in olivine rocks

    Science.gov (United States)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xing, T.; Xiao, X.; De Andrade, V. J. D.; Karato, S. I.

    2015-12-01

    The hydration and carbonation of olivine results in an up to ~44% increase in solid molar volume, which may choke off of fluid supply and passivate reactive surfaces, thus preventing further carbonation reactions. The carbonation of olivine has ben studied extensively in the laboratory. To date, observations from these experimental studies indicate that carbonation reaction rates generally decrease with time and the extent of carbonation is limited in olivine rocks. Field studies, however, show that 100% hydration and carbonation occur naturally in ultramafic rocks. The disagreement between the laboratory results under controlled conditions and the field observations underlines the lack of understanding of the mechanisms responsible for the self-sustaining carbonation interaction in nature. We developed a state-of-the-art pressurized hydrothermal cell that is transparent to X-rays to characterize the real-time evolution of pore geometry during fluid-rock interaction using in-situ synchrotron-based X-ray microtomography. Through a time series of high-resolution 3-dimensional images, we document the microstructural evolution of a porous olivine aggregate reacting with a sodium bicarbonate solution at elevated pressure and temperature conditions. We observed porosity increases, near constant rate of crystal growth, and pervasive reaction-induced fractures. Based on the nanometer scale tomography data, we propose that shrinkage cracking is the mechanism responsible for producing new reactive surface and keep the carbonation reaction self-sustaining in our experiment. Shrinkage cracks are commonly observed in drying mud ponds, cooling lava flows and ice wedge fields. Stretching of a contracting surface bonded to a substrate of nearly constant dimensions leads to a stress buildup in the surface layer. When the stress exceeds the tensile strength, polygonal cracks develop in the surface layer. In our experiments, the stretching mismatch between the surface and interior of

  11. Analysis of optimization processses for solid state fabrication of olivine cathode materials

    Science.gov (United States)

    Oladimeji, Charles

    Lithium ion battery discovered since the 1980s has become pivotal to our energy needs. With the need for a shift to renewable energy and increased use of portable devices, energy storage has become a very important aspect of modern day life and technology. In the thesis, optimization techniques for solid state calcination of lithium olivine batteries are characterized and analyzed. A brief introduction into lithium ion battery is discussed, the chemistry and physics of the materials is studied in details. Emphasis is placed on the olivine structure, industrially utilized synthesis method and the performance of olivine lithium ion batteries are also discussed in details. Olivine structure LiFePO4 (LFP) was synthesized via solid state processes, using Li2CO3, NH4H 2PO4 and FeC2O4˙H2O and C12H22O11 as precursor materials. The effects of calendaring in terms of charge/discharge capacity, cycle life performance, surface morphology, and ac impedance was analyzed. The resulting LFP electrode was divided in part, Part A was left as is and Part B was calendared. The calendared electrode exhibited lower impedance under electrochemical impedance test. The calendared electrode also exhibited a higher discharge capacity of about 130 mAh/g at 0.1C compared to the as-is electrode with discharge capacity of about 120mAh/g. Olivine structure LiMnPO4 (LMP) was also synthesized via solid state processes, using Li2CO3, NH4H 2PO4, MnCO3 and C12H22O 11 as precursor materials. Comparison of the carbon addition process was done by adding sucrose to the initial precursor mix and carbon black at the later stages of fabrication. The 3 step carbon addition exhibited the highest specific capacity of about 72mAh/g, 1 step carbon addition possessed the least capacity of about 45mAh/g, while the 2 step process had a capacity of about 65mA/g.

  12. The effect of liquid composition on the partitioning of Ni between olivine and silicate melt

    Science.gov (United States)

    Matzen, Andrew K.; Baker, Michael B.; Beckett, John R.; Wood, Bernard J.; Stolper, Edward M.

    2017-01-01

    We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, D_{{Ni}}^{{ol/liq}}. Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite-Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition ( 12, 15, and 21 wt% MgO). Previously, we used a similar approach to show that D_{{Ni}}^{{ol/liq}} for a liquid with 18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni-Mg exchange reaction, which yields ln ( {D_{{Ni}}^{{molar}} } ) = { -Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}°}/RT + {Δ _{r(1)} S_{{T_{{ref}} ,P_{{ref}} }}°}/R - ln ( {{X_{{MgO}}^{{liq}} }/{X_{{{{MgSi}_{ 0. 5} {{O}}_{ 2} }}^{{ol}} }}} ). Each subset of constant composition experiments displays roughly the same temperature dependence of D_{{Ni}}^{{ol/liq}} (i.e.,-Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}°/R) as previously reported for liquids with 18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with 18 wt% MgO in the silicate liquid) to the above expression gives -Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}°/R = 3641 ± 396 (K) and Δ _{r(1)} S_{{T_{{ref}} ,P_{{ref}} }}° /R = - 1.597 ± 0.229. Adding data from the literature yields -Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}° /R = 4505 ± 196 (K) and Δ _{r(1)} S_{{T_{{ref}} ,P_{{ref}} }}° /R = - 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for D

  13. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries

    Science.gov (United States)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2012-12-01

    Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of ~80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in sodium-ion (Na-ion) batteries and C-LiFePO4 in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO4 are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO4 cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO4 cathodes, the rate performance of C-NaFePO4 in Na-ion batteries is much worse than that of C-LiFePO4 in Li-ion batteries. However, the cycling stability of C-NaFePO4 is almost comparable to C-LiFePO4 by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of ~80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in

  14. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

    Science.gov (United States)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2013-01-21

    Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO(4) except that Li ions in C-LiFePO(4) are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO(4) cathode in sodium-ion (Na-ion) batteries and C-LiFePO(4) in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO(4) are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO(4) cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO(4) cathodes, the rate performance of C-NaFePO(4) in Na-ion batteries is much worse than that of C-LiFePO(4) in Li-ion batteries. However, the cycling stability of C-NaFePO(4) is almost comparable to C-LiFePO(4) by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.

  15. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets

    Science.gov (United States)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Fegley, Bruce, Jr.

    2017-06-01

    We describe an experimental and theoretical study of olivine [Mg2SiO4 (Fo)-Fe2SiO4 (Fa)] vaporization. The vaporization behavior and thermodynamic properties of a fosterite-rich olivine (Fo95Fa5) have been explored by high-temperature Knudsen effusion mass spectrometry (KEMS) from 1750 to 2250 K. The gases observed (in order of decreasing partial pressure) are Fe, SiO, Mg, O2 and O. We measured the solidus temperature (∼2050 K), partial pressures of individual gases, the total vapor pressure, and thermodynamic activities and partial molar enthalpies of MgO, 'FeO', and SiO2 for the Fo95Fa5 olivine. The results are compared to other measurements and models of the olivine system. Our experimental data show olivine vaporizes incongruently. We discuss this system both as a psuedo-binary of Fo-Fa and a psuedo-ternary of MgO-'FeO'-SiO2. Iron/magnesium molar ratios in the sample before (∼0.05) and after (∼0.04) vaporization are consistent with the small positive deviations from ideality of fayalite (γ ∼ 1.17) in olivine of the composition studied (e.g., Nafziger and Muan, 1967). Our data for olivine + melt confirm prior theoretical models predicting fractional vaporization of Fe relative to Mg from molten silicates (Fegley and Cameron, 1987; Schaefer and Fegley, 2009; Ito et al., 2015). If loss of silicate atmospheres occurs from hot rocky exoplanets with magma oceans the residual planet may be enriched in magnesium relative to iron.

  16. An experimental study of Li partitioning between olivine and diopside at mantle conditions

    Science.gov (United States)

    Yakob, J. L.; Feineman, M. D.; Penniston-Dorland, S. C.; Eggler, D. H.

    2010-12-01

    Measured 7Li/6Li of mineral separates from mantle xenoliths from diverse localities show unexpectedly large differences between olivines and pyroxenes, often with lighter Li found in the pyroxenes (Jeffcoate et al., 2007; Rudnick and Ionov, 2007; Ionov and Seitz, 2008). Although changes in isotopic fractionation with temperature could explain the differences, a kinetic isotope effect is as likely. Because 6Li diffuses faster than 7Li, bulk lithium exchange between two phases could result in dynamic isotopic fractionation, with the receiving phase becoming lighter and the donating phase becoming heavier. Thus if Li becomes more compatible in cpx upon cooling, that is, if DLiol/cpx is temperature-dependent, the diffusive exchange of Li will generate temporary 6Li enrichment in cpx and depletion in olivine. Experiments were conducted using a piston cylinder apparatus at 1100°C and 1.4 GPa (1-5 days) to determine DLiol/cpx. San Carlos olivine and Dekalb diopside were finely ground for starting materials. A mixture of olivine (52 wt%), diopside (34 wt%), albite (7 wt%), and quartz (7 wt%) powders (0.0145 g) was loaded into a Pt capsule inside of a Ni crucible. Milli-Q water with 100 ppm Li and 500 ppm Ba (obtained through dilution of stock solutions) was added (0.1100 g) to serve as the lithium source. Lithium concentrations in olivine and diopside from experiments held for 1, 3, and 5 days were determined by laser ablation ICP-MS. Partition coefficients DLiol/cpx from runs at 3 and 5 days are, within error, the same, 1.9 (0.3). These fall in the lower portion of the range, D = 2-7, of limited previous measurements (Brenan et al., 1998b, Blundy and Dalton, 2000; Caciagli-Warman 2010). Partitioning experiments at 700 and 900°C are ongoing. References Blundy, J. and Dalton, J. (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib. Mineral. Petrol

  17. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.

    Science.gov (United States)

    Spandler, C; O'Neill, H St C; Kamenetsky, V S

    2007-05-17

    The chemical composition of basaltic magma erupted at the Earth's surface is the end product of a complex series of processes, beginning with partial melting and melt extraction from a mantle source and ending with fractional crystallization and crustal assimilation at lower pressures. It has been proposed that studying inclusions of melt trapped in early crystallizing phenocrysts such as Mg-rich olivine and chromite may help petrologists to see beyond the later-stage processes and back to the origin of the partial melts in the mantle. Melt inclusion suites often span a much greater compositional range than associated erupted lavas, and a significant minority of inclusions carry distinct compositions that have been claimed to sample melts from earlier stages of melt production, preserving separate contributions from mantle heterogeneities. This hypothesis is underpinned by the assumption that melt inclusions, once trapped, remain chemically isolated from the external magma for all elements except those that are compatible in the host minerals. Here we show that the fluxes of rare-earth elements through olivine and chromite by lattice diffusion are sufficiently rapid at magmatic temperatures to re-equilibrate completely the rare-earth-element patterns of trapped melt inclusions in times that are short compared to those estimated for the production and ascent of mantle-derived magma or for magma residence in the crust. Phenocryst-hosted melt inclusions with anomalous trace-element signatures must therefore form shortly before magma eruption and cooling. We conclude that the assumption of chemical isolation of incompatible elements in olivine- and chromite-hosted melt inclusions is not valid, and we call for re-evaluation of the popular interpretation that anomalous melt inclusions represent preserved samples of unmodified mantle melts.

  18. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars.

    Science.gov (United States)

    Hausrath, Elisabeth M; Tschauner, Oliver

    2013-11-01

    Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.

  19. Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain

    Science.gov (United States)

    Escamilla-Roa, Elizabeth; Moreno, Fernando; López-Moreno, J. Juan; Sainz-Díaz, C. Ignacio

    2017-01-01

    This work is a study of CO and H2O molecules as adsorbates that interact on the surface of olivine dust grains. Olivine (forsterite) is present on the Earth, planetary dust, in the interstellar medium (ISM) and in particular in comets. The composition of amorphous ice is very important for the interpretation of processes that occur in the solar system and the ISM. Dust particles in ISM are composed of a heterogeneous mixture of amorphous or crystalline silicates (e.g. olivine) organic material, carbon, and other minor constituents. These dust grains are embedded in a matrix of ices, such as H2O, CO, CO2, NH3, and CH4. We consider that any amorphous ice will interact and grow faster on dust grain surfaces. In this work we explore the adsorption of CO-H2O amorphous ice onto several (100) forsterite surfaces (dipolar and non-dipolar), by using first principle calculations based on density functional theory (DFT). These models are applied to two possible situations: i) adsorption of CO molecules mixed into an amorphous ice matrix (gas mixture) and adsorbed directly onto the forsterite surface. This interaction has lower adsorption energy than polar molecules (H2O and NH3) adsorbed on this surface; ii) adsorption of CO when the surface has previously been covered by amorphous water ice (onion model). In this case the calculations show that adsorption energy is low, indicating that this interaction is weak and therefore the CO can be desorbed with a small increase of temperature. Vibration spectroscopy for the most stable complex was also studied and the frequencies were in good agreement with experimental frequency values.

  20. Olivine melilitites of the SW German tertiary volcanic province: mineralogy and petrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dunworth, E.A.; Wilson, M. [Leeds University (United Kingdom). Dept. of Earth Sciences

    1998-12-31

    The mineralogy and mineral chemistry of olivine melilitites from the Late Tertiary Urach and Hegau volcanic provinces of SW Germany, and from Mahlberg Castle, north of the Kaisertuhl carbonatite complex within the Upper Rhinegraben, provide important constraints on the petrogenesis of these rather rare magma types. The principal features of the mineralogy are controlled by the high degree of silica undersaturation, relatively low total alkalis (<5 wt%, Na{sub 2}O > K{sub 2}O), and the high Ca and Mg contents of the magmas. Olivine (Fo{sub 79-89}), frequently reverse-zoned, Ca-saturated clinopyroxene exhibiting strong disequilibrium zonation, and akermanite-rich melilite are the dominant crystallizing phases, along with Cr-spinel and magnetite. Rare Ba-Ti phlogopite, containing up to 18 wt% BaO and 9 wt% TiO{sub 2}, occurs in the groundmass of most samples, along with Nb-rich perovskite, fluoraphatite, nepheline and devitrified glass. The combination of previously published geochemical data with the results of this petrographic study suggest that initial melt generation occurred within the dolomite-garnet stability field in the asthenosphere, the main episode of magma generation occurred at the base of the lithosphere, and additional wall-rock assimilation occurred as the magmas rose through the lithosphere, including the incorporation of spinel peridotite xenoliths and sheared olivine xenocrysts which last equilibriated close to the base of the crust. Thus, the bulk-rock composition of the magmas records a composite product of a complex multi-stage and multi-source history. (author)

  1. Evidence for heterogeneous enriched shergottite mantle sources in Mars from olivine-hosted melt inclusions in Larkman Nunatak 06319

    Science.gov (United States)

    Basu Sarbadhikari, Amit; Goodrich, Cyrena A.; Liu, Yang; Day, James M. D.; Taylor, Lawrence A.

    2011-11-01

    Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo 77-73); Type-II inclusions occur in phenocryst mantles (Fo 71-66); Type-III inclusions occur in phenocryst rims (Fo 61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (˜150-250 μm diameter) to Type-II (˜100 μm diameter) to Type-III (˜25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo 77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (˜10 wt%). This is consistent with a calculation indicating that ˜10 wt% magnesian (Fo 77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo 77. Thus, two independent estimates indicate that LAR 06319 contains ˜10 wt% cumulate olivine. The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of

  2. Porphyritic Olivine-Pyroxene Clast in Kaidun: First Discovery of an Ordinary Chondrite Clast?

    Science.gov (United States)

    Mikouchi, T.; Makishima, J.; Koizumi, E.; Zolensky, M. E.

    2005-01-01

    Kaidun is an enigmatic meteorite showing a micro-brecciated texture composed of variable kinds of lithic clasts and mineral fragments. The constituent components range from primitive chondritic materials to differentiated achondritic materials, and thus believed to have originated from a large parent body accumulating materials from many different bodies in the asteroid belt. One of the interesting observations is that no ordinary chondrite component has been found yet, although C and E chondrites components are abundant. In this abstract, we report mineralogy of the clast (Kaidun #15415- 01.3.13a) showing a porphyritic olivine-pyroxene chondrule-like texture similar to those found in unequilibrated ordinary chondrites.

  3. Combined Structural,Electrochemical and Thermodynamic Investigations on Various Li_xMPO_4 Olivine Compounds

    Institute of Scientific and Technical Information of China (English)

    Atsuo; Yamada

    2007-01-01

    1 Results As tremendous increase of interest towards the application of LiFePO4 for lithium battery cathode,the mechanism of the intrinsic transport of lithium ions and electrons in LixFePO4 is becoming the intensive and exciting research subject.In the present paper,we will mainly focus on dimension of the transport and the role of solid solution as they seem to be key issues to understand charge movement in the olivine structure.Although one-demensional lithium motion along b-axis has been theoretical...

  4. Petrology and Mineral Chemistry of New Olivine-Phyric Shergottite RBT04262

    Science.gov (United States)

    Dalton, H. A.; Peslier, A. H.; Brandon, A. D.; Lee, C.-T. A.; Lapen, T. J.

    2008-01-01

    RBT04262 was found by the 2004-2005 ANSMET team at the Roberts Massif in Antarctica. It is paired with RBT04261 and is classified as an olivine-phyric shergottite. RBT04261 is 4.0 x 3.5 x 2.5 cm and 78.8 g, and RBT04262 is 6.5 x 5.5 x 3.5 cm and 204.6 g. Both were partially covered by a fusion crust [1]. Chemical analysis and mapping of this meteorite was performed using the Cameca SX100 electron microprobe at NASA Johnson Space Center.

  5. Highly impregnated slow-spread lithosphere : microstructure and geochemistry of olivine-rich troctolites from IODP Hole U1309D

    Science.gov (United States)

    Ildefonse, B.; Drouin, M.; Godard, M.

    2009-04-01

    IODP Expeditions 304-305 sampled the Atlantis Massif, an oceanic core complex located at 30°N in the inside corner of the intersection of the Mid-Atlantic Ridge with the Atlantis Fracture Zone. IODP Hole U1309D was drilled to 1415.5 meters below seafloor; it is the second deepest hole in slow-spreading crust, after Ocean Drilling Program (ODP) Hole 735B on the Southwest Indian Ridge. The recovered rocks are mostly gabbroic. We present a petrostructural (EBSD) and in-situ geochemical (EPMA, LA-ICPMS and LA-HR-ICPMS) study of olivine-rich troctolites (ol > 70%; 5.5 % of recovered section) and associated gabbros. Olivine-rich troctolites from Hole U1309D display poikilitic textures, with olivine ranging from coarse-grained subhedral crystals to medium-grained rounded crystals, embedded in large, undeformed clinopyroxene and plagioclase poikiloblasts. Trace element compositions of clinopyroxene and plagioclase poikiloblasts indicate that they crystallized from the same depleted MORB melt in both olivine-rich troctolites and associated gabbros. Olivine trace element compositions appear too depleted in light REE to be in equilibrium with plagioclase and clinopyroxene. Olivine crystallographic preferred orientations are weak, and misorientations are consistent with deformation by dislocation creep with activation of the high-temperature (010) [100] slip system, commonly described in asthenospheric mantle. The fabrics also display a relatively strong uncommon [001] concentration that we interpret as resulting from abundant melt impregnation. The joint study of geochemical processes and microstructures in these rocks suggest a complex crystallization history in an open system with percolation of large volume of MORB-type melt that postdate olivine crystal-plastic deformation. Although the mantle origin of the olivine is difficult to demonstrate unequivocally, we propose that olivine-rich troctolites represent the ultimate residue of melt-mantle reaction processes. Our

  6. Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle

    Science.gov (United States)

    Ammannati, Edoardo; Jacob, Dorrit E.; Avanzinelli, Riccardo; Foley, Stephen F.; Conticelli, Sandro

    2016-06-01

    Subduction drags a large amount of CO2 into the Earth's interior, which is partly returned to the atmosphere by arc volcanism. Processes involved in the recycling of subducted carbon within the upper mantle are mainly related to mineralogical transformation. Subducted CO2 may dramatically affect the equilibria among peridotitic minerals (olivine vs. pyroxenes) changing their stability fields and hence their modal abundances. This process is accompanied by a subduction-induced change in the budget of some incompatible trace and major elements (e.g., K, Ca, HFSE), whereas it has a minimal effect on the mass balance of compatible elements (e.g., Ni). We report trace elements in olivine in subduction-related mafic alkaline ultrapotassic rocks from Italy, which are used as a proxy to define mantle wedge mineralogy and metasomatic processes. Minor element concentrations, and in particular the high Li and low Ti of all the olivines, confirm a major role for recycled sediment in the generation of Italian ultrapotassic magmas. The distinct contents of Ni, Mn, and Ca in olivine reflect the bimodal character of silica-rich and silica-poor ultrapotassic Italian rocks and constrain two distinct mineralogical reactions between metasomatic agents and peridotite. Olivine chemistry from silica-saturated rocks reflects the reaction of silicate melts with the ambient mantle, with consequent consumption of olivine in favour of orthopyroxene. In contrast, the low-Ni, high-Mn/Fe of olivine crystallised from silica-undersaturated leucitites require a mantle source enriched in olivine (and clinopyroxene) compared to orthopyroxene, as a result of the interaction between the ambient peridotitic mantle and CaCO3-rich metasomatic agents. The change from silica-oversaturated lamproites to silica-undersaturated leucitites and thus the difference in the olivine composition is due to a change in composition of the subducting sediment from pelitic to carbonate-rich. The results of this study

  7. 40Ar/39Ar dating of the Mumbai tholeiites and Panvel flexure: intense 62.5 Ma onshore-offshore Deccan magmatism during India-Laxmi Ridge-Seychelles breakup

    Science.gov (United States)

    Pande, Kanchan; Yatheesh, Vadakkeyakath; Sheth, Hetu

    2017-08-01

    Mumbai, located on the western Indian continental margin, exposes Danian-age Deccan magmatic units of diverse compositions, dipping seaward due to the Panvel flexure. The Ghatkopar-Powai tholeiitic sequence contains seaward-dipping (thus pre-flexure) flows and subvertical (thus post-flexure) dykes. We present new 40Ar/39Ar ages of 62.4 ± 0.7 and 62.4 ± 0.3 Ma (2σ) on two flows, and 62.2 ± 0.3, 62.8 ± 0.3 and 61.8 ± 0.2 Ma on three dykes, showing that this sequence is much younger than the main 66-65 Ma Deccan sequence in the Western Ghats escarpment. The mutually indistinguishable ages of the Ghatkopar-Powai tholeiites overlap with available 40Ar/39Ar ages of 62.6 ± 0.6 and 62.9 ± 0.2 Ma for the seaward-dipping Dongri rhyolite flow and 62.2 ± 0.6 Ma for the Saki Naka trachyte intrusion, both from the uppermost Mumbai stratigraphy. The weighted mean of these eight 40Ar/39Ar ages is 62.4 ± 0.1 Ma (2 SEM), relative to an MMhb-1 monitor age of 523.1 ± 2.6 Ma (2σ), and indicates essentially contemporaneous volcanism, intrusion and tectonic flexure. This age also coincides with the rift-to-drift transition of the Seychelles and Laxmi Ridge-India breakup and the emplacement of the Raman-Panikkar-Wadia seamount chain in the axial part of the Laxmi Basin. Pre-rift magmatism is seen in the 64.55 Ma Jogeshwari basalt in Mumbai and 63.5-63.0 Ma intrusions in the Seychelles. Post-rift magmatism is seen in the 60.8-60.9 Ma Manori trachyte and Gilbert Hill basalt intrusions in Mumbai and 60-61 Ma syenitic intrusions in the Seychelles. The Mumbai area thus preserves the pre-, syn- and post-rift onshore tectonomagmatic record of the breakup between the Seychelles and the Laxmi Ridge-India. Voluminous submarine volcanism forming the Raman, Panikkar and Wadia seamounts in the Laxmi Basin represents the offshore syn-rift magmatism.

  8. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton:Implication for replacement process of lithospheric mantle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongfu; YING Jifeng; XU Ping; MA Yuguang

    2004-01-01

    Mesoxzoic(125 Ma) Fangcheng basalts from Shandong Province contain clearly zoned olivines that are rare in terrestrial samples and provide first evidence for the replacement of lithospheric mantle from high-Mg peridotites to low-Mg peridotites through peridotite-melt reaction. Zoned olivines have compostions in the core(Mg#=87.2-90.7)similar to those olivines from the mantle peridotitic xenoliths entrained in Cenozoic basalts from the North China craton and in the rim (Mg#=76.8-83.9)close to olivine phenocrysts of the host basalts (75.7-79.0).These compositional features as well as rounded crystal shapes and smaller grain sizes (300-800μm)demonstrate that these zoned olivines are mantle xenocrysts ,I.e.an important type of the replacement of lithospheric mantle.The reaction resulted in the transformation of the Paleozoic refractory (high-Mg)peridotites to the late Mesozoic fertile (low-Mg) and radiogenic isotope-enriched peridotites,leading to the loss of old lithospheric mantle.

  9. Natural dissociation of olivine to (Mg,Fe)SiO3 perovskite and magnesiowustite in a shocked Martian meteorite.

    Science.gov (United States)

    Miyahara, Masaaki; Ohtani, Eiji; Ozawa, Shin; Kimura, Makoto; El Goresy, Ahmed; Sakai, Takeshi; Nagase, Toshiro; Hiraga, Kenji; Hirao, Naohisa; Ohishi, Yasuo

    2011-04-12

    We report evidence for the natural dissociation of olivine in a shergottite at high-pressure and high-temperature conditions induced by a dynamic event on Mars. Olivine (Fa(34-41)) adjacent to or entrained in the shock melt vein and melt pockets of Martian meteorite olivine-phyric shergottite Dar al Gani 735 dissociated into (Mg,Fe)SiO(3) perovskite (Pv)+magnesiowüstite (Mw), whereby perovskite partially vitrified during decompression. Transmission electron microscopy observations reveal that microtexture of olivine dissociation products evolves from lamellar to equigranular with increasing temperature at the same pressure condition. This is in accord with the observations of synthetic samples recovered from high-pressure and high-temperature experiments. Equigranular (Mg,Fe)SiO(3) Pv and Mw have 50-100 nm in diameter, and lamellar (Mg,Fe)SiO(3) Pv and Mw have approximately 20 and approximately 10 nm in thickness, respectively. Partitioning coefficient, K(Pv/Mw) = [FeO/MgO]/[FeO/MgO](Mw), between (Mg,Fe)SiO(3) Pv and Mw in equigranular and lamellar textures are approximately 0.15 and approximately 0.78, respectively. The dissociation of olivine implies that the pressure and temperature conditions recorded in the shock melt vein and melt pockets during the dynamic event were approximately 25 GPa but 700 °C at least.

  10. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine.

    Science.gov (United States)

    Choi, B G; McKeegan, K D; Leshin, L A; Wasson, J T

    1997-01-01

    Magnetite in the oxidized CV chondrite Allende mainly occurs as spherical nodules in porphyritic-olivine (PO) chondrules, where it is associated with Ni-rich metal and/or sulfides. To help constrain the origin of the magnetite, we measured oxygen isotopic compositions of magnetite and coexisting olivine grains in PO chondrules of Allende by an in situ ion microprobe technique. Five magnetite nodules form a relatively tight cluster in oxygen isotopic composition with delta 18O values from -4.8 to -7.1% and delta 17O values from -2.9 to -6.3%. Seven coexisting olivine grains have oxygen isotopic compositions from -0.9 to -6.3% in delta 18O and from -4.6 to -7.9% in delta 17O. The delta 17O values of the magnetite and coexisting olivine do not overlap; they range from -0.4 to -2.6%, and from -4.0 to -5.7%, respectively. Thus, the magnetite is not in isotopic equilibrium with the olivine in PO chondrules, implying that it formed after the chondrule formation. The delta 17O of the magnetite is somewhat more negative than estimates for the ambient solar nebula gas. We infer that the magnetite formed on the parent asteroid by oxidation of metal by H2O which had previously experienced minor O isotope exchange with fine-grained silicates.

  11. Formation of Diastereoisomeric Piperazine-2,5-dione from dl-Alanine in the Presence of Olivine and Water

    Science.gov (United States)

    Fuchida, Shigeshi; Naraoka, Hiroshi; Masuda, Harue

    2017-03-01

    dl-Alanine (Ala) was heated with/without powdered olivine and water at 120 °C for 8 days to investigate the formation of the diastereoisomers of piperazine-2,5-dione (diketopiperazine, DKP). When only dl-Ala was heated with a small amount of water, 3.0 % of dl-Ala changed to cis- and trans-DKP after 8 days. DKPs were not detected after heating when no water was added. The presence of a small amount of water is important factor controlling peptide production rates under thermal conditions. When DL-Ala was heated with olivine powder for 8 days, the yields of cis- and trans-DKP were 6.8 and 4.9 %, respectively. The high yield of cis-DKP compared with trans-DKP was attributed to greater thermal stability of cis-DKP. After heating for 8 days, the diastereoisomeric excess of cis-DKP without olivine was 7.3 %, whereas a much higher value of 16.3 % was obtained in the presence of olivine. Taken together, these results show that olivine is not only an efficient catalyst for the formation of DKPs but that it also play a significant role in determining the diastereoisomer selectivity of these cyclic dipeptides.

  12. Formation of Diastereoisomeric Piperazine-2,5-dione from uc(dl)-Alanine in the Presence of Olivine and Water

    Science.gov (United States)

    Fuchida, Shigeshi; Naraoka, Hiroshi; Masuda, Harue

    2016-04-01

    uc(dl)-Alanine (Ala) was heated with/without powdered olivine and water at 120 °C for 8 days to investigate the formation of the diastereoisomers of piperazine-2,5-dione (diketopiperazine, DKP). When only uc(dl)-Ala was heated with a small amount of water, 3.0 % of uc(dl)-Ala changed to cis- and trans-DKP after 8 days. DKPs were not detected after heating when no water was added. The presence of a small amount of water is important factor controlling peptide production rates under thermal conditions. When DL-Ala was heated with olivine powder for 8 days, the yields of cis- and trans-DKP were 6.8 and 4.9 %, respectively. The high yield of cis-DKP compared with trans-DKP was attributed to greater thermal stability of cis-DKP. After heating for 8 days, the diastereoisomeric excess of cis-DKP without olivine was 7.3 %, whereas a much higher value of 16.3 % was obtained in the presence of olivine. Taken together, these results show that olivine is not only an efficient catalyst for the formation of DKPs but that it also play a significant role in determining the diastereoisomer selectivity of these cyclic dipeptides.

  13. Improved electrode characteristics of olivine-LiCoPO 4 processed by high energy milling

    Science.gov (United States)

    Rabanal, M. E.; Gutierrez, M. C.; Garcia-Alvarado, F.; Gonzalo, E. C.; Arroyo-de Dompablo, M. E.

    Olivine-LiCoPO 4 powders have been processed by mechanical grinding for time periods ranging from 0.5 to 10 h with conductive carbon contents of 0, 8 and 20% (w/w). In all cases the grinding process produces an amorphization of the crystalline materials and decreases both the crystallite and particle sizes. Secondary phases are detected by scanning electron microscopy and X-ray diffraction in the materials milled for times greater than 2 h without carbon. The addition of conductive carbon during the milling process decelerates the degradation of the material and secondary phases are not detected even after 10 h of grinding. The electrochemical performance of olivine-LiCoPO 4 is improved in all the materials milled for 0.5 h; a lower cell polarization and a larger reversible specific capacity are observed. These characteristics are enhanced in the materials grinded with conductive carbon, which also display a capacity retention with cycling clearly superior to that of the fresh LiCoPO 4. Ball milling LiCoPO 4 for times greater than 1 h is detrimental for the response of the electrode, independently on the amount of conductive carbon in the grinding media.

  14. Traces of heavy and superheavy cosmic nuclei in olivines of extraterrestial origin

    Energy Technology Data Exchange (ETDEWEB)

    Ignatova, R.; Taneva, T. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Pelas, P.; Stetsenko, S.; Perelgin, V. (Joint Inst. for Nuclear Research, Dubna (USSR))

    1982-01-01

    The paths of traces of WH nuclei from cosmic rays have been measured in olivines from the meteorites Maryalakhti, Eagle Stein, Liposki khutor with radiation ages 175, 45 and 220 million years respectively. 3 cm/sup 3/ olivines of these meteorites have been examined and more than 500 traces of nuclei with Z(>=)90 have been found measured including 3 traces 1.5-1.8 times longer than the traces created by the uranium and thorium nuclei. These traces may be left by nuclei with Z(>=)110. The crystals were chosen from localizations situated at 2-7 cm, 8-9 cm and 10-12 cm from the outside atmospheric surface of the meteorite. The abundancy of the Z(>=)50 nuclei in gigantic cosmic rays, averaged for a period of (<=) 200 millions of years has been compared with the distribution of the elements in the substances from the Solar system. A new value has been found for the hypothetical superheavy elements Z(>=)110 in galactic cosmic rays. It is 1.4 x 10 /sup -9/ from that of the iron group nuclei.

  15. Surface-orientation-dependent distribution of subsurface cation-exchange defects in olivine-phosphate nanocrystals.

    Science.gov (United States)

    Chung, Sung-Yoon; Choi, Si-Young; Kim, Tae-Hwan; Lee, Seongsu

    2015-01-27

    Atomic-scale exchange between two different cations of similar size in crystalline oxides is one of the major types of point defects when multiple cations in oxygen interstitials are arrayed in an ordered manner. Although a number of studies have been performed on a variety of Li-intercalation olivine phosphates to determine the distribution of exchange defects in bulk, understanding of the thermodynamic stability of the defects in subsurface regions and its dependency on the crystallographic orientation at the surface has remained elusive. Through a combination of small-angle neutron scattering, atomic-scale direct probing with scanning transmission electron microscopy, and theoretical ab initio calculations, we directly demonstrate that the antisite exchange defects are distributed in a highly anisotropic manner near the surfaces of LiFePO4 crystals. Moreover, a substantial amount of cation exchanges between Li and Fe sites is identified as an energetically favorable configuration in some surface regions, showing excellent agreement with the calculation results of negative defect formation energies. The findings in this study provide insight into developing better ways to avoid degradation of lithium mobility through the surface as well as scientifically notable features regarding the distribution of exchange defects in olivine phosphates.

  16. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.

    Science.gov (United States)

    Hansen, Lars N; Qi, Chao; Warren, Jessica M

    2016-09-20

    Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  17. Strength of orthoenstatite single crystals at mantle pressure and temperature and comparison with olivine

    Science.gov (United States)

    Raterron, Paul; Fraysse, Guillaume; Girard, Jennifer; Holyoke, Caleb W.

    2016-09-01

    Oriented single crystals of orthopyroxenes (OPx) were deformed in axisymmetric compression in the D-DIA at pressure and temperature in excess of 3 GPa and 1040 °C. Two crystal orientations were tested with the compression axis parallel to either [101]c crystallographic direction, to investigate [001](100) dislocation slip-system strength, or [011]c direction to investigate [001](010) slip-system strength. These slip systems are the most active in orthopyroxenes. Applied differential stresses and specimen strain rates were measured in situ by synchrotron X-ray diffraction and radiography. We used these data and comparison with previously reported low-pressure flow laws for protoenstatite and orthoenstatite to determine the power law parameters for the deformation of orthoenstatite crystals, which characterize OPx dislocation slip-system strengths. Applying these laws at reasonable mantle stresses along oceanic and continental geotherms indicates that OPx [001](100) slip system is weaker than OPx [001](010) slip system to ∼260 km depth where the strengths converge. It also indicates that both OPx slip systems are significantly stronger than olivine slip systems throughout the upper mantle, except in the upper most mantle, in the lithosphere, were OPx [001](100) slip system may be as weak or even weaker than olivine [100](010) easy slip system.

  18. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere

    Science.gov (United States)

    Hansen, Lars N.; Qi, Chao; Warren, Jessica M.

    2016-09-01

    Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  19. Diamond and its olivine inclusions: A strange relation revealed by ab initio simulations

    Science.gov (United States)

    Bruno, M.; Rubbo, M.; Aquilano, D.; Massaro, F. R.; Nestola, F.

    2016-02-01

    The study of diamond and its solid inclusions is of paramount importance to acquire direct information on the deepest regions of the Earth. However, although diamond is one of the most studied materials in geology, the diamond-inclusion relationships are not yet understood: do they form simultaneously (syngenesis) or are inclusions pre-existing objects on which diamond nucleated (protogenesis)? Here we report, for the first time, adhesion energies between diamond (D) and forsterite (Fo) to provide a crucial contribution to the syngenesis/protogenesis debate. The following interfaces were investigated at quantum-mechanical level: (i) (001)D/(001)Fo, (ii) (001)D/(021)Fo, and (iii) (111)D/(001)Fo. Our data, along with the ones recently obtained on the (110)D/(101)Fo interface, revealed an unexpected thermodynamic behaviour, all interfaces showing almost equal and low adhesion energies: accordingly, diamond and olivine have an extremely low chemical affinity and cannot develop preferential orientations, even during an eventual epitaxial growth. Combining these results with those of our previous work concerning the morphology constraints of diamond on its inclusions, we can state that the two main arguments used so far in favour of diamond/inclusions syngenesis cannot be longer considered valid, at least for olivine.

  20. Macro-scale complexity of nano- to micro-scale architecture of olivine crystals through an iodine vapour transport mechanism

    Indian Academy of Sciences (India)

    Raymond L D Whitby; Takahiro Fukuda; Toru Maekawa

    2014-04-01

    The production of nano- to micro-scale olivine (magnesium and iron silicate) crystals has been achieved at relatively low temperatures through an iodine vapour transport of the metal onto amorphous silicon dioxide. The process occurs down a temperature gradient from 800 to 600°C yielding high quality crystals with long range crystallinity, highly complex interconnectivity and intricate macroscale architecture. Scanning electron microscopy (SEM) imaging of the substrate before and after the reaction reveals that the amorphous silicon oxide species is mobile, due to the lack of correlation between the silicon oxide layer and the final olivine particles, leading to a vapour–liquid–solid or vapour–solid growth mechanism. This technique demonstrates a facile, low temperature synthetic route towards olivine crystals with nano- to micro-scale dimensions.

  1. Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution.

    Science.gov (United States)

    Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei

    2013-05-17

    We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.

  2. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province

    Science.gov (United States)

    Xu, Rong; Liu, Yongsheng

    2016-12-01

    The Emeishan large igneous province (ELIP) is renowned for its world-class Ni-Cu-(PGE) deposits and its link with the Capitanian mass extinction. The ELIP is generally thought to be associated with a deep mantle plume; however, evidence for such a model has been challenged through geology, geophysics and geochemistry. In many large igneous province settings, olivine-melt equilibrium thermometry has been used to argue for or against the existence of plumes. However, this method involves large uncertainties such as assumptions regarding melt compositions and crystallisation pressures. The Al-in-olivine thermometer avoids these uncertainties and is used here to estimate the temperatures of picrites in the ELIP. The calculated maximum temperature (1440 °C) is significantly ( 250 °C) higher than the Al-in-olivine temperature estimated for the average MORB, thus providing compelling evidence for the existence of thermal mantle plumes in the ELIP.

  3. Origin of spinel lamella and/or inclusions in olivine of harzburgite form the Pauza ultramafic rocks from the Kurdistan region, northeastern Iraq

    Science.gov (United States)

    Mohammad, Y.; Maekawa, H.; Karim, K.

    2009-04-01

    Exsolution lamellae and octahedral inclusions of chromian spinel occur in olivine of harzburgite of the Pauza ultramafic rocks, Kurdistan region, northeastern Iraq. The lamella is up to 80μm long and up to 50 μm wide. The lamellae and octahedral inclusions of chromian spinel are distributed heterogeneously in the host olivine crystal. They are depleted in Al2O3 relative to the subhedral spinel grains in the matrix and spinel lamella in orthopyroxene. Olivine (Fo92 - 93) with spinel lamellae occurs as fine-grained crystals around orthopyroxene, whereas olivine (Fo90-91) free from spinel is found in matrix. Based on back-scattered images analyses, enrichments of both Cr # and Fe+3 in the chromian spinel lamella in olivine (replacive olivine) relative to that in adjacent orthopyroxene. As well as the compositions of chromian spinel lamellae host olivine are more Mg-rich than the matrix olivine. Furthermore the restriction of olivine with spinel lamellae and octahedral inclusions on around orthopyroxene, and the similarity of spinel lamella orientations in both olivine and adjacent orthopyroxene. This study concludes that the spinel inclusions in olivine are remnant (inherited from former orthopyroxene) spinel exsolution lamella in orthopyroxene, that has been formed in upper mantle conditions ( T = 1200 °C, P = 2.5 GPa ). Replacive olivine are formed by reaction of ascending silica poor melt and orthopyroxene in harzburgite as pressure decrease the solubility of silica-rich phase (orthopyroxene) in the system increase, therefore ascending melt dissolve pyroxene with spinel exsolution lamella and precipitate replacive olivine with spinel inclusions. We can conclude that the olivines with spinel lamella are not necessary to be original and presenting ultrahigh-pressure and/or ultra deep-mantle conditions as previously concluded. It has been formed by melting of orthopyroxene (orthopyroxene with spinel exsolution lamella = olivine with spinel lamellae and octahedral

  4. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3.

    Science.gov (United States)

    Gadikota, Greeshma; Matter, Juerg; Kelemen, Peter; Park, Ah-Hhyung Alissa

    2014-03-14

    The increasing concentrations of CO2 in the atmosphere are attributed to the rising consumption of fossil fuels for energy generation around the world. One of the most stable and environmentally benign methods of reducing atmospheric CO2 is by storing it as thermodynamically stable carbonate minerals. Olivine ((Mg,Fe)2SiO4) is an abundant mineral that reacts with CO2 to form Mg-carbonate. The carbonation of olivine can be enhanced by injecting solutions containing CO2 at high partial pressure into olivine-rich formations at high temperatures, or by performing ex situ mineral carbonation in a reactor system with temperature and pressure control. In this study, the effects of NaHCO3 and NaCl, whose roles in enhanced mineral carbonation have been debated, were investigated in detail along with the effects of temperature, CO2 partial pressure and reaction time for determining the extent of olivine carbonation and its associated chemical and morphological changes. At high temperature and high CO2 pressure conditions, more than 70% olivine carbonation was achieved in 3 hours in the presence of 0.64 M NaHCO3. In contrast, NaCl did not significantly affect olivine carbonation. As olivine was dissolved and carbonated, its pore volume, surface area and particle size were significantly changed and these changes influenced subsequent reactivity of olivine. Thus, for both long-term simulation of olivine carbonation in geologic formations and the ex situ reactor design, the morphological changes of olivine during its reaction with CO2 should be carefully considered in order to accurately estimate the CO2 storage capacity and understand the mechanisms for CO2 trapping by olivine.

  5. Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst.

    Science.gov (United States)

    Zhang, Ruiqin; Wang, Huajian; Hou, Xiaoxue

    2014-02-01

    Tar produced by biomass gasification as a route of renewable energy must be removed before the gas can be used. This study was undertaken using toluene as a model tar compound for evaluating its steam reforming conversion with three Ni-based catalysts, Ni/olivine, Ni-Ce/olivine and Ni-Ce-Mg/olivine. Effects of Ce and Mg promoters on the reaction activity and coke deposition were studied. Overall the performance of Ce and Mg promoted Ni/olivine catalysts is better than that of only Ce promoter and Ni/olivine alone. The experimental results indicate that Ni-Ce-Mg/olivine catalysts could improve the resistance to carbon deposition, enhance energy gases yield and resist 10ppm H2S poison at 100mLmin(-1) for up to 400min. Furthermore, the activity of catalysts was related to the steam/carbon (S/C) ratios; at S/C ratio=5, T=790°C, space velocity=782h(-1) and t=2h, the Ni-Ce-Mg/olivine system yielded 89% toluene conversion, 5.6Lh(-1) product gas rate, 62.6mol% H2 content and 10% (mol useful gas mol(-1) toluene) energy yield. Moreover, at low S/C ratio, it had higher reaction activity and better ability to prevent coking. There is a small amount of carbon deposition in the form of amorphous carbon after 7h. Various characterization techniques such as XRD, FTIR and thermogravimetric were performed to investigate the coke deposition of Ni/olivine, Ni-Ce/olivine and Ni-Ce-Mg/olivine. It is suggested that 3% Ni-1% Ce-1% Mg/olivine was the most promising catalyst due to its minimum coke amount and the lower activation energy of coke burning.

  6. Permian basalts and trachytes from Esterel (SE France): a transitional tholeiitic suite emplaced during lithosphere thinning; Basaltes et trachytes permiens de l`Esterel (SE France): une serie tholeiitique transitionnelle epanchee pendant l`amincissement lithospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, H.; Basile, Ch. [Grenoble-1 Univ., 38 - Grenoble (France). Laboratoire de Geodynamique des Chaines Alpines, CNRS UPRES-A5025; Dupuis, V. [Institut de Geodynamique, UMR Geosciences Azur, 06 - Valbonne (France)

    1999-11-01

    Geochemical (major, trace and rare earth elements) and isotopic ({sup 143}Nd/{sup 144}Nd) compositions of lavas emplaced in the Esterel Massif (eastern Provence, France) at the end of the Permian allow to estimate the evolution of the continental lithosphere between the end of the Hercynian orogenesis and the beginning of the Tethyan rifting. Basalts from Agay basin and trachyte from Batterie des Lions belong to a transitional tholeiitic suite, characterized by negative Nb and Ta anomalies (relative to N-MORB) and homogeneous {epsilon}Nd{sub (T=250Ma)} ratios, close to the Bulk Earth. This suggests that the basalts from Agay basin and trachyte from Batterie des Lions derived from the partial melting of a mantle contaminated by lower continental crust. Maure Vieille trachytes differ from the differentiated rocks of the transitional suite by higher heavy rare earth abundances and {epsilon}Nd{sub (T=250Ma)} of +4/+5. These high {xi}Nd ratios suggest that the Maure Vieille trachytes could derive from the partial melting of a more depleted source, likely an asthenospheric mantle. The isotopic compositions of the Permian lavas from Esterel suggest the thinning (and perhaps the disappearance) of the lithospheric mantle which is associated at the surface with a NNW-SSE extension. The progressive change recorded in Agay basin from a stretching regime to a strike-slip regime may be related to the end of the lithospheric thinning and of the Permian magmatism. (authors) 37 refs.

  7. Deducing Wild 2 Components with a Statistical Dataset of Olivine in Chondrite Matrix

    Science.gov (United States)

    Frank, D. R.; Zolensky, M. E.; Le, L.

    2012-01-01

    Introduction: A preliminary exam of the Wild 2 olivine yielded a major element distribution that is strikingly similar to those for aqueously altered carbonaceous chondrites (CI, CM, and CR) [1], in which FeO-rich olivine is preferentially altered. With evidence lacking for large-scale alteration in Wild 2, the mechanism for this apparent selectivity is poorly understood. We use a statistical approach to explain this distribution in terms of relative contributions from different chondrite forming regions. Samples and Analyses: We have made a particular effort to obtain the best possible analyses of both major and minor elements in Wild 2 olivine and the 5-30 micrometer population in chondrite matrix. Previous studies of chondrite matrix either include larger isolated grains (not found in the Wild 2 collection) or lack minor element abundances. To overcome this gap in the existing data, we have now compiled greater than 10(exp 3) EPMA analyses of matrix olivine in CI, CM, CR, CH, Kakangari, C2-ungrouped, and the least equilibrated CO, CV, LL, and EH chondrites. Also, we are acquiring TEM/EDXS analyses of the Wild 2 olivine with 500s count times, to reduce relative errors of minor elements with respect to those otherwise available. Results: Using our Wild 2 analyses and those from [2], the revised major element distribution is more similar to anhydrous IDPs than previous results, which were based on more limited statistics (see figure below). However, a large frequency peak at Fa(sub 0-1) still persists. All but one of these grains has no detectable Cr, which is dissimilar to the Fa(sub 0-1) found in the CI and CM matrices. In fact, Fa(sub 0-1) with strongly depleted Cr content is a composition that appears to be unique to Kakangari and enstatite (highly reduced) chondrites. We also note the paucity of Fa(sub greater than 58), which would typically indicate crystallization in a more oxidizing environment [3]. We conclude that, relative to the bulk of anhydrous IDPs

  8. Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: insights from olivine phenocrysts

    Science.gov (United States)

    Gurenko, Andrey A.; Bindeman, Ilya N.; Chaussidon, Marc

    2011-08-01

    A relatively narrow range of oxygen isotopic ratios ( δ 18O = 5.0-5.4‰) is preserved in olivine of mantle xenoliths, mid-ocean ridge (MORB), and most ocean island basalts (OIB). The values in excess of this range are generally attributed either to the presence of a recycled component in the Earth's mantle or to shallow level contamination processes. A viable way forward to trace source heterogeneity is to find a link between chemical (elemental and isotopic) composition of the earlier crystallized mineral phases (olivine) and the composition of their parental magmas, then using them to reconstruct the composition of source region. The Canary hotspot is one of a few that contains ~1- to 2-Ga-old recycled ocean crust that can be traced to the core-mantle boundary using seismic tomography and whose origin is attributed to the mixing of at least three main isotopically distinct mantle components i.e. HIMU, DMM, and EM. This work reports ion microprobe and single crystal laser fluorination oxygen isotope data of 148 olivine grains also analyzed for major and minor elements in the same spot. The olivines are from 20 samples resembling the most primitive shield stage picrite through alkali basalt to basanite series erupted on Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, Canary Islands, for which shallow level contamination processes were not recognized. A broad range of δ 18Oolivine values from 4.6 to 6.1‰ was obtained and explained by stable, long-term oxygen isotope heterogeneity of crystal cumulates present under different volcanoes. These cumulates are thought to have crystallized from mantle-derived magmas uncontaminated at crustal depth, representing oxygen isotope heterogeneity of source region. A relationship between Ni × FeO/MgO and δ 18Oolivine values found in one basanitic lava erupted on El Hierro, the westernmost island of the Canary Archipelago, was used to estimate oxygen isotope compositions of partial melts presumably originated from

  9. Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    Science.gov (United States)

    Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.

    2013-12-01

    During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate

  10. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins.

    Science.gov (United States)

    Miyahara, Masaaki; El Goresy, Ahmed; Ohtani, Eiji; Nagase, Toshiro; Nishijima, Masahiko; Vashaei, Zahra; Ferroir, Tristan; Gillet, Philippe; Dubrovinsky, Leonid; Simionovici, Alexandre

    2008-06-24

    Peace River is one of the few shocked members of the L-chondrites clan that contains both high-pressure polymorphs of olivine, ringwoodite and wadsleyite, in diverse textures and settings in fragments entrained in shock-melt veins. Among these settings are complete olivine porphyritic chondrules. We encountered few squeezed and flattened olivine porphyritic chondrules entrained in shock-melt veins of this meteorite with novel textures and composition. The former chemically unzoned (Fa(24-26)) olivine porphyritic crystals are heavily flattened and display a concentric intergrowth with Mg-rich wadsleyite of a very narrow compositional range (Fa(6)-Fa(10)) in the core. Wadsleyite core is surrounded by a Mg-poor and chemically stark zoned ringwoodite (Fa(28)-Fa(38)) belt. The wadsleyite-ringwoodite interface denotes a compositional gap of up to 32 mol % fayalite. A transmission electron microscopy study of focused ion beam slices in both regions indicates that the wadsleyite core and ringwoodite belt consist of granoblastic-like intergrowth of polygonal crystallites of both ringwoodite and wadsleyite, with wadsleyite crystallites dominating in the core and ringwoodite crystallites dominating in the belt. Texture and compositions of both high-pressure polymorphs are strongly suggestive of formation by a fractional crystallization of the olivine melt of a narrow composition (Fa(24-26)), starting with Mg-rich wadsleyite followed by the Mg-poor ringwoodite from a shock-induced melt of olivine composition (Fa(24-26)). Our findings could erase the possibility of the resulting unrealistic time scales of the high-pressure regime reported recently from other shocked L-6 chondrites.

  11. Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment

    Science.gov (United States)

    Hauck, Judith; Köhler, Peter; Wolf-Gladrow, Dieter; Völker, Christoph

    2016-02-01

    Carbon dioxide removal (CDR) approaches are efforts to reduce the atmospheric CO2 concentration. Here we use a marine carbon cycle model to investigate the effects of one CDR technique: the open ocean dissolution of the iron-containing mineral olivine. We analyse the maximum CDR potential of an annual dissolution of 3 Pg olivine during the 21st century and focus on the role of the micro-nutrient iron for the biological carbon pump. Distributing the products of olivine dissolution (bicarbonate, silicic acid, iron) uniformly in the global surface ocean has a maximum CDR potential of 0.57 gC/g-olivine mainly due to the alkalinisation of the ocean, with a significant contribution from the fertilisation of phytoplankton with silicic acid and iron. The part of the CDR caused by ocean fertilisation is not permanent, while the CO2 sequestered by alkalinisation would be stored in the ocean as long as alkalinity is not removed from the system. For high CO2 emission scenarios the CDR potential due to the alkalinity input becomes more efficient over time with increasing ocean acidification. The alkalinity-induced CDR potential scales linearly with the amount of olivine, while the iron-induced CDR saturates at 113 PgC per century (on average ˜ 1.1 PgC yr-1) for an iron input rate of 2.3 Tg Fe yr-1 (1% of the iron contained in 3 Pg olivine). The additional iron-related CO2 uptake occurs in the Southern Ocean and in the iron-limited regions of the Pacific. Effects of this approach on surface ocean pH are small (\\lt 0.01).

  12. Effect of Fe Content on Olivine Viscosity at the P-T Conditions of Terrestrial-Planet Interiors

    Science.gov (United States)

    Raterron, P.; Holyoke, C. W., III; Tokle, L.; Hilairet, N.; Merkel, S.; Hirth, G.; Weidner, D. J.

    2016-12-01

    The top parts of the mantle of terrestrial planets are olivine-rich, with Fe/(Mg+Fe) ratio lower than 2% for Mercury, up to 25-30% for Mars, and intermediate compositions for the Earth, the Moon and Venus. Results of experiments at low pressure (Zhao et al., 2009, EPSL, 287, 229-240) indicate that increasing Fe content dramatically decreases olivine viscosity. Thus, the Martian upper mantle may be 10 times less viscous than the Earth's at the same conditions. However, there is no data available on the effect of iron on olivine plasticity at pressures relevant to planetary interiors. We deformed polycrystalline olivine specimens with various Fe contents ranging from 0% (pure forsterite) to 100% (pure fayalite), at temperatures (T) in excess of 1000°C and pressures (P) in the range of 2 - 6 GPa, in the Deformation-DIA apparatus (D-DIA) coupled with X-ray synchrotron radiation. Pressure, differential stress and strain rate were measured in situ by X-ray diffraction and radiography. Stacked cylindrical specimens with different iron contents were deformed in series to compare their viscosities at identical T, P and differential stress. We observed that increasing pressure dramatically decreases the viscosity contrast between Fe-poor olivine and Fe-rich olivine, while increasing differential stress has the opposite effect. Hence, the range of viscosities expected in planetary mantles - in the low-P and high-stress regime of the uppermost mantle and in the high-P and low-stress regime of the deep mantle - may be radically different, depending on their iron contents. We will present these new data which may have significant implications for the convection mode and thermal history of terrestrial-planet mantles.

  13. Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine

    Science.gov (United States)

    Roedder, E.

    1983-01-01

    Abundant fluid inclusions in olivine of dunite xenoliths (???1-3 cm) in basalt dredged from the young Loihi Seamount, 30 km southeast of Hawaii, are evidence for three coexisting immiscible fluid phases-silicate melt (now glass), sulfide melt (now solid), and dense supercritical CO2 (now liquid + gas)-during growth and later fracturing of some of these olivine crystals. Some olivine xenocrysts, probably from disaggregation of xenoliths, contain similar inclusions. Most of the inclusions (2-10 ??m) are on secondary planes, trapped during healing of fractures after the original crystal growth. Some such planes end abruptly within single crystals and are termed pseudosecondary, because they formed during the growth of the host olivine crystals. The "vapor" bubble in a few large (20-60 ??m), isolated, and hence primary, silicate melt inclusions is too large to be the result of simple differential shrinkage. Under correct viewing conditions, these bubbles are seen to consist of CO2 liquid and gas, with an aggregate ??{variant} = ??? 0.5-0.75 g cm-3, and represent trapped globules of dense supercritical CO2 (i.e., incipient "vesiculation" at depth). Some spinel crystals enclosed within olivine have attached CO2 blebs. Spherical sulfide blebs having widely variable volume ratios to CO2 and silicate glass are found in both primary and pseudosecondary inclusions, demonstrating that an immiscible sulfide melt was also present. Assuming olivine growth at ??? 1200??C and hydrostatic pressure from a liquid lava column, extrapolation of CO2 P-V-T data indicates that the primary inclusions were trapped at ??? 220-470 MPa (2200-4700 bars), or ??? 8-17 km depth in basalt magma of ??{variant} = 2.7 g cm-3. Because the temperature cannot change much during the rise to eruption, the range of CO2 densities reveals the change in pressure from that during original olivine growth to later deformation and rise to eruption on the sea floor. The presence of numerous decrepitated inclusions

  14. Natural olivine crystal-fabrics in the western Pacific convergence region: A new method to identify fabric type

    Science.gov (United States)

    Michibayashi, Katsuyoshi; Mainprice, David; Fujii, Ayano; Uehara, Shigeki; Shinkai, Yuri; Kondo, Yusuke; Ohara, Yasuhiko; Ishii, Teruaki; Fryer, Patricia; Bloomer, Sherman H.; Ishiwatari, Akira; Hawkins, James W.; Ji, Shaocheng

    2016-06-01

    Crystallographic preferred orientations (CPOs) of olivine within natural peridotites are commonly depicted by pole figures for the [100], [010], and [001] axes, and they can be categorized into five well-known fabric types: A, B, C, D, and E. These fabric types can be related to olivine slip systems: A with (010)[100], B with (010)[001], C with (001)[001], D with {0kl}[100], and E with (001)[100]. In addition, an AG type is commonly found in nature, but its origin is controversial, and could involve several contributing factors such as complex slip systems, non-coaxial strain types, or the effects of melt during plastic flow. In this paper we present all of our olivine fabric database published previously as well as new data mostly from ocean floor, mainly for the convergent margin of the western Pacific region, and we introduce a new index named Fabric-Index Angle (FIA), which is related to the P-wave property of a single olivine crystal. The FIA can be used as an alternative to classifying the CPOs into the six fabric types, and it allows a set of CPOs to be expressed as a single angle in a range between -90° and 180°. The six olivine fabric types have unique values of FIA: 63° for A type, -28° for B type, 158° for C type, 90° for D type, 106° for E type, and 0° for AG type. We divided our olivine database into five tectonic groups: ophiolites, ridge peridotites, trench peridotites, peridotite xenoliths, and peridotites enclosed in high-pressure metamorphic rocks. Our results show that although our database is not yet large enough (except for trench peridotites) to define the characteristics of the five tectonic groups, the natural olivine fabrics vary in their range of FIA: 0° to 150° for the ophiolites, 40° to 80° for the ridge peridotites, -40° to 100° for the trench peridotites, 0° to 100° for the peridotite xenoliths, and -40° to 10° for the peridotites enclosed in high-pressure metamorphic rocks. The trench peridotites show a statistically

  15. Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification

    NARCIS (Netherlands)

    Schuiling, R.D.; Boer, P.L. de

    2011-01-01

    Human CO2 emissions may drive the Earth into a next greenhouse state. They can be mitigated by accelerating weathering of natural rock under the uptake of CO2. We disprove the paradigm that olivine weathering in nature would be a slow process, and show that it is not needed to mill olivine to very f

  16. The Poisoned Chalice? Understanding carbon in olivine-hosted melt inclusions

    Science.gov (United States)

    Maclennan, John

    2016-04-01

    The solubility of CO2 in basaltic liquids is dependent on pressure. The CO2 content of olivine-hosted melt inclusions therefore provides a potential source of information about the depths of magma storage. Such petrological constraints on magmatic histories provide context for the interpretation of geophysical volcano monitoring data. However, when multiple petrological barometers are available for the magmatic suites, pressure estimates from melt inclusion CO2 contents appear to be systematically low, even when saturation has occurred. In this contribution I will explore the role of the post-entrapment pressure-temperature-time (P-T-t) path of the host crystal in controlling the relationship between observed melt inclusion CO2 contents and entrapment pressures. A global compilation of 2878 melt inclusions from mafic volcanics of mid-ocean ridges, ocean islands and continental rift zones reveals some unexpected features. First, the distribution of estimated saturation pressures is not strongly dependent on the methods of correction of measured inclusion compositions for post-entrapment crystallisation and bubble growth. Second, the different tectono-magmatic settings show similar distributions of estimated saturation pressures. Third, 80% of the recovered saturation pressures are pressures that are lower than those of the shallowest reservoir in the system as constrained by geophysical observations. Finally, in all settings, 5-10% of the inclusions record saturation pressures >200 MPa, with an upper limit at ˜500 MPa. A model was developed of the evolution of the pressure and distribution of CO2 inside inclusions as their olivine hosts travel through an imposed P-T-t history. Model results indicate that the dominance of low saturation pressures in the melt inclusions and the systematic difference between these pressures and the independent estimates of magma storage depths are likely to be caused by decrepitation: previous experimental studies have found that the

  17. Deformation of Olivine at Subduction Zone Conditions Determined from In situ Measurements with Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    H Long; D Weidner; L Li; J Chen; L Wang

    2011-12-31

    We report measurements of the deformation stress for San Carlos olivine at pressures of 3-5 GPa, temperatures of 25-1150 C, and strain rates of 10{sup -7}-10{sup -5} s{sup -1}. We determine a deformation stress of approximately 2.5 GPa that is relatively temperature and strain rate independent in the temperature range of 400-900 C. The deformation experiments have been carried out on a deformation DIA (D-DIA) apparatus, Sam85, at X17B2, NSLS. Powder samples are used in these experiments. Enstatite (MgSiO{sub 3}) (3-5% total quality of sample) is used as the buffer to control the activity of silica. Ni foil is used in some experiments to buffer the oxygen fugacity. Water content is confirmed by IR spectra of the recovered samples. Samples are compressed at room temperature and are then annealed at 1200 C for at least 2 h before deformation. The total (plastic and elastic) strains (macroscopic) are derived from the direct measurements of the images taken by X-ray radiograph technique. The differential stresses are derived from the diffraction determined elastic strains. In the regime of 25-400 C, there is a small decrease of stress at steady state as temperature increases; in the regime of 400 C to the 'transition temperature', the differential stress at steady state ({approx}2.5 GPa) is relatively insensitive to the changes of temperature and strain rate; however, it drastically decreases to about 1 GPa and becomes temperature-dependent above the transition temperature and thereafter. The transition temperature is near 900 C. Above the transition temperature, the flow agrees with power law creep measurements of previous investigations. The anisotropy of differential stress in individual planes indicates that the deformation of olivine at low temperature is dominated by [0 0 1](1 0 0). Accounting to a slower strain rate in the natural system, the transition temperature for the olivine in the slab is most likely in the range of 570-660 C.

  18. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt

    Science.gov (United States)

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L.; Burgess, Ray; Ballentine, Christopher J.

    2017-04-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DCl ol/melt = 1.6 ± 0.9 × 10-4) to 0.33 (6) wt% H2O (DCl ol/melt = 2.2 ± 1.1 × 10-4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2 = 0.99): DF^{ol/melt} = 3.6± 0.4 × 10^{-3} × X_{H}_{2O}( wt %) + 6 ± 0.4× 10^{-4}. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth

  19. Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4

    Science.gov (United States)

    Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team

    Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.

  20. Whole-rock Al-Mg systematics of amoeboid olivine aggregates from the oxidized CV3 carbonaceous chondrite Allende

    DEFF Research Database (Denmark)

    Olsen, M.B.; Krot, A.N.; Larsen, Kirsten Kolbjørn;

    2011-01-01

    We report on mineralogy, petrography, and whole-rock Al- Mg systematics of eight amoeboid olivine aggregates (AOAs) from the oxidized CV chondrite Allende. The AOAs consist of forsteritic olivine, opaque nodules, and variable amounts of Ca,Al-rich inclusions (CAIs) of different types, and show...... olivine. The AOAs are surrounded by fine-grained, matrix-like rims composed mainly of ferroan olivine and by a discontinuous layer of Ca,Fe-rich silicates. These observations indicate that AOAs experienced in situ elemental open-system iron-alkali-halogen metasomatic alteration during which Fe, Na, Cl......, and Si were introduced, whereas Ca was removed from AOAs and used to form the Ca,Fe-rich silicate rims around AOAs. The whole-rock Al- Mg systematics of the Allende AOAs plot above the isochron of the whole-rock Allende CAIs with a slope of (5.23±0.13)×10 reported by Jacobsen et al. (2008). In contrast...

  1. On origin of the olivine inclusions from the Kainsaz CO carbonaceous chondrite

    Science.gov (United States)

    Lavrukhina, A. K.; Lavrentjeva, Z. A.; Ljul, A. Yu.; Ignatenko, K. I.

    1993-03-01

    Olivine inclusions and chondrules of Kainsaz were formed in a unique process of dust matter melting. The elemental abundances of four fractions of olivine (01) inclusions from Kainsaz were analyzed by INAA. The inclusions of fraction A (160 less than d less than 260 microns) have Fe-Ni grains, the inclusions of fractions B (100 less than d less than 160 microns), C (160 less than d less than 260 microns), and D (260 less than d less than 360 microns) do not. The average elemental enrichment factors relative to CI chondrite for each fraction and chondrules of Kainsaz is shown. The enrichment factors of siderophile Co, Ni, Ir, Au, and non-refractory Na in all fractions are less than 1. The factors of refractory Ca, Sc, La, Sm, and Yb are comparative with the corresponding values of O1 aggregates of Allende CV (average 4.76). For chondrules of Kainsaz these values are lower. Fraction A is enriched in Co, Ir, Au, and relative Ni and CI chondrites: Ir greater than Au greater than Co. The values of (Me/Ni)inc/(Me/Ni)CI are equal to 3.25 for Ir, 2.1 for Au, and 1.2 for Co. The superabundances in Ir and Au relative to Ni witness to formation of Fe-Ni grains of O1 inclusions by agglomeration of grains enriched in refractory metal with grains enriched in non-refractory metal (Au). The enrichments of fraction A in Ca, Sc, La, Sm, and Yb witness about presence of high-temperature phases in O1 inclusions.

  2. Olivine water contents in the continental lithosphere and the longevity of cratons.

    Science.gov (United States)

    Peslier, Anne H; Woodland, Alan B; Bell, David R; Lazarov, Marina

    2010-09-02

    Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient. Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years. Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine, the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations. Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.

  3. High-temperature deformation and recrystallization: A variational analysis and its application to olivine aggregates

    Science.gov (United States)

    Hackl, Klaus; Renner, JöRg

    2013-03-01

    We develop a framework for a variational analysis of microstructural evolution during inelastic high-temperature deformation accommodated by dislocation mechanisms and diffusive mass transport. A polycrystalline aggregate is represented by a distribution function characterizing the state of individual grains by three variables, dislocation density, grain size, and elastic strain. The aggregate's free energy comprises elastic energy and energies of lattice distortions due to dislocations and grain boundaries. The work performed by the external loading is consumed by changes in the number of defects and their migration leading to inelastic deformation. The variational approach minimizes the rate of change of free energy with the evolution of the state variables under constraints on the aggregate volume, on a relation between changes in plastic strain and dislocation density, and on the form of the dissipation functionals for defect processes. The constrained minimization results in four basic evolution equations, one each for the evolution in grain size and dislocation density and flow laws for dislocation and diffusion creep. Analytical steady state scaling relations between stress and dislocation density and grain size (piezometers) are derived for quasi-homogeneous materials characterized by a unique relation between grain size and dislocation density. Our model matches all currently available experimental observations regarding high-temperature deformation of olivine aggregates with plausible values for the involved micromechanical model parameters. The relation between strain rate and stress for olivine aggregates maintaining a steady state microstructure is distinctly nonlinear in stark contrast to the majority of geodynamical modeling relying on linear relations, i.e., Newtonian behavior.

  4. Key new pieces of the HIMU puzzle from olivines and diamond inclusions

    Science.gov (United States)

    Weiss, Yaakov; Class, Cornelia; Goldstein, Steven L.; Hanyu, Takeshi

    2016-09-01

    Mantle melting, which leads to the formation of oceanic and continental crust, together with crust recycling through plate tectonics, are the primary processes that drive the chemical differentiation of the silicate Earth. The present-day mantle, as sampled by oceanic basalts, shows large chemical and isotopic variability bounded by a few end-member compositions. Among these, the HIMU end-member (having a high U/Pb ratio, μ) has been generally considered to represent subducted/recycled basaltic oceanic crust. However, this concept has been challenged by recent studies of the mantle source of HIMU magmas. For example, analyses of olivine phenocrysts in HIMU lavas indicate derivation from the partial melting of peridotite, rather than from the pyroxenitic remnants of recycled oceanic basalt. Here we report data that elucidate the source of these lavas: high-precision trace-element analyses of olivine phenocrysts point to peridotite that has been metasomatized by carbonatite fluids. Moreover, similarities in the trace-element patterns of carbonatitic melt inclusions in diamonds and HIMU lavas indicate that the metasomatism occurred in the subcontinental lithospheric mantle, fused to the base of the continental crust and isolated from mantle convection. Taking into account evidence from sulfur isotope data for Archean to early Proterozoic surface material in the deep HIMU mantle source, a multi-stage evolution is revealed for the HIMU end-member, spanning more than half of Earth’s history. Before entrainment in the convecting mantle, storage in a boundary layer, upwelling as a mantle plume and partial melting to become ocean island basalt, the HIMU source formed as Archean-early Proterozoic subduction-related carbonatite-metasomatized subcontinental lithospheric mantle.

  5. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas

    Science.gov (United States)

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.

    2017-01-01

    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná-Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and ferropicrite olivine-hosted melt inclusions are remarkably uniform and closely reflect those of the host whole-rocks, except in a small subset affected by hydrothermal alteration. The Paraná-Etendeka picrites and ferropicrites are petrogenetically related to the more evolved and voluminous flood basalts, and so we propose that compositional homogeneity at the melt inclusion scale implies that the CFB parental mantle melts were well mixed prior to extensive crystallisation. The incompatible trace element homogeneity of olivine-hosted melt inclusions in Paraná-Etendeka and Karoo primitive magmatic rocks has also been identified in other CFB provinces and contrasts with findings from studies of basalts from mid-ocean ridges (e.g. Iceland and FAMOUS on the Mid Atlantic Ridge), where heterogeneity of incompatible trace elements in olivine-hosted melt inclusions is more pronounced. We suggest that the low variability in incompatible trace element contents of olivine-hosted melt inclusions in near-primitive CFB rocks, and also ocean island basalts associated with moderately thick lithosphere (e.g. Hawaii, Galápagos, Samoa), may reflect mixing along their longer transport pathways during ascent and/or a temperature contrast between the liquidus and the liquid when it arrives in the crust. These thermal paths promote mixing of mantle melts prior to their entrapment by growing olivine crystals in crustal magma chambers. Olivine-hosted melt inclusions of ferropicrites from the Paran

  6. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep

  7. Extreme differentiation in single samples from the olivine-rich zone of the Palisades Sill, NY and NJ

    Science.gov (United States)

    Chau, K. X.; Sen, G.; Naslund, H. R.

    2007-12-01

    The Palisades Sill, NY and NJ, has long been the focus of much attention due to its potential contributions to the understanding of igneous differentiation. Many early authors, including N.L. Bowen, thought of the intrusion as an ideal example of crystal settling because of an olivine-rich zone that occurs close to the base of the sill. Later investigations demonstrated that at least three geochemically distinct batches of magma were emplaced at different levels within this body, one of which produced the olivine-rich zone. Here we report the results of our detailed electron probe study of 27 olivine grains, 134 plagioclase grains, and 181 pyroxene grains from four samples of the olivine-rich zone. In one of the rocks plagioclase ranges from An84 (large grain; core) to An0.5 (interstitial plagioclase), whereas olivine ranges from Fo81 - Fo69. These ranges are comparable to our other samples. The plagioclase range is far greater than what is shown by the Skaergaard (An25 - An69) and Bushveld (An30 - An80) intrusions. Though the sill has long been known to be vertically differentiated, such extreme differentiation in individual thumb-sized samples was not expected. The implication is that interstitial melt pockets were so well enclosed (i.e., zero permeability) by the surrounding crystals that they were sealed off from further communication with larger volumes of melt that may have existed at a higher levels in the sill at that time. That is, compaction and associated filter pressing was not efficient in removing the interstitial melt. It is unlikely that such a situation could occur if the olivine-rich zone formed early from a large body of magma because the load pressure of the overlying crystals and melt would be too great to avoid compaction. A better explanation is that the olivine-rich zone was emplaced as a separate magma batch (as suggested by several previous workers based on bulk rock geochemistry) in a mostly solidified magma-crystal mush. In this setting

  8. Natural Examples of Olivine Lattice Preferred Orientation Patterns With a Flow-Normal a-Axis Maximum

    Science.gov (United States)

    Mizukami, T.; Wallis, S.; Yamamoto, J.

    2004-12-01

    Olivine lattice preferred orientation (LPO) due to ductile deformation is one of the main causes of mechanical anisotropy in the upper mantle and the patterns are useful to infer the direction of mantle flow from the seismic anisotropy in various settings. In subduction zones the mantle anisotropy near subduction boundaries suggests that olivine a-axes are arranged roughly perpendicular to plate motion. This anisotropy has been attributed to localized subduction-normal flow, applying a common type of olivine LPO with a `flow-parallel' a-axis maximum to the mantle. However, a recent deformational experiment provides an alternative interpretation that the B-type LPO with a `flow-normal' a-axis maximum can be developed in water-rich mantle above subducting slab. We document the widespread occurrence of B-type LPO in the Higashi-akaishi peridotite body, SW Japan, and examine the physical conditions in which it was formed. Our structural studies define four deformational phases in the Higashi-akaishi body (D1-D4) that are related to the tectonic evolution in the Cretaceous subduction zone at the Eurasian margin. The main deformational stage, D2, is associated with dynamic recrystallization of olivine to form porphyroclastic microstructure consisting of clear olivine neoblasts and porphyroclasts with abundant micro-inclusions. Parallel alginment of olivine neoblasts defines a stretching lineation (L2) and tectonic foliation (S2) and the D2 olivine LPO is identified as the B-type fabric with a-axes normal to L2, b-axes normal to S2 and c-axes parallel to L2. Micro-Raman spectroscopic analyses reveal that the syn-D2 micro-inclusions include hydrous minerals such as serpentine, indicating water-rich conditions for the D2 deformation. Garnet-orthopyroxene geothermobarometry applied to the D2 garnet peridotite reveals that the D2 stage was associated with the almost isothermal burial (700-800C, 2-3GPa). These D2 physical conditions in which the B-type LPO was formed are

  9. A- to B-Type Olivine Fabric Transitions Associated with Hydration, Dehydration and Shear Above the Farallon Flat Slab

    Science.gov (United States)

    Behr, W. M.; Smith, D.

    2014-12-01

    We investigate mantle rocks associated with hydration, dehydration and shear above the Farallon flat-slab at its contact with the base of North America. The rocks we focus on are ultramafic inclusions hosted within serpentinized ultramafic microbreccia diatremes of the Navajo Volcanic Field (New Mexico) that erupted to the surface at the waning stages of the Laramide orogeny. A large number of petrological and geochronological studies have pinpointed the origin of these rocks to the hydrated mantle wedge above the Farallon slab as well as tectonically eroded and entrained fragments of the plate interface. We combine petrological observations and EBSD measurements of olivine grainsize and LPO to examine the effects of hydration on olivine fabric development in different parts of the supra-subduction zone mantle. The rocks examined include weakly deformed to strongly foliated tectonites we interpret to represent partially hydrated fragments of the upper plate mantle; and mylonites and ultramylonites we interpret to represent deformed fragments of the plate interface. The rocks deformed at temperatures ranging from 500-900°C based on thermometry, and olivine compositions in some record heating just before incorporation in the diatreme mix. We observe the following: Tectonites exhibit A-type bulk olivine LPOs, but show transitions to B-type LPO in local, fine-grained, dynamically recrystallized regions associated with hydrous minerals. Mylonites and ultramylonites with stable chlorite and/or antigorite and recrystallized grainsizes of less than 10μm show strong B-type olivine LPOs. A single mylonite with recrystallized grainsizes of ~35μm shows evidence for prograde metamorphism and dehydration through the chlorite breakdown reaction at temperatures above ~770°C. It contains no hydrous minerals and shows a strong A-type olivine LPO. Together these rocks demonstrate a strong correlation between hydration under high stress conditions, and B-type olivine LPO

  10. Investigation of milling energy input on structural variations of processed olivine powders for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Atashin, Sanam; Wen, John Z.; Varin, Robert A., E-mail: ravarin@uwaterloo.ca

    2015-01-05

    Highlights: • Milling energy input in kJ/g determines the microstructure of olivine powders. • The optimum energy input for a minimum olivine particle size is about 14 kJ/g. • The crystallite size of olivine decreases up to 55 kJ/g energy input and then saturates. • The effect of structural strain on material’s disorder is negligible above 55 kJ/g energy input. • The overall energy input for producing desirable olivine microstructure absorbing CO{sub 2} is about 55 kJ/g. - Abstract: This study aims to identify the correlation between microstructure of mechanically processed olivine powders and the milling energy input, for an ultimate purpose of optimizing the ball milling approach for achieving the best CO{sub 2} sequestration characteristics. Powders were processed in a high energy magneto ball mill. A variety of instrumental techniques such as scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD) were utilized to characterize the particle size, specific surface area, pore volume, crystallinity and crystallite size of processes powders obtained with different levels of milling energy input. In each case, the variation of microstructural parameters with milling energy is compared for different milling devices extracted from the literature. Structural parameters of activated powders are correlated as a function of milling energy input, regardless of the ball mill type. The optimal range of milling energy input, expected to achieve the most desirable microstructure for CO{sub 2} sequestration is found to be about 55 kJ/g.

  11. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C.

    Science.gov (United States)

    Neubeck, Anna; Duc, Nguyen Thanh; Bastviken, David; Crill, Patrick; Holm, Nils G

    2011-06-27

    Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine.The results show low temperature CH4 production that is probably influenced by chromite and magnetite as catalysts. Extensive analyses of a potential CH4 source trapped in the crystal structure of the olivine showed no signs of incorporated CH4. Also, the available sources of organic carbon were not enough to support the total amount of CH4 detected in our experiments. There was also a linear relationship between silica release into solution and the net CH4 accumulation into the incubation bottle headspaces suggesting that CH4 formation under these conditions could be a qualitative indicator of olivine dissolution.It is likely that minerals such as magnetite, chromite and other metal-rich minerals found on the olivine surface catalyze the formation of CH4, because of the low temperature of the system. This may expand the range of environments plausible for abiotic CH4 formation both on Earth and on other terrestrial bodies.

  12. In situ oxygen isotope compositions in olivines of different types of cosmic spherules: An assessment of relationships to chondritic particles

    Science.gov (United States)

    Rudraswami, N. G.; Shyam Prasad, M.; Jones, R. H.; Nagashima, K.

    2016-12-01

    Cosmic spherules collected from deep sea sediments of the Indian Ocean having different textures such as scoriaceous (4), relict-bearing (16), porphyritic (35) and barred olivine (2) were investigated for petrography, as well as high precision oxygen isotopic studies on olivine grains using secondary ion mass spectrometry (SIMS). The oxide FeO/MgO ratios of large olivines (>20 μm) in cosmic spherules have low values similar to those seen in the olivines of carbonaceous chondrite chondrules, rather than matching the compositions of matrix. The oxygen isotope compositions of olivines in cosmic spherules have a wide range of δ18O, δ17O and Δ17O values as follows: -9 to 40‰, -13 to 22‰ and -11 to 6‰. Our results suggest that the oxygen isotope compositions of the scoriaceous, relict-bearing, porphyritic and barred spherules show provenance related to the carbonaceous (CM, CV, CO and CR) chondrites. The different types of spherules that has experienced varied atmospheric heating during entry has not significantly altered the Δ17O values. However, one of the relict-bearing spherules with a large relict grain has Δ17O = 5.7‰, suggesting that it is derived from 16O-poor material that is not recognized in the meteorite record. A majority of the spherules have Δ17O ranging from -4 to -2‰, similar to values in chondrules from carbonaceous chondrites, signifying that chondrules of carbonaceous chondrites are the major contributors to the flux of micrometeorites, with an insignificant fraction derived from ordinary chondrites. Furthermore, barred spherule data shows that during atmospheric entry an increase in ∼10‰ of δ18O value surges Δ17O value by ∼1‰.

  13. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C

    Directory of Open Access Journals (Sweden)

    Crill Patrick

    2011-06-01

    Full Text Available Abstract Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine. The results show low temperature CH4 production that is probably influenced by chromite and magnetite as catalysts. Extensive analyses of a potential CH4 source trapped in the crystal structure of the olivine showed no signs of incorporated CH4. Also, the available sources of organic carbon were not enough to support the total amount of CH4 detected in our experiments. There was also a linear relationship between silica release into solution and the net CH4 accumulation into the incubation bottle headspaces suggesting that CH4 formation under these conditions could be a qualitative indicator of olivine dissolution. It is likely that minerals such as magnetite, chromite and other metal-rich minerals found on the olivine surface catalyze the formation of CH4, because of the low temperature of the system. This may expand the range of environments plausible for abiotic CH4 formation both on Earth and on other terrestrial bodies.

  14. Deformation of olivine-orthopyroxene aggregates at high pressure and temperature: Implications for the seismic properties of the asthenosphere

    Science.gov (United States)

    Soustelle, Vincent; Manthilake, Geeth

    2017-01-01

    The effect of pressure, temperature and composition on the development of crystal preferred orientations (CPO) and seismic properties of olivine-orthopyroxene aggregates were investigated using samples containing olivine and 12.5, 25 and 50 vol.% of orthopyroxene. The samples were deformed in simple-shear at a constant strain-rate of 10- 4 s- 1 with total shear strains between 0.5 and 1.3, at pressures of 3, 5 and 8 GPa and temperatures of 1300, 1400 and 1500 °C, respectively. Olivine's CPO vary as a function of the orthopyroxene content. All samples have their olivine [010] axes normal to the foliation. Samples with 12.5 and 25% orthopyroxene have their [001] axes parallel to the lineation (B-type), whereas the samples with 50% orthopyroxene have their [100] axes oriented parallel to the lineation (A-type). At 3 GPa, we propose that olivine CPO may result from a variation between two types of diffusion accommodated grain boundary sliding (difGBS) mechanisms. At higher pressure, the relative contribution of difGBS and dislocation related mechanisms depends on the volume of secondary phases. For low orthopyroxene contents, dislocation related mechanisms prevail and induce the development of B-type CPO, whereas for higher amount of orthopyroxene difGBS controls the deformation and leads to A-type CPO. Orthopyroxene's CPO strength increases with increasing pressure and temperature and is characterized by the concentration of [100] and [010] axes normal to the foliation and [001] close to the lineation. The seismic properties show that deformation in pyroxene-poor and rich peridotites are consistent with the seismic anisotropy observed in intraplate regions where the mantle flow is horizontal. Conversely, only pyroxene-rich peridotites deformed through difGBS could explain the Vsh/Vsv < 1 observed below mid-oceanic ridges.

  15. The effect of temperature and pressure on the distribution of iron group elements between metal and olivine phases in the process of differentiation of protoplanetary material

    Science.gov (United States)

    Vinogradov, A. P.; Ilyin, N. P.; Kolomeytsava, L. N.

    1977-01-01

    The distribution patterns of Ni, Co, Mn, and Cr were studied in olivines of various origins: from meteorites (chondrites, achondrites, pallasites), which are likely analogs of the protoplanetary material, to peridotite inclusions in kimberlite pipes, which are analogs of mantle material. According to X-ray microanalysis data, nickel is concentrated in peridotite olivines, while manganese is concentrated in meteoritic olivines. The maximum chromium content was found in ureilites, which were formed under reducing conditions. Experiments at pressures of 20 to 70 kbar and temperatures of 1100 to 2000 C have shown that in a mixture of olivine and Ni metal or NiO, nickel enters the silicate phase, displacing Fe into the metallic phase. Equilibrium temperatures were estimated from the Fe, Ni distribution coefficients between the metal and olivine: 1500 K for pallasites, 1600 K for olivine-bronzite H6 chondrites, 1200 K for olivine-hypersthene L6, 900 K for LL6, and 1900 K for ureilites (at P = 1 atm). The equilibrium conditions of peridotites are close to T = 1800 K and P over 100 kbar. It is concluded that there is a sharp difference between the conditions of differentiation of the protoplanetary material at the time meteorites were formed and the conditions of differentiation of the planets into concentric layers.

  16. Carbon Dioxide Sorption Isotherm Study on Pristine and Acid-Treated Olivine and Its Application in the Vacuum Swing Adsorption Process

    Directory of Open Access Journals (Sweden)

    Jiajie Li

    2015-05-01

    Full Text Available This paper investigates the potential of pristine and acid-treated olivine as a substrate for CO2 capture using a vacuum swing adsorption (VSA process from the gas-solid phase. The experiments tested the isotherm of pure CO2 adsorption with partial pressure from 10−5 to 1 bar at ambient temperature. The CO2 adsorption capacity and actual expected working capacity (EWC curves of pristine and acid-treated olivine were determined. Isotherm studies predict that physisorption dominates chemisorptions at ambient temperatures. The adsorption capacity enhances with the increase of specific surface area, pore volume, and the appearance of Mg complexed on the mineral’s surface. Actual EWC studies showed that acid-treated olivine is an adsorbent choice for the VSA process, due to enhanced CO2 adsorption capacities compared to olivine and the potential for 100% recovery of CO2 during the regeneration process. Pristine olivine is not suitable for the VSA process because of bad regenerability, but it can be used in capturing and sequestering dilute CO2 in process streams. Our research reveals excellent viability for the application of VSA in the area of CO2 capture using pristine olivine and acid-treated olivine.

  17. Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types, compositional profiles and constraints of their formation

    Energy Technology Data Exchange (ETDEWEB)

    Hua, X.; Adam, J.; Palme, H.; Goresy, A. E. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1988-06-01

    Fayalite-rich rims, veins, and halos around and in forsteritic olivines are a wide-spread phenomenon in chondrules, Ca, Al-rich inclusions (CAIs), and single grains in carbonaceous chondrites. The presence of fayalite rod-like crystals and laths in rims, veins, in wall of pores, and as fluffy network bridging neighboring olivines, pyroxenes, feldspars, etc. is strongly suggestive that the fayalitic olivine was formed by condensation presumably from the solar nebula gas. The formation of the fayalitic olivine was probably caused by an increase in the H{sub 2}O/H{sub 2} ratio (to a ratio between 0.1-1) subsequent to condensation of forsterite. At that stage, FeNi inclusions in olivine were also oxidized and fayalitic halos around the metal were then formed Fe diffusion along with addition of SiO{sub 2} from the solar gas or loss of M{sub g}O to the solar gas. The Fa-rich olivine rims and veins display a narrow compositional variation between Fa{sup 34} and Fa{sup 46}. Subsequent to condensation of Fa-rich olivine and oxidation of FeNi metal, Fe diffused in forsterite. This diffusion was probable enhanced due to the presence of point defects in olivine or the formation of a nonstoichiometric phase analogous to laihunite enriched in Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3}. However, the presence of Al{sub 2}O{sub 3{minus}} and Cr{sub 2}O{sub 3{minus}} rich discrete domains cannot by excluded. Cooling rates calculated by modeling of the diffusion profiles are indicative of rapid cooling subsequent to the condensation of fayalitic olivines. The authors obtain cooling rates ranging from 2000{degree}/day and 10{degree}C/day at an initial temperature of 1200C{degree} and 900C{degree}, respectively.

  18. Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core-mantle boundaries

    Science.gov (United States)

    Van Roosbroek, Nadia; Hamann, Christopher; McKibbin, Seann; Greshake, Ansgar; Wirth, Richard; Pittarello, Lidia; Hecht, Lutz; Claeys, Philippe; Debaille, Vinciane

    2017-01-01

    We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO2 concentration and is enriched in MgO, P2O5, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (olivine crystallites containing up to 14 wt% P2O5, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphoran olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphoran olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core-mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core-mantle boundary experiment and based on our temperature estimates, the following sequence of events takes place: (i) precipitation of olivine (1400-1360 °C), (ii) re

  19. Liquidus temperatures of komatiites and the effect of cooling rate on element partitioning between olivine and komatiitic melt

    Science.gov (United States)

    Sossi, Paolo A.; O'Neill, Hugh St. C.

    2016-05-01

    Archean komatiites are the hottest magmas preserved on Earth and are thus unique probes of its thermal evolution. Estimating their eruption temperatures remains problematic, however, because the uppermost (A1, A2) zones of komatiite flows contain randomly oriented spinifex-textured olivines, indicative of rapid cooling and growth. Fe-Mg partitioning between olivine and assumed komatiitic liquid typically shows departures from equilibrium, extending towards higher K_{{D}}^{{{{Fe}}^{2 + } - {{Mg}}}}. If these higher values are a disequilibrium effect, using them to calculate parental magma composition would lead to errors in estimated liquidus temperatures. In order to investigate this possibility, we have performed experiments on two komatiite compositions, the classic Barberton Aluminium Undepleted Komatiite (AUK) sample 49J (32.2 % MgO) and Munro AUK sample 422/95 (23 % MgO). Isothermal experiments to constrain phase equilibria on 49J at atmospheric pressure, between 1360 and 1600 °C at 1.7 log units below and 1.1 above the fayalite-magnetite-quartz (FMQ) buffer reveal a liquidus temperature ( T liq) of 1616 °C, 40 °C lower than a previous estimate. The K_{{D}}^{{Σ {{Fe}}{-}{{Mg}}}} ranges between 0.320 and 0.295 at FMQ - 1.7, with a slight negative dependence on temperature. To replicate the conditions that prevailed during the quenching of komatiites in their upper chill zones, experiments with a constant cooling rate at FMQ - 1.7 were performed on 422/95 ( T liq = 1450 °C) at 0.5, 1.5, 2.5, 6.5 and 16 °C/min. Olivine morphology changes from euhedral to tabular at low cooling rates, hopper at intermediate, and skeletal and chain structures at high rates. Concurrently, the K_{{D}}^{{Σ {{Fe}}{-}{{Mg}}}} increases monotonically from an equilibrium value of 0.305 to 0.376 at 16 °C/min, reflecting the inability of unwanted cations to diffuse away from the growing olivine. The high K_{{D}}^{{Σ {{Fe}}{-}{{Mg}}}} between olivine and komatiitic liquid caused by

  20. Mineralogical and Raman spectroscopy studies of natural olivines exposed to different planetary environments

    Science.gov (United States)

    Weber, I.; Böttger, U.; Pavlov, S. G.; Jessberger, E. K.; Hübers, H.-W.

    2014-12-01

    New lander missions to bodies of our solar system are coming up and thus new techniques are desirable for the in-situ investigation of planetary surface and near surface materials. During the last decade Raman spectroscopy has been developed to become an excellent laboratory tool for fast petrological and mineralogical investigation of terrestrial and extraterrestrial rocks. Consequently, Raman spectroscopy has successfully been proposed for operation on planetary surfaces. In the joint ESA and Roscosmos mission ExoMars a Raman Laser Spectrometer (RLS) will for the first time be applied in space to identify minerals and organic compounds in Martian surface rocks and soils. The present study aims to investigate the possible response of various environmental conditions to Raman spectra in preparation for the ExoMars mission, as well as other space missions in future. For our study we selected five natural olivines with different forsterite (Mg2SiO4) and fayalite (Fe2SiO4) compositions. Olivine as an important rock forming mineral of the Earth upper mantle and an abundant mineral in Martian meteorites is one of the key planetary mineral. The spectra were taken in various environmental conditions that include vacuum down to 10-6 mbar, 8 mbar CO2 atmosphere, and temperatures ranging between room temperature and~8 K resembling those on Mars as well as on the Moon and on asteroids. We have found that forsterite shows only small temperature-related shifts in Raman spectra at very low temperatures indicating relatively weak changes in the lattice modes. Fayalite demonstrates, in addition to temperature dependent changes in the lattice modes found for forsterite, modification of Raman spectra at low Stokes frequencies. This is an effect in the SiO4 internal modes that most probably is caused by the high amount of iron in the mineral structure, which triggers antiferromagnetic transition at low temperatures. No influence of a CO2 atmosphere on Raman spectra for the

  1. Hydrothermal alteration experiments of olivine with varying Fe contents: An attempt to simulate aqueous alteration of the carbonaceous chondrites

    Science.gov (United States)

    Takatori, Koichi; Tomeoka, Kazushige; Tsukimura, Katsuhiro; Takeda, Hiroshi

    1993-01-01

    Hydrothermal alteration experiments of olivine powder with several Fe/Mg ratios were carried out under acidic and neutral conditions, and transition electron microscopy (TEM) observations were made on the run products. Well-developed tubular crystals of serpentine (chrysotile) were synthesized from Fo100 under both acidic and neutral conditions, and from Fo92 and Fo80 under acidic condition. Abundance and size of chrysotile apparenlty dependent on the Fe contents of olivine, i.e. with increasing Fe contents, less and smaller chrysotile was formed. Acidity of the solution plays an important role for the formation of chrysotile. Platy and fibrous crystals of phyllosilicate, probably serpentine, were obtained from Fo50 and Fo20 treated under acidic condition, which are most similar to the phyllosilicates in the CI and CM chondrites. Framboidal aggregates of Fe-rich grains (presumably Fe-hydroxide) were formed from Fa100 and Fo20, but no phyllosilicate was formed from Fa100.

  2. Particle shapes and surface structures of olivine NaFePO₄ in comparison to LiFePO₄.

    Science.gov (United States)

    Whiteside, Alexander; Fisher, Craig A J; Parker, Stephen C; Islam, M Saiful

    2014-10-21

    The expansion of batteries into electric vehicle and grid storage applications has driven the development of new battery materials and chemistries, such as olivine phosphate cathodes and sodium-ion batteries. Here we present atomistic simulations of the surfaces of olivine-structured NaFePO4 as a sodium-ion battery cathode, and discuss differences in its morphology compared to the lithium analogue LiFePO4. The calculated equilibrium morphology is mostly isometric in appearance, with (010), (201) and (011) faces dominant. Exposure of the (010) surface is vital because it is normal to the one-dimensional ion-conduction pathway. Platelet and cube-like shapes observed by previous microscopy studies are reproduced by adjusting surface energies. The results indicate that a variety of (nano)particle morphologies can be achieved by tuning surface stabilities, which depend on synthesis methods and solvent conditions, and will be important in optimising electrochemical performance.

  3. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

    DEFF Research Database (Denmark)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.

    2015-01-01

    they are not. To investigate this "Great DuniteShortage" we have undertaken a geochemical and oxygen isotope study of main-group pallasites and dunitic rocks from mesosiderites.Oxygen isotope analysis of 24 main-group pallasites (103 replicates) yielded a mean Δ17O value of -0.187 ±0.016‰ (2σ), which is fully...... origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages...... asteroidsand meteorites results from a range of factors. However, evidence from pallasites and mesosiderites indicates that the most important reason for this olivine shortage lies in the early, catastrophic destruction ofplanetesimals in the terrestrial planet-forming region and the subsequent preferential...

  4. Apollo 14 - Oxide, metal, and olivine mineral chemistries in 14072 with a bearing on the temporal relationships of subsolidus reduction

    Science.gov (United States)

    Haggerty, S. E.

    1977-01-01

    One of three primary objectives of the reported study is related to the definition of the distribution of troilite and Fe and the evaluation of the role of FeS in subsolidus reduction assemblages. Another objective was concerned with the definition of the lower limit of stabilizing elements such as Mg, Al, and Cr in ulvospinel to determine the terminal compositions at which reduction is inhibited. The third objective involves a comparison of the mineral chemistries of decomposed olivine with unaltered olivine in an attempt to determine the temperature limits. The sample was selected because it is one of the most intensely reduced samples returned from the moon. The model invoked for reduction is a magmatic-deuteric process which requires an environment approximating that of a closed system in which the volatile constituents are contained and in which reduction proceeds continuously with crystallization.

  5. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines.

    Science.gov (United States)

    Burns, R. G.; Huggins, F. E.; Abu-Eid, R. M.

    1972-01-01

    Measurements have been made of the polarized absorption spectra (360-2200 nm) of compositionally zoned pyroxene minerals in rocks 10045, 10047 and 10058 and olivines in rocks 10020 and 10022. The Apollo 11 pyroxenes with relatively high Ti/Fe ratios were chosen initially to investigate the presence of crystal field spectra of Fe(2+) and Ti(3+) ions in the minerals. Broad intense bands at about 1000 and 2100 nm arise from spin-allowed, polarization-dependent transitions in Fe(2+) ions in pyroxenes. Several weak sharp peaks occur in the visible region. Peaks at 402, 425, 505, 550, and 585 nm represent spin-forbidden transitions in Fe(2+) ions, while broader bands at 460-470 nm and 650-660 nm are attributed to Ti(3+) ions. Charge transfer bands, which in terrestrial pyroxenes often extend into the visible region, are displaced to shorter wavelengths in lunar pyroxenes. This feature correlates with the absence of Ti(3+) ions in these minerals.

  6. Effect of pressure on the strength of olivine at room temperature

    Science.gov (United States)

    Proietti, Arnaud; Bystricky, Misha; Guignard, Jérémy; Béjina, Frédéric; Crichton, Wilson

    2016-10-01

    A fine grained fully-dense olivine aggregate was deformed in a D-DIA press at room temperature and pressures ranging from 3.5 to 6.8 GPa, at constant strain rates between 6 ×10-6 and 2.2 ×10-5 s-1. A weighted non-linear least square fit of a dataset including our results and data from other high-pressure studies to a low-temperature plasticity flow law yields a Peierls stress σP0 = 7.4 (0.5) GPa and an activation energy E∗ = 232 (60) kJ.mol-1. The dependence of the Peierls stress to pressure, σP = σP0 (1 + 0.09 P) , appears to be larger than the value predicted by the formulation proposed by Frost and Ashby (1982). With such a dependence, the activation volume is very small (V* = 1.6 (1.7) cm3.mol-1). Extrapolation to natural conditions yields a viscosity of ~1023 -1024 Pa.s for a cold subducting slab at depths of 50-100 km.

  7. 3He/4He Ratio in Olivines from Linosa, Ustica, and Pantelleria Islands (Southern Italy

    Directory of Open Access Journals (Sweden)

    Elise Fourré

    2012-01-01

    Full Text Available We report helium isotope data for 0.03–1 Ma olivine-bearing basaltic hawaiites from three volcanoes of the southern Italy magmatic province (Ustica, Pantelleria, and Linosa Islands. Homogenous 3He/4He ratios (range: 7.3–7.6 Ra for the three islands, and their similarity with the ratio of modern volcanic gases on Pantelleria, indicate a common magmatic end-member. In particular, Ustica (7.6±0.2 Ra clearly differs from the nearby Aeolian Islands Arc volcanism, despite its location on the Tyrrhenian side of the plate boundary. Although limited in size, our data set complements the large existing database for helium isotope in southern Italy and adds further constraints upon the spatial extent of intraplate alkaline volcanism in southern Mediterranea. As already discussed by others, the He-Pb isotopic signature of this magmatic province indicates a derivation from a mantle diapir of a OIB-type that is partially diluted by the depleted upper mantle (MORB mantle at its periphery.

  8. Olivine and Ca-Phosphate in the Diogenites Manegaon and Roda

    Science.gov (United States)

    Domanik, K. J.; Sideras, L. C.; Drake, M. J.

    2005-01-01

    The textural relationships between the different primary minerals in igneous rocks provide one of the most fundamental pieces of evidence available for inferring the crystallization history of their parent magmas. Unfortunately, the high degree of brecciation that characterizes most diogenites, along with the low modal abundance and small grain sizes of minerals other than orthopyroxene, combine to make identifying and interpreting such textural relationships extremely difficult in this class of meteorites. A few descriptions of primary igneous contacts between orthopyroxene and chromite, troilite, and to a lesser extent, olivine in diogenites have been provided in the literature. In addition to these, in previous work, our research group has characterized several types of igneous contacts between Ca-pyroxene, plagioclase and orthopyroxene in the Bilanga diogenite. We have also described primary igneous inclusions of troilite + kamacite + chromite + Ca-pyroxene +/- Ca-phosphate in orthopyroxene (i.e. Metal/Troilite- Ball inclusions) in the diogenites Bilanga, Manegaon, Johnstown, Roda, Shalka, and Tatahouine. However, for the most part, detailed data on igneous textural relations between minerals other than orthopyroxene in diogenites are still sparse. Of the diogenite samples that we have examined,

  9. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    Energy Technology Data Exchange (ETDEWEB)

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas; Bi, Wenli; Tissot, Francois L. H.; Hu, Michael Y.; Zhao, Jiyong; Alp, Esen E.

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels. This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.

  10. Dynamic solubility limits in nanosized olivine LiFePO4.

    Science.gov (United States)

    Wagemaker, Marnix; Singh, Deepak P; Borghols, Wouter J H; Lafont, Ugo; Haverkate, Lucas; Peterson, Vanessa K; Mulder, Fokko M

    2011-07-06

    Because of its stability, nanosized olivine LiFePO(4) opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO(4). In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties.

  11. A new synthesis route to nanocrystalline olivine phosphates and their electrochemical properties.

    Science.gov (United States)

    Kim, D H; Im, J S; Kang, J W; Kim, E J; Ahn, H Y; Kim, J

    2007-11-01

    LiFePO4 nanoparticles were synthesized in various polyol mediums without any further heating. The LiFePO4 samples synthesized in polyol mediums exhibited average sizes of 20, 20, 50, and 50 nm with orthorhombic-like shapes. The XRD patterns were indexed on the basis of an olivine structure (space group : Pnma) except for the sample prepared in EG polyol medium. The LiFePO4 samples prepared in EG, DEG, TEG, and TrEG polyol mediums show the reversible capacity of 120 mA h/g, 144 mA h/g, 159 mA h/g, and 167 mA h/g at current density of 0.1 mA/cm2 with no capacity fading and excellent cycle retentions during extended cycles. Especially, the samples showed the excellent performances at high rate of 30 C and 60 C with high capacity retention. It is a speculation that nanometer size materials (approximately 50 nm) and a uniform size-distribution with highly crystallined phase may affect the excellent performances at high rate current densities.

  12. Olivine or Impact Melt: Nature of the "Orange" Material on Vesta from Dawn

    CERN Document Server

    Corre, Lucille Le; Schmedemann, Nico; Becker, Kris J; O'Brien, David P; Yamashita, Naoyuki; Peplowski, Patrick N; Prettyman, Thomas H; Li, Jian-Yang; Cloutis, Edward A; Denevi, Brett W; Kneissl, Thomas; Palmer, Eric; Gaskell, Robert W; Nathues, Andreas; Gaffey, Michael J; Mittlefehldt, David W; Garry, William B; Sierks, Holger; Russell, Christopher T; Raymond, Carol A

    2013-01-01

    NASA's Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types, a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), b) lobate patches with well-defined edges, and c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed "Leslie feature" first identified by Gaffey (1997) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VI...

  13. Mineralogy of Stardust Track 112 Particle: Relation to Amoeboid Olivine Aggregates

    Science.gov (United States)

    Komatsu, M.; Fagan, T.; Mikouchi, T.; Miyamoto, M.; Zolensky, M.; Ohsumi, K.

    2012-01-01

    The successful analysis of comet 81P/Wild 2 particles returned by the Stardust mission has revealed that the Wild 2 dust contains abundant silicate grains that are much larger than interstellar grains and appear to have formed in the inner regions of the solar nebula [1]. Wild 2 particles include minerals which are isotopically and mineralogically similar to CAIs [e.g., 2, 3] and chondrules [e.g., 4] in chondrites. In addition, particles similar to amoeboid olivine aggregates (AOAs) also have been discovered [5, 6,7]. C2067,2,112,1 is a terminal particle recovered from track #112 (T112). Nakamura-Messenger et al. [7] showed that the forsterite grain in T112 has O-16 enrichment of approximately 40 0/00 (vs. SMOW) and possibly formed together with AOAs. In this study, we have examined the mineralogy of the T112 particle and compared the possible relationships between T112 and AOAs in primitive meteorites.

  14. Local electronic structure of olivine phases of LixFePO4.

    Science.gov (United States)

    Miao, Shu; Kocher, Michael; Rez, Peter; Fultz, Brent; Yazami, Rachid; Ahn, Channing C

    2007-05-24

    Changes in the local electronic structure at atoms around Li sites in the olivine phase of LiFePO4 were studied during delithiation. Electron energy loss spectrometry was used for measuring shifts and intensities of the near-edge structure at the K-edge of O and at the L-edges of P and Fe. Electronic structure calculations were performed on these materials with a plane-wave pseudopotential code and with an atomic multiplet code with crystal fields. It is found that both Fe and O atoms accommodate some of the charge around the Li+ ion, evidently in a hybridized Fe-O state. The O 2p levels appear to be fully occupied at the composition LiFePO4. With delithiation, however, these states are partially emptied, suggestive of a more covalent bonding to the oxygen atom in FePO4 as compared to LiFePO4. The same behavior is found for the white lines at the Fe L2,3-edges, which also undergo a shift in energy upon delithiation. A charge transfer of up to 0.48 electrons is found at the Fe atoms, as determined from white line intensity variations after delithiation, while the remaining charge is compensated by O atoms. No changes are evident at the P L2,3-edges.

  15. Formation of polycyclic aromatic hydrocarbons from acetylene over nanosized olivine-type silicates.

    Science.gov (United States)

    Tian, M; Liu, B S; Hammonds, M; Wang, N; Sarre, P J; Cheung, A S-C

    2012-05-14

    The formation mechanism of polycyclic aromatic hydrocarbon (PAH) molecules in interstellar and circumstellar environments is not well understood although the presence of these molecules is widely accepted. In this paper, addition and aromatization reactions of acetylene over astrophysically relevant nesosilicate particles are reported. Gas-phase PAHs produced from exposure of acetylene gas to crystalline silicates using pulsed supersonic jet expansion (SJE) conditions were detected by time-of-flight mass spectrometry (TOF-MS). The PAHs produced were further confirmed in a separate experiment using a continuous flow fixed-bed reactor in which acetylene was introduced at atmospheric pressure. The gas-phase effluent and solutions of the carbonaceous compounds deposited on the nesosilicate particles were analyzed using gas chromatography-mass spectrometry (GC-MS). A mechanism for PAH formation is proposed in which the Mg(2+) ions in the nesosilicate particles act as Lewis acid sites for the acetylene reactions. Our studies indicate that the formation of PAHs in mixed-chemistry astrophysical environments could arise from acetylene interacting with olivine nano-particles. These nesosilicate particles are capable of providing catalytic centres for adsorption and activation of acetylene molecules that are present in the circumstellar environments of mass-losing carbon stars. The structure and physical properties of the particles were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and high-resolution transmission electron microscopy (HRTEM) techniques.

  16. Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study

    Indian Academy of Sciences (India)

    Arun Kumar Varanasi; Phani Kanth Sanagavarapu; Arghya Bhowmik; Mridula Dixit Bharadwaj; Balasubramanian Narayana; Umesh V Waghmare; Dipti Deodhare; Alind Sharma

    2013-12-01

    First-principles prediction of enhancement in the electrochemical potential of LiCoO2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO4 and LiCoPO4. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO2, LiFePO4 and LiCoPO4. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO2, it leads to reduction in LiFePO4 and LiCoPO4. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO2, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.

  17. Irreversible adsorption of atmospheric helium on olivine: A lobster pot analogy

    Science.gov (United States)

    Protin, Marie; Blard, Pierre-Henri; Marrocchi, Yves; Mathon, François

    2016-04-01

    This study reports new experimental results that demonstrate that large amounts of atmospheric helium may be adsorbed onto the surfaces of olivine grains. This behavior is surface-area-related in that this contamination preferentially affects grains that are smaller than 125 μm in size. One of the most striking results of our study is that in vacuo heating at 900 °C for 15 min is not sufficient to completely remove the atmospheric contamination. This suggests that the adsorption of helium may involve high-energy trapping of helium through irreversible anomalous adsorption. This trapping process of helium can thus be compared to a "lobster pot" adsorption: atmospheric helium easily gets in, but hardly gets out. While this type of behavior has previously been reported for heavy noble gases (Ar, Kr, Xe), this is the first time that it has been observed for helium. Adsorption of helium has, until now, generally been considered to be negligible on silicate surfaces. Our findings have significant implications for helium and noble gas analysis of natural silicate samples, such as for cosmic-ray exposure dating or noble gas characterization of extraterrestrial material. Analytical procedures in future studies should be adapted in order to avoid this contamination. The results of this study also allow us to propose an alternative explanation for previously described matrix loss of cosmogenic 3He.

  18. Experimental Study on the Solubility of Cr2+ in Olivine,Orthopyroxene and Spinel Solid Solutions

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr2+ in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO+B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr3+ in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr2+ solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr2+ between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.

  19. Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    Science.gov (United States)

    Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.

  20. Herschel/PACS observations of the 69 μm band of crystalline olivine around evolved stars

    NARCIS (Netherlands)

    Blommaert, J.A.D.L.; de Vries, B.L.; Waters, L.B.F.M.; Waelkens, C.; Min, M.; Van Winckel, H.; Molster, F.; Decin, L.; Groenewegen, M.A.T.; Barlow, M.; García-Lario, P.; Kerschbaum, F.; Posch, T.; Royer, P.; Ueta, T.; Vandenbussche, B.; Van de Steene, G.; van Hoof, P.

    2014-01-01

    Context. We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67−72 μm. This wavelength range covers the 69 μm band of crystalline olivine (Mg2−2xFe(2x)SiO4). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline

  1. A More Reduced Mantle Source for Enriched Shergottites; Insights from the Olivine-Phyric Shergottite Lar 06319

    Science.gov (United States)

    Peslier, A. H.; Hnatyshin, D.; Herd, C. D. K.; Walton, E. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J.

    2010-01-01

    A detailed petrographic study of melt inclusions and Cr-Fe-Ti oxides of LAR 06319 leads to two main conclusions: 1) this enriched oxidized olivine- phyric shergottite represents nearly continuous crystallization of a basaltic shergottite melt, 2) the melt became more oxidized during differentiation. The first crystallized mineral assemblages record the oxygen fugacity which is closest to that of the melt s mantle source, and which is lower than generally attributed to the enriched shergottite group.

  2. Preparation and Characterization of Novel Ti-doped M-site Deficient Olivine LiFePO4

    Institute of Scientific and Technical Information of China (English)

    Yu Heng SUN; Xing Quan LIU

    2006-01-01

    A novel Ti-doped M-site deficient olivine LiFePO4, i.e. Li0.95Fe0.95Ti0.05PO4, was synthesized by a solid-state reaction method. XRD and FTIR were used to characterize the as-prepared samples. As a cathode material for lithium-ion batteries, Li0.95Fe0.95Ti0.05PO4 exhibited improved rate capability.

  3. The dissolution of high-FeO olivine rock from the Lovasjaervi intrusion (SE-Finland) at 25 deg. C as a function of pH

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Lara [Enviros-Spain S.L. Passeig de Rubi, 29-31, 08197 Valldoreix (Spain); El Aamrani, Fatima [Departament d' Enginyeria Quimica, ETSEIB-UPC (H4), Av. Diagonal 647, 08028 Barcelona (Spain); Rovira, Miquel [CTM-Centre Technologic, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Gimenez, Javier [Departament d' Enginyeria Quimica, ETSEIB-UPC (H4), Av. Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Casas, Ignasi [Departament d' Enginyeria Quimica, ETSEIB-UPC (H4), Av. Diagonal 647, 08028 Barcelona (Spain); Pablo, Joan de [CTM-Centre Technologic, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Bruno, Jordi [Enviros-Spain S.L. Passeig de Rubi, 29-31, 08197 Valldoreix (Spain)

    2005-07-15

    The high-FeO olivine-rich rock from the Lovasjaervi intrusion (65% olivine, 20% plagioclase, 8% magnetite, 4% pyroxene and 3% serpentine) has been proposed as a potential redox-active backfill-additive in deep high level nuclear waste repositories. In this work, the authors report on kinetic dissolution studies of this solid under different pH and redox conditions performed by using a flow-through methodology. Assuming that silicon is mainly released to solution from the olivine contained in the solid, the experimental results have been adjusted to an empirical rate law as a function of proton concentration. The proton concentration reaction orders agree with results found in the literature for both acidic and alkaline pH ranges. The calculations conducted with the reactive transport code RETRASO show that at alkaline pH, the olivine rock might have a lower redox buffer capacity than expected.

  4. Contrasting Early and Late Shock Effects on the L Chondrite Parent Body: Evidence from Ar Ages and Olivine Microstructures for Two Meteorites

    Science.gov (United States)

    Ruzicka, A. M.; Clay, P. L.; Hugo, R.; Joy, K. H.; Busemann, H.

    2015-07-01

    We discuss Ar age and olivine microstructure data for two L6 chondrites that provide a case study of contrasting shock effects in similar chondritic materials deformed in different epochs and under different conditions.

  5. Resistência mecânica a quente de concretos refratários aluminosos zero-cimento auto-escoantes contendo adições de microssílica e microssílica coloidal High temperature mechanical strength of self-flow zero-cement high-alumina castables containing microsilica and microsilica with coloidal silica additions

    Directory of Open Access Journals (Sweden)

    M. V. Gerotto

    2000-06-01

    Full Text Available Concretos refratários aluminosos contendo microssílica apresentam um grande potencial de aplicação tecnológica pela possibilidade de formação da fase mulita através da reação entre Al2O3 e SiO2. Porém, segundo o diagrama Al2O3 - SiO2 - CaO, seu uso é limitado a temperaturas próximas a 1300 ºC uma vez que a presença do CaO, contido no cimento de aluminato de cálcio, leva a formação de fases líquidas que prejudicam fortemente a sua resistência mecânica a altas temperaturas. Recentemente foi mostrado a possível presença de uma fase metaestável de baixo ponto de fusão inerente ao diagrama Al2O3- SiO2 que poderia ser a responsável pela redução na resistência mecânica a quente, mesmo para um concreto isento de CaO. A fim de se analisar essa hipótese, foram formulados concretos refratários aluminosos com diferentes teores de microssílica e totalmente isentos de cimento, aluminas de transição (ro-Al2O3 ou de qualquer ligante hidráulico. Os resultados obtidos confirmaram a formação dessa fase metaestável. Com intuito de melhorar o empacotamento do concreto e a reatividade de sua matriz, favorecendo a formação de mulita, foram adicionalmente preparados concretos contendo sílica coloidal e microssílica. O potencial para aplicações tecnológicas dos concretos refratários obtidos são apresentados e discutidos.High alumina castables containing microsilica exhibit a great potential for technological applications due to mullite formation resulting from the reaction of Al2O3 and SiO2. However, their use has been limited up to temperatures of approximately 1300 ºC, due to reductions in the castable's strength. This has been attributed to CaO present in cement that leads to liquid formation at high temperatures, in accordance with the Al2O3-SiO2-CaO phase diagram. Recently, it has been shown that a metastable phase in the Al2O3-SiO2 system could be responsible for strength decrease even in the absence of CaO. In

  6. Formação in-situ ou adição de espinélio pré-formado: o que é melhor para concretos refratários aluminosos? In-situ formation or pre-formed spinel addition: which one is better for high alumina refractory castable?

    Directory of Open Access Journals (Sweden)

    E. Y Sako

    2010-03-01

    Full Text Available O desenvolvimento do setor siderúrgico está intimamente relacionado aos progressos obtidos na produção de refratários. Nas panelas de siderurgia, uma das principais exigências são revestimentos que apresentem excelentes propriedades termomecânicas para suportar os ciclos térmicos, além de uma boa resistência à corrosão e à penetração de escórias básicas. Em concretos refratários aluminosos, essas características são obtidas pela incorporação de espinélio pré-formado ou pela espinelização in-situ, onde nesta segunda rota os óxidos de alumínio e de magnésio reagem entre si em temperaturas elevadas durante o uso do revestimento. O objetivo do presente trabalho foi a análise comparativa e sistêmica destas duas classes de concretos aluminosos espinelizados, visando-se avaliar as diferenças em suas propriedades principalmente após sinterização. Foi observado que os concretos contendo espinélio in-situ apresentaram propriedades mecânicas superiores após queima a 1500 ºC, além de maior variação dimensional. Adicionalmente, o efeito da adição de frações grosseiras de espinélio pré-formado indicou a influência dos agregados sob a estabilidade volumétrica de concretos espinelizados in-situ.Considering that developments on refractories performance are of utmost importance to the steel industry advances, thermo-mechanical properties and the corrosion and slag penetration resistance of the lining material are constantly being improved to extend steel ladle working life. These benefits could be attained in high alumina refractory castable by adding pre-formed spinel or magnesia, in order to result in the latter condition in in-situ spinel during the first use of the lining. The objective of the present work was to compare between high alumina castables with pre-formed or in situ spinel in order to verify their main properties differences. In addition, pre-formed spinel was used as aggregate replacing tabular

  7. Effects of prolonged inhalation of silica and olivine dusts on immune functions in the mouse. [Escherichia coli; Staphylococcus

    Energy Technology Data Exchange (ETDEWEB)

    Scheuchenzuber, W.J.; Eskew, M.L.; Zarkower, A.

    1985-12-01

    Immunologic responses determined in Balb/c mice following intermittent silica or olivine inhalations for 150, 300, or 570 days. Animals dust-exposed for 570 days were tested immediately postexposure, while those exposed for 150 or 300 days were tested immediately or were rested for 30 or 150 days as a measure of possible recovery from effects of the dust inhalations. Silica inhalation suppressed the number of specific plaque-forming cells (PFC) in the spleen produced in response to aerosolized Escherichia coli bacteria. When tested after 570 days, silica inhalation also reduced the ability of alveolar marcophages to phagocytize Staphylococcus auerus in vitro. Olivine inhalation also suppressed splenic PFCs and alveolar macrophage phagocytosis, but to a lesser degree than silica. In animals tested after 570 days of dust exposure, it was determined that the ability to lyse allogeneic tumor cells in vitro was impaired by olivine slightly more than by silica, while antibody-dependent cell-mediated cytotoxic and mitogenic responses by splenic lymphocytes were unchanged by inhalation of either dust. The effects of increased exposure periods, and of recovery periods after exposure, were confounded by age-related immunologic changes which were present after the longer exposures.

  8. A model of chemical etching of olivine in the vicinity of the trajectory of a swift heavy ion

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, S.A., E-mail: s.a.gorbunov@mail.ru [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Rymzhanov, R.A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Starkov, N.I. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Volkov, A.E. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Malakhov, A.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2015-12-15

    Searching of superheavy elements, the charge spectra of heavy nuclei in Galactic Cosmic Rays was investigated within the OLYMPIA experiment using the database of etched ion tracks in meteorite olivine. Etching results in the formation of hollow syringe-like channels with diameters of 1–10 μm along the trajectories of these swift heavy ions (SHI). According to the activated complex theory, the local chemical activity is determined by an increase of the specific Gibbs energy of the lattice stimulated by structure transformations, long-range elastic fields, and interatomic bonds breaking generated in the vicinity of the ion trajectory. To determine the dependencies of the Gibbs free energy increase in SHI tracks in olivine on the mass, energy and charge of a projectile, we apply a multiscale model of excitation and relaxation of materials in the vicinity of the SHI trajectory (SHI tracks). Effect of spreading of fast electrons from the ion trajectory causing neutralization of metallic atoms resulting in an increase of the chemical activity of olivine at long distances from the ion trajectory (up to 5 μm) is estimated and discussed.

  9. A model of chemical etching of olivine in the vicinity of the trajectory of a swift heavy ion

    Science.gov (United States)

    Gorbunov, S. A.; Rymzhanov, R. A.; Starkov, N. I.; Volkov, A. E.; Malakhov, A. I.

    2015-12-01

    Searching of superheavy elements, the charge spectra of heavy nuclei in Galactic Cosmic Rays was investigated within the OLYMPIA experiment using the database of etched ion tracks in meteorite olivine. Etching results in the formation of hollow syringe-like channels with diameters of 1-10 μm along the trajectories of these swift heavy ions (SHI). According to the activated complex theory, the local chemical activity is determined by an increase of the specific Gibbs energy of the lattice stimulated by structure transformations, long-range elastic fields, and interatomic bonds breaking generated in the vicinity of the ion trajectory. To determine the dependencies of the Gibbs free energy increase in SHI tracks in olivine on the mass, energy and charge of a projectile, we apply a multiscale model of excitation and relaxation of materials in the vicinity of the SHI trajectory (SHI tracks). Effect of spreading of fast electrons from the ion trajectory causing neutralization of metallic atoms resulting in an increase of the chemical activity of olivine at long distances from the ion trajectory (up to 5 μm) is estimated and discussed.

  10. Ar-40/Ar-39 Ages for Maskelynites and K-Rich Melt from Olivine-Rich Lithology in (Kanagawa) Zagami

    Science.gov (United States)

    Park, J.; Herzog, G. F.; Nyquist, L. E.; Lindsay, F.; Turrin, B.; Swisher, C. C., III; Delaney, J. S.; Shih, C.-Y.; Niihara, T.; Misawa, K.

    2013-01-01

    We report Ar/Ar release patterns for small maskelynite grains and samples of a K-rich phase separated from the basaltic shergottite Zagami. The purpose of the work is to investigate the well-known discrepancy between published Ar/Ar ages of Zagami, >200 Ma, and its age of approx. 170 Ma as determined by other methods [1-6]. Niihara et al. [7] divide less abundant darker material present in Zagami into an olivine-rich lithology (ORL), from which most of our samples came, and a pyroxene-rich one (Dark Mottled-Lithology: DML) [8, 9]. ORL consists of vermicular fayalitic olivine, coarse-grained pyroxene, maskelynite, and a glassy phase exceptionally rich in K (up to 8.5 wt%), Al, and Si, but poor in Fe and Mg. The elemental composition suggests a late-stage melt, i.e., residual material that solidified late in a fractional crystallization sequence. Below we refer to it as "K-rich melt." The K-rich melt contains laths of captured olivine, Ca-rich pyroxene, plagioclase, and opaques. It seemed to offer an especially promising target for Ar-40/Ar-39 dating.

  11. Does Fe(2+) in olivine-based interstellar grains play any role in the formation of H2? Atomistic insights from DFT periodic simulations.

    Science.gov (United States)

    Navarro-Ruiz, J; Ugliengo, P; Sodupe, M; Rimola, A

    2016-05-25

    Using periodic DFT-D2 methods, atomistic simulations of interstellar H adsorption and H2 formation on a (010) Fe-containing olivine surface are presented. At variance with the (010) Mg2SiO4 surface and key to these processes are the large Fe/H interaction energies, suggesting that olivine surfaces are good reservoirs of H atoms for subsequent recombination to form H2.

  12. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites

    Science.gov (United States)

    Nyquist, L.E.; Shih, C.-Y.; Reese, Y.

    2009-01-01

    RBT 04262 and LAR 06319 are two Martian meteorites recently discovered in Antarctica. Both contain abundant olivines, and were classified as olivine-phyric shergottites. A detailed petrographic study of RBT 04262 suggested it should be reclassified as a lherzolitic shergottite. However, the moderately LREE-depleted REE distribution pattern indicated that it is closely related to enriched basaltic shergottites like Shergotty, Zagami, Los Angeles, etc. In earlier studies of a similarly olivinephyric shergottite NWA 1068 which contains 21% modal olivine, it was shown that it probably was produced from an enriched basaltic shergottite magma by olivine accumulation . As for LAR 06319, recent petrographic studies suggested that it is different from either lherzolitic shergottites or the highly LREE-depleted olivine-phyric shergottites. We performed Rb-Sr and Sm-Nd isotopic analyses on RBT 04262 and LAR 06319 to determine their crystallization ages and Sr and Nd isotopic signatures, and to better understand the petrogenetic relationships between them and other basaltic, lherzolitic and depleted olivine-phyric shergottites.

  13. Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust

    Science.gov (United States)

    Arnold, J. A.; Glotch, T. D.; Lucey, P. G.; Song, E.; Thomas, I. R.; Bowles, N. E.; Greenhagen, B. T.

    2016-07-01

    We place upper limits on lunar olivine abundance using midinfrared (5-25 µm) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M3 and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90 wt %, in contrast to the higher abundance estimates derived from VNIR data.

  14. Rolling stones. Fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification

    Energy Technology Data Exchange (ETDEWEB)

    Schuiling, R.D.; De Boer, P.L. [Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508TA Utrecht (Netherlands)

    2011-07-01

    Human CO2 emissions may drive the Earth into a next greenhouse state. They can be mitigated by accelerating weathering of natural rock under the uptake of CO2. We disprove the paradigm that olivine weathering in nature would be a slow process, and show that it is not needed to mill olivine to very fine, 10 {mu}m-size grains in order to arrive at a complete dissolution within 1-2 year. In high-energy shallow marine environments olivine grains and reaction products on the grain surfaces, that otherwise would greatly retard the reaction, are abraded so that the chemical reaction is much accelerated. When kept in motion even large olivine grains rubbing and bumping against each other quickly produce fine clay- and silt-sized olivine particles that show a fast chemical reaction. Spreading of olivine in the world's 2% most energetic shelf seas can compensate a year's global CO2 emissions and counteract ocean acidification against a price well below that of carbon credits.

  15. The role of dislocations in varied olivine deformation mechanisms investigated using high-angular resolution electron backscatter diffraction

    Science.gov (United States)

    Wallis, David; Hansen, Lars; Britton, Ben; Wilkinson, Angus

    2016-04-01

    Experimentally-derived flow laws can be used to predict the rheology of rocks deformed under natural conditions only if the same microphysical processes can be demonstrated to control the rate-limiting deformation mechanism in both cases. Olivine rheology may exert a principle control on the strength of the lithosphere, and therefore considerable research effort has been applied to assessing its rheology through experimental, geological, and geophysical approaches. Nonetheless, considerable uncertainty remains regarding the dominant deformation mechanisms in the upper mantle. This uncertainty arises in large part due to our limited understanding of the fundamental deformation processes associated with each mechanism. Future improvements to microphysical models of distinct deformation mechanisms require new insight into the contributions those fundamental processes to the macroscopic behaviour. The dynamics of dislocations is central to modelling viscous deformation of olivine, but characterisation techniques capable of constraining dislocation types, densities, and distributions over the critical grain to polycrystal length-scales have been lacking. High angular resolution electron backscatter diffraction (HR-EBSD), developed and increasingly applied in the material sciences, offers an approach capable of such analyses. HR-EBSD utilises diffraction pattern image cross-correlation to achieve dramatically improved angular resolution (~0.01°) of lattice orientation gradients compared to conventional Hough-based EBSD (~0.5°). This angular resolution allows very low densities (≥ 10^11 m^-2) of geometrically necessary dislocations (GND) to be resolved, facilitating analysis of a wide range of dislocation microstructures. We have developed the application of HR-EBSD to olivine and applied it to samples deformed both experimentally and naturally in grain-size sensitive and grain-size insensitive regimes. The results quantitatively highlight variations in the types and

  16. Bromine partitioning between olivine and melt at OIB source conditions: Indication for volatile recycling

    Science.gov (United States)

    Joachim, Bastian; Ruzié, Lorraine; Burgess, Ray; Pawley, Alison; Clay, Patricia L.; Ballentine, Christopher J.

    2016-04-01

    Halogens play a key role in our understanding of volatile transport processes in the Earth's mantle. Their moderate (fluorine) to highly (iodine) incompatible and volatile behavior implies that their distribution is influenced by partial melting, fractionation and degassing processes as well as fluid mobilities. The heavy halogens, particularly bromine and iodine, are far more depleted in the Earth's mantle than expected from their condensation temperature (Palme and O'Neill 2014), so that their very low abundances in basalts and peridotites (ppb-range) make it analytically challenging to investigate their concentrations in Earth's mantle reservoirs and their behavior during transport processes (Pyle and Mather, 2009). We used a new experimental technique, which combines the irradiation technique (Johnson et al. 2000), laser ablation and conventional mass spectrometry. This enables us to present the first experimentally derived bromine partition coefficient between olivine and melt. Partitioning experiments were performed at 1500° C and 2.3 GPa, a P-T condition that is representative for partial melting processes in the OIB source region (Davis et al. 2011). The bromine partition coefficient between olivine and silicate melt at this condition has been determined to DBrol/melt = 4.37•10-4± 1.96•10-4. Results show that bromine is significantly more incompatible than chlorine (˜1.5 orders of magnitude) and fluorine (˜2 orders of magnitude) due to its larger ionic radius. We have used our bromine partitioning data to estimate minimum bromine abundances in EM1 and EM2 source regions. We used minimum bromine bulk rock concentrations determined in an EM1 (Pitcairn: 1066 ppb) and EM2 (Society: 2063 ppb) basalt (Kendrick et al. 2012), together with an estimated minimum melt fraction of 0.01 in OIB source regions (Dasgupta et al. 2007). The almost perfect bromine incompatibility results in minimum bromine abundances in EM1 and EM2 OIB source regions of 11 ppb and 20

  17. Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode.

    Science.gov (United States)

    Zhang, Ruigang; Ling, Chen

    2016-07-20

    Despite growing interest in magnesium batteries, it is still a challenge to find a cathode that fulfills requirements such as high capacity and good cyclability. Because of their positions in the periodic table and the similar ionic sizes of lithium and magnesium, it was naturally postulated that a classical intercalation-type Li-ion battery cathode may also accommodate the intercalation of Mg. On the contrary, many Li-ion battery cathodes performed very poorly in Mg cells, although the mechanism behind such phenomena is still unclear. Here we provide first-hand evidence about the chemistry of olivine FePO4 as Mg battery cathode using a combined theoretical and experimental approach. Although LiFePO4 is a commercial cathode with extraordinary good performance in Li-ion batteries, the measured capacity of FePO4 in nonaqueous Mg cell was only ∼13 mAh/g. Density functional theory calculations predicted sufficient mobility of Mg(2+) in FePO4 lattice to support the insertion of Mg at a reasonable rate, suggesting the poor performance cannot be simply attributed to the limitation of Mg(2+) diffusion. Instead, the recorded low capacity was the result of surface amorphorization that prohibited the electrochemical reaction from penetrating deeply into the bulk phase. The amorphorization had a thermodynamic origin from the instability of intercalated product, which was predicted from DFT calculations and supported by the failure to synthesize magnesiated FePO4 in the solid state reaction route. These results highlighted the importance of a thermodynamically preferred intercalation in order to achieve successful Mg battery cathode.

  18. Preliminary Report on U-Th-Pb Isotope Systematics of the Olivine-Phyric Shergottite Tissint

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions, and trace element abundances.. These correlations have been interpreted as indicating the presence of a reduced, incompatible-element- depleted reservoir and an oxidized, incompatible-element-rich reservoir. The former is clearly a depleted mantle source, but there has been a long debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former clearly requires the ancient martian crust to be the enriched source (crustal assimilation), whereas the latter requires a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and U-Th-Pb concentration analyses of the olivine-phyric shergottite Tissint because U-Th-Pb isotope systematics have been intensively used as a powerful radiogenic tracer to characterize old crust/sediment components in mantle- derived, terrestrial oceanic island basalts. The U-Th-Pb analyses are applied to sequential acid leaching fractions obtained from Tissint whole-rock powder in order to search for Pb isotopic source components in Tissint magma. Here we report preliminary results of the U-Th-Pb analyses of acid leachates and a residue, and propose the possibility that Tissint would have experienced minor assimilation of old martian crust.

  19. Influence of lithium vacancies on the polaronic transport in olivine phosphate structure

    Energy Technology Data Exchange (ETDEWEB)

    Murugavel, Sevi, E-mail: murug@physics.du.ac.in; Sharma, Monika; Shahid, Raza [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2016-01-28

    Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity between the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.

  20. Laboratory Experiments Bearing on the Origin and Evolution of Olivine-rich Chondrules

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Ebel, Denton; Gaffney, Amy

    2011-06-24

    Evaporation rates of K2O, Na2O, and FeO from chondrule-like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine-rich Type IA and Type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule-like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the Type IIA and Type IA chondrules compared with what is found in the vacuum and one-bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule-like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK>2-10-4cm2/s at 1650-C) that diffusion-limited evaporation cannot explain why, despite their having been molten, the Type IIA and Type IA chondrules show no systematic potassium isotopic fractionation.

  1. Influence of lithium vacancies on the polaronic transport in olivine phosphate structure

    Science.gov (United States)

    Murugavel, Sevi; Sharma, Monika; Shahid, Raza

    2016-01-01

    Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity between the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO4 (LFP) and delithiated heterosite FePO4 (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.

  2. Comparative in situ X-ray Diffraction Study of San Carlos Olivine: Influence of Water on the 410 km Seismic Velocity Jump in Earth’s Mantle

    Energy Technology Data Exchange (ETDEWEB)

    J Chen; H Liu; J Girard

    2011-12-31

    A comparative study of the equation of states of hydrous (0.4 wt% H{sub 2}O) and anhydrous San Carlos olivine (<30 ppm H2O) was conducted using synchrotron X-rays up to 11 GPa in a diamond anvil cell (DAC) at ambient temperature. Both samples were loaded in the same high-pressure chamber of the DAC to eliminate the possible pressure difference in different experiments. The obtained compression data were fitted to the third-order Birch-Murnaghan equation of state, yielding a bulk modulus K{sub 0} = 123(3) GPa for hydrous olivine and K{sub 0} = 130(4) GPa for anhydrous olivine as K{sub 0}' is fixed at 4.6. Therefore, 0.4 wt% H{sub 2}2O in olivine results in a 5% reduction in bulk modulus. Previous studies reported bulk modulus reduction by water in olivine's high-pressure polymorph (wadsleyite), to which the transformation from olivine gives rise to the seismic discontinuity at 410 km depth. The new data results in a reduction in the magnitude of the discontinuity by 50% in v{sub P} and 30% in v{sub S} (for 1:5 water partitioning between olivine and wadsleyite) with respect to anhydrous mantle. Previous knowledge of the influence of water on this phase transition has been in opposition to a large amount of water [e.g., 200 ppm by Wood (1995)] existing at 410 km depth. Calculation of the seismic velocities based on newly available elasticity data of the hydrous phases indicates that the presence of water is favorable for the mineral composition model (pyrolite) and seismic observations in terms of the magnitude of the 410 km discontinuity.

  3. Compositional and Microstructural Evolution of Olivine During Pulsed Laser Irradiation: Insights Based on a FIB/Field-Emission TEM Study

    Science.gov (United States)

    Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Baragiola, R. A.

    2015-01-01

    Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an

  4. Correlation between changes in mechanical strength and damping of a high alumina refractory castable progressively damaged by thermal shock Correlação entre alterações na resistência mecânica e no amortecimento de um concreto refratário de alta alumina com dano progressivo por choque térmico

    Directory of Open Access Journals (Sweden)

    A. H. A. Pereira

    2010-07-01

    Full Text Available Resistance to thermal shock damage is an important characteristic in refractory materials, since it determines their performance and service life in many applications. Therefore, the use of more sensitive techniques is desirable to improve the evaluation of thermal shock damage and monitoring of nucleation and propagation cracks and microcracks.The aim of this work was to evaluate the potential of damping change characterization to quantify thermal shock damage and to estimate the retained mechanical strength in complement to the dynamic Young's modulus test. Variations in damping and retained Young's modulus and their correlation with the mechanical strength of a high alumina refractory castable were evaluated at different thermal shock temperatures and number of cycles. The changes in damping were proportional to the retained mechanical strength, similarly to the retained Young's modulus. Changes in damping were also detected which were not indicated by the Young's modulus measurements.A resistência ao dano por choque térmico é uma característica importante dos materiais refratários visto que determina o desempenho e vida útil destes materiais em várias aplicações. Portanto é desejável a aplicação de técnicas mais sensíveis para avaliação do dano por choque térmico e monitoração da nucleação e expansão de trincas e microtrincas. O objetivo deste trabalho foi avaliar o potencial da caracterização da variação do amortecimento para quantificar o dano por choque térmico e para estimar o módulo de ruptura retido, complementarmente à caracterização do módulo de Young dinâmico. Foram estudadas as variações do amortecimento, do módulo de Young retido e a correlação destas variações com a resistência mecânica de um concreto refratário de alta alumina para distintas variações de temperatura e número de ciclos. As alterações encontradas no amortecimento foram proporcionais à resistência mecânica retida

  5. Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe-Mg diffusion in olivine

    Science.gov (United States)

    Hartley, Margaret E.; Morgan, Daniel J.; Maclennan, John; Edmonds, Marie; Thordarson, Thor

    2016-04-01

    Petrological constraints on the timescales of pre-eruptive crystal storage and magma degassing provide an important framework for the interpretation of seismic, geodetic and gas monitoring data in volcanically active regions. We have used Fe-Mg diffusion chronometry in 86 olivine macrocrysts from the AD 1783-1784 Laki eruption on Iceland's Eastern Volcanic Zone to characterise timescales of crystal storage and transport in the lead-up to this eruption. The majority of these olivines have core compositions of Fo 81 olivines record Fe-Mg diffusion timescales of ∼124 days; these crystals are likely to have formed in mid-crustal magma chambers, been transferred to storage at shallower levels and then entrained into the Laki melt prior to eruption. Typical Fe-Mg diffusion timescales of 6-10 days are shorter than the average time interval between discrete episodes of the Laki eruption, indicating variable or pulsed disaggregation of stored crystals into the carrier liquid prior to the onset of each episode. The diffusion timescales coincide with historical accounts of strong and frequent earthquakes in southeast Iceland, which we interpret as being associated with mush disaggregation related to melt withdrawal and the initiation of dyke propagation from a crustal magma reservoir at ∼6 ± 3 km depth to the surface. We calculate pre-eruptive CO2 fluxes of 2-6 Mt d-1, assuming a pre-eruptive CO2 outgassing budget of 189.6 Mt for the Laki eruption and a constant rate of CO2 release in the 6-10 days preceding each eruptive episode. Our dataset indicates that petrological constraints on the timescales of magmatic processes occurring in the days leading up to historic eruptions may enhance our ability to forecast the onset of future large eruptions, both in Iceland and further afield.

  6. Tracking the Martian Mantle Signature in Olivine-Hosted Melt Inclusions of Basaltic Shergottites Yamato 980459 and Tissint

    Science.gov (United States)

    Peters, T. J.; Simon, J. I.; Jones, J. H.; Usui, T.; Moriwaki, R.; Economos, R.; Schmitt, A.; McKeegan, K.

    2014-01-01

    The Martian shergottite meteorites are basaltic to lherzolitic igneous rocks that represent a period of relatively young mantle melting and volcanism, approximately 600-150 Ma (e.g. [1,2]). Their isotopic and elemental composition has provided important constraints on the accretion, evolution, structure and bulk composition of Mars. Measurements of the radiogenic isotope and trace element concentrations of the shergottite meteorite suite have identified two end-members; (1) incompatible trace element enriched, with radiogenic Sr and negative epsilon Nd-143, and (2) incompatible traceelement depleted, with non-radiogenic Sr and positive epsilon 143-Nd(e.g. [3-5]). The depleted component represents the shergottite martian mantle. The identity of the enriched component is subject to debate, and has been proposed to be either assimilated ancient martian crust [3] or from enriched domains in the martian mantle that may represent a late-stage magma ocean crystallization residue [4,5]. Olivine-phyric shergottites typically have the highest Mg# of the shergottite group and represent near-primitive melts having experienced minimal fractional crystallization or crystal accumulation [6]. Olivine-hosted melt inclusions (MI) in these shergottites represent the most chemically primitive components available to understand the nature of their source(s), melting processes in the martian mantle, and origin of enriched components. We present trace element compositions of olivine hosted melt inclusions in two depleted olivinephyric shergottites, Yamato 980459 (Y98) and Tissint (Fig. 1), and the mesostasis glass of Y98, using Secondary Ionization Mass Spectrometry (SIMS). We discuss our data in the context of understanding the nature and origin of the depleted martian mantle and the emergence of the enriched component.

  7. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria)

    Science.gov (United States)

    Schneider, Philipp; Tropper, Peter; Kaindl, Reinhard

    2013-04-01

    In this study we report P-rich olivine and the tric-calcium phosphate (TCP) stanfieldite in partially molten quartzphyllites from the ritual immolation site at the Goldbichl, near Innsbruck in the Tyrol, Austria. During partial melting, foamy patches of dark glassy material formed at the surface of the rocks and also as layers within the rocks. The pyrometamorphic rocks contain mostly the mineral assemblage olivine + orthopyroxene + plagioclase + spinel + glass. During the investigation of slag samples from this prehistoric ritual immolation site, extremely P-rich, apatite-bearing micro-domains were found. In these domains phosphoran olivine was found whose P contents are approaching the maximum P contents in olivine according to the experimental investigations of Boesenberg and Hewins (Geochim Cosmochim Acta 74:1923-1941, 2010). The textures within these domains indicate strongly disequilibrium conditions. The phosphoran olivines formed due to reactions involving apatite and the mineral assemblage of the quartzphyllites, and coexist with plagioclase and a tri-calcium phosphate phase (TCP) showing stanfieldite Ca4(Mg, Fe2+, Mn2+)5(PO4)6 composition. In terms of its chemical composition, olivine shows a wide range in composition with P ranging from 0.3 to 0.54 a.p.f.u, which corresponds to maximal 23 wt.% P2O5. These are the highest P-contents in olivine reported from rocks so far. The incorporation of P correlates with decreasing Si contents according to the charge balancing scheme 2{{P}^{5+ }}+□{{M}_{1,2 }}=2S{{i}^{4+ }}+{{( {Mg,Fe} )}^{2+ }}{{M}_{1,2 }} . Therefore P can only be incorporated in combination with a vacancy on the M1,2 position. Micro-Raman spectroscopy of phosphoran olivines indicates that these olivines can easily be identified with this method due to the strong signals of the SiO4 and PO4 vibrations. The external vibrations of the M1,2 sites at low wave-numbers are more complex than for P-free olivine. This might be due to the effect of P5+ on

  8. Enhancement of the ionic conductivity of olivine by the water incorporation based on the Mg diffusivity

    Science.gov (United States)

    Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.

    2016-12-01

    Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic

  9. The composition of volatile components in olivines from Yakutian kimberlites of various ages: Evidence from gas chromatography-mass spectrometry

    Science.gov (United States)

    Tomilenko, A. A.; Bul'bak, T. A.; Khomenko, M. O.; Kuzmin, D. V.; Sobolev, N. V.

    2016-06-01

    The composition of volatiles from fluid and melt inclusions in olivine phenocrysts from Yakutian kimberlite pipes of various ages (Olivinovaya, Malokuonapskaya, and Udachnaya-East) were studied for the first time by gas chromatography-mass spectrometry. It was shown that hydrocarbons and their derivatives, as well as nitrogen-, halogen-, and sulfur-bearing compounds, played a significant role in the mineral formation. The proportion of hydrocarbons and their derivatives in the composition of mantle fluids could reach 99%, including up to 4.9% of chlorineand fluorine-bearing compounds.

  10. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications

    Science.gov (United States)

    Koehler, T. P.; Brey, G. P.

    1990-09-01

    The equilibrium Ca content of olivine coexisting with clinopyroxene was determined (using an electron microprobe) in natural lherzolitic compositions Mg/(Mg + Fe)ol of about 0.9, in experiments covering lherzolitic systems from 2-60 kb and 900-1400 C. The boundary fluorescence effect was avoided by collecting analytical data from separated mineral grains. The experimental data on Ca solubility were fitted to two equations given in the form of barometers. It was found that calculated P,T conditions for spinel peridotite nodules from southwestern USA, fell within the spinel stablity field and along predicted geotherms for this region.

  11. Experimental deformation and recrystallization of olivine – processes and time scales of damage healing during postseismic relaxation at mantle depths

    Directory of Open Access Journals (Sweden)

    C. A. Trepmann

    2013-04-01

    Full Text Available Experiments comprising sequences of deformation (at 300 or 600 °C and annealing at varying temperature (700 to 1100 °C, time (up to 144 h and stress (up to 1.5 GPa were carried out in a Griggs-type apparatus on natural olivine-rich peridotite samples to simulate deformation and recrystallization processes in deep shear zones that reach mantle depth as continuations of seismically active faults. The resulting olivine microfabrics were analysed by polarization and electron microscopy. Core-and-mantle like microstructures are the predominant result of our experiments simulating rapid stress relaxation (without or with minor creep after a high-stress deformation event: porphyroclasts (> 100 μm are surrounded by defect-poor recrystallized grains with a wide range in size (2 to 40 μm. Areas with smaller recrystallized grains (> 10 μm trace former high-strain zones generated during initial high-stress deformation even after annealing at a temperature of 1100 °C for 70 h. A weak crystallographic preferred orientation (CPO of recrystallized olivine grains is related to the orientation of the host crystals but appears unrelated to the strain field. Based on these findings, we propose that olivine microstructures in natural shear-zone peridotites with a large range in recrystallized grain size, localized fine-grained zones, and a weak CPO not related to the strain field are diagnostic for a sequence of high-stress deformation followed by recrystallization at low stresses, as to be expected in areas of seismic activity. We extended the classic Avrami-kinetics equation by accounting for time-dependent growth kinetics and constrained the involved parameters relying on our results and previously reported kinetics parameters. Extrapolation to natural conditions suggests that the observed characteristic microstructure may develop within as little as tens of years and less than ten thousands of years. These recrystallization microstructures have a great

  12. Determination of crystal residence timescales in magma reservoirs by diffusion modeling of dendritic phosphorus zoning patterns in olivine

    Science.gov (United States)

    Chakraborty, S.; Potrafke, A.

    2016-12-01

    Deciphering the early stages of crystallization and the chronological evolution of phenocrysts in magma reservoirs is one of the main goals in volcanology. Established approaches that model the concentration evolution of fast diffusing elements like Fe/Mg carry limited information on timescales once the concentration gradients are homogenized. Elements that diffuse more slowly, such as P and Al, become useful in these cases. We present a novel modeling tool that combines high-resolution EMP mapping of slow diffusing phosphorus in olivine with 2D kinetic modeling of the diffusive relaxation of initial chemical zoning pattern of P as well as Fe/Mg. The modeling approach offers a new possibility for determining crystal residence times in magma reservoirs. P diffusion coefficients from the experimental determination of [1] and Fe/Mg diffusion coefficients from [2] were used. The method yields a time-bracket between the minimum time required to homogenize the zoning of fast-diffusing Fe/Mg and the maximum time period for which details of chemical zoning of slow-diffusing P may be retained. To illustrate the approach we have studied the compositional zoning patterns of 7 olivine crystals from Piton de la Fournaise volcano, La Réunion. All crystals show a narrow range of forsterite contents (=Fo82-84) with fully homogenized Fe/Mg distribution, whereas P-mapping reveals oscillatory to dendritic zoning patterns [3]. P concentrations scatter in the range of 0.4 wt-% to below detection limit. Revealed phosphorus zoning patterns were considered to display the initial crystal architecture, whereas Fe and Mg zoning has been wiped out due to faster diffusion. For La Réunion magmas at 1453 K, timescales between few days to weeks were determined to be the time brackets for growth and residence of the olivine crystals in the magmas. These short residence times combined with knowledge of very fast developing dendritic crystals that have recently been revealed worldwide [e.g. 3

  13. Chemical Analysis of Reaction Rims on Olivine Crystals in Natural Samples of Black Dacite Using Energy-Dispersive X-Ray Spectroscopy, Lassen Peak, CA.

    Science.gov (United States)

    Graham, N. A.

    2014-12-01

    Lassen Volcanic Center is the southernmost volcanic region in the Cascade volcanic arc formed by the Cascadia Subduction Zone. Lassen Peak last erupted in 1915 in an arc related event producing a black dacite material containing xenocrystic olivine grains with apparent orthopyroxene reaction rims. The reaction rims on these olivine grains are believed to have formed by reactions that ensued from a mixing/mingling event that occurred prior to eruption between the admixed mafic andesitic magma and a silicic dacite host material. Natural samples of the 1915 black dacite from Lassen Peak, CA were prepared into 15 polished thin sections and carbon coated for analysis using a FEI Quanta 250 Scanning Electron Microscope (SEM) to identify and measure mineral textures and disequilibrium reaction rims. Observed mineralogical textures related to magma mixing include biotite and amphibole grains with apparent dehydration/breakdown rims, pyroxene-rimmed quartz grains, high concentration of microlites in glass matrix, and pyroxene/amphibole reaction rims on olivine grains. Olivine dissolution is evidenced as increased iron concentration toward convolute edges of olivine grains as observed by Backscatter Electron (BSE) imagery and elemental mapping using NSS spectral imaging software. In an attempt to quantify the area of reaction rim growth on olivine grains within these samples, high-resolution BSE images of 30 different olivine grains were collected along with Energy-Dispersive X-Ray Spectroscopy (EDS) of different phases. Olivine cores and rims were extracted from BSE images using Photoshop and saved as separate image files. ImageJ software was used to calculate the area (μm2) of the core and rim of these grains. Average pyroxene reaction rim width for 30 grains was determined to be 11.68+/-1.65 μm. Rim widths of all 30 grains were averaged together to produce an overall average rim width for the Lassen Peak black dacite. By quantifying the reaction rims on olivine grains

  14. Genesis of Augite-Bearing Ureilites: Evidence From LA-ICP-MS Analyses of Pyroxenes and Olivine

    Science.gov (United States)

    Herrin, J. S.; Lee, C-T. A.; Mittlefehldt, D. W.

    2008-01-01

    Ureilites are ultramafic achondrites composed primarily of coarse-grained low-Ca pyroxene and olivine with interstitial carbonaceous material, but a number of them contain augite [1]. Ureilites are considered to be restites after partial melting of a chondritic precursor, although at least some augite-bearing ureilites may be partially cumulate [1, 2]. In this scenario, the augite is a cumulus phase derived from a melt that infiltrated a restite composed of typical ureilite material (olivine+low-Ca pyroxene) [2]. To test this hypothesis, we examined the major and trace element compositions of silicate minerals in select augite-bearing ureilites with differing mg#. Polished thick sections of the augite-bearing ureilites ALH 84136 , EET 87511, EET 96293, LEW 88201, and META78008 and augite-free typical ureilite EET 90019 were examined by EPMA for major and minor elements and laser ablation ICP-MS (LA-ICP-MS) for trace elements, REE in particular. Although EET 87511 is reported to contain augite, the polished section that we obtained did not.

  15. Zircon SHRIMP U-Pb dating for olivine gabbro at Wangmuguan in the Beihuaiyang zone and its geological significance

    Institute of Scientific and Technical Information of China (English)

    LIU Yican; LI Shuguang; GU Xiaofeng; HOU Zhenhui

    2006-01-01

    Zircon SHRIMP U-Pb dating was performed for olivine gabbro at Wangmuguan in the Beihuaiyang zone of the Dabie orogen and its country rock (garnet-bearing epidote-mica-quartz schist).The results show that the gabbro was crystallized at 635±5 Ma, in the late Neoproterozoic rather than in the late Paleozoic as previously suggested; its country rocks formed at 464±7 Ma, younger than the enclosed gabbro. The U-Pb age for the gabbro is in good agreement with ages for tuff interbedded with sediments from the Doushantuo Formation in the South China Block and late-Neoproterozoic basic dyke swarms distributed on a large scale over areas of Suizhou to Zaoyang of Hubei Province in the northern margin of the South China Block. This suggests a large-scale magmatic activity occurred at the late Neoproterozoic in the South China Block, so that the gabbro at Wangmuguan in the western segment of the Beihuaiyang zone is geotectonic affinity to the northern margin of the South China Block. Since the olivine gabbro occurs within the schist of Ordovician protolith with tectonic contact between them but forming in different tectonic settings, it is concluded that the late-Neoproterozoic gabbro was detached from the Precambrian basement of the South China Block during the Triassic subduction of the South China Block, and tectonically thrusted over the metamorphosed rocks in the southern margin of the North China Block.

  16. Zircon SHRIMP U-Pb age of garnet olivine pyroxenite at Hujialin in the Sulu terrane and its geological significance

    Institute of Scientific and Technical Information of China (English)

    GAO Tianshan; CHEN Jiangfeng; XIE Zhi; YANG Shenghong; YU Gang

    2004-01-01

    Garnet olivine pyroxenite at Hujialin is situated in the Sulu ultrahigh pressure (UHP) metamorphic belt, Shandong Province. Most of the zircon separated from the rock is well crystallized, prismatic and granular with a length to width ratio of 1︰1.3-1︰2.5. CL and BSE images show the magmatic oscillatory zoning in the zircon. Th/U ratio ranges from 0.99 to 2.81. These suggest a magmatic origin for the zircon studied. SHRIMP dating yields 206Pb/238U ages of 207-223 Ma, with a weighted average of 216±3 Ma. This age corresponds to zircon growth during exhumation of UHP slab and thus the timing of amphibolite-facies retrogression. The garnet olivine pyroxenite was wrapped and brought to the crust by the UHP slab during exhumation, and then suffered from metasomatism by fluid from the UHP slab itself. The zircon U-Pb age records the timing of the crystallization of metasomatic melt. Therefore, fluid that was released during exhumation of deeply subducted continental slab may be the important source for zircon growth.

  17. Experimental measurement of the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    At 1.0-4.0 GPa and 1123-1473 K and under oxygen fugacity-controlled conditions (Ni + NiO, Fe + Fe3O4, Fe +FeO and Mo + MoO2 buffers), a YJ-3000t Model six-anvil solid high-pressure apparatus and a Sarltron-1260 Impedance/Gain-Phase analyzer were employed to conduct an in situ measurement of the electrical conductivity of single crystal olivine. Experimental results showed that: (1) within the range of experimentally selected frequencies (103-106 Hz), the electrical conductivity of the sample is of great dependence on the frequency; (2) with the rise of temperature (T), the electrical conductivity (σ) will increase, and the Arrenhius linear relationship is established between lgσ and 1/T; (3) under the control of oxygen buffer Fe + Fe3O4, with the rise of pressure, the electrical conductivity tends to decrease whereas the activation enthalpy and independent-of-temperature preexponential factor tend to increase,with the activation energy and activation volume of the sample estimated at ( 1.25 ± 0.08) eV and (0. 105 ± 0. 025) cm3/mol, respectively; (4) under given pressure and temperature conditions, the electrical conductivity tends to increase whereas the activation energy tends to decrease with increasing oxygen fugacity; and (5) the mechanism of electrical conduction of small polarons can provide insight into the behavior of electrical conduction of olivine under high pressure and high temperature.

  18. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    Science.gov (United States)

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  19. A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine

    Energy Technology Data Exchange (ETDEWEB)

    Miura, H. [Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501 (Japan); Yamamoto, T., E-mail: miurah@nsc.nagoya-cu.ac.jp [Center for Planetary Science, Kobe University, 7-1-48, Minamimachi, Minatojima, Chuo-ku, Kobe 650-0047 (Japan)

    2014-03-01

    Compositional zoning in chondrule phenocrysts records the crystallization environments in the early solar nebula. We modeled the growth of olivine phenocrysts from a silicate melt and proposed a new fractional crystallization model that provides a relation between the zoning profile and the cooling rate. In our model, we took elemental partitioning at a growing solid-liquid interface and time-dependent solute diffusion in the liquid into consideration. We assumed a local equilibrium condition, namely, that the compositions at the interface are equal to the equilibrium ones at a given temperature. We carried out numerical simulations of the fractional crystallization in one-dimensional planar geometry. The simulations revealed that under a constant cooling rate the growth velocity increases exponentially with time and a linear zoning profile forms in the solid as a result. We derived analytic formulae of the zoning profile, which reproduced the numerical results for wide ranges of crystallization conditions. The formulae provide a useful tool to estimate the cooling rate from the compositional zoning. Applying the formulae to low-FeO relict olivine grains in type II porphyritic chondrules observed by Wasson and Rubin, we estimate the cooling rate to be ∼200-2000 K s{sup –1}, which is greater than that expected from furnace-based experiments by orders of magnitude. Appropriate solar nebula environments for such rapid cooling conditions are discussed.

  20. The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3)

    CERN Document Server

    Jacquet, Emmanuel; Gounelle, Matthieu

    2016-01-01

    We report in situ LA-ICP-MS trace element analyses of silicate phases in olivine-bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance ...

  1. Using the Fe/Mn Ratio of FeO-Rich Olivine In WILD 2, Chondrite Matrix, and Type IIA Chondrules to Disentangle Their Histories

    Science.gov (United States)

    Frank, David R.; Le, L.; Zolensky, M. E.

    2012-01-01

    The Stardust Mission returned a large abundance of impactors from Comet 81P/Wild2 in the 5-30 m range. The preliminary examination of just a limited number of these particles showed that the collection captured abundant crystalline grains with a diverse mineralogy [1,2]. Many of these grains resemble those found in chondrite matrix and even contain fragments of chondrules and CAIs [1-3]. In particular, the olivine found in Wild 2 exhibits a wide compositional range (Fa0-97) with minor element abundances similar to the matrix olivine found in many carbonaceous chondrites (CCs) and unequilibrated ordinary chondrites (UOCs). Despite the wide distribution of Fa content, the olivine found in the matrices of CCs, UOCs, and Wild 2 can be roughly lumped into two types based solely on fayalite content. In fact, in some cases, a distinct bi-modal distribution is observed.

  2. Order-disorder in olivine minerals by synchrotron X-ray absorption near-edge structure (Xane) spectroscopy at the Mg, Fe and Ca K edges

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Marcelli, A.; Cibin, G. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Mottana, A. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori Nazionali di Frascati; Rome Univ. Roma Tre, Rome (Italy). Dipt. di Scienze Geologiche; Paris, E.; Giuli, G [INFM, Camerino Univ., Camerino, MC (Italy). Dipt. di Scienze della Terra

    1999-07-01

    In this paper, are presented new, high-resolution experimental spectra at the Mg and Fe K edges for the two Fe-Mg end members F o and F a, and for three other olivines. Two are the Ca end members of the family, namely monticellite (Mtc: CaMgSiO4) and kirschsteinite (Krs: CaFeSiO4). The main purpose of this work is to investigate the effects of Mg, Fe, and Ca partition in the Pbnm (or {alpha}) olivine structure on the electronic properties, as well as the relationships that exist between chemical substitutions and features occurring in Xanes spectra. One wants to explore the relationships that intervene between LRO, as determined by XRD, and SRO, as determined by Xanes, on the endmembers and on a well-known intermediate member as well, and deduce from it a model for the behavior of the entire olivine solid-solution system.

  3. Effect of sol–gel method on colour properties of the classical cobalt olivine (Co$_2$SiO$_4$) ceramic pigment

    Indian Academy of Sciences (India)

    M EL HADRI; H AHAMDANE; M A EL IDRISSI RAGHNI

    2017-04-01

    A sol–gel method based on (H$_2$S$_2$O$_5$)$_{aq}$ as silicon precursor in the presence of NaCl and KCl mineralizers was used for the synthesis of the classical cobalt olivine (Co2SiO4) ceramic pigment. The effect of this synthesisroute on the colour properties was studied. Highly pure olivine phase was obtained after firing at 1200$^{\\circ}$C for 3 h. The resulting powders exhibited very intense violet colour, while their addition at only 1 wt% to an industrial transparent glaze was enough to produce a very intense blue–violet colouration. Based on the aspect of glazed ceramics, addition of pigments even at 0.5 wt% to the glaze resulted in a very interesting colour and opacity. By this appropriateminimization of the used pigment amount without compromising the colouring properties required during application, the obtained Co olivine could be more efficient, less toxic and less expensive.

  4. Diversity of minor elements in olivines from mantle xenoliths (Wołek Hill, SW Poland) - PIXE measurements

    Science.gov (United States)

    Nowak, Monika; Munnik, Frans; Michalak, Przemysław P.; Renno, Axel

    2016-04-01

    Wołek Hill is one of the best examined exposures of Cenozoic volcanic rocks from SW Poland (Nowak, 2012). This is related with two facts: a great amount of mantle xenoliths were collected from that outcrop and this is one of two occurrences in Poland were modal metasomatism (related with amphibole crystals presence) was recognized. Wołek Hill is a relatively small exposure and belongs to the Złotoryja Volcanic Field, which is one of the volcanic concentrations in the Polish part of the Central European Volcanic Province (Ladenberger et al. 2006). Based on previous observations olivine crystals from the inside part of xenoliths occasionally display internal inhomogeneity visible on a BSE image. Such inhomogeneity has been related to olivine "sub-grains" with slightly shifted crystal axis. Those "sub-grains" are visible in optical microscope as transitional lamellae (Nowak, Stawikowski 2009). Besides the mentioned visible inhomogeneity olivine crystals also show diversity in Ca content inside single crystals (sometimes even more than 200 ppm). EPMA standard measurements (15 kV, 20 nA, time: 40 seconds) were limited to beam size and detection limits of the microprobe (most of the obtained results oscillate close to the detection limits - or even below it). Special conditions EPMA analyses (15 kV, 100nA, time: 100s) confirmed the differences in Ca content in the studied olivines, but did not provide any idea on how to interpret the results (Nowak, 2012). In this short summary we present preliminary data of olivine minor element composition (Ca, Zn, Cr, Ti, Co, K and also Mn, Ni, Fe) obtained with Particle Induced X-ray Emission(PIXE) measurements performed at the HZDR in Dresden using a 3 MeV proton beam, 1-1.5 nA current and an acquisition time of 3 hrs for each scan. The size of individual scans varied from ca. 30 μm up to 60-65 μm, with 8 x 8 measurement points - min. 4 μm in diameter. The measurements have been analysed with the GeoPIXE software (Ryan, 2001

  5. Spectroscopy of olivine basalts using FieldSpec and ASTER data: A case study from Wadi Natash volcanic field, south Eastern Desert, Egypt

    Indian Academy of Sciences (India)

    Ahmed Madani

    2015-10-01

    This paper aims at revealing the spectral characteristics of the olivine basalts exposed at Wadi Natash area, Egypt, using FieldSpec spectroradiometer. It also evaluates band ratios and fusion techniques for mapping purposes using ASTER data. Several volcanic episodes occurred during Early- to Late-Cretaceous are recorded in the study area. Early-Cretaceous olivine basalts are highly carbonated. Late-Cretaceous eruptions took place throughout several volcanic cones aligned in NW direction. Based on FieldSpec measurements and petrographic data, two groups of olivine basalt namely `A' and `B' are recognized. Fresh olivine basalt (group A) is characterized by low flat spectral profile with overall low reflectance values (~20%). Spectral profile of altered olivine basalt (group B) shows moderate reflectance values (~37%) with four little absorption features around the 1.10, 1.40, 2.00 and 2.35 μm wavelength regions. These absorption features are attributed mainly to the presence of chlorite and carbonate alteration products as indicated by petrographic examination. ASTER false colour composite band ratio image (3/2:R, 8/1:G and 8/5:B) discriminates easily the fresh and altered basalts by deep blue and red-dish blue colours respectively. Image fusion between previously mentioned FCC ratios image and high spatial resolution ASTER panchromatic image are carried out using brovey and HSV transformation methods. Visual and statistical assessment methods proved that HSV fusion image yields better image interpretability results compared to brovey image. It improves the spatial resolution of original FCC ratios image with acceptable spectral preservation. The present study proved the usefulness of Field-Spec spectral profiles and the processed ASTER data for discriminating different olivine basalt groups exposed at the study area.

  6. An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt

    Energy Technology Data Exchange (ETDEWEB)

    Kinzler, R.J.; Grove, T.L.; Recca, S.I. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-05-01

    Experiments in the simple system CaO-MgO-Al{sub 2}O{sub 3}-SiO{sub 2}Na{sub 2}O-FeO were carried out to investigate the control of temperature and melt composition on the partitioning of nickel between olivine and silicate melt (D{sup oliv/liq}{sub Ni}). Eleven experiments determine the influence of changing forsterite (Of) content on D{sup oliv/liq}{sub Ni} in this simple system. The equation of Hart and Davis (1978) that accounts for the variation of D{sup oliv/liq}{sub Ni} in terms of MgO content of the silicate liquid is tested using experimental data from iron-bearing simple and natural systems and found to be inadequate to explain the observed variation of D{sup oliv/liq}{sub Ni}. Two different equations are formulated to describe the partitioning behavior of Ni between olivine and silicate melt. The first is similar to that of Hart and Davis (1978) and uses an expression for Ni-Mg exchange between olivine and silicate melt. The second uses an expression for the Ni-olivine formation reaction. The Ni-Mg exchange equation for D{sup oliv/liq}{sub Ni} depends on the forsterite content of the olivine and the mole fraction MgO{sup liq}, and predicts the experimentally determined values within {plus minus}13% relative average error. The Ni-olivine formation reaction equation for D{sup oliv/liq}{sub Ni} depends on temperature, mole fraction SiO{sup liq}{sub 2}, and melt compositional terms that arise from a symmetric, binary, Margules formulation of the activity coefficients for NiO{sup liq} and SiO{sup liq}{sub 2}. This equation predicts the experimentally determined values within {plus minus}9% relative average error.

  7. Forsterite and Olivine in Sahara-97210 (LL3.2) and Chainpur (LL3.4) Chondrules: Compositional Evolution and the Influence of Melting

    Science.gov (United States)

    Ruzicka, A.; Floss, C.

    2004-01-01

    It is generally accepted that chondrules contain relict grains that did not crystallize in situ, and that forsterite is one type of relict grain which is a likely precursor for chondrules. Chemically and morphologically similar forsterite is also found as "isolated grains", especially in carbonaceous chondrites. Using SIMS, we analyzed forsterite, ferrous overgrowths around forsterite, and coexisting normal olivine in 5 chondrules and 2 isolated grains in the Sahara-97210 ('Sahara") LL3.2 chondrite. We earlier used the same methods to study olivine in 3 Chainpur chondrules that contain relict forsterite. Our new data for Sahara provide additional insight into the processes affecting chondrules and their precursors.

  8. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth's mantle

    Science.gov (United States)

    Demouchy, Sylvie

    2010-06-01

    Nominally anhydrous minerals (NAMs) of Earth's mantle can contain hydrogen as atomic impurity in their crystal structures. This hydrogen substantially modifies many physical properties of Earth's mantle rocks. Also, the Earth's deep interior is made of rocks where minerals are separated by nanometer-scale interfaces call grain boundaries and interphase boundaries. These grain boundaries should carefully be considered as a potential hydrogen reservoir as well. I report here an experimental investigation of hydrogen diffusion through grain boundaries in olivine polycrystalline aggregates. Hot-press and diffusion experiments were performed using a gas-medium high-pressure vessel at a confining pressure of 300 MPa, over a temperature range of 1000-1200 °C. The diffusion assembly consisted of a dense polycrystalline cylinder of natural olivine from San Carlos (Arizona) mixed with olivine singles crystals of millimeter size. This mixture was couple with a talc cylinder. Ni capsule were used to buffer the oxygen fugacity at Ni-NiO level. Experiment durations varied from 3 min to 4 h. The presence of hydrogen in the sample was quantified using Fourier transform infrared spectroscopy. The calculation of the diffusion coefficients was based on the estimation of the length of polycrystalline solid affected by the diffusion of hydrogen. The absence or presence of hydrogen was recorded by the large olivines behaving here as “hydrogen sensor”, which are implanted in the aggregate. The results indicate that effective hydrogen diffusivity which includes grain boundaries effect in olivine aggregate is barely one order of magnitude faster than hydrogen diffusion in an olivine single crystal with a diffusivity ∼ 8.5 × 10- 10 m2 s- 1 at 1000 °C and only twice faster ∼ 2.1 × 10- 9 m2 s- 1 at 1200 °C. Calculations of the diffusion data in relation to the Arrhenius Law, yield an activation energy of ∼ 70 ± 10 kJ mol- 1. From these effective diffusivities and combined with

  9. Variations on a Theme by Longhi: I, an Analysis of the Thermodynamic Underpinning of Fe, Mn, and Ni Partitioning into Olivine

    Science.gov (United States)

    Jones, John H.

    2010-01-01

    Longhi et al. [1] have used the D(Ni) vs. D(Mg) parameterizations of Jones [2, 3] in attempting to explain the Ni systematics of lunar differentiation. A key element of the Jones parameterization and the Longhi et al. models is that, at very high temperatures, Ni may become incompatible in olivine. Unfortunately, there is no actual experimental evidence that this is ever the case [1]. To date, all experiments designed to demonstrate such incompatibility have failed. Here I will investigate the thermodynamic foundations of the D vs. D(Mg) trends for olivine/liquid discovered by [2].

  10. 高铝粉煤灰中Al2O3与SiO2在碱溶液中的反应行为%Reaction behaviour of Al2O3 and SiO2 in high alumina coal fly ash during alkali hydrothermal process

    Institute of Scientific and Technical Information of China (English)

    蒋周青; 杨静; 马鸿文; 王乐; 马玺

    2015-01-01

    The reaction behaviours of Al2O3 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to Al2O3 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 °C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of Al2O3/SiO2 up to 2.19:1.%研究高铝粉煤灰中Al2O3与SiO2组分在NaOH碱液中不同水热条件下的反应行为。采用XRD、XRF、SEM、FTIR等测试方法对高铝粉煤灰碱溶液处理前后的物相组成和形貌变化进行表征,得到粉煤灰Al2O3和SiO2组分的溶出率变化规律。结果表明,高铝粉煤灰经75°C到160°C不同温度碱溶液处理后,颗粒表面硅铝玻璃相消失,依次生成钠型沸石、A型沸石、P型沸石及羟基方钠石,所含刚玉及莫来石相未被完全溶解。在低碱浓度溶液中P型沸石为主要生成相,高碱浓度下羟基方钠石为稳定的相。在铝硅玻璃体溶解和沸石相生成两种反应的共同作用下,粉煤灰中SiO2的溶出率可达42.13%,滤渣中Al2O3/SiO2质量比提高到2.19:1.

  11. Understanding complex exposure history of Mount Hampton, West Antarctica using cosmogenic 3He, 21Ne and 10Be in olivine

    Science.gov (United States)

    Carracedo, Ana; Rodes, Angel; Stuart, Finlay; Smellie, John

    2016-04-01

    Combining stable and radioactive cosmogenic nuclides is an established tool for revealing the complexities of long-term landscape development. To date most studies have concentrated on 21Ne and 10Be in quartz. We have combined different chemical protocols for extraction of cosmogenic 10Be from olivine, and measured concentrations in olivine from lherzolite xenoliths from the peak of Mount Hampton (~3,200 m), an 11 Ma shield volcano on the West Antarctic rift flank. We combine this data with cosmogenic 3He (and 21Ne) in the olivines in order to unravel the long-term environmental history of the region. The mean 3He/21Ne ratio (1.98 ± 0.22) is consistent with the theoretical value and previous determinations. 10Be/3He ratios (0.012 to 0.018) are significantly lower than the instantaneous production ratio (~0.045). The data are consistent with 1-3 Ma of burial. The altitude of the volcano rules out over-topping of the peak by the West Antarctic Ice Sheet only possible burial could be generated by the growth of an ice cap although this contradicts the absence of evidence for ice cover. The 3He-10Be data can also be generated during episodic erosion of the volcanic ash over the last few million years. The data requires a minimum depth of 1 to 2.5 m for the samples during a minimum age of 5 Ma and maximum long-term erosion rate of ~0.5 m/Ma with at least one erosive episode reflecting short-term erosion rate of ~7 m/Ma that would have brought the samples into the surface during the last ~350 ka. Erosion in this type of landscape could be related to interglacial periods where cryostatic erosion can occur generating an increase in the erosion rate. This study shows that episodic erosion can produce stable-radioactive cosmogenic isotope systematics that are similar to those generated by exposure-burial cycles.

  12. Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses

    Science.gov (United States)

    Sio, Corliss Kin I.; Dauphas, Nicolas; Teng, Fang-Zhen; Chaussidon, Marc; Helz, Rosalind T.; Roskosz, Mathieu

    2013-01-01

    Mineral zoning is used in diffusion-based geospeedometry to determine magmatic timescales. Progress in this field has been hampered by the challenge to discern mineral zoning produced by diffusion from concentration gradients inherited from crystal growth. A zoned olivine phenocryst from Kilauea Iki lava lake (Hawaii) was selected for this study to evaluate the potential of Mg and Fe isotopes for distinguishing these two processes. Microdrilling of the phenocryst (∼300 μm drill holes) followed by MC-ICPMS analysis of the powders revealed negatively coupled Mg and Fe isotopic fractionations (δ26Mg from +0.1‰ to −0.2‰ and δ56Fe from −1.2‰ to −0.2‰ from core to rim), which can only be explained by Mg–Fe exchange between melt and olivine. The data can be explained with ratios of diffusivities of Mg and Fe isotopes in olivine scaling as D2/D1 = (m1/m2)β with βMg ∼0.16 and βFe ∼0.27. LA-MC-ICPMS and MC-SIMS Fe isotopic measurements are developed and are demonstrated to yield accurate δ56Fe measurements within precisions of ∼0.2‰ (1 SD) at spatial resolutions of ∼50 μm. δ56Fe and δ26Mg stay constant with Fo# in the rim (late-stage overgrowth), whereas in the core (original phenocryst) δ56Fe steeply trends toward lighter compositions and δ26Mg trends toward heavier compositions with higher Fo#. A plot of δ56Fe vs. Fo# immediately distinguishes growth-controlled from diffusion-controlled zoning in these two regions. The results are consistent with the idea that large isotopic fractionation accompanies chemical diffusion in crystals, whereas fractional crystallization induces little or no isotopic fractionation. The cooling timescale inferred from the chemical-isotope zoning profiles is consistent with the documented cooling history of the lava lake. In the absence of geologic context, in situ stable isotopic measurements may now be used to interpret the nature of mineral zoning. Stable isotope measurements by LA-MC-ICPMS and MC

  13. Phosphorus Zoning Patterns and the Formation of Olivine-Hosted Melt Inclusions

    Science.gov (United States)

    Milman-Barris, M. S.; Baker, M.; Beckett, J.; Sobolev, A.; Vielzeuf, D.; Stolper, E.

    2006-12-01

    Melt inclusions, common in Hawaiian olivine (ol) phenocrysts, are used to infer compositional characteristics of parental magmas [1,2]. Here we describe textural associations of melt inclusions in Mauna Kea ol with zoning in phosphorus in the ol host. EMP X-ray maps show that Hawaiian ol phenocrysts are generally unzoned in Fe/Mg, Ca, and Ni, but most are prominently zoned in P (from ~0.006 wt% P2O5, the detection limit, to ~0.2 wt%). P zoning, often oscillatory, generally parallels crystal edges, is texturally variable, and can be present from core to rim. Al and Cr zoning, when present, correlates with P. P-rich zones sometimes outline skeletal, hopper shapes similar to ol morphologies grown in high-cooling rate experiments. Preservation of delicate P zonation in ol phenocrysts likely reflects slow diffusion of P in ol. We studied ol phenocrysts with multiple melt inclusions varying significantly in P2O5 (e.g., 0.3-0.4 to >1 wt% in one ol) to establish whether high-P inclusions are enclosed in high-P ol. Some grains contain inclusions spanning a K/P range (e.g., 0.14-1.86 in one grain), suggesting they are not related to each other by simple crystal fractionation. Although all of our melt-inclusion-bearing ol show melt inclusions to be spatially associated with high-P regions of the crystals, the ol in direct contact with melt inclusions is nearly always low in P. This observation holds true even where both high- and low-P inclusions are associated with the same P-rich ol zone. Moreover, low-P ol zones directly surrounding melt inclusions often cross-cut (and appear to replace) high-P features. In one case, a chevron-shaped wedge of low-P ol surrounding a melt inclusion crosscuts high-P, oscillatory zoned ol. Low-P regions directly around melt inclusions vary from <10 to many 10s of μm across; i.e., most are too large to represent simple crystallization on the inclusion wall. 1-atm cooling rate experiments (15-30°C/hr) on a primitive Mauna Kea basalt

  14. A Bi-Modal Distribution of ALHA77307 Matrix Olivine: Evidence for Fine-Grained Mixing from Multiple Reservoirs in the CO Formation Zone

    Science.gov (United States)

    Frank, D.; Zolensky, Michael E.; Brearley, A.; Le, L.

    2011-01-01

    The CO 3.0 chondrite ALHA77307 is thought to be the least metamorphosed of all the CO chondrites [1]. As such, the fine-grained (olivine found in its matrix is a valuable resource for investigating the CO formation environment since its compositions should be primary. In the CO matrix, we indeed find a wide range of major element compositions (Fa(0.5-71)). However, more importantly, we find that the olivines make up two compositionally distinct populations (Fa(0.5-5) and Fa(21-71)). Grains from both populations are found within an extremely close proximity and we see no obvious evidence of two distinct lithologies within our samples. Therefore, we conclude that the olivine grains found in the ALHA77307 matrix must have crystallized within two unique formation conditions and were later mixed at a very fine scale during the accretion epoch. Here, we propose a possible explanation based on Cr and Mn concentrations in the olivine.

  15. Lead isotope signatures of Kerguelen plume-derived olivine-hosted melt inclusions: Constraints on the ocean island basalt petrogenesis

    Science.gov (United States)

    Borisova, Anastassia Y.; Faure, François; Deloule, Etienne; Grégoire, Michel; Béjina, Frédéric; de Parseval, Philippe; Devidal, Jean-Luc

    2014-06-01

    The nature of magmatic sources reflected by isotopic composition of the ocean island basalt (OIB) remains an on-going question in igneous geochemistry. To constrain the magmatic sources for OIB related to the Kerguelen plume activity, we performed detailed microanalytical investigation of the 21.4 Ma picritic basalt (MD109-D6-87) dredged during the “Marion Dufresne” cruise on a seamount between Kerguelen Archipelago and Heard Island. Lead isotope compositions of olivine-hosted melt inclusions and matrix glasses were measured by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) and Secondary Ion Mass Spectrometry (SIMS). We also performed major and trace element microanalyses and mapping of the inclusions and the host olivine phenocrysts by electron microprobe (wavelength-dispersive X-ray spectroscopy, WDS). The observed significant major element (K2O/P2O5, Al2O3/TiO2) and Pb isotope (207Pb/206Pb and 208Pb/206Pb) heterogeneities of parental melts (MgO = 7-10 wt.%) during early high pressure crystallisation stage (200-300 MPa, Fo82-86 mol%), and relative homogeneity at later lower-pressure crystallisation stage ( 4), Al2O3/TiO2 (> 4) ratios are attributed to assimilation of the plateau basaltic crust (≥ 50 wt.%) by the melts in the magma chamber at palaeodepths from 6 to 9 km. The crustal assimilation may have happened through plagioclase dissolution. The large chemical and isotopic heterogeneity of the parental OIB melts found by in situ microanalyses in this study suggests that the bulk rock chemistry alone cannot provide enough information to constrain the nature of the magmatic sources.

  16. D'une olivine naturelle à un catalyseur industriel au nickel pour la production d'hydrogène à partir de biomasse

    Science.gov (United States)

    Świerczyński, D.; Courson, C.; Guille, J.; Kiennemann, A.

    2004-11-01

    L'olivine naturelle ((Mg,Fe){2}SiO{4}) présente un double intérêt comme catalyseur de gazéification de la biomasse en lit fluidisé circulant : son activité catalytique supérieure à la silice et sa grande dureté lui conférant une résistance à l'attrition. L'addition de nickel à l'olivine naturelle permet d'obtenir un catalyseur de reformage du méthane et des goudrons répondant aux exigences liées au procédé, à savoir une utilisation en lit fluidisé circulant alternativement en phase réductrice et oxydante et une association forte nickel-olivine. Le rôle des différentes phases présentes dans l'olivine est mis en évidence par DRX, TPR, MEB et spectroscopie Mössbauer. Cette étude permet d'identifier les interactions nickel-support du catalyseur créées à différentes températures de calcination et d'expliquer les mécanismes de formation du catalyseur actif. Un rejet de fer sous forme d'oxyde est observé. Il peut être expliqué soit par à un échange avec le nickel, sans modification de la structure olivine initiale, conduisant à la formulation ((Mg,Ni){2}SiO{4}), soit par la précipitation d'une phase MgO avec formation d'une solution solide NiO-MgO. La deuxième hypothèse est privilégiée car la présence de cette phase est cohérente avec l'existence d'interactions fortes nickel-olivine et avec les rapports Ni/Mg {=} 1 à la surface des grains sur l'échantillon Ni/olivine calciné à 1100circC. Elle explique la grande activité catalytique de cet échantillon en reformage du méthane.

  17. Variation of olivine composition in the volcanic rocks in the Songliao basin, NE China: lithosphere control on the origin of the K-rich intraplate mafic lavas

    Science.gov (United States)

    Zhang, L.-Y.; Prelević, D.; Li, N.; Mertz-Kraus, R.; Buhre, S.

    2016-10-01

    Lithospheric thickness and the heterogeneity of the mantle lithosphere are two major parameters that play a role in determining the final composition of the mafic melts and their minerals. The Songliao basin in northeast China represents an ideal natural laboratory to study the effect of these two parameters on early Pliocene to Holocene K-rich mafic lavas (K2O > 4 wt.%; K2O/Na2O > 1). A series of Cenozoic volcanic edifices (Erkeshan, Wudalianchi, Keluo and Xiaogulihe) are tentatively divided into three groups (Group 1 - thin, Group 2 - middle, and Group 3 - thick) according to the lithosphere thickness. They are located in the northern region of the Songliao basin extending in a near north-south direction along a broad zone where the lithosphere thickness increases gradually. We present a detailed petrographical and geochemical study on olivine macrocrysts in combination with new geochemical data on their host lavas, including major and trace element abundances as well as Sr, Nd, and Pb isotopic signatures. Our ultimate aim is to quantitatively and qualitatively determine the role of lithospheric mantle thickness (named as "lid effect") and composition in the variation of mafic lavas and olivine composition. When corrected to Mg# = 0.72, a number of major elements in the lavas correlate with increasing lithospheric thickness (L): Si72 and Al72 decrease, whereas Mg72, Fe72, Ti72 and P72 increase. Sm/Yb ratios in the lavas increase, implying that lithospheric thickness exerts an important control. Group 3 mafic lavas are ultrapotassic (showing lamproite affinity) with K2O/Na2O > 4: their La/Sm and Pb isotope ratios deviate from the above correlations, indicating that the lavas from the thickest part of the basin exhibit the highest extent of metasomatic enrichment of the mantle source. Several parameters (e.g. [Ni], Ni/Mg, Ni/(Mg/Fe), Mn/Fe and Ca/Fe) in melt-related olivine from Group 1 and Group 2 lavas are controlled by variable lithosphere thickness. Olivine

  18. Origin of Na in glass inclusions hosted in olivine from Allende CV3 and Jbilet Winselwan CM2: Implications for chondrule formation

    Science.gov (United States)

    Florentin, L.; Faure, F.; Deloule, E.; Tissandier, L.; Gurenko, A.; Lequin, D.

    2017-09-01

    Glass inclusions trapped in Mg-rich olivines within type I chondrules from the Allende (CV3) and Jbilet Winselwan (CM2) chondrites were analyzed by EPMA (Electron Probe Microanalysis) for major elements and by SIMS (Secondary Ion Mass Spectrometry) for Cl and S (analyzed here for the first time in chondrule-hosted glass inclusions). The inclusions from Jbilet Winselwan are poor in Na2O, whereas those from Allende are Na-rich, displaying up to 8 wt.% Na2O. The source of Na is a central issue in terms of chondrule origins because of the volatility of Na at high temperature. The wide scatter in Na2O contents of olivine-hosted glass inclusions from chondrules has led the community to propose that Na2O came from late interactions of chondrules with a Si/Na-rich gas. To gain new insights into the origins of the Na2O recorded in glass inclusions, heating experiments (up to 1810 °C) were performed on Allende inclusions in an effort to constrain the initial composition of the trapped melts. Our results demonstrate that sodium (although volatile) does not escape from inclusions during heating, thus confirming that glass inclusions behave as closed systems. Furthermore, heated olivines still bear inclusions containing up to 7.2 wt.% of Na2O. Olivines are thought to form at temperatures at which Na is volatile. This implies that (1) Na from glass inclusions cannot come from condensation but rather results from trapping in a Na-rich environment, which implies a high pressure, as in a melting planetasimal (2) there may be two distinct origins for the sodium: an indigenous origin for the sodium trapped inside glass inclusions and a gaseous origin for the sodium recorded in mesostasis from chondrules. Consequently, these results are in favor of a planetesimal origin for olivine from chondrules.

  19. Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust-mantle boundary zone

    Science.gov (United States)

    Tamura, Akihiro; Morishita, Tomoaki; Ishimaru, Satoko; Hara, Kaori; Sanfilippo, Alessio; Arai, Shoji

    2016-05-01

    The crust-mantle boundary zone of the oceanic lithosphere is composed mainly of olivine-rich rocks represented by dunite and troctolite. However, we still do not fully understand the global variations in the boundary zone, and an effective classification of the boundary rocks, in terms of their petrographical features and origin, is an essential step in achieving such an understanding. In this paper, to highlight variations in olivine-rich rocks from the crust-mantle boundary, we describe the compositional variations in spinel-hosted hydrous silicate mineral inclusions in rock samples from the ocean floor near a mid-ocean ridge and trench. Pargasite is the dominant mineral among the inclusions, and all of them are exceptionally rich in incompatible elements. The host spinel grains are considered to be products of melt-peridotite reactions, because their origin cannot be ascribed to simple fractional crystallization of a melt. Trace-element compositions of pargasite inclusions are characteristically different between olivine-rich rock samples, in terms of the degree of Eu and Zr anomalies in the trace-element pattern. When considering the nature of the reaction that produced the inclusion-hosting spinel, the compositional differences between samples were found to reflect a diversity in the origin of the olivine-rich rocks, as for example in whether or not a reaction was accompanied by the fractional crystallization of plagioclase. The differences also reflect the fact that the melt flow system (porous or focused flow) controlled the melt/rock ratios during reaction. The pargasite inclusions provide useful data for constraining the history and origin of the olivine-rich rocks and therefore assist in our understanding of the crust-mantle boundary of the oceanic lithosphere.

  20. On the crystal chemistry of olivine-type germanate compounds, Ca1 + xM1 - xGeO4 (M2+ = Ca, Mg, Co, Mn).

    Science.gov (United States)

    Redhammer, Günther J; Roth, Georg; Amthauer, Georg; Lottermoser, Werner

    2008-06-01

    Germanate compounds, CaMGeO(4) with M(2+) = Ca, Mg, Co and Mn, were synthesized as single crystals by slow cooling from the melt or by flux growth techniques. All the compositions investigated exhibit Pnma symmetry at 298 K and adopt the olivine structure. The M2 site is exclusively occupied by Ca(2+), while on M1 both Ca(2+) and M(2+) cations are found. The amount of Ca(2+) on M1 increases with the size of the M1 cation, with the smallest amount in the Mg compound (0.1 atoms per formula unit) and the largest in the Mn compound (0.20 atoms per formula unit), while in Ca(2)GeO(4), also with olivine structure, both sites are completely filled with Ca(2+). When compared with those of Ca silicate olivine, the lattice parameters a and c are distinctly larger in the analogous germanate compounds, while b has essentially the same values, regardless of the tetrahedral cation, meaning that b is independent of the tetrahedral cation. Structural variations on the octahedrally coordinated M1 site are largely determined by the size of the M1 cation, the average M1-O bond lengths being identical in Ca silicate and Ca germanate olivine. Increasing the size of the M1 cation induces an increasing polyhedral distortion, expressed by the parameters bond-length distortion, octahedral angle variance and octahedral quadratic elongation. However, the Ca germanate olivine compounds generally have more regular octahedra than the analogous silicates. The octahedrally coordinated M2 site does not exhibit large variations in structural parameters as a consequence of the constant chemical composition; the same is valid for the tetrahedral site.

  1. First-principles investigation of equilibrium isotopic fractionation of Si and O isotopes among quartz, albite, anthorite, orthoenstatite, clinoenstatite, olivine, and zircon

    Science.gov (United States)

    Qin, T.; Wu, F.; Huang, F.; Wu, Z.

    2013-12-01

    Silicon is one of the most abundant elements in the crust and mantle. Because of advance of high precision analytical technique, Si isotope geochemistry has been widely applied into studies of a variety of important processes including planetary formation, core-mantle segregation, magmatism, and weathering of the crust. In order to better understanding Si isotope data in high temperature rock and mineral samples, it is critical to obtain equilibrium fractionation factors of Si isotopes among silicate minerals. However, experimental studies on calibrating Si isotope fractionation factors are still no available in literature. Here we used first-principles calculation based on density functional theory to investigate Si isotope fractionation factors among silicate minerals commonly occurring in magmatism in crustal level. These minerals include quartz, albite, anthorite, orthoenstatite, clinoenstatite, olivine, and zircon. We also calculated oxygen isotope fractionation factors among these minerals. Our results indicate the 18O-enrichment order among these minerals follows sequence of quartz > albite > anorthite > enstatite> zircon > olivine, showing good agreement with the data from previous experiments or natural sample measurement. For Si isotopes, our work shows that the 30Si-enrichment order in these minerals follows sequence of quartz > albite > anorthite > olivine ~ zircon > enstatite > diopside. These results are consistent with previous calculation [1] and observation from natural minerals. For example, Δ30Sianorthite-olivine = 0.2‰ at 1000oC based on our calculation, well consistent with value from the study of Skaergaard Intrusion (Δ30Siplagioclase-olivine = 0.24-27‰) [2] at same temperature. Our calculation indicates that Si isotopes can be significantly fractionated among silicate minerals during high temperature geochemical processes. References: [1] M. Méheut et al (2007), GCA 71:3170-3180. [2] P. S. Savage et al (2011), GCA 75:6124-6139.

  2. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    Science.gov (United States)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    The short-lived radionuclide 53Mn, which decays to 53Cr with a half-life of ∼3.7 Myr, is useful for sequencing objects that formed within the first 20 Myr of Solar System evolution. 53Mn-53Cr relative chronology enables aqueously formed secondary minerals such as fayalite and various carbonates in ordinary and carbonaceous chondrites to be dated, thereby providing chronological constraints on aqueous alteration processes. In situ measurements of Mn-Cr isotope systematics in fayalite by secondary ion mass spectrometry (SIMS) require consideration of the relative sensitivities of the 55Mn+ and 52Cr+ ions, for which a relative sensitivity factor [RSF = (55Mn+/52Cr+)SIMS/(55Mn/52Cr)true] is defined using appropriate standards. In the past, San Carlos olivine (Fa∼10) was commonly used for this purpose, but a growing body of evidence suggests that it is an unsuitable standard for meteoritic fayalite (Fa>90). Natural fayalite also cannot be used as a standard because it contains only trace amounts of chromium, which makes determining a true 55Mn/52Cr ratio and its degree of heterogeneity very difficult. To investigate the dependence of the Mn-Cr RSF on ferromagnesian olivine compositions, we synthesized a suite of compositionally homogeneous Mn,Cr-bearing liquidus-phase ferromagnesian olivines (Fa31-99). Manganese-chromium isotopic measurements of San Carlos olivine and synthesized ferromagnesian olivines using the University of Hawai'i Cameca ims-1280 SIMS show that the RSF for Fa10 is ∼0.9; it increases rapidly between Fa10 and Fa31 and reaches a plateau value of ∼1.5 ± 0.1 for Fa>34. The RSF is time-dependent: it increases during the measurements of olivines with fayalite content 50. The RSF measured on ferroan olivine (Fa>90) is influenced by pit shape, whereas the RSF measured on magnesian olivine (Fa10) is less sensitive to changes in pit shape. For these reasons, 53Mn-53Cr systematics of chondritic fayalite (Fa>90) should be determined using standards of

  3. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the "Great Dunite Shortage" and HED-mesosiderite connection

    Science.gov (United States)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.; Haack, Henning; Buchanan, Paul C.; Franchi, Ian A.; Yamaguchi, Akira; Johnson, Diane; Bevan, Alex W. R.; Burbine, Thomas H.

    2015-11-01

    Evidence from iron meteorites indicates that a large number of differentiated planetesimals formed early in Solar System history. These bodies should have had well-developed olivine-rich mantles and consequentially such materials ought to be abundant both as asteroids and meteorites, which they are not. To investigate this "Great Dunite Shortage" we have undertaken a geochemical and oxygen isotope study of main-group pallasites and dunitic rocks from mesosiderites. Oxygen isotope analysis of 24 main-group pallasites (103 replicates) yielded a mean Δ17O value of -0.187 ± 0.016‰ (2σ), which is fully resolved from the HED Δ17O value of -0.246 ± 0.014 (2σ) obtained in our earlier study and demonstrates that both groups represent distinct populations and were derived from separate parent bodies. Our results show no evidence for Δ17O bimodality within the main-group pallasites, as suggested by a number of previous studies. Olivine-rich materials from the Vaca Muerta, Mount Padbury and Lamont mesosiderites, and from two related dunites (NWA 2968 and NWA 3329), have Δ17O values within error of the mesosiderite average. This indicates that these olivine-rich materials are co-genetic with other mesosiderite clasts and are not fragments from an isotopically distinct pallasite-like impactor. Despite its extreme lithologic diversity the mesosiderite parent body was essentially homogeneous with respect to Δ17O, a feature best explained by an early phase of large-scale melting (magma ocean), followed by prolonged igneous differentiation. Based on the results of magma ocean modeling studies, we infer that Mg-rich olivines in mesosiderites formed as cumulates in high-level chambers and do not represent samples of the underlying mantle. By analogy, recently documented Mg-rich olivines in howardites may have a similar origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) their nearly

  4. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    Science.gov (United States)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high

  5. Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin

    Science.gov (United States)

    Gurenko, Andrey A.; Kamenetsky, Vadim S.

    2011-12-01

    A fundamental question in the genesis of komatiites is whether these rocks originate from partial melting of dry and hot mantle, 400-500 °C hotter than typical sources of MORB and OIB magmas, or if they were produced by hydrous melting of the source at much lower temperatures, similar or only moderately higher than those known today. Gorgona Island, Colombia, is a unique place where Phanerozoic komatiites occur and whose origin is directly connected to the formation of the Caribbean Large Igneous Province. The genesis of Gorgona komatiites remains controversial, mostly because of the uncertain origin of volatile components which they appear to contain. These volatiles could equally result from shallow level magma contamination, melting of a "damp" mantle or fluid-induced partial melting of the source due to devolatilization of the ancient subducting plate. We have analyzed boron isotopes of olivine-hosted melt inclusions from the Gorgona komatiites. These inclusions are characterized by relatively high contents of volatile components and boron (0.2-1.0 wt.% H 2O, 0.05-0.08 wt.% S, 0.02-0.03 wt.% Cl, 0.6-2.0 μg/g B), displaying positive anomalies in the overall depleted, primitive mantle (PM) normalized trace element and REE spectra ([La/Sm] n = 0.16-0.35; [H 2O/Nb] n = 8-44; [Cl/Nb] n = 27-68; [B/Nb] n = 9-30, assuming 300 μg/g H 2O, 8 μg/g Cl and 0.1 μg/g B in PM; Kamenetsky et al., 2010. Composition and temperature of komatiite melts from Gorgona Island constrained from olivine-hosted melt inclusions. Geology 38, 1003-1006). The inclusions range in δ11B values from - 11.5 to + 15.6 ± 2.2‰ (1 SE), forming two distinct trends in a δ11B vs. B-concentration diagram. Direct assimilation of seawater, seawater-derived components, altered oceanic crust or marine sediments by ascending komatiite magma cannot readily account for the volatile contents and B isotope variations. Alternatively, injection of < 3wt.% of a 11B enriched fluid to the mantle source could

  6. Kinetics of cation distribution in cobalt-containing olivine, (Co0.6Mg0.4)2)SiO4.

    Science.gov (United States)

    Mutke, Monika; Kreye, Marc; Shi, Jianmin; Becker, Klaus Dieter

    2008-07-14

    In olivines, (A,B)(2)SiO(4), the A and B cations are distributed over two non-equivalent sites of octahedral coordination, M1 and M2. In the case of temperature dependent cation distributions, the kinetics of cation redistribution between these two sublattices can be studied by means of temperature-jump experiments. In situ experiments of this type are reported for a cobalt-containing olivine single crystal, (Co(0.6)Mg(0.4))(2)SiO(4). The relaxation experiments were performed by means of optical spectroscopy under in situ conditions in the temperature range between 480 and 690 degrees C yielding an activation energy of about 2.0 eV. The results are discussed in the framework of microscopic models of cation sublattice exchange. Implications for quench experiments are addressed.

  7. Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas

    Science.gov (United States)

    Portnyagin, Maxim V.; Hoernle, Kaj; Mironov, Nikita L.

    2014-10-01

    Melt inclusions in olivine Fo83-72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6-8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.

  8. Dislocation substructure of mantle-derived olivine as revealed by selective chemical etching and transmission electron microscopy

    Science.gov (United States)

    Kirby, S.H.; Wegner, M.W.

    1978-01-01

    Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} ???100???, {100} ???001???, and {010} ???100??? in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes. ?? 1978 Springer-Verlag.

  9. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  10. An integrated chemical and oxygen isotopic study of primitive olivine grains in picrites from the Emeishan Large Igneous Province, SW China: Evidence for oxygen isotope heterogeneity in mantle sources

    Science.gov (United States)

    Yu, Song-Yue; Shen, Neng-Ping; Song, Xie-Yan; Ripley, Edward M.; Li, Chusi; Chen, Lie-Meng

    2017-10-01

    Recognition of the nature of potential mantle sources of continental flood basalts is complicated by possible overprinting related to crustal contamination as magmas migrate to the surface (Arndt and Christensen, 1992). However, in picritic lava flows primitive olivine phenocrysts that formed early in the crystallization sequence can potentially provide unperturbed information of their mantle source. We have carried out an integrated chemical and oxygen isotopic (in situ SIMS) study of primitive olivine grains (Fo ranging from 88 to 92.6 mol%) in the Emeishan picrites at different locations (Wulongba, Wuguijing, Tanglanghe and Maoniuping). We use these data to evaluate the geochemical nature of mantle sources for magmas from which the primitive olivine crystallized. The primitive olivine grains in the samples from Maoniuping, Wuguijing and Tanglanghe are characterized by mantle-like δ18O values (mean values are 5.1 ± 0.3‰ (2σ, n = 53), 5.2 ± 0.3‰ (2σ, n = 122) and 5.3 ± 0.3‰ (n = 25), respectively) coupled with generally low Fo contents (mean values are 88.7 ± 1.4 mol% (2σ, n = 53), 89.8 ± 1.8 mol% (2σ, n = 122) and 89.4 ± 1.8 mol% (2σ, n = 25), respectively). In contrast, the olivine grains in the samples from Wulongba are characterized by elevated δ18O values (mean = 5.6 ± 0.3‰ (2σ, n = 58)) coupled with generally higher Fo contents (mean = 91 ± 2.8 mol% (2σ, n = 58)) than primitive olivine in the samples from the other locations. Based on olivine compositions, primitive olivine in picrites from Maoniuping, Tanglanghe and Wuguijing are consistent with derivation from hybrid mantle sources containing similar proportions of peridotite and pyroxenite/eclogite components. The δ18O values of these primitive olivine grains are consistent with melting of plume source materials. The chemical composition of the primitive olivine from Wulongba are also consistent with derivation from a hybrid peridotite/pyroxenite source, but the high δ18O values

  11. Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment.

    Science.gov (United States)

    Popa, Radu; Smith, Amy R; Popa, Rodica; Boone, Jane; Fisk, Martin

    2012-01-01

    The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ∼12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.

  12. Magnetism in olivine-type LiCo(1-x)Fe(x)PO4 cathode materials: bridging theory and experiment.

    Science.gov (United States)

    Singh, Vijay; Gershinsky, Yelena; Kosa, Monica; Dixit, Mudit; Zitoun, David; Major, Dan Thomas

    2015-12-14

    In the current paper, we present a non-aqueous sol-gel synthesis of olivine type LiCo1-xFexPO4 compounds (x = 0.00, 0.25, 0.50, 0.75, 1.00). The magnetic properties of the olivines are measured experimentally and calculated using first-principles theory. Specifically, the electronic and magnetic properties are studied in detail with standard density functional theory (DFT), as well as by including spin-orbit coupling (SOC), which couples the spin to the crystal structure. We find that the Co(2+) ions exhibit strong orbital moment in the pure LiCoPO4 system, which is partially quenched upon substitution of Co(2+) by Fe(2+). Interestingly, we also observe a non-negligible orbital moment on the Fe(2+) ion. We underscore that the inclusion of SOC in the calculations is essential to obtain qualitative agreement with the observed effective magnetic moments. Additionally, Wannier functions were used to understand the experimentally observed rising trend in the Néel temperature, which is directly related to the magnetic exchange interaction paths in the materials. We suggest that out of layer M-O-P-O-M magnetic interactions (J⊥) are present in the studied materials. The current findings shed light on important differences observed in the electrochemistry of the cathode material LiCoPO4 compared to the already mature olivine material LiFePO4.

  13. Biomass gasification and in-bed contaminants removal: performance of iron enriched olivine and bauxite in a process of steam/O2 gasification.

    Science.gov (United States)

    Barisano, D; Freda, C; Nanna, F; Fanelli, E; Villone, A

    2012-08-01

    A modified Olivine, enriched in iron content (10% Fe/Olivine), and a natural bauxite, were tested in the in-bed reduction of tar and alkali halides (NaCl and KCl) released in a process of biomass steam/O(2) gasification. The tests were carried out at an ICBFB bench scale reactor under the operating conditions of: 855-890 °C, atmospheric pressure, 0.5 steam/biomass and 0.33 ER ratios. From the use of the two materials, a reduction in the contaminant contents of the fuel gas produced was found. For the alkali halides, a decrease up to 70%(wt) was observed for the potassium concentration, while for sodium, the reduction was found to be quite poor. For the organic content, compared to unmodified Olivine, the chromatographically determined total tar quantity showed a removal efficiency of 38%(wt). Moreover, regarding the particulate content a rough doubling in the fuel gas revealed a certain brittleness of the new bed material.

  14. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction

    Science.gov (United States)

    Martin, E.; Bindeman, I.; Grove, T. L.

    2011-11-01

    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  15. First data on magma ascent and residence times retrieved from Fe-Mg and trace element zonation in olivine phenocrysts from Kamchatka basalts

    Science.gov (United States)

    Gordeychik, Boris; Churikova, Tatiana; Kronz, Andreas; Simakin, Alexander; Wörner, Gerhard

    2016-04-01

    Compositional zonation in olivine phenocrysts and diffusion modelling have been used in the last ten years to estimate magma residence times and the duration of magma ascent. The fundamental assumption is that mixing with newly injected magma into a reservoir triggers diffusional exchange between mafic olivine crystals and more evolved magma and that this magma mixing eventually triggers eruption. If depth of mixing is known, this translates to ascent rates of magmas to the surface. We applied this approach to a series of different arc basalt lavas from Kamchatka to constrain the rates of magma ascent and magma resident in what is one of the most active subduction zones in the world that is also dominated by an abundance of unusually mafic magmas. Our sample collection cover the principal modes of arc magmatism in Kamchatka: from different volcanic complexes (stratovolcano, dikes, summit eruptions, monogenetic cones), of different age (from Late-Pleistocene to Holocene and recent eruptions), from different magmatic regimes (long-lived volcanoes vs. monogenetic eruptions) and different major element composition (from basalt to basaltic andesite of different geochemical character including LILE enrichments). We analyzed and modelled zonation profiles for a range of elements with different diffusivities (e.g. Mg-Fe, Ca, Ni, Mn, Cr) to assess the role of variable diffusivities as a function of major and trace elements in the olivines from different P-T conditions. First data were obtained on samples from the Klyuchevskoy, Shiveluch and Tolbachik, including recent most eruption in 2012/2013. These data show that for some samples the zonation patterns are much more complex than is usually observed: high-Mg olivines at different volcanoes have very different zonation patterns, including normally, reversely zoned grains or even show highly complex repetitive zonation that indicate large compositional changes in the surrounding magma at very short time scales (years). Thus

  16. Laboratory experiments, high angular-resolution EBSD, and micromechanical modelling reveal residual stresses and their distribution in deformed olivine

    Science.gov (United States)

    Hansen, Lars; Wallis, David; Kempton, Imogen; Lebensohn, Ricardo; Wilkinson, Angus

    2017-04-01

    During high-temperature deformation of rocks, stresses are predicted to be distributed heterogeneously throughout the constituent grains. After unloading, much of this stress is potentially retained in the aggregate as residual stress, a phenomenon that may have large-scale geodynamic implications. After large stress changes in the solid Earth (e.g., glacial unloading or post-seismic relaxation), residual stresses can affect the immediate mechanical response of the rocks. Furthermore, examination of residual stresses in naturally deformed rocks additionally presents an opportunity to learn about ancient deformation events. These residual stresses arise from the anisotropic nature of the mechanical properties of minerals and from the heterogeneous substructures that form within grains (e.g., dislocation arrays and subgrain boundaries). This heterogeneity is therefore related to mechanical interactions on short (e.g., between individual dislocations), intermediate (e.g., between groups of dislocations), and long (e.g., between grains of differing orientation) spatial scales. We examine residual stresses in upper mantle analogues with three different methods. First, stress-dip tests were conducted on olivine single crystals at temperatures greater than 1250°C in a new uniaxial deformation apparatus with a piezoelectric actuator. These experiments reveal that the average residual stresses stored in deformed single crystals can be on the order of 50% of the applied differential stress. However, the magnitude of residual stress is likely a function of crystal orientation during deformation. Second, high angular-resolution electron backscatter diffraction (HR-EBSD) allows the residual stresses in deformed single crystals and polycrystals to be mapped with <1 micron spatial resolution. HR-EBSD mapping reveals stress heterogeneities on the order of differential stresses applied during deformation. Stresses averaged over each map are in reasonable agreement with the outcome

  17. Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries.

    Science.gov (United States)

    Ali, Ghulam; Lee, Ji-Hoon; Susanto, Dieky; Choi, Seong-Won; Cho, Byung Won; Nam, Kyung-Wan; Chung, Kyung Yoon

    2016-06-22

    The surface of olivine NaFePO4 was modified with polythiophene (PTh) to develop a high-performance cathode material for use in Na-ion batteries. The Rietveld refinement results of the prepared material reveal that PTh-coated NaFePO4 belongs to a space group of Pnma with lattice parameters of a = 10.40656 Å, b = 6.22821 Å, and c = 4.94971 Å. Uncoated NaFePO4 delivers a discharge capacity of 108 mAh g(-1) at a current density of 10 mA g(-1) within a voltage range of 2.2-4.0 V. Conversely, the PTh-coated NaFePO4 electrode exhibits significantly improved electrochemical performance, where it exhibits a discharge capacity of 142 mAh g(-1) and a stable cycle life over 100 cycles, with a capacity retention of 94%. The NaFePO4/PTh electrode also exhibits satisfactory performance at high current densities, and reversible capacities of 70 mAh g(-1) at 150 mA g(-1) and 42 mAh g(-1) at 300 mA g(-1) are obtained compared with negligible capacities without coating. The related electrochemical reaction mechanism has been investigated using in situ X-ray absorption spectroscopy (XAS), which revealed a systematic change of Fe valence and reversible contraction/expansion of Fe-O octahedra upon desodiation/sodiation. The ex situ X-ray diffraction (XRD) results suggest that the deintercalation in NaFePO4/PTh electrodes proceeds through a stable intermediate phase and the lattice parameters show a reversible contraction/expansion of unit cell during cycling.

  18. Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes

    Science.gov (United States)

    Di Lecce, Daniele; Carbone, Lorenzo; Gancitano, Vincenzo; Hassoun, Jusef

    2016-12-01

    We propose lithium metal cells employing LiCF3SO3-tetraethylene glycol dimethy ether (TEGDME) electrolyte solution with LiFePO4 and LiMn0.5Fe0.5PO4 cathodes. The electrolyte is selected due to its non-flammability, herein demonstrated, and considered as a key requirement for application cells employing high energy lithium metal anode. The selected olivine cathodes, i.e., stable materials prepared by solvothermal pathway, have regular submicrometrical morphology suitable for cell operation and homogeneous composition, as confirmed by electron microscopy and energy dispersive X-ray spectroscopy. The electrochemical tests reveal promising cycling performances in terms of delivered capacity, stability and rate capability. The Li/LiCF3SO3-TEGDME/LiFePO4 cell operates at 3.5 V with capacity ranging from 150 mAh g-1 at C/10 to 110 mAh g-1 at 2C, while the Li/LiCF3SO3-TEGDME/LiFe0.5Mn0.5PO4 cell performs following two plateaus at 4.1 V and 3.5 V with capacity ranging from 160 mAh g-1 at C/10 to 75 mAh g-1 at 2C. Hence, the results demonstrate the suitability of TEGDME-based electrolytes in combination with LiFePO4 and LiFe0.5Mn0.5PO4 cathodes for high performances lithium battery.

  19. Melt inclusions in the olivine from the Nantianwan intrusion: Implications for the parental magma of Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions of the ∼260 Ma Emeishan large igneous province (SW China)

    Science.gov (United States)

    Zhang, Le; Ren, Zhong-Yuan; Wang, Christina Yan

    2017-02-01

    Olivine-hosted melt inclusions provide an archive of the parental magma and early magma history that is unavailable from bulk-rock analyses of cumulates. For those olivine-bearing mafic-ultramafic intrusions, a combined in situ analysis of major elements and Pb isotopic compositions for the melt inclusions and host olivine crystals may provide an effective way to understand the nature of the parental magma of the intrusions. In this study, we take the Nantianwan intrusion in the Emeishan large igneous province (SW China) as an example to analyze the melt inclusions and the host olivine. The Nantianwan intrusion is mainly composed of gabbronorite, with minor olivine gabbro. The olivine crystals in the olivine gabbro have Fo contents varying from 81.1 to 89.2 and Ni from 0.05 to 0.30 wt.%. The melt inclusion hosted in the most Mg-rich olivine has 50.9 wt.% SiO2, 1.0 wt.% TiO2, 15.1 wt.% MgO and 2.9 wt.% Na2O + K2O, indicating that the parental magma of the intrusion was of high-Mg basaltic composition. The melt inclusions overall have 208Pb/206Pb ratios of 2.0567-2.1032 and 207Pb/206Pb of 0.8287-0.8481, similar to the Pb isotopic compositions of the Emeishan flood basalts and consistent with insignificant crustal contamination. Given that the Nantianwan intrusion contains the most Mg-rich olivine among the Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions in the Emeishan LIP, we infer that the composition of the melt inclusion in the most Mg-rich olivine from the Nantianwan intrusion may represent the least evolved parental magma of the Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions in the Emeishan LIP. This can be further used to constrain the magma process related to Ni-Cu-(PGE) sulfide mineralization.

  20. The role of Fe and redox conditions in olivine carbonation rates: An experimental study of the rate limiting reactions at 90 and 150 °C in open and closed systems

    Science.gov (United States)

    Saldi, Giuseppe D.; Daval, Damien; Morvan, Gilles; Knauss, Kevin G.

    2013-10-01

    The mechanisms and rates of olivine carbonation reactions have been the object of a number of studies, but the thermodynamic limitations and the kinetics of the elementary processes that control the overall reaction are still poorly understood and characterized. The main objective of this study is to probe the effect of Fe on the measured rates of olivine carbonation and its role in the formation of Si-rich surface layers, which can significantly inhibit olivine dissolution and limit the extent of the carbonation reaction. A series of batch and flow-through reactor experiments was conducted in pure water at 90 and 150 °C and under a CO2 partial pressure of 100 and 200 bar, using both a natural sample of Fe-bearing olivine (Fo88) and a synthetic sample of pure forsterite (Fo100). Experimental results show that Fe plays an ambivalent role in the carbonation rates of olivine. On one hand, the presence of Fe favors the formation of Fe-Si-rich protective layers at the interface between olivine and aqueous solution, slowing down the dissolution reaction and limiting the extent of carbonation, whereas pure silica coatings have little to no inhibiting effect on measured carbonation rates. On the other hand, Fe enhances olivine to carbonate conversion rates at low degrees of supersaturation, by promoting the formation of fast precipitating Mg-Fe carbonate solid solutions. The passivating properties of Fe-Si-rich layers originate from the strong Fe(III)-Si interaction and are linked to the permanence of oxidizing conditions in the aqueous fluid. As a consequence, under reducing conditions, olivine carbonation rates can be significantly increased by higher extents of dissolution and by the formation of ferroan magnesites (Mg,Fe)CO3, which nucleate faster than the pure Mg end-member. Forsterite and olivine carbonation reactions can be hindered by the formation of secondary Mg sheet-silicates but, at the conditions studied, the formation of such silicate phases was observed to

  1. Rapid Microwave-Assisted Solvothermal Synthesis of Non-Olivine Cmcm Polymorphs of LiMPO4 (M = Mn, Fe, Co, and Ni) at Low Temperature and Pressure.

    Science.gov (United States)

    Assat, Gaurav; Manthiram, Arumugam

    2015-10-19

    Lithium transition-metal phosphates, LiMPO4 (M = Mn, Fe, Co, and Ni), have attracted significant research interest over the past two decades as an important class of lithium ion battery cathode materials. However, almost all of the investigations thus far have focused on the olivine polymorph that exists in the orthorhombic Pnma space group. In this study, a distinct orthorhombic but non-olivine polymorph of LiMPO4, described by a Cmcm space group symmetry, has been synthesized with M = Mn, Fe, Co, and Ni. Of these, LiMnPO4 in the Cmcm space group is reported for the first time. A rapid microwave-assisted solvothermal (MW-ST) heating process with tetraethylene glycol (TEG) as the solvent and transition-metal oxalates as precursors facilitates the synthesis of these materials. The peak reaction temperatures and pressures were below 300 °C and 30 bar, respectively, which are several orders of magnitude lower than those of the previously reported high-pressure (gigapascals) method. X-ray diffraction (XRD) confirms the crystal structure with the Cmcm space group, and scanning electron micrographs indicate a submicrometer thin platelet-like morphology. The synthesis process conditions have been optimized to obtain impurity-free samples with the correct stoichiometry, as characterized by XRD and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Upon heat treatment to higher temperatures, an irreversible transformation of the metastable Cmcm polymorphs into olivine is observed by XRD and Fourier transform infrared spectroscopy. Although the electrochemical activity of these polymorphs as lithium ion cathodes turns out to be poor, the facile synthesis under mild conditions has permitted easy access to these materials in a nanomorphology, some of which were not even possible before.