WorldWideScience

Sample records for high-altitude ice caps

  1. A 1700-year Record of Tropical Sea Surface Temperatures and High-altitude Andean Climate Derived from the Quelccaya Ice Cap, Peru (Invited)

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.; Lin, P.

    2010-12-01

    Stable isotopic, aerosol, and physical stratigraphy provided by new ice-core records from the Quelccaya ice cap (5670 masl) in Peru provide annual time series of tropical climatic and environmental variations extending back to 315 AD. These records present an opportunity to extract new information about links between rising temperatures on Andean tropical glaciers and sea surface temperatures (SSTs) in El Niño-Southern Oscillation (ENSO) indicator regions and in the Intertropical Convergence Zone (ITCZ) in the eastern Pacific and western Atlantic Oceans. ENSO is a dominant force for tropical climate variability on interannual time scales. It is linked with the position of the ITCZ and the associated teleconnections affect the strength and direction of air masses and storm tracks, variations in convective activity that control flooding and drought, and modulation of tropical storm intensities. The Quelccaya ice core record may be considered as the “Rosetta Stone” for high resolution climate records extracted from tropical glaciers, relating stable isotopic variations with tropical SSTs and freezing level heights. The ice core histories from Quelccaya also provide the longer term context needed to assess the significance of the magnitude and rate of its current ice loss. The cores provide a detailed description of climate conditions in the tropical Andes during the "Little Ice Age" and "Medieval Climate Anomaly” periods. They show that the recent acceleration of ice retreat in this Andean region is not driven solely by precipitation changes and that over decadal and longer time scales stable isotopic ratios are not significantly correlated with precipitation. The well-documented accelerating ice loss on Quelccaya in the Andes, as well as that on Naimona’nyi in the Himalayas, on Kilimanjaro in eastern Africa, and on ice fields near Puncak Jaya, Papua, Indonesia point to an overarching, larger scale driver. The ongoing melting of these ice fields is consistent

  2. HCN ice in Titan's high-altitude southern polar cloud

    CERN Document Server

    de Kok, Remco J; Maltagliati, Luca; Irwin, Patrick G J; Vinatier, Sandrine

    2014-01-01

    Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009. A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 km. This altitude previously showed a temperature maximum and condensation was not expected for any of Titan's atmospheric gases. Here we show that this cloud is composed of micron-sized hydrogen cyanide (HCN) ice particles. The presence of HCN particles at this altitude, together with new temperature determinations from mid-infrared observations, indicate a very dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such a cooling is completely contrary to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. Besides elucidating the nature of Titan's mysterious polar cloud, these results thus show that post-equinox cooling at the winter pole is much more efficient th...

  3. Interplanetary dust particles, not wind blown dust, control high altitude ice clouds on Mars

    Science.gov (United States)

    Hartwick, Victoria; Toon, Owen B.

    2016-10-01

    Water ice clouds on Mars are commonly observed at high altitudes. However, current generation Mars three-dimensional general circulation models (GCM) struggle to reproduce clouds above approximately 20-30 km. On Mars, as on Earth, ice cloud formation likely initiates by heterogeneous nucleation, which requires a population of suspended ice nuclei contiguous with supersaturated atmospheric water vapor. Although supersaturation is observed at high altitudes and has been reproduced in models, models predict very few ice nuclei. The small number of ice nuclei in the upper atmosphere is due to the assumption in Mars GCMs that the only source of ice nuclei is dust from the Martian surface. However, terrestrial mesospheric noctilucent clouds have been shown to form by ice nucleation on particles originating from ablated micrometeroids. Therefore, it is reasonable to assume that a population of micrometeoric ablation biproducts on Mars exists and can act as a site for cloud nucleation at high altitudes. We present simulations using the Community Atmosphere Model for Mars (MarsCAM) based on the National Center for Atmospheric Research (NCAR) Community Atmosphere Model for Earth,coupled with a physically based, state-of-the-art cloud and dust physics model, the Community Aerosol and Radiation Model for Atmospheres (CARMA) to show that ablating micrometeoroids can yield abundant ice nuclei throughout the upper atmosphere of Mars. We find that simulations including a constant annual micrometeoroid flux allows us to reproduce the observed properties of high altitude water ice clouds including vertical distribution and particle size. In general, effective radius decreases with increasing altitude. We have additionally explored the impact of variable ablation rates. Preliminary results suggest that relatively high ablation rates, near or greater than 50%, are required to reproduce observed cloud features.

  4. Gravity waves and high-altitude CO$_2$ ice cloud formation in the Martian atmosphere

    CERN Document Server

    Yiğit, Erdal; Hartogh, Paul

    2015-01-01

    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO$_2$ condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO$_2$ ice clouds. Our study confirms the key role of GWs in facilitating CO$_2$ cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.

  5. Interpreting H2O isotope variations in high-altitude ice cores using a cyclone model

    Science.gov (United States)

    Holdsworth, Gerald

    2008-04-01

    Vertical profiles of isotope (δ18O or δD) values versus altitude (z) from sea level to high altitude provide a link to cyclones, which impact most ice core sites. Cyclonic structure variations cause anomalous variations in ice core δ time series which may obscure the basic temperature signal. Only one site (Mount Logan, Yukon) provides a complete δ versus z profile generated solely from data. At other sites, such a profile has to be constructed by supplementing field data. This requires using the so-called isotopic or δ thermometer which relates δ to a reference temperature (T). The construction of gapped sections of δ versus z curves requires assuming a typical atmospheric lapse rate (dT/dz), where T is air temperature, and using the slope (dδ/dT) of a site-derived δ thermometer to calculate dδ/dz. Using a three-layer model of a cyclone, examples are given to show geometrically how changes in the thickness of the middle, mixed layer leads to the appearance of anomalous δ values in time series (producing decalibration of the δ thermometer there). The results indicate that restrictions apply to the use of the δ thermometer in ice core paleothermometry, according to site altitude, regional meteorology, and climate state.

  6. A multi-year monitoring project of the high-altitude Cenote ice cave, Dolomites, Italy

    Science.gov (United States)

    Sauro, Francesco; Santagata, Tommaso; Spötl, Christoph; Festi, Daniela; Oeggl, Klaus; Dal Molin, Luca; De Waele, Jo

    2016-04-01

    The Cenote ice cave hosts one of the most voluminous cave glaciers of the Dolomites. This 280 m-deep abyss was discovered in 1994 after the entrance had opened as a result of the abrupt emptying of a small lake at 2940 m a.s.l. in the Regional Park of Fanes, Sennes and Braies. The cave consists of a massive, 130 m-thick layered ice deposit carved by meltwater tunnels and chimneys excavated from below by ascending air. At the lower limit of the cave glacier a shaft opens - ice-free and 165 m deep - leading into a dome occupied by a cave rock glacier with typical terminal tongue embankments. A research project was launched to monitor long-term movements and volume changes of this ice deposit as well as to understand the cave microclimate and the potential for future palaeoclimate studies. During October 2015 a first expedition performed a complete survey of the final chamber using a Leica HDS7000, a phase difference laser scanner equipped with a dual axis compensator, on-board control, a wavelenght of 1.5 microns, a laser "CLASS 1" with a flow rate of 187 m and a resolution of 0.1 mm. A scan station was performed also at 110 m above the bottom of the shaft to map in detail the lower side of the hanging ice glacier. This survey has provided the detailed volume of the chamber (420,000 m3) as well as a first record of the position of the ice masses hanging on the ceiling and of the rock glacier at the bottom. Barometric, temperature and humidity dataloggers have been installed in the cave to record the microclimate. In addition pollen traps have been installed to study the present flux of pollen at the surface and inside the cave, while preliminary analyses on pollen grains preserved in the ice are being carried out. The Cenote ice cave research project aims to shed light on the climate evolution of the Dolomites during the last hundreds or possibly thousands of years, as well as on the more recent environmental changes that lead to the upward melting of the cave

  7. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...

  8. Predicting abundance and variability of ice nucleating particles in precipitation at the high-altitude observatory Jungfraujoch

    Science.gov (United States)

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Henne, Stephan; Steinbacher, Martin; Alewell, Christine

    2016-07-01

    Nucleation of ice affects the properties of clouds and the formation of precipitation. Quantitative data on how ice nucleating particles (INPs) determine the distribution, occurrence and intensity of precipitation are still scarce. INPs active at -8 °C (INPs-8) were observed for 2 years in precipitation samples at the High-Altitude Research Station Jungfraujoch (Switzerland) at 3580 m a.s.l. Several environmental parameters were scanned for their capability to predict the observed abundance and variability of INPs-8. Those singularly presenting the best correlations with observed number of INPs-8 (residual fraction of water vapour, wind speed, air temperature, number of particles with diameter larger than 0.5 µm, season, and source region of particles) were implemented as potential predictor variables in statistical multiple linear regression models. These models were calibrated with 84 precipitation samples collected during the first year of observations; their predictive power was successively validated on the set of 15 precipitation samples collected during the second year. The model performing best in calibration and validation explains more than 75 % of the whole variability of INPs-8 in precipitation and indicates that a high abundance of INPs-8 is to be expected whenever high wind speed coincides with air masses having experienced little or no precipitation prior to sampling. Such conditions occur during frontal passages, often accompanied by precipitation. Therefore, the circumstances when INPs-8 could be sufficiently abundant to initiate the ice phase in clouds may frequently coincide with meteorological conditions favourable to the onset of precipitation events.

  9. Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years.

    Science.gov (United States)

    Lee, Khanghyun; Hur, Soon Do; Hou, Shugui; Burn-Nunes, Laurie J; Hong, Sungmin; Barbante, Carlo; Boutron, Claude F; Rosman, Kevin J R

    2011-12-15

    A long-term record, extending back 800 years (1205 to 2002 AD), of the Pb isotopic composition ((206)Pb/(207)Pb and (208)Pb/(207)Pb) as well as Pb concentrations from high altitude Mt. Everest ice cores has the potential to identify sources and source regions affecting natural and anthropogenic Pb deposition in central Asia. The results show that the regional natural background Pb isotope signature (~1.20 for (206)Pb/(207)Pb and ~2.50 for (208)Pb/(207)Pb) in the central Himalayas was dominated by mineral dust over the last ~750 years from 1205 to 1960s, mostly originating from local sources with occasional contributions of long-range transported dust probably from Sahara desert and northwestern India. Since the 1970s, the Pb isotope ratios are characterized by a continuous decline toward less radiogenic ratios with the least mean ratios of 1.178 for (206)Pb/(207)Pb and 2.471 for (208)Pb/(207)Pb in the period 1990-1996. The depression of the (206)Pb/(207)Pb and (208)Pb/(207)Pb values during the corresponding periods is most likely due to an increasing influence of less radiogenic Pb of anthropogenic origin mainly from leaded gasoline used in South Asia (India as well as possibly Bangladesh and Nepal). From 1997 to 2002, isotopic composition tends to show a shift to slightly more radiogenic signature. This is likely attributed to reducing Pb emissions from leaded gasoline in source regions, coinciding with the nationwide reduction of Pb in gasoline and subsequent phase-out of leaded gasoline in South Asia since 1997. An interesting feature is the relatively high levels of Pb concentrations and enrichment factors (EF) between 1997 and 2002. Although the reason for this feature remains uncertain, it would be probably linked with an increasing influence of anthropogenic Pb emitted from other sources such as fossil fuel combustion and non-ferrous metal production.

  10. What Lies Below a Martian Ice Cap

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version This image (top) taken by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter reveals the layers of ice, sand and dust that make up the north polar ice cap on Mars. It is the most detailed look to date at the insides of this ice cap. The colored map below the radar picture shows the topography of the corresponding Martian terrain (red and white represent higher ground, and green and yellow lower). The radar image reveals four never-before-seen thick layers of ice and dust separated by layers of nearly pure ice. According to scientists, these thick ice-free layers represent approximately one-million-year-long cycles of climate change on Mars caused by variations in the planet's tilted axis and its eccentric orbit around the sun. Adding up the entire stack of ice gives an estimated age for the north polar ice cap of about 4 million years a finding that agrees with previous theoretical estimates. The ice cap is about 2 kilometers (1.2 miles) thick. The radar picture also shows that the boundary between the ice layers and the surface of Mars underneath is relatively flat (bottom white line on the right). This implies that the surface of Mars is not sagging, or bending, under the weight of the ice cap and this, in turn, suggests that the planet's lithosphere, a combination of the crust and the strong parts of the upper mantle, is thicker than previously thought. A thicker lithosphere on Mars means that temperatures increase more gradually with depth toward the interior. Temperatures warm enough for water to be liquid are therefore deeper than previously thought. Likewise, if liquid water does exist in aquifers below the surface of Mars, and if there are any organisms living in that water, they would have to be located deeper in the planet. The topography data are from Mars Orbiter Laser Altimeter, which was flown on NASA's Mars Global Surveyor mission. NPLD stands

  11. Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khanghyun; Hur, Soon Do [Korea Polar Research Institute, Songdo Techno Park, 7-50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Hou, Shugui [State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000 (China); School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Burn-Nunes, Laurie J. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Hong, Sungmin, E-mail: smhong@inha.ac.kr [Department of Ocean Sciences, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon, 402-751 (Korea, Republic of); Barbante, Carlo [Department of Environmental Sciences, University Ca' Foscari of Venice, Dorsoduro 2137, 30 123 Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, University Ca' Foscari of Venice, Dorsoduro 2137, 30 123 Venice (Italy); Boutron, Claude F. [Laboratoire de Glaciologie et Geophysique de l' Environnement (UMR Universite Joseph Fourier/CNRS 5183 ), 54 rue Moliere, BP 96, 38402 Saint Martin d' Heres Cedex (France); Unite de Formation et de Recherche ' Physique, Ingenierie, Terre, Environnement, Mecanique' , Universite Joseph Fourier de Grenoble ( Institut Universitaire de France ), 715 rue de la Houille Blanche, BP 53, 38041 Grenoble Cedex 9 (France); Rosman, Kevin J.R. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia)

    2011-12-15

    A long-term record, extending back 800 years (1205 to 2002 AD), of the Pb isotopic composition ({sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb) as well as Pb concentrations from high altitude Mt. Everest ice cores has the potential to identify sources and source regions affecting natural and anthropogenic Pb deposition in central Asia. The results show that the regional natural background Pb isotope signature ({approx} 1.20 for {sup 206}Pb/{sup 207}Pb and {approx} 2.50 for {sup 208}Pb/{sup 207}Pb) in the central Himalayas was dominated by mineral dust over the last {approx} 750 years from 1205 to 1960s, mostly originating from local sources with occasional contributions of long-range transported dust probably from Sahara desert and northwestern India. Since the 1970s, the Pb isotope ratios are characterized by a continuous decline toward less radiogenic ratios with the least mean ratios of 1.178 for {sup 206}Pb/{sup 207}Pb and 2.471 for {sup 208}Pb/{sup 207}Pb in the period 1990-1996. The depression of the {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb values during the corresponding periods is most likely due to an increasing influence of less radiogenic Pb of anthropogenic origin mainly from leaded gasoline used in South Asia (India as well as possibly Bangladesh and Nepal). From 1997 to 2002, isotopic composition tends to show a shift to slightly more radiogenic signature. This is likely attributed to reducing Pb emissions from leaded gasoline in source regions, coinciding with the nationwide reduction of Pb in gasoline and subsequent phase-out of leaded gasoline in South Asia since 1997. An interesting feature is the relatively high levels of Pb concentrations and enrichment factors (EF) between 1997 and 2002. Although the reason for this feature remains uncertain, it would be probably linked with an increasing influence of anthropogenic Pb emitted from other sources such as fossil fuel combustion and non-ferrous metal production.

  12. Should we geoengineer larger ice caps?

    CERN Document Server

    Haqq-Misra, Jacob

    2015-01-01

    The climate of Earth is susceptible to catastrophes that could threaten the longevity of human civilization. Geoengineering to reduce incoming solar radiation has been suggested as a way to mediate the warming effects of contemporary climate change, but a geoengineering program for thousands of years could also be used to enlarge the size of the polar ice caps and create a permanently cooler climate. Such a large ice cap state would make Earth less susceptible to climate threats and could allow human civilization to survive further into the future than otherwise possible. Intentionally extending Earth's glacial coverage will require uninterrupted commitment to this program for millenia but would ultimately reach a cooler equilibrium state where geoengineering is no longer needed. Whether or not this program is ever attempted, this concept illustrates the need to identify preference among potential climate states to ensure the long-term success of civilization.

  13. Acoustic Monitoring of the Arctic Ice Cap

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  14. An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas.

    Science.gov (United States)

    Hong, Sungmin; Lee, Khanghyun; Hou, Shugui; Hur, Soon Do; Ren, Jiawen; Burn, Laurie J; Rosman, Kevin J R; Barbante, Carlo; Boutron, Claude F

    2009-11-01

    As, Mo, Sn, and Sb have been determined by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) in 143 depth intervals of high-altitude ice cores from Mt. Everest, covering an 800-year time period from 1205 to 2002 AD. The results clearly demonstrate the long-term historical record of atmospheric transport and deposition of As, Mo, Sn, and Sb that has prevailed at high altitudes in the central Himalayas. Natural contributions, mainly from mineral dust, have dominated the atmospheric cycles of As, Mo, Sn, and to some extent Sb during the 700 years prior to the 20th century. Compared to those of the pre-1900 period, pronounced increases of both concentrations and crustal enrichment factors are observed since the 1970s, with the highest increase factor for Sn and the lowest for As. Such increases are attributed to anthropogenic emissions of these elements, largely from stationary fossil fuel combustion and nonferrous metals production, particularly in India. Our central Himalayan ice core record provides an explicit recognition of rising atmospheric As, Mo, Sn, and Sb pollution in response to rapid economic growth in central Asia.

  15. Towards multi-decadal to multi-millennial ice core records from coastal west Greenland ice caps

    Science.gov (United States)

    Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan

    2017-04-01

    The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea ice, shifting ocean circulation patterns, and rapid ice sheet mass loss, but longer records are needed to put these changes into context. Ice core records from the Greenland ice sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these ice cores are most often from the interior ice sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal ice caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these ice caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface area, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the ice stratigraphy. We recently targeted areas near the Disko Bay region of central west Greenland where maritime ice caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial ice core records. In 2014 & 2015 we identified two promising ice caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected ice cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley

  16. Ice nucleation properties of rust and bunt fungal spores and their transport to high altitudes, where they can cause heterogeneous freezing

    Science.gov (United States)

    Haga, D. I.; Iannone, R.; Wheeler, M. J.; Mason, R.; Polishchuk, E. A.; Fetch, T.; van der Kamp, B. J.; McKendry, I. G.; Bertram, A. K.

    2013-07-01

    Rust and bunt spores that act as ice nuclei (IN) could change the formation characteristics and properties of ice-containing clouds. In addition, ice nucleation on rust and bunt spores, followed by precipitation, may be an important removal mechanism of these spores from the atmosphere. Using an optical microscope, we studied the ice nucleation properties of spores from four rust species (Puccinia graminis, Puccinia triticina, Puccinia allii, and Endocronartium harknesssii) and two bunt species (Tilletia laevis and Tilletia tritici) immersed in water droplets. We show that the cumulative number of IN per spore is 5 × 10-3, 0.01, and 0.10 at temperatures of roughly -24°C, -25°C, and -28°C, respectively. Using a particle dispersion model, we also investigated if these rust and bunt spores will reach high altitudes in the atmosphere where they can cause heterogeneous freezing. Simulations suggest that after 3 days and during periods of high spore production, between 6 and 9% of 15 µm particles released over agricultural regions in Kansas (U.S.), North Dakota (U.S.), Saskatchewan (Canada), and Manitoba (Canada) can reach at least 6 km in altitude. An altitude of 6 km corresponds to a temperature of roughly -25°C for the sites chosen. The combined results suggest that (a) ice nucleation by these fungal spores could play a role in the removal of these particles from the atmosphere and (b) ice nucleation by these rust and bunt spores are unlikely to compete with mineral dust on a global and annual scale at an altitude of approximately 6 km.

  17. Decapitation of high-altitude glaciers on the Tibetan Plateau revealed by ice core tritium and mercury records

    Directory of Open Access Journals (Sweden)

    S. C. Kang

    2015-01-01

    Full Text Available Two ice cores were retrieved from high elevations (~ 5800 m a.s.l. at Mt. Nyainqentanglha and Mt. Geladaindong in the southern to inland Tibetan Plateau. The combined analysis of tritium (3H, 210Pb, mercury tracers, along with other chemical records, revealed that the two coring sites had not received net ice accumulation since at least the 1950s and 1980s, respectively, implying an annual ice loss rate of more than several hundred millimeter water equivalent over these periods. Both mass balance modeling at the sites and in situ data from nearby glaciers confirmed a continuously negative mass balance (or mass loss in the region due to the dramatic warming in the last decades. Along with a recent report on Naimona'nyi Glacier in the Himalaya, the findings suggest that glacier decapitation (i.e., the loss of the accumulation zone is a wide-spread phenomenon from the southern to inland Tibetan Plateau even at the summit regions. This raises concerns over the rapid rate of glacier ice loss and associated changes in surface glacier runoff, water availability, and sea levels.

  18. Glaciers and ice caps outside Greenland

    Science.gov (United States)

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  19. Energy Balance Modeling of Interannual Snow and Ice Storage in High Altitude Region by Dynamic Equilibrium Concept

    Science.gov (United States)

    Johnson, R. J.; Ohara, N.

    2014-12-01

    Snow models in the field of hydrologic engineering have barely incorporated the long-term effect of the inter-annual snow storage such as glaciers because the time scale of glacier dynamics is much longer than those of river flow and seasonal snowmelt. This study proposes an appropriate treatment for inland glaciers as systems in dynamic equilibrium that stay constant under a static climate condition. It is supposed that the snow/ice vertical movement from high elevation areas to valleys (lower elevation areas) by means of wind re-distribution, avalanches, and glaciation, may be considered as an equilibrator of the glacier system because it stimulates snow/ice ablation. The implicit physically-based modeling of such a dynamic equilibrium snow system is introduced and discussed for the long-term snow simulation at a regional scale. The developed model has been coupled with the Weather Research and Forecasting (WRF) model to compute the snow surface energy balance.

  20. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic...... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...... the cores to GICC05. Furthermore, it has been possible to synchronize the Renland ice core to NGRIP-GICC05 in the glacial period back to 60,000 years b2k (years before A.D. 2000), on the basis of a matching of transitions between stadials and interstadials. This work brings the total number of ice core...

  1. Post 17th-century changes of European PAH emissions recorded in high-altitude Alpine snow and ice.

    Science.gov (United States)

    Gabrieli, Jacopo; Vallelonga, Paul; Cozzi, Giulio; Gabrielli, Paolo; Gambaro, Andrea; Sigl, Michael; Decet, Fabio; Schwikowski, Margit; Gäggeler, Heinz; Boutron, Claude; Cescon, Paolo; Barbante, Carlo

    2010-05-01

    The occurrence of organic pollutants in European Alpine snow/ice has been reconstructed over the past three centuries using a new online extraction method for polycyclic aromatic hydrocarbons (PAH) followed by liquid chromatographic determination. The meltwater flow from a continuous ice core melting system was split into two aliquots, with one aliquot directed to an inductively coupled plasma quadrupole mass spectrometer for continuous trace elements determinations and the second introduced into a solid phase C18 (SPE) cartridge for semicontinuous PAH extraction. The depth resolution for PAH extractions ranged from 40 to 70 cm, and corresponds to 0.7-5 years per sample. The concentrations of 11 PAH were determined in dated snow/ice samples to reconstruct the atmospheric concentration of these compounds in Europe for the last 300 years. The PAH pattern is dominated by phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr), which represent 60-80% of the total PAH mass. Before 1875 the sum of PAH concentration (SigmaPAH) was very low with total mean concentrations less than 2 ng/kg and 0.08 ng/kg for the heavier compounds (SigmaPAH*, more than four aromatic rings). During the first phase of the industrial revolution (1770-1830) the PAH deposition showed a weak increase which became much greater from the start of the second phase of the industrial revolution at the end of 19th Century. In the 1920s, economic recession in Europe decreased PAH emissions until the 1930s when they increased again and reached a maximum concentration of 32 ng/kg from 1945 to 1955. From 1955 to 1975 the PAH concentrations decreased significantly, reflecting improvements in emission controls especially from major point sources, while from 1975 to 2003 they rose to levels equivalent to those in 1910. The Fla/(Fla+Pyr) ratio is often used for source assignment and here indicates an increase in the relative contribution of gasoline and diesel combustion with respect to coal and wood burning

  2. Rapid Collapse of the Vavilov Ice Cap, Russian High Arctic.

    Science.gov (United States)

    Willis, M. J.; Zheng, W.; Durkin, W. J., IV; Pritchard, M. E.; Ramage, J. M.; Dowdeswell, J. A.; Benham, T. J.; Glazovsky, A.; Macheret, Y.; Porter, C. C.

    2016-12-01

    Cold based ice caps and glaciers are thought to respond slowly to environmental changes. As sea ice cover evolves in the Arctic, a feedback process alters air-temperatures and precipitation patterns across the region. During the last decades of the 20th century the land-terminating western margin of the Vavilov Ice Cap, on October Revolution Island of the Severnaya Zemlya Archipelago, advanced slowly westwards. The advance was driven by precipitation changes that occurred about half a millennia ago. InSAR shows that in 1996 the margin sustained ice speeds of around 20 m/yr. By 2000 the ice front had moved a short distance into the Kara Sea and had transitioned to a marine-terminating front, although an ice apron around the ice margin indicates the ice there was still frozen to the bed and there is no evidence of calving in satellite imagery. In 2013 ice motions near the terminus had accelerated to around 1 m/day. By late 2015 the main trunk of the newly activated outlet glacier attained speeds of 25 m/day and the inland portion of the ice cap thinned at rates of more than 0.3 m/day. The acceleration of the outlet glacier occurred due to its advance over weak, water-saturated marine sediments that provide little resistance to ice flow, and to the removal of lateral resistive stresses as the glacier advanced out into an open embayment. Longitudinal stretching at the front forces an increase in the surface slope upstream. Rapid rates of motion inland generate frictional melt at the bed, possibly aided by cryohydrological warming. Large areas of the interior of the Vavilov ice cap are now below the equilibrium line and the grounded portion of the ice cap is losing mass at a rate of 4.5 km3 w.e./year. The changes at the Vavilov are likely irrecoverable in a warming climate due to a reduction in the accumulation area of the ice cap. Increased precipitation drove the advance, which accelerated due to the presence of soft sediments. The acceleration lowered the elevation

  3. Climatic and environmental records in Guliya Ice Cap

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 焦克勤; 田力德; 李忠勤; 李月芳; 刘景寿; 皇翠兰; 谢超; L.G.Thompson; E.M.Thompson

    1995-01-01

    The Guliya Ice Cap is the largest (with a total area of 376.1 m2 and an area cf 131 2 m2 at the flat top), highest (6 700 m a. s.l.) and coldest (with an ice temperature of -19℃ at 10 m depth) ice cap found in Central Asia so far. From 1990 to 1992, the oxygen isotope ratios, microparticle concentrations, anions, cations of a large number of samples from snow pits and ice cores were analysed to study the climatic and environmental characteristics of the Guliya Ice Cap. Being frozen to bedrock and with extremely low ice temperature, the ideal climatic and environmental informarion was recorded in Guliya Ice Cap. The distinct annual and seasonal cycle characteristics of the oxygen isotope ratio, microparticle concentration, anion and cation provide bases to date precisely the high-resolution time series in the ice cap. Oxygen isotope ratios decreased, microparticle concentrations and various chemical elements increased in the colder periods, while oxygen isotope values increased, microparticle concentrat

  4. Adaptation to High Altitude

    OpenAIRE

    1984-01-01

    Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude native...

  5. High Altitude Cerebral Edema

    Science.gov (United States)

    1986-03-01

    such enzyme inhibition would favor the creation of a metabolic acidosis to offset the hypoxic respiratory alkalosis of high altitude hyperventilation...that some of their symptoms might be due to the early respiratory alkalosis seen upon arrival at high altitude. Unfortunately 23 out of the 30 subjects...i I Hamilton-16 was negative in all cases and normal respiratory excursions were seen. CSF chemistries and cell counts were normal. Houston and

  6. Adaptation to High Altitude

    Directory of Open Access Journals (Sweden)

    H. S. Nayar

    1984-10-01

    Full Text Available Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude natives is well documented. RBC count, haemoglobin and haematocrit increase whereas arterial oxyhaemoglobin saturation percentage decreases at high altitude. Diuretics (Furosemide have no role in adaptation to high altitude and adequate body hydration must be maintained.The ultimate adaptive mechanisms occur at tissue level which facilitate the diffusion of oxygen from blood to tissue and its utilization. The work capacity decreases at high altitude and a relationship between load carried and speed of marching has been determined at various altitudes. Although altitude has an adverse effect on process of cold acclimatization, yet it is possible to induce cold acclimatization by exposing subjects to a temperature of 0° to -5°C for a period of three hours daily for three weeks. The caloric requirements increase at high altitudes and are 4,286 K Cal and 4,380 K Cal at 13000 feet (3950 m and 17000 feet (5170 m, respectively.

  7. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  8. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  9. Tropical Glaciers in the Common Era: Papua, Indonesia, Quelccaya Ice Cap, Peru and Kilimanjaro, Tanzania

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.

    2011-12-01

    High-resolution ice core stratigraphic records of δ18O (temperature proxy) demonstrate that the current warming at high elevations in mid- to lower latitudes is unprecedented for at least the last two millennia, although at many sites the Early Holocene was much warmer than at present. Here we discuss the interaction of El Niño-Southern Oscillation (ENSO) variability and warming trends as recorded in ice core records from high-altitude tropical glaciers and the implications of the warming trends for the future of these glaciers. ENSO has strong impacts on meteorological phenomena that either directly or indirectly affect most regions on the planet and their populations, particularly throughout the Tropics. Here we examine similarities and differences among ice core records from Papua (Indonesia), Quelccaya Ice Cap (Peru) and Kilimanjaro (Tanzania). Quelccaya, Earth's largest tropical ice cap, has provided continuous, annually-resolved proxy records of climatic and environmental variability preserved in many measurable parameters, especially oxygen and hydrogen isotopic ratios (δ18O, δD) and the net mass balance (accumulation) spanning the last 1800 years. The remarkable similarity between changes in the highland and coastal cultures of Peru and climate variability in the Andes, especially with regard to precipitation, implies a strong connection between prehistoric human activities and climate in this region. The well-documented ice loss on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya in Papua, Indonesia presents a possible analog for glacier response in the tropics during the Holocene. The ongoing melting of these ice fields is consistent with model predictions of a vertical amplification of temperature in the Tropics. A sequence of over 50 recently exposed, rooted, soft-bodied plant deposits collected between 2002 and 2011 from the retreating margins of the Quelccaya ice cap provide a longer term perspective for the recent

  10. Ice Caps and Ice Belts: The Effects of Obliquity on Ice‑Albedo Feedback

    Science.gov (United States)

    Rose, Brian E. J.; Cronin, Timothy W.; Bitz, Cecilia M.

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice‑albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  11. Holocene history of North Ice Cap, northwestern Greenland

    Science.gov (United States)

    Corbett, L. B.; Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Roy, E. P.; Thompson, J. T.

    2013-12-01

    Although much research has focused on the past extents of the Greenland Ice Sheet, less is known about the smaller ice caps on Greenland and how they have evolved over time. These small ice caps respond sensitively to summer temperatures and, to a lesser extent, winter precipitation, and provide valuable information about climatic conditions along the Greenland Ice Sheet margins. Here, we investigate the Holocene history of North Ice Cap (76°55'N 68°00'W), located in the Nunatarssuaq region near Thule, northwest Greenland. Our results are based on glacial geomorphic mapping, 10Be dating, and analyses of sediment cores from a glacially fed lake. Fresh, unweathered and unvegetated boulders comprise moraines and drift that mark an extent of North Ice Cap ~25 m outboard of the present ice margin. It is likely that these deposits were formed during late Holocene time and we are currently employing 10Be surface exposure dating to examine this hypothesis. Just outboard of the fresh moraines and drift, boulders and bedrock show significant weathering and are covered with lichen. Based on glacial geomorphic mapping and detailed site investigations, including stone counts, we suggest that the weathered boulders and bedrock were once covered by erosive Greenland Ice Sheet flow from southeast to northwest over the Nunatarssuaq region. Five 10Be ages from the more weathered landscape only 100-200 m outboard of the modern North Ice Cap margin are 52 and 53 ka (bedrock) and 16, 23, and 31 ka (boulders). These ages indicate that recent ice cover has likely been cold-based and non-erosive, failing to remove inherited cosmogenic nuclides from previous periods of exposure, although the youngest boulder may provide a maximum limiting deglaciation age. Sediment cores collected from Delta Sø, a glacially-fed lake ~1.5 km outside of the modern North Ice Cap margin, contain 130 cm of finely laminated sediments overlying coarse sands and glacial till. Radiocarbon ages from just above

  12. The future of the Devon Ice cap: results from climate and ice dynamics modelling

    Science.gov (United States)

    Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik

    2017-04-01

    The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we use high resolution (5km) simulations from HIRHAM5 to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.

  13. Ear - blocked at high altitudes

    Science.gov (United States)

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... eustachian tube is a connection between the middle ear (the space deep to the eardrum) and the ...

  14. Effects of ice-cap unloading on shallow magmatic reservoirs

    Science.gov (United States)

    Bakker, Richard; Frehner, Marcel; Lupi, Matteo

    2015-04-01

    One of the effects of global warming is the increase of volcanic activity. Glacial melting has been shown to cause visco-elastic relaxation of the upper mantle, which in turn promotes upwelling of magmas through the crust. To date, the effects of ice-cap melting on shallow (i.e., less than 10 km depth) plumbing systems of volcanoes are still not clear. We investigate the pressure changes due to glacial unloading around a magmatic reservoir by combining laboratory and numerical methods. As a case study we focus on Snæfellsjökull, a volcano in Western Iceland whose ice cap is currently melting 1.25 meters (thickness) per year. Our approach is as follows: we obtain representative rock samples from the field, preform tri-axial deformation tests at relevant pressure and temperature (PT) conditions and feed the results into a numerical model in which the stress fields before and after ice cap removal are compared. A suite of deformation experiments were conducted using a Paterson-type tri-axial deformation apparatus. All experiments were performed at a constant strain rate of 10-5 s-1, while varying the PT conditions. We applied confining pressures between 50 and 150 MPa and temperatures between 200 and 1000 ° C. Between 200 and 800 ° C we observe a localized deformation and a slight decrease of the Young's modulus from 41 to 38 GPa. Experiments at 900 and 1000 ° C exhibit macroscopically ductile behavior and a marked reduction of the Young's modulus down to 4 GPa at 1000 ° C. These results are used to construct a numerical finite-element model in which we approximate the volcanic edifice and basement by a 2D axisymmetric half-space. We first calculate the steady-state temperature field in the volcanic system and assign the laboratory-derived temperature-dependent Young's modulus to every element of the model. Then the pressure in the edifice is calculated for two scenarios: with and without ice cap. The comparison between the two scenarios allows us estimate the

  15. Quantification of summertime water ice deposition on the Martian north polar ice cap

    CERN Document Server

    Brown, Adrian J; Becerra, Patricio; Byrne, Shane

    2015-01-01

    We use observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of the north polar cap during late summer for two Martian years, to monitor the complete summer cycle of albedo and water ice grain size in order to place quantitative limits of the amount of water ice deposited in late summer. We establish here for the first time the complete spring to summer cycle of water ice grain sizes on the north polar cap. The apparent grain sizes grow until Ls=132, when they appear to shrink again, until they are obscured at the end of summer by the north polar hood. Under the assumption that the shrinking of grain sizes is due to the deposition of find grained ice, we quantify the amount of water ice deposited per Martian boreal summer, and estimate the amount of water ice that must be transported equatorward. Interestingly, we find that the relative amount of water ice deposited in the north cap during boreal summer (0.7-7 microns) is roughly equivalent to the average amount of water ice depos...

  16. Field-calibrated model of melt, refreezing, and runoff for polar ice caps: Application to Devon Ice Cap

    Science.gov (United States)

    Morris, Richard M.; Mair, Douglas W. F.; Nienow, Peter W.; Bell, Christina; Burgess, David O.; Wright, Andrew P.

    2014-09-01

    Understanding the controls on the amount of surface meltwater that refreezes, rather than becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately for predicting their future contributions to global sea level change. We present a modified version of a physically based model that includes an energy balance routine and explicit calculation of near-surface meltwater refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution measurements of snow and firn densities across almost the entire elevation range of the ice cap for the summer of 2004 and subsequently validated with the same type of measurements obtained during the very different meteorological conditions of summer 2006. The model captures the spatial variability across the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years; however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that the sensitivity of the ice cap's surface mass balance to air temperature is itself dependent on air temperature.

  17. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  18. High Altitude Dermatology

    Science.gov (United States)

    Singh, Lt. Col. G K

    2017-01-01

    Approximately, 140 million people worldwide live permanently at high altitudes (HAs) and approximately another 40 million people travel to HA area (HAA) every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV) light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc.), cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc.) nail changes (koilonychias), airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma) are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place. PMID:28216727

  19. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  20. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  1. Cardiovascular physiology at high altitude.

    Science.gov (United States)

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed.

  2. Quantifying the Mass Balance of Ice Caps on Severnaya Zemlya, Russian High Arctic. III: Sensitivity of Ice Caps in Severnaya Zemlya to Future Climate Change

    OpenAIRE

    Bassford, R.P.; Siegert, M. J.; J. A. Dowdeswell

    2006-01-01

    A coupled surface mass balance and ice-flow model was used to predict the response of three ice caps on Severnaya Zemlya, Russian Arctic, to the present climate and to future climate changes as postulated by the Intergovernmental Panel on Climate Change (IPCC). Ice cap boundary conditions are derived from recent airborne geophysical surveying (Dowdeswell et al., 2002), and model inputs are constructed from available climate data. Model results indicate that, currently, the state of balance of...

  3. Landscape Evolution and the Reincarnation of the Southern Residual Ice Cap

    Science.gov (United States)

    Byrne, S.; Zuber, M. T.

    2006-10-01

    Given the present rate of erosion on the southern residual ice cap, it is unlikely that any part of the cap is older than a few centuries. Unless we're lucky, why is there a residual cap present today for us to observe? We propose a solution involving constant destruction and renewal of the cap.

  4. Microbial diversity on Icelandic glaciers and ice caps

    Science.gov (United States)

    Lutz, Stefanie; Anesio, Alexandre M.; Edwards, Arwyn; Benning, Liane G.

    2015-01-01

    Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland's glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a 3 year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S), we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo-, and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae) support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers. PMID:25941518

  5. Microbial diversity on Icelandic glaciers and ice caps

    Directory of Open Access Journals (Sweden)

    Stefanie eLutz

    2015-04-01

    Full Text Available Algae are important primary colonizers of snow and glacial ice, but hitherto little is known about their ecology on Iceland’s glaciers and ice caps. Due do the close proximity of active volcanoes delivering large amounts of ash and dust, they are special ecosystems. This study provides the first investigation of the presence and diversity of microbial communities on all major Icelandic glaciers and ice caps over a three year period. Using high-throughput sequencing of the small subunit ribosomal RNA genes (16S and 18S, we assessed the snow community structure and complemented these analyses with a comprehensive suite of physical-, geo- and biochemical characterizations of the aqueous and solid components contained in snow and ice samples. Our data reveal that a limited number of snow algal taxa (Chloromonas polyptera, Raphidonema sempervirens and two uncultured Chlamydomonadaceae support a rich community comprising of other micro-eukaryotes, bacteria and archaea. Proteobacteria and Bacteroidetes were the dominant bacterial phyla. Archaea were also detected in sites where snow algae dominated and they mainly belong to the Nitrososphaerales, which are known as important ammonia oxidizers. Multivariate analyses indicated no relationships between nutrient data and microbial community structure. However, the aqueous geochemical simulations suggest that the microbial communities were not nutrient limited because of the equilibrium of snow with the nutrient-rich and fast dissolving volcanic ash. Increasing algal secondary carotenoid contents in the last stages of the melt seasons have previously been associated with a decrease in surface albedo, which in turn could potentially have an impact on the melt rates of Icelandic glaciers.

  6. Extending permanent volcano monitoring networks into Iceland's ice caps

    Science.gov (United States)

    Vogfjörd, Kristín S.; Bergsson, Bergur H.; Kjartansson, Vilhjálmur; Jónsson, Thorsteinn; Ófeigsson, Benedikt G.; Roberts, Matthew J.; Jóhannesson, Tómas; Pálsson, Finnur; Magnússon, Eyjólfur; Erlendsson, Pálmi; Ingvarsson, Thorgils; Pálssson, Sighvatur K.

    2015-04-01

    The goals of the FUTUREVOLC project are the establishment of a volcano Supersite in Iceland to enable access to volcanological data from the country's many volcanoes and the development of a multiparametric volcano monitoring and early warning system. However, the location of some of Iceland's most active volcanoes inside the country's largest ice cap, Vatnajökull, makes these goals difficult to achieve as it hinders access and proper monitoring of seismic and deformation signals from the volcanoes. To overcome these obstacles, one of the developments in the project involves experimenting with extending the permanent real-time networks into the ice cap, including installation of stations in the glacier ice. At the onset of the project, only one permanent seismic and GPS site existed within Vatnajökull, on the caldera rim of the Grímsvötn volcano. Two years into the project both seismic and GPS stations have been successfully installed and operated inside the glacier; on rock outcrops as well as on the glacier surface. The specific problems to overcome are (i) harsh weather conditions requiring sturdy and resilient equipment and site installations, (ii) darkness during winter months shutting down power generation for several weeks, (iii) high snow accumulation burying the instruments, solar panels and communication and GPS antennae, and in some locations (iv) extreme icing conditions blocking transmission signals and connection to GPS satellites, as well as excluding the possibility of power generation by wind generators. In 2013, two permanent seismic stations and one GPS station were installed on rock outcrops within the ice cap in locations with 3G connections and powered by solar panels and enough battery storage to sustain operation during the darkest winter months. These sites have successfully operated for over a year with mostly regular maintenance requirements, transmitting data in real-time to IMO for analysis. Preparations for two permanent seismic

  7. Numerical Modeling of the Last Glacial Maximum Yellowstone Ice Cap Captures Asymmetry in Moraine Ages

    Science.gov (United States)

    Anderson, L. S.; Wickert, A. D.; Colgan, W. T.; Anderson, R. S.

    2014-12-01

    The Last Glacial Maximum (LGM) Yellowstone Ice Cap was the largest continuous ice body in the US Rocky Mountains. Terminal moraine ages derived from cosmogenic radionuclide dating (e.g., Licciardi and Pierce, 2008) constrain the timing of maximum Ice Cap extent. Importantly, the moraine ages vary by several thousand years around the Ice Cap; ages on the eastern outlet glaciers are significantly younger than their western counterparts. In order to interpret these observations within the context of LGM climate in North America, we perform two numerical glacier modeling experiments: 1) We model the initiation and growth of the Ice Cap to steady state; and 2) We estimate the range of LGM climate states which led to the formation of the Ice Cap. We use an efficient semi-implicit 2-D glacier model coupled to a fully implicit solution for flexural isostasy, allowing for transient links between climatic forcing, ice thickness, and earth surface deflection. Independent of parameter selection, the Ice Cap initiates in the Absaroka and Beartooth mountains and then advances across the Yellowstone plateau to the west. The Ice Cap advances to its maximum extent first to the older eastern moraines and last to the younger western and northwestern moraines. This suggests that the moraine ages may reflect the timescale required for the Ice Cap to advance across the high elevation Yellowstone plateau rather than the timing of local LGM climate. With no change in annual precipitation from the present, a mean summer temperature drop of 8-9° C is required to form the Ice Cap. Further parameter searches provide the full range of LGM paleoclimate states that led to the Yellowstone Ice Cap. Using our preferred parameter set, we find that the timescale for the growth of the complete Ice Cap is roughly 10,000 years. Isostatic subsidence helps explain the long timescale of Ice Cap growth. The Yellowstone Ice Cap caused a maximum surface deflection of 300 m (using a constant effective elastic

  8. Rapid wastage of the Hazen Plateau ice caps, northeastern Ellesmere Island, Nunavut, Canada

    Science.gov (United States)

    Serreze, Mark C.; Raup, Bruce; Braun, Carsten; Hardy, Douglas R.; Bradley, Raymond S.

    2017-01-01

    Two pairs of small stagnant ice bodies on the Hazen Plateau of northeastern Ellesmere Island, the St. Patrick Bay ice caps and the Murray and Simmons ice caps, are rapidly shrinking, and the remnants of the St. Patrick Bay ice caps are likely to disappear entirely within the next 5 years. Vertical aerial photographs of these Little Ice Age relics taken during August of 1959 show that the larger of the St. Patrick Bay ice caps had an area of 7.48 km2 and the smaller one 2.93 km2; the Murray and Simmons ice caps covered 4.37 and 7.45 km2 respectively. Outlines determined from ASTER satellite data for July 2016 show that, compared to 1959, the larger and the smaller of the St. Patrick Bay ice caps had both been reduced to only 5 % of their former area, with the Murray and Simmons ice caps faring better at 39 and 25 %, likely reflecting their higher elevation. Consistent with findings from other glaciological studies in the Queen Elizabeth Islands, ASTER imagery in conjunction with past GPS surveys documents a strikingly rapid wastage of the St. Patrick Bay ice caps over the last 15 years. These two ice caps shrank noticeably even between 2014 and 2015, apparently in direct response to the especially warm summer of 2015 over northeastern Ellesmere Island. The well-documented recession patterns of the Hazen Plateau ice caps over the last 55+ years offer an opportunity to examine the processes of plant recolonization of polar landscapes.

  9. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  10. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...

  11. Mass balance of Greenland and the Canadian Ice Caps from combined altimetry and GRACE inversion

    DEFF Research Database (Denmark)

    Forsberg, René; Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    The combination of GRACE and altimetry data may yield a high resolution mass balance time series of the Greenlandice sheet, highlighting the varying individual mass loss behaviour of major glaciers. By including the Canadian arctic ice caps in the estimation, a more reliable estimate of the mass...... loss of both Greenlandand the Canadian ice caps may be obtained, minimizing the leakage errors otherwise unavoidable by GRACE. Actually, the absolute value of the Greenlandice sheet mass loss is highly dependent on methods and how the effects of Arctic Canadian ice caps are separated in the GRACE...... loss of the ice caps and ice sheet basins for the period 2003-15. This period shows a marked increase of ice sheet melt, especially in NW and NE Greenland, but also show large variability, with the melt anomaly year of 2012 showing a record mass loss, followed by 2013 with essentially no Greenland mass...

  12. Mass balance of Greenland and the Canadian Ice Caps from combined altimetry and GRACE inversion

    DEFF Research Database (Denmark)

    Forsberg, René; Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    loss of the ice caps and ice sheet basins for the period 2003-15. This period shows a marked increase of ice sheet melt, especially in NW and NE Greenland, but also show large variability, with the melt anomaly year of 2012 showing a record mass loss, followed by 2013 with essentially no Greenland mass......The combination of GRACE and altimetry data may yield a high resolution mass balance time series of the Greenlandice sheet, highlighting the varying individual mass loss behaviour of major glaciers. By including the Canadian arctic ice caps in the estimation, a more reliable estimate of the mass...... loss of both Greenlandand the Canadian ice caps may be obtained, minimizing the leakage errors otherwise unavoidable by GRACE. Actually, the absolute value of the Greenlandice sheet mass loss is highly dependent on methods and how the effects of Arctic Canadian ice caps are separated in the GRACE...

  13. Mass balance of the Amitsulôq ice cap, West Greenland

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, Carl Egede; Olesen, Ole B.

    2007-01-01

    We present detailed mass balance measurements from the Amitsulôq ice cap in West Greenland spanning from 1982 to 1990. The data includes summer and winter balances from 26 stake locations distributed over five transects covering the whole ice cap. The mass balance measurements are combined with a...... meltwater, linking the hydropower potential of the basin closely to the fate of the adjoining Greenland ice-sheet margin....

  14. Mass balance of the Amitsulôq ice cap, West Greenland

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, Carl Egede; Olesen, Ole B.

    2007-01-01

    We present detailed mass balance measurements from the Amitsulôq ice cap in West Greenland spanning from 1982 to 1990. The data includes summer and winter balances from 26 stake locations distributed over five transects covering the whole ice cap. The mass balance measurements are combined with a...... meltwater, linking the hydropower potential of the basin closely to the fate of the adjoining Greenland ice-sheet margin.......We present detailed mass balance measurements from the Amitsulôq ice cap in West Greenland spanning from 1982 to 1990. The data includes summer and winter balances from 26 stake locations distributed over five transects covering the whole ice cap. The mass balance measurements are combined...

  15. Rapidly Melting Ice Caps of Northern Baffin Island: Insights From Cosmogenic and Conventional Radiocarbon Dating

    Science.gov (United States)

    Anderson, R. K.; Miller, G. H.; Briner, J. P.; Lifton, N.; Devogel, S. B.

    2006-12-01

    The interior plateau of northern Baffin Island in the eastern Canadian Arctic is home to several small (history on the plateau since deglaciation 6 ka, several techniques have been used in concert. The recent extent of the ice caps during the Little Ice Age can be estimated from the preservation of lichen trimlines across much of the plateau. These trimlines represent previous multi-year snow or ice cover and their aerial extent can be measured via satellite imagery. Based on these measurements, modern ice caps represent only ~3% of ice-cap extent during the Little Ice Age. Radiocarbon dating of moss, preserved beneath the ice caps due to their cold-based nature, suggests a sudden expansion of ice cover around 520 calendar years before present (cal BP), indicated by a mode of 7 dates of approximately this age. This coincides with a pulse of global volcanic activity; predicted cooling from increased aerosol loading may have triggered rapid ice-cap growth. However, dead moss emerging at three sites is more than 1000 years old, with a maximum age of 1326±15 cal BP, indicating that portions of the remaining ice caps have remained intact from more than 1000 years Further constraints on ice cap size are provided by 14C cosmogenic exposure dating. 14C concentrations in rocks at the modern ice margin are too low to be the result of continuous exposure since deglaciation followed by shielding for 500-1000 years by ice cover. Exposure history modeling indicates at least one additional prior period of ice cover of approximately 1000 years. This cold interval most likely occurred sometime since 4 ka, after the Holocene Thermal Maximum in the Arctic and coeval with the onset of Neoglaciation. Radiocarbon dating reveals that some plateau ice caps have been continuously present for more than 1000 years, whereas others formed early in the Little Ice Age (~520 cal BP). Even without additional warming, continuation of current climatic conditions on northern Baffin Island will

  16. Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICES at laser altimetry data

    DEFF Research Database (Denmark)

    Bolch, T.; Sørensen, Louise Sandberg; Simonsen, Sebastian Bjerregaard;

    2013-01-01

    The recently finalized inventory of Greenland's glaciers and ice caps (GIC) allows for the first time to determine the mass changes of the GIC separately from the ice sheet using space-borne laser altimetry data. Corrections for firn compaction and density that are based on climatic conditions...

  17. Oxygen ion energization observed at high altitudes

    Directory of Open Access Journals (Sweden)

    M. Waara

    2010-04-01

    Full Text Available We present a case study of significant heating (up to 8 keV perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude. This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization.

  18. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  19. Dansgaard-Oeschger cycles observed in the Greenland ReCAP ice core project

    Science.gov (United States)

    Kjær, Helle Astrid; Vallelonga, Paul; Vinther, Bo; Simonsen, Marius; Maffezzoli, Niccoló; Gkinis, Vasileios; Svensson, Anders; Jensen, Camilla Marie; Dallmayr, Remi; Spolaor, Andrea; Edwards, Ross

    2017-04-01

    The new REnland ice CAP (RECAP) ice core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis (CFA) during the last 3 months of 2015. The Renland ice core was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice core offers high accumulation, but also reaches far back in time. Results show that despite the short length the RECAP ice core holds ice all the way back to the past warm interglacial period, the Eemian. The glacial section is strongly thinned and covers on 20 meters of the ReCAP core, but nonetheless due to the high resolution of the measurements all 25 expected DO events could be identified. The record was analyzed for multiple elements including the water isotopes, forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na+, and sea ice proxies as well as acidity useful for finding volcanic layers to date the core. Below the glacial section another 20 meters of warm Eemian ice have been analysed. Here we present the chemistry results as obtained by continuous flow analysis (CFA) and compare the glacial section with the chemistry profile from other Greenland ice cores.

  20. Glaciological and chemical studies on ice cores from Hans Tausen ice cap, Greenland

    DEFF Research Database (Denmark)

    Clausen, H.B.; Stampe, Mia; Hammer, C.U.

    2001-01-01

    The paper presents studies of various chemical and isotopical parameters from ice cores drilled in the northernmost located ice cap, Hans Tausen Iskappe, Pearyland, Greenland (HT). The 346 m main core (MC95) was drilled to bedrock in 1995 as well as a 35 m shallow core (SC95). A 60 m shallow core...... exist along the 1995 cores (MC95 and SC95) and finally detailed records of dust and water soluble ion concentrations exist on selected parts of MC95. To determine a time scale for the ice core is an important prerequisite for the interpretation of other records. The age scale is based on acid layers......, caused by known volcanic eruptions, and by comparison of the chemical composition of these layers to that found in ice cores from other arctic locations. The total b-activity data from SC75 and SC76 provide fixed points to the time scale because a pronounced increase in total b-activity is related...

  1. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    CERN Document Server

    Brown, Adrian J; Titus, Timothy N

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) (Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap (Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The s...

  2. The Drangajökull ice cap, northwest Iceland, persisted into the early-mid Holocene

    Science.gov (United States)

    Schomacker, Anders; Brynjólfsson, Skafti; Andreassen, Julie M.; Gudmundsdóttir, Esther Ruth; Olsen, Jesper; Odgaard, Bent V.; Håkansson, Lena; Ingólfsson, Ólafur; Larsen, Nicolaj K.

    2016-09-01

    Most glaciers and ice caps in Iceland experienced rapid deglaciation in the early Holocene, reaching a minimum extent during the Holocene Thermal Maximum. Here we present evidence of the Holocene glacial history from lake sediment cores retrieved from seven threshold lakes around the Drangajökull ice cap in the Vestfirðir peninsula, NW Iceland. The sediment cores show on/off signals of glacial meltwater activity, as minerogenic material deposited from glacial meltwater alternates with organic-rich material (gyttja) deposited without glacial meltwater. We base the chronology of the sediment cores on 14C ages and geochemical identification of key tephra layers with known ages. A 25-cm thick layer of the Saksunarvatn tephra in Lake Skorarvatn indicates that the northern part of the ice cap had reached a similar size as today or was smaller already by 10.2 cal kyr BP. However, 14C ages of lake sediment cores from the highlands southeast of Drangajökull suggest that this part of the ice cap was larger than today until 7.8-7.2 cal kyr BP. Even today, the Drangajökull ice cap has a different behavior than the main ice caps in Iceland, characterized by a very low glaciation limit. Because palaeoclimatic proxies show an early-mid Holocene temperature optimum in this part of Iceland, we suggest that the persistence of Drangajökull into the early Holocene and, possibly, also the entire Holocene was due to high winter precipitation.

  3. Integrated firn elevation change model for glaciers and ice caps

    Science.gov (United States)

    Saß, Björn; Sauter, Tobias; Braun, Matthias

    2016-04-01

    We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m-³ or the density of ice (917 kg m-³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m-³) and accumulation (600 kg m-³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer discretisation. On

  4. Microparticles, soil, derived chemical components and sea salt in the Hans Tausen Ice Cap ice core from Peary Island, North Greenland

    DEFF Research Database (Denmark)

    Steffensen, J.P.; Andersen, M.L.S; Stampe, Mia

    2001-01-01

    due to melt water run-off. Sea salt concentrations show little variation with depth, and our results indicate, that the sea salt in Hans Tausen ice is from remote sources. The North Polar Sea has not been a significant source of sea salt in the life time of the Hans Tausen ice cap. All our results...... are consistent with the hypothesis that the Hans Tausen ice cap was formed sometime during the Holocene: It started as a small ice cap of superimposed ice with heavy melting and strong influence of local dust sources. With time the ice cap grew, both horizontally and vertically, the surface got colder with less......Selected segments of the 344 m deep ice core from Hans Tausen ice cap in Peary Land, North Greenland have been stratigraphically analyzed for chemical impurities and insoluble microparticles (Dust). Two different components of the microparticles have been identified by their different...

  5. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    Science.gov (United States)

    Abdalati, Waleed

    2006-01-01

    ). While the expansion of the warming oceans is estimated to be about a third of recent sea level rise, (Miller and Douglas 2004) the greatest potential for significantly increasing sea level lies in the Greenland and Antarctic ice sheets. For different reasons, each exhibits characteristics that suggest they are potentially unstable. In Antarctica, large portions of the ice cover rest on a soft bed that lies below sea level, making it vulnerable to runaway retreat. The Greenland ice sheet experiences considerable melt, which has the potential to rapidly accelerate the flow of ice toward the sea. While smaller ice masses, such as the Alaskan Glaciers and the Canadian ice caps, do not have anywhere near the same potential to impact sea level as the vast ice sheets do, many are melting rapidly, posing a significant near-term threat.

  6. Barnes Ice Cap South Dome Trilateration Net Survey Data 1970-1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Barnes Ice Cap data set contains survey measurements of a network of 43 stakes along a 10 km flow line on the northeast flank of the south dome of the Barnes Ice...

  7. A tipping point in refreezing accelerates mass loss of Greenland’s glaciers and ice caps

    NARCIS (Netherlands)

    Noël, B.P.Y.; van de Berg, W.J.; Lhermitte, S.; Wouters, B.; Machguth, Horst; Howat, I.M.; Citterio, M.; Moholdt, G.; Lenaerts, J.T.M.; van den Broeke, M.R.

    2017-01-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here

  8. High Altitude Cooking and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... 286) Actions ${title} Loading... High Altitude Cooking and Food Safety What is considered a high altitude? How is ...

  9. Quantifying the Mass Balance of Ice Caps on Severnaya Zemlya, Russian High Arctic. I: Climate and Mass Balance of the Vavilov Ice Cap

    NARCIS (Netherlands)

    Bassford, R.P.; Siegert, M.J.; Dowdeswell, J.A.; Oerlemans, J.; Glazovsky, A.F.; Macheret, Y.Y.

    2006-01-01

    Due to their remote location within the Russian High Arctic, little is known about the mass balance of ice caps on Severnaya Zemlya now and in the past. Such information is critical, however, to building a global picture of the cryospheric response to climate change. This paper provides a numerical

  10. Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    DEFF Research Database (Denmark)

    Nilsson, Johan; Sørensen, Louise Sandberg; Barletta, Valentina Roberta

    2015-01-01

    of the regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross validation.The cross......The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived n this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003–2009. Four methods, based...

  11. DC Flashover Performance of Ice-covered Porcelain Insulator Strings Under High Altitude Conditions%直流瓷绝缘子长串高海拔覆冰闪络特性

    Institute of Scientific and Technical Information of China (English)

    胡建林; 蒋兴良; 孙才新; 张志劲; 舒立春

    2011-01-01

    为了给超特高压直流输电线路外绝缘选择和运行维护提供基础数据,以典型直流瓷绝缘子XZP-210长串为研究对象,在大型多功能人工气候室试验研究了污秽、覆冰、高海拔综合复杂环境下的直流闪络特性。试验结果表明:XZP-210覆冰绝缘子串直流冰闪50%闪络电压眠慨与串长基本呈线性关系;不同海拔高度下,弘㈣随覆冰厚度和污秽程度增加均呈幂函数规律下降,冰厚影响的特征指数在0.182~0.208之间,污秽程度影响特征指数在0.175~0.191之间;气压对%0%的影响特征指数n在0.404-0.462之间;临界闪络电流I%In order to obtain the basic data for the design and maintenance of insulators used in UHV/EHV transmission lines, the DC flashover performance of typical insulator strings XZP-210 were studied under the combined conditions of surface pollution, icing and high altitude in the multi-function artificial climate chamber. Based on the test results, the relationships between the flashover voltage and the insulator length as well as the environmental factors were obtained. Test results show that the average flashover voltage (U50%) of ice-covered XZP-210 insulator strings is almost in linear relationship with the string length, and decreases with the increase of the ice thickness and pollution severity in power function rule at various altitudes. The characteristic exponent describing the influence degree of ice thickness, and pollution severity is 0.182-0.208 and 0.175-0.191 respectively. The characteristic exponent describing the influence degree of air pressure is from 0.404 to 0.462. The critical flashover current lc increases in power function rule with the increase of pollution severity, and the range of the characteristic exponent is from 0.629 to 0.678. Moreover, Ic decreases with the decrease of air pressure, and it presents the power function rule along with the ratio of air pressure

  12. Landscape Evolution and the Reincarnation of the Residual CO2 Ice Cap of Mars

    Science.gov (United States)

    Byrne, S.; Zuber, M.

    2006-12-01

    Observations of the southern residual CO2 cap of Mars reveal a wide range of landforms including flat-floored quasi-circular pits with steep walls (dubbed Swiss-cheese features). Interannual comparisons show that these depressions are expanding laterally at rates of ~2m/yr to ~4m/yr, prompting suggestions of climate change. The residual CO2 ice cap is up to 10m thick and underlain by an involatile basement, it also contains layers roughly 2m thick representing different accumulation episodes in the recent past. Changes in the appearance of the residual ice between the Mariner 9 and Viking missions indicate that the top-most layer was deposited in that time-frame, soon after the global dust storm of 1971. The spatial density of the Swiss-cheese features, and the rate at which they expand, mean that it is unlikely that any part of the residual ice cap is older than a few centuries. Given this, we may ask: how can there be a residual cap present today for us to observe? To answer this and other questions we have developed a model to examine the evolution of a CO2 ice landscape. This model reproduces the morphologies and expansion rates seen in the actual residual CO2 ice cap. Our model results indicate that the fate of CO2 ice surfaces is controlled by their surface roughness. Surface roughness always increases with time, which results in an unstable situation. When the surface roughness exceeds a critical point small pits can begin to develop. The walls of these pits rapidly steepen and begin retreating which enlarges and deepens the pit. This situation always occurs even if the surface of the CO2 slab has a high enough albedo to have a net mass gain each year. Once these pits begin expanding they quickly erode the entire ice slab. When the underlying non-CO2 material is exposed, it will not frost over again if Mars were to repeat like clockwork every year. We conclude that interannual climatic variability is actually a requirement for the continued existence of a

  13. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    Science.gov (United States)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of

  14. 1962 Satellite High Altitude Radiation Belt Database

    Science.gov (United States)

    2014-03-01

    TR-14-18 1962 Satellite High Altitude Radiation Belt Database Approved for public release; distribution is unlimited. March...the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database”, AFRL-VS-PS-TR- 2006-1079, Air Force Research Laboratory...Roth, B., “Blue Ribbon Panel and Support Work Assessing the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database

  15. Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard

    Directory of Open Access Journals (Sweden)

    T. Sauter

    2013-08-01

    Full Text Available The redistribution of snow by drifting and blowing snow frequently leads to an inhomogeneous snow mass distribution on larger ice caps. Together with the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer, these processes affect the glacier surface mass balance. This study provides a first quantification of snowdrift and sublimation of blowing and drifting snow on the Vestfonna ice cap (Svalbard by using the specifically designed snow2blow snowdrift model. The model is forced by atmospheric fields from the Polar Weather Research and Forecasting model and resolves processes on a spatial resolution of 250 m. The model is applied to the Vestfonna ice cap for the accumulation period 2008/2009. Comparison with radio-echo soundings and snow-pit measurements show that important local-scale processes are resolved by the model and the overall snow accumulation pattern is reproduced. The findings indicate that there is a significant redistribution of snow mass from the interior of the ice cap to the surrounding areas and ice slopes. Drifting snow sublimation of suspended snow is found to be stronger during spring. It is concluded that the redistribution process is strong enough to have a significant impact on glacier mass balance.

  16. Economy of Adaptation to High Altitude

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul Richalet

    2004-01-01

    @@ The international meeting that will be held in Xining and Lhasa in August 2004 will be a wonderful occasion to share facts and concepts dealing with adaptation to high altitude. Life at high altitude is a challenge for thousands of animal species and millions of humans residing or visiting high altitude regions of the world. To try to understand the physiological mechanisms involved in the adaptation processes to high altitude hypoxia, it is convenient to start by defining what is "extreme" from a biological point of view.

  17. Aspirated Compressors for High Altitude Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  18. JAWS: Just Add Water System - A device for detection of nucleic acids in Martian ice caps

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, Eske; Mørk, Søren

    2002-01-01

    with a regulation of pH and salt concentrations e.g. the MOD systems and could be installed on a planetary probe melting its way down the Martian ice caps e.g. the NASA Cryobot. JAWS can be used for detection of remains of ancient life preserved in the Martian ice as well as for detection of contamination brought...... to the planet from Earth....

  19. Frost flower chemical signature in winter snow on Vestfonna ice cap, Nordaustlandet, Svalbard

    Directory of Open Access Journals (Sweden)

    E. Beaudon

    2009-07-01

    Full Text Available The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard, exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO42-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.

  20. A Case for Microorganisms on Comets, Europa and the Polar Ice Caps of Mars

    Science.gov (United States)

    Hoover, Richard B.; Pikuta, Elena V.

    2003-01-01

    Microbial extremophiles live on Earth wherever there is liquid water and a source of energy. Observations by ground-based observatories, space missions, and satellites have provided strong evidence that water ice exists today on comets, Europa, Callisto, and Ganymede and in the snow, permafrost, glaciers and polar ice caps of Mars. Studies of the cryoconite pools and ice bubble systems of Antarctica suggest that solar heating of dark rocks entrained in ice can cause localized melting of ice providing ideal conditions for the growth of microbial communities with the creation of micro-environments where trapped metabolic gasses produce entrained isolated atmospheres as in the Antarctic ice-bubble systems. It is suggested that these considerations indicate that several groups of microorganisms should be capable of episodic growth within liquid water envelopes surrounding dark rocks in cometary ices and the permafrost and polar caps of Mars. We discuss some of the types of microorganisms we have encountered within the permafrost and snow of Siberia, the cryoconite pools of Alaska, and frozen deep within the Antarctic ice sheet above Lake Vostok.

  1. Sensitivity of basal conditions in an inverse model: Vestfonna ice cap, Nordaustlandet/Svalbard

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2012-07-01

    Full Text Available The dynamics of Vestfonna ice cap (Svalbard are dominated by fast-flowing outlet glaciers. Its mass balance is poorly known and affected dynamically by these fast-flowing outlet glaciers. Hence, it is a challenging target for ice flow modeling. Precise knowledge of the basal conditions and implementation of a good sliding law are crucial for the modeling of this ice cap. Here we use the full-Stokes finite element code Elmer/Ice to model the 3-D flow over the whole ice cap. We use a Robin inverse method to infer the basal friction from the surface velocities observed in 1995. Our results illustrate the importance of the basal friction parameter in reproducing observed velocity fields. We also show the importance of having variable basal friction as given by the inverse method to reproduce the velocity fields of each outlet glacier – a simple parametrization of basal friction cannot give realistic velocities in a forward model. We study the robustness and sensitivity of this method with respect to different parameters (mesh characteristics, ice temperature, errors in topographic and velocity data. The uncertainty in the observational parameters and input data proved to be sufficiently small as not to adversely affect the fidelity of the model.

  2. Effects of Snowfall on the Thickness and Stability of Mars' Seasonal Ice Caps

    Science.gov (United States)

    Hayne, P. O.; Paige, D. A.; Aharonson, O.; Schofield, J. T.; Kass, D. M.; Kleinboehl, A.; Heavens, N. G.; Shirley, J. H.; McCleese, D. J.

    2012-12-01

    Seasonal exchange of carbon dioxide between the Martian atmosphere and ice caps is responsible for cyclical variations of ~30% in global atmospheric pressure, as well as for the growth and retreat of the seasonal ice caps. Energy balance and general circulation models have had limited success in reproducing the important aspects of this cycle, largely due to uncertainties in the radiative properties (albedo and emissivity) of the ice caps. Evidence from remote sensing by several different orbital investigations suggests that snowfall consisting primarily of solid CO2 contributes substantial material to the growing seasonal caps, strongly affecting their radiative properties. However, the mass of material deposited as snow, its spatial and temporal variation, and its effect on the energy budget, have all remained uncertain. Using data from the Mars Climate Sounder (MCS), we have quantified and mapped snow cloud formation and surface accumulation based on opacity profiles and calculated infrared cooling rates. We then compared the derived snowfall distribution to seasonal cap thicknesses derived from Mars Orbiter Laser Altimeter (MOLA) "crossover" data. Large variations in the occurrence, thickness, and timing of snow clouds are observed, with the most extensive and persistent clouds observed over the south polar residual cap (SPRC). We find a strong correlation between clouds, "cold spots" (regions of suppressed thermal emission), and seasonal cap thickness. Furthermore, some of these regions of high snow cloud activity also exhibit high solar albedo in the spring and summer. Together, these results suggest that granular deposits of CO2 snow: 1) are thicker (probably due to lower density) on average than "slab ice" formed by direct vapor deposition; 2) reduce energy loss by thermal emission during the polar night; and 3) reduce energy gain by reflecting solar radiation during spring and summer. As the snowiest place on Mars, the SPRC exhibits all of these properties

  3. A minimal, statistical model for the surface albedo of Vestfonna ice cap, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Möller

    2012-03-01

    Full Text Available The ice cap Vestfonna is located in Northeastern Svalbard and forms one of the largest ice bodies of the Eurasian Arctic. Its surface albedo plays a key role in understanding and modelling of its energy and mass balance. The principle governing factors for albedo evolution, i.e. precipitation and air temperature and therewith snowdepth and melt duration, were found to vary almost exclusively with terrain elevation throughout the ice cap. Hence, surface albedo can be expected to develop a comparable pattern. A new statistical model is presented that estimates this mean altitudinal albedo profile of the ice cap on the basis of a minimal set of meteorological variables on a monthly resolution. Model calculations are based on a logistic function of the artificial quantity rain-snow ratio and a linear function of cumulative snowfall and cumulative positive degree days. Surface albedo fields of the MODIS snow product MOD10A1 of the period March to October of the years 2001–2008 serve as a basis for both calibration and cross-validation of the model. The meteorological model input covers the period September 2000 until October 2008 and is based on ERA-Interim data of a grid point located close to the ice cap. The albedo model shows a good performance. The root mean square error between observed and modelled albedo values along the altitudinal profile is 0.057 ± 0.028 (mean ± one standard deviation. The area weighted mean even reduces to a value of 0.053. Distinctly higher deviations (0.07–0.09 are only present throughout the very lowest and uppermost parts of the ice cap that are either small in area or hardly affected by surface melt. Thus, the new, minimal, statistical albedo model presented in this study is found to reproduce the albedo evolution on Vestfonna ice cap on a high level of accuracy and is thus suggested to be fully suitable for further application in broader energy or mass-balance studies of the ice cap.

  4. A minimal, statistical model for the surface albedo of Vestfonna ice cap, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Möller

    2012-09-01

    Full Text Available The ice cap Vestfonna is located in northeastern Svalbard and forms one of the largest ice bodies of the Eurasian Arctic. Its surface albedo plays a key role in the understanding and modelling of its energy and mass balance. The principle governing factors for albedo evolution, i.e. precipitation and air temperature and therewith snow depth and melt duration, were found to vary almost exclusively with terrain elevation throughout the ice cap. Hence, surface albedo can be expected to develop a comparable pattern. A new statistical model is presented that estimates this mean altitudinal albedo profile of the ice cap on the basis of a minimal set of meteorological variables on a monthly resolution. Model calculations are based on a sigmoid function of the artificial quantity rain-snow ratio and a linear function of cumulative snowfall and cumulative positive degree days. Surface albedo fields of the MODIS snow product MOD10A1 from the period March to October in the years 2001–2008 serve as a basis for both calibration and cross-validation of the model. The meteorological model input covers the period September 2000 until October 2008 and is based on ERA-Interim data of a grid point located close to the ice cap. The albedo model shows a good performance. The root mean square error between observed and modelled albedo values along the altitudinal profile is 0.057±0.028 (mean ± one standard deviation. The area weighted mean even reduces to a value of 0.054. Distinctly higher deviations (0.07–0.09 are only present throughout the very lowest and uppermost parts of the ice cap that are either small in area or hardly affected by surface melt. Thus, the new, minimal, statistical albedo model presented in this study is found to reproduce the albedo evolution on Vestfonna ice cap on a high level of accuracy and is thus suggested to be fully suitable for further application in broader energy or mass-balance studies of the ice cap.

  5. Short-term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System

    Science.gov (United States)

    Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin

    2015-12-01

    In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.

  6. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap.

    Science.gov (United States)

    Gokul, Jarishma K; Hodson, Andrew J; Saetnan, Eli R; Irvine-Fynn, Tristram D L; Westall, Philippa J; Detheridge, Andrew P; Takeuchi, Nozomu; Bussell, Jennifer; Mur, Luis A J; Edwards, Arwyn

    2016-08-01

    Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps.

  7. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  8. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  9. JAWS: Just Add Water System - A device for detection of nucleic acids in Martian ice caps

    DEFF Research Database (Denmark)

    Hansen, Anders J.; Willerslev, Eske; Mørk, Søren

    2002-01-01

    The design of a device for nucleic acid detection in the Martian ice caps is presented; the Just Add Water System (JAWS). It is based on fiber-optic PNA (peptide nucleic acid) light up probe random microsphere universal array technology. JAWS is designed to be part of a larger system with a regul...

  10. Mapping the Variability of Winter Accumulation on the Hofsjökull Ice Cap, Central Iceland

    Science.gov (United States)

    Thorsteinsson, Th.; Jóhannesson, T.; Einarsson, B.; Gunnarsson, A.; Kjartansson, V.; Sigurðsson, O.

    2016-09-01

    The poster presents results from the mapping of winter accumulation on the Hofsjökull ice cap, Central Iceland, using a ground penetrating radar. The data are used to correct biases in older mass-balance data with more limited spatial coverage.

  11. On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland

    NARCIS (Netherlands)

    Rinne, E.J.; Shepherd, A.; Palmer, S.; van den Broeke, M.R.; Muir, A.; Ettema, J.; Wingham, D.

    2011-01-01

    We have used Radar Altimeter 2 (RA‐2) onboard ESA’s EnviSAT and Geosciences Laser Altimeter System (GLAS) onboard NASA’s ICESat to map the elevation change of the Flade Isblink Ice Cap (FIIC) in northern Greenland. Based on RA‐2 data we show that the mean surface elevation change of the FIIC has bee

  12. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Science.gov (United States)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  13. Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland

    Science.gov (United States)

    Saito, Jun; Sugiyama, Shin; Tsutaki, Shun; Sawagaki, Takanobu

    2016-09-01

    A large number of glaciers and ice caps (GICs) are distributed along the Greenland coast, physically separated from the ice sheet. The total area of these GICs accounts for 5% of Greenland's ice cover. Melt water input from the GICs to the ocean substantially contributed to sea-level rise over the last century. Here, we report surface elevation changes of six ice caps near Qaanaaq (77°28‧N, 69°13‧W) in northwestern Greenland based on photogrammetric analysis of stereo pair satellite images. We processed the images with a digital map plotting instrument to generate digital elevation models (DEMs) in 2006 and 2010 with a grid resolution of 500 m. Generated DEMs were compared to measure surface elevation changes between 2006 and 2010. Over the study area of the six ice caps, covering 1215 km2, the mean rate of elevation change was -1.1 ± 0.1 m a-1. This rate is significantly greater than that previously reported for the 2003-2008 period (-0.6 ± 0.1 m a-1) for GICs all of northwestern Greenland. This increased mass loss is consistent with the rise in summer temperatures in this region at a rate of 0.12 °C a-1 for the 1997-2013 period.

  14. Dynamic ancient ice caps in the sub-Antarctic suggested by new mapping of submarine ice-formed landscapes

    Science.gov (United States)

    Graham, Alastair; Hodgson, Dominic; Cofaigh, Colm Ó.; Hillenbrand, Claus-Dieter; Kuhn, Gerhard

    2014-05-01

    Recent bathymetric investigations have provided hints of significant past glaciations on several Southern Ocean sub-polar islands. The extent and behaviour of ice cover in these regions is important because it provides critical limits on the evolution of refugia and marine benthic organisms, as well as unique far-field constraints for improving polar ice-sheet model sensitivity. However, despite improvements in regional mapping, sea-floor acoustic data from key shelf areas have still not been of sufficient quality, or broad enough in their coverage, to resolve the number, form or flow of past glacial episodes. Hence the history and style of sub-Antarctic glaciation remains poorly known. Here we use a compilation of multibeam bathymetry and fisheries echo-sounding data to provide evidence for dynamic, widespread ice caps on sub-Antarctic South Georgia during past glacial periods. We present a hitherto unmapped record of sea-bed glacigenic structures, including end moraines and subglacial landforms, from which the flow and form of at least three major, entirely marine-terminating configurations is resolved. The largest glaciation covered the majority of the continental shelf, and included fast-flowing outlets, possible switching of internal flow, meltwater activity, warm-based ice erosion, and substantial marginal deposition during retreat: all features of dynamic ice-cap behaviour. Existing biological evidence suggests the largest glaciation likely pre-dated the Last Glacial Maximum, which may have been restricted in extent reaching to the island's fjord mouths, while a third mid-shelf limit appears partially recorded. Work on dating the relict landscape of ancient ice cap advance and retreat is ongoing, but our preliminary age model suggests that South Georgia's history is unique from the Antarctic polar glacial record, and may be more similar to that of past ice caps on Patagonia. The glacial configurations revealed by these data will provide the basis of new

  15. Cold basal conditions during surges control flow of fringing Arctic ice caps in Greenland

    Science.gov (United States)

    Cook, Samuel; Christoffersen, Poul; Todd, Joe; Palmer, Steven

    2017-04-01

    Fringing ice caps separated from larger ice sheets are rarely studied, yet they are an important part of earth's cryosphere, which has become the largest source of global sea-level rise. Understanding marginal ice caps is crucial for being able to predict sea-level change as they are responsible for up to 20% of Greenland's mass loss for 2003-2008. Studies of fringing ice caps can furthermore provide useful insights into processes operating on glaciers that surge. Surging has been the focus of much recent glaciological work, especially with reference to thermal evolution of polythermal glaciers in High Mountain Asia and the High Arctic. This has shown that the classic divide between hydrologically-controlled surges ('hard-bed') in Alaska and thermally-regulated ('soft-bed') surges elsewhere is less stark than previously assumed. Studying marginal ice caps can therefore be valuable in several ways. The largest fringing ice cap in Greenland is Flade Isblink. Previous work has established that this ice cap is showing a range of dynamic behaviour, including subglacial lake drainage and varied patterns of mass-balance change. In particular, a substantial surge, assumed to be caused by a version of the thermally-regulated mechanism, occurred between 1996 and 2000, making the ice cap a useful case study for investigating this process. Here we investigate the surge on Flade Isblink using the open-source, Full-Stokes model Elmer/Ice to invert for basal conditions and englacial temperatures using the adjoint method. We specifically study steady-state conditions representative of the active surge phase in 2000, and the subsequent quiescent phase, using patterns of surface velocity observed in 2000, 2005, 2008 and 2015. Under constant geometry, temperature and geothermal heat, it is shown that surging increases basal freezing rates by over 60% across an area that is twice as large as the area over which the bed freezes in the quiescent phase. The process responsible for this

  16. Pupillary light reaction during high altitude exposure.

    Directory of Open Access Journals (Sweden)

    Maximilian Schultheiss

    Full Text Available PURPOSE: This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS. This work is related to the Tübingen High Altitude Ophthalmology (THAO study. METHODS: Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity were quantified in 14 healthy volunteers at baseline (341 m and high altitude (4559 m over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline and the 95% confidence interval for each time point. RESULTS: During high altitude exposure the initial diameter size was significantly reduced (p<0.05. In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05 on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. CONCLUSIONS: Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS.

  17. Pupillary Light Reaction during High Altitude Exposure

    Science.gov (United States)

    Schatz, Andreas; Wilhelm, Barbara; Peters, Tobias; Fischer, M. Dominik; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian; Willmann, Gabriel

    2014-01-01

    Purpose This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Methods Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14 healthy volunteers at baseline (341 m) and high altitude (4559 m) over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline) and the 95% confidence interval for each time point. Results During high altitude exposure the initial diameter size was significantly reduced (p<0.05). In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05) on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. Conclusions Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS. PMID:24503770

  18. Developmental functional adaptation to high altitude: review.

    Science.gov (United States)

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  19. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii

    Science.gov (United States)

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.

    2010-01-01

    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a

  20. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    Science.gov (United States)

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  1. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    Science.gov (United States)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared

  2. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  3. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  4. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2011-12-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski Icefield and the adjacent central part. The newly data set is composed of groundbased and airborne Ground Penetrating Radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the groundbased measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the used instrument, survey, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is ~240 m, with a maximum value of ~400 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at doi:10.1594/PANGAEA.770567.

  5. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    Science.gov (United States)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  6. Black carbon aerosols and the third polar ice cap

    Directory of Open Access Journals (Sweden)

    S. Menon

    2009-12-01

    Full Text Available Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~30%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000, and are mainly obtained with the newer BC estimates.

  7. Black carbon aerosols and the third polar ice cap

    Directory of Open Access Journals (Sweden)

    S. Menon

    2010-05-01

    Full Text Available Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000, and are mainly obtained with the newer BC estimates.

  8. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  9. Testing models of ice cap extent, South Georgia, sub-Antarctic

    Science.gov (United States)

    Barlow, N. L. M.; Bentley, M. J.; Spada, G.; Evans, D. J. A.; Hansom, J. D.; Brader, M. D.; White, D. A.; Zander, A.; Berg, S.

    2016-12-01

    The extent of Last Glacial Maximum ice in South Georgia is contested, with two alternative hypotheses: an extensive (maximum) model of ice reaching the edge of the continental shelf, or a restricted (minimum) model with ice constrained within the inner fjords. We present a new relative sea-level dataset for South Georgia, summarising published and new geomorphological evidence for the marine limit and elevations of former sea levels on the island. Using a glacial isostatic adjustment model (ALMA) specifically suited to regional modelling and working at high spatial resolutions, combined with a series of simulated ice-load histories, we use the relative sea-level data to test between the restricted and extensive ice extent scenarios. The model results suggest that there was most likely an extensive Last Glacial Maximum glaciation of South Georgia, implying that the island was covered by thick (>1000 m) ice, probably to the edge of the continental shelf, with deglaciation occurring relatively early (ca. 15 ka BP, though independent data suggest this may have been as early as 18 ka). The presence of an extensive ice cap extending to the shelf edge would imply that if there were any biological refugia around South Georgia, they must have been relatively localised and restricted to the outermost shelf.

  10. Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations

    Science.gov (United States)

    Puspitarini, L.; Määttänen, A.; Fouchet, T.; Kleinboehl, A.; Kass, D. M.; Schofield, J. T.

    2016-11-01

    High altitude clouds have been observed in the Martian atmosphere. However, their properties still remain to be characterized. Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO) is an instrument that measures radiances in the thermal infrared, both in limb and nadir views. It allows us to retrieve vertical profiles of radiance, temperature and aerosols. Using the MCS data and radiative transfer model coupled with an automated inversion routine, we can investigate the chemical composition of the high altitude clouds. We will present the first results on the properties of the clouds. CO2 ice is the best candidate to be the main component of some high altitude clouds due to the most similar spectral variation compared to water ice or dust, in agreement with previous studies. Using cloud composition of contaminated CO2 ice (dust core surrounded by CO2 ice) might improve the fitting result, but further study is needed.

  11. Ice cap melting and low‐viscosity crustal root explain the narrow geodetic uplift of the Western Alps

    National Research Council Canada - National Science Library

    Chéry, J; Genti, M; Vernant, P

    2016-01-01

    ...) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations...

  12. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Gardner, Alex S; Moholdt, Geir; Wouters, Bert; Wolken, Gabriel J; Burgess, David O; Sharp, Martin J; Cogley, J Graham; Braun, Carsten; Labine, Claude

    2011-05-19

    Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change remains largely unknown. Here we show that the Canadian Arctic Archipelago has recently lost 61 ± 7 gigatonnes per year (Gt yr(-1)) of ice, contributing 0.17 ± 0.02 mm yr(-1) to sea-level rise. Our estimates are of regional mass changes for the ice caps and glaciers of the Canadian Arctic Archipelago referring to the years 2004 to 2009 and are based on three independent approaches: surface mass-budget modelling plus an estimate of ice discharge (SMB+D), repeat satellite laser altimetry (ICESat) and repeat satellite gravimetry (GRACE). All three approaches show consistent and large mass-loss estimates. Between the periods 2004-2006 and 2007-2009, the rate of mass loss sharply increased from 31 ± 8 Gt yr(-1) to 92 ± 12 Gt yr(-1) in direct response to warmer summer temperatures, to which rates of ice loss are highly sensitive (64 ± 14 Gt yr(-1) per 1 K increase). The duration of the study is too short to establish a long-term trend, but for 2007-2009, the increase in the rate of mass loss makes the Canadian Arctic Archipelago the single largest contributor to eustatic sea-level rise outside Greenland and Antarctica.

  13. High Artic Glaciers and Ice Caps Ice Mass Change from GRACE, Regional Climate Model Output and Altimetry.

    Science.gov (United States)

    Ciraci, E.; Velicogna, I.; Fettweis, X.; van den Broeke, M. R.

    2016-12-01

    The Arctic hosts more than the 75% of the ice covered regions outside from Greenland and Antarctica. Available observations show that increased atmospheric temperatures during the last century have contributed to a substantial glaciers retreat in all these regions. We use satellite gravimetry by the NASA's Gravity Recovery and Climate Experiment (GRACE), and apply a least square fit mascon approach to calculate time series of ice mass change for the period 2002-2016. Our estimates show that arctic glaciers have constantly contributed to the sea level rise during the entire observation period with a mass change of -170+/-20 Gt/yr equivalent to the 80% of the total ice mass change from the world Glacier and Ice Caps (GIC) excluding the Ice sheet peripheral GIC, which we calculated to be -215+/-32 GT/yr, with an acceleration of 9+/-4 Gt/yr2. The Canadian Archipelago is the main contributor to the total mass depletion with an ice mass trend of -73+/-9 Gt/yr and a significant acceleration of -7+/-3 Gt/yr2. The increasing mass loss is mainly determined by melting glaciers located in the northern part of the archipelago.In order to investigate the physical processes driving the observed ice mass loss we employ satellite altimetry and surface mass balance (SMB) estimates from Regional climate model outputs available for the same time period covered by the gravimetry data. We use elevation data from the NASA ICESat (2003-2009) and ESA CryoSat-2 (2010-2016) missions to estimate ice elevation changes. We compare GRACE ice mass estimates with time series of surface mass balance from the Regional Climate Model (RACMO-2) and the Modèle Atmosphérique Régional (MAR) and determine the portion of the total mass change explained by the SMB signal. We find that in Iceland and in the and the Canadian Archipelago the SMB signal explains most of the observed mass changes, suggesting that ice discharge may play a secondary role here. In other region, e.g. in Svalbar, the SMB signal

  14. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    DEFF Research Database (Denmark)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2017-01-01

    -based observations of loading and melting within the 1 math formula confidence bounds of the inversion. We identify nonperiodic ice mass changes associated with interannual variability in precipitation and other processes such as increased melting due to reduced ice surface albedo or decreased melting due to ice cap......As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak......-to-peak vertical amplitudes over 20 mm for those sites in the Central Highlands. Here for the first time for Iceland, we demonstrate the utility of these cGPS-measured displacements for estimating seasonal and shorter-term ice cap mass changes. We calculate unit responses to each of the five largest ice caps...

  15. Ice core from Akademii Nauk ice cap, Severnaya Zemlya (Russian Arctic), dated with a Nye model modified for a growing glacier

    Science.gov (United States)

    Fritzsche, Diedrich; Opel, Thomas; Meyer, Hanno

    2010-05-01

    From 1999 to 2001 a 724 m deep ice core has been drilled from surface to bedrock close to summit of the Akademii Nauk ice cap, Severnaya Zemlya (Russian Arctic), within a joint German-Russian project. The analysis of stable water isotopes and major ion concentration in high resolution were used for reconstruction of past climate and environmental changes. The upper 304 m of the core were dated by counting annual stable isotope cycles considering radioactive (1986, 1963) and volcanic events (1956, 1912, 1783, 1259) as reference horizons. The resulting depth-age relationship and the corresponding annual-layer thickness imply that the ice cap was not in dynamic steady state but had been growing until recent times. That does not comply with requirements of a standard Nye or Dansgaard-Johnson flow model approach. To take into account the peculiarities of Akademii Nauk ice cap a Nye model was modified by adding a growing term according to the found relationship between annual layer thickness and depth. Using the volcanoes identified an average increase of altitude of about 0.08 m w.e. per year was calculated since AD 1259. The model enables us to reconstruct the altitude changes of the ice cap with time and to consider an altitude effect to correct the stable isotope values and to explain decreasing sea-salt ion data. Using the suggested model annual layer thickness can be decompressed to accumulation rates at the altitude where the precipitation was originally deposited. The model can also be used for dating deeper parts of ice core where volcanoes are not identified up to now. Applying this model, the ice core has an age of about 2 500 years, much less than claimed for an older core from Akademii Nauk ice cap. Consequently, the ice cap is much younger and only of Late Holocene age, as also assumed for most Arctic ice caps and glaciers outside Greenland. However, the lowest part of Akademii Nauk ice cap is probably a remnant of an older ice cap stage.

  16. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    Science.gov (United States)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  17. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic) during th

  18. Microparticles, soil, derived chemical components and sea salt in the Hans Tausen Ice Cap ice core from Peary Island, North Greenland

    DEFF Research Database (Denmark)

    Steffensen, J.P.; Andersen, M.L.S; Stampe, Mia

    2001-01-01

    to be a result of melt water run-off. Compared to Central Greenland ice cores the Hans Tausen ice is strongly enriched in soluble crustal material from local sources manifested by high concentrations of Ca2+ and nss Mg2+. In the bottom 100 m section our results indicate a loss of Ca2+ and Mg2+ relative to dust...... due to melt water run-off. Sea salt concentrations show little variation with depth, and our results indicate, that the sea salt in Hans Tausen ice is from remote sources. The North Polar Sea has not been a significant source of sea salt in the life time of the Hans Tausen ice cap. All our results...... are consistent with the hypothesis that the Hans Tausen ice cap was formed sometime during the Holocene: It started as a small ice cap of superimposed ice with heavy melting and strong influence of local dust sources. With time the ice cap grew, both horizontally and vertically, the surface got colder with less...

  19. Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard

    Science.gov (United States)

    Schäfer, M.; Gillet-Chaulet, F.; Gladstone, R.; Pettersson, R.; Pohjola, V. A.; Strozzi, T.; Zwinger, T.

    2014-10-01

    Understanding the response of fast flowing ice streams or outlet glaciers to changing climate is crucial in order to make reliable projections of sea level change over the coming decades. Motion of fast outlet glaciers occurs largely through basal motion governed by physical processes at the glacier bed, which are not yet fully understood. Various subglacial mechanisms have been suggested for fast flow but common to most of the suggested processes is the requirement of presence of liquid water, and thus temperate conditions. We use a combination of modelling, field, and remote observations in order to study links between different heat sources, the thermal regime and basal sliding in fast flowing areas on Vestfonna ice cap. A special emphasis lies on Franklinbreen, a fast flowing outlet glacier which has been observed to accelerate recently. We use the ice flow model Elmer/Ice including a Weertman type sliding law and a Robin inverse method to infer basal friction parameters from observed surface velocities. Firn heating, i.e. latent heat release through percolation of melt water, is included in our model; its parameterisation is calibrated with the temperature record of a deep borehole. We found that strain heating is negligible, whereas friction heating is identified as one possible trigger for the onset of fast flow. Firn heating is a significant heat source in the central thick and slow flowing area of the ice cap and the essential driver behind the ongoing fast flow in all outlets. Our findings suggest a possible scenario of the onset and maintenance of fast flow on the Vestfonna ice cap based on thermal processes and emphasise the role of latent heat released through refreezing of percolating melt water for fast flow. However, these processes cannot yet be captured in a temporally evolving sliding law. In order to simulate correctly fast flowing outlet glaciers, ice flow models not only need to account fully for all heat sources, but also need to incorporate

  20. Pulmonary Embolism Masquerading as High Altitude Pulmonary Edema at High Altitude.

    Science.gov (United States)

    Pandey, Prativa; Lohani, Benu; Murphy, Holly

    2016-12-01

    Pandey, Prativa, Benu Lohani, and Holly Murphy. Pulmonary embolism masquerading as high altitude pulmonary edema at high altitude. High Alt Med Biol. 17:353-358, 2016.-Pulmonary embolism (PE) at high altitude is a rare entity that can masquerade as or occur in conjunction with high altitude pulmonary edema (HAPE) and can complicate the diagnosis and management. When HAPE cases do not improve rapidly with descent, other diagnoses, including PE, ought to be considered. From 2013 to 2015, we identified eight cases of PE among 303 patients with initial diagnosis of HAPE. Upon further evaluation, five had deep vein thrombosis (DVT). One woman had a contraceptive ring and seven patients had no known thrombotic risks. PE can coexist with or mimic HAPE and should be considered in patients presenting with shortness of breath from high altitude regardless of thrombotic risk.

  1. A Decade of Elevation and Mass Changes of the North Atlantic Glaciers and Ice Caps

    Science.gov (United States)

    Wouters, B.; Ligtenberg, S.; Moholdt, G.; Gardner, A. S.; van den Broeke, M.; Bamber, J. L.

    2015-12-01

    With a dense coverage and the ability to geo-locate the radar echo position, Cryosat-2's altimeter is well suited for determining elevation change rates of ice caps and glaciers that are often characterized by more complex topographic relief than the much larger ice sheets. We determine elevations trends from Cryosat-2 (2010-2014) of the North-Atlantic glaciers and ice caps and compare these to observations obtained from ICESat laser altimetry (2003-2009). The results show a general glacier imbalance with current climate, characterized by rapid thinning at the lower elevations where surface melting is stronger. Using a firn and surface mass balance model, we estimate the contribution of the North Atlantic glaciers to sea level rise over the 2003-2014 period to be ~ 1/3 mm per year. In general, our altimetry results are in good agreement with large-scale glacier mass anomalies from GRACE. Regional glacier mass changes appear to be linked to distinct atmospheric circulation patterns, with some regions being in 'status quo' and others experiencing rapid shrinkage. Regional changes in elevation are primarily driven by changes in surface forcing with glacier dynamics dominating the local signal of several tidewater basins.

  2. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude.

  3. Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.

    2013-12-01

    Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al

  4. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  5. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    DEFF Research Database (Denmark)

    Machguth, H.; Rastner, P.; Bolch, T.

    2013-01-01

    . Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important......We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR...

  6. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap: future modeled histories obtained for the reference surface mass balance

    Directory of Open Access Journals (Sweden)

    Y. V. Konovalov

    2015-11-01

    Full Text Available The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit, (b along the C–C' flow line from ~ 43 to ~ 37 km, and (c along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.

  7. Recent mass balance of Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry

    Directory of Open Access Journals (Sweden)

    N. Neckel

    2013-03-01

    Full Text Available Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau (TP. This study presents an interferometrical approach aiming at surface elevation changes of Purogangri ice cap, located on the central TP. Purogangri ice cap covers an area of 397 ± 9.7 km2 and is the largest ice cap on the TP. Its behavior is determined by dry and cold continental climate suggesting a polar-type glacier regime. We employed data from the actual TerraSAR-X mission and its add-on for Digital Elevation Measurements (TanDEM-X and compare it with elevation data from the Shuttle Radar Topography Mission (SRTM. These datasets are ideal for this approach as both datasets feature the same wavelength of 3.1 cm and are available at a fine grid spacing. Similar snow conditions can be assumed since the data were acquired in early February 2000 and late January 2012. The trend in glacier extend was extracted using a time series of Landsat data. Our results show a balanced mass budget for the studied time period which is in agreement with previous studies. Additionally, we detected an exceptional fast advance of one glacier tongue in the eastern part of the ice cap between 1999 and 2011.

  8. Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

    Directory of Open Access Journals (Sweden)

    T. Dunse

    2014-05-01

    Full Text Available Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a−1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a−1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

  9. Numerical modeling of Drangajökull Ice Cap, NW Iceland

    Science.gov (United States)

    Anderson, Leif S.; Jarosch, Alexander H.; Flowers, Gwenn E.; Aðalgeirsdóttir, Guðfinna; Magnússon, Eyjólfur; Pálsson, Finnur; Muñoz-Cobo Belart, Joaquín; Þorsteinsson, Þorsteinn; Jóhannesson, Tómas; Sigurðsson, Oddur; Harning, David; Miller, Gifford H.; Geirsdóttir, Áslaug

    2016-04-01

    Over the past century the Arctic has warmed twice as fast as the global average. This discrepancy is likely due to feedbacks inherent to the Arctic climate system. These Arctic climate feedbacks are currently poorly quantified, but are essential to future climate predictions based on global circulation modeling. Constraining the magnitude and timing of past Arctic climate changes allows us to test climate feedback parameterizations at different times with different boundary conditions. Because Holocene Arctic summer temperature changes have been largest in the North Atlantic (Kaufman et al., 2004) we focus on constraining the paleoclimate of Iceland. Glaciers are highly sensitive to changes in temperature and precipitation amount. This sensitivity allows for the estimation of paleoclimate using glacier models, modern glacier mass balance data, and past glacier extents. We apply our model to the Drangajökull ice cap (~150 sq. km) in NW Iceland. Our numerical model is resolved in two-dimensions, conserves mass, and applies the shallow-ice-approximation. The bed DEM used in the model runs was constructed from radio echo data surveyed in spring 2014. We constrain the modern surface mass balance of Drangajökull using: 1) ablation and accumulation stakes; 2) ice surface digital elevation models (DEMs) from satellite, airborne LiDAR, and aerial photographs; and 3) full-stokes model-derived vertical ice velocities. The modeled vertical ice velocities and ice surface DEMs are combined to estimate past surface mass balance. We constrain Holocene glacier geometries using moraines and trimlines (e.g., Brynjolfsson, etal, 2014), proglacial-lake cores, and radiocarbon-dated dead vegetation emerging from under the modern glacier. We present a sensitivity analysis of the model to changes in parameters and show the effect of step changes of temperature and precipitation on glacier extent. Our results are placed in context with local lacustrine and marine climate proxies as well

  10. Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry

    Science.gov (United States)

    Foresta, L.; Gourmelen, N.; Pálsson, F.; Nienow, P.; Björnsson, H.; Shepherd, A.

    2016-12-01

    We apply swath processing to CryoSat-2 interferometric mode data acquired over the Icelandic ice caps to generate maps of rates of surface elevation change at 0.5 km postings. This high-resolution mapping reveals complex surface elevation changes in the region, related to climate, ice dynamics, and subglacial geothermal and magmatic processes. We estimate rates of volume and mass change independently for the six major Icelandic ice caps, 90% of Iceland's permanent ice cover, for five glaciological years between October 2010 and September 2015. Annual mass balance is highly variable; during the 2014/2015 glaciological year, the Vatnajökull ice cap ( 70% of the glaciated area) experienced positive mass balance for the first time since 1992/1993. Our results indicate that between glaciological years 2010/2011and 2014/2015 Icelandic ice caps have lost 5.8 ± 0.7 Gt a-1 on average, 40% less than the preceding 15 years, contributing 0.016 ± 0.002 mm a-1 to sea level rise.

  11. Sleep of Andean high altitude natives.

    Science.gov (United States)

    Coote, J H; Stone, B M; Tsang, G

    1992-01-01

    The structure of sleep in lowland visitors to altitudes greater than 4000 m is grossly disturbed. There are no data on sleep in long-term residents of high altitudes. This paper describes an electroencephalographic study of sleep in high altitude dwellers who were born in and are permanent residents of Cerro de Pasco in the Peruvian Andes, situated at 4330 m. Eight healthy male volunteers aged between 18 and 69 years were studied. Sleep was measured on three consecutive nights for each subject. Electroencephalographs, submental electromyographs and electro-oculograms were recorded. Only data from the third night were used in the analysis. The sleep patterns of these subjects resembled the normal sleep patterns described by others in lowlanders at sea level. There were significant amounts of slow wave sleep in the younger subjects and rapid eye movement sleep seemed unimpaired.

  12. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  13. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  14. High-altitude physiology: lessons from Tibet

    Science.gov (United States)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (Pcardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  15. Breathing and sleep at high altitude.

    Science.gov (United States)

    Ainslie, Philip N; Lucas, Samuel J E; Burgess, Keith R

    2013-09-15

    We provide an updated review on the current understanding of breathing and sleep at high altitude in humans. We conclude that: (1) progressive changes in pH initiated by the respiratory alkalosis do not underlie early (48 h), complex cellular and neurochemical re-organization occurs both in the peripheral chemoreceptors as well as within the central nervous system. The latter is likely influenced by central acid-base changes secondary to the extent of the initial respiratory responses to initial exposure to high altitude; (3) sleep at high altitude is disturbed by various factors, but principally by periodic breathing; (4) the extent of periodic breathing during sleep at altitude intensifies with duration and severity of exposure; (5) complex interactions between hypoxic-induced enhancement in peripheral and central chemoreflexes and cerebral blood flow--leading to higher loop gain and breathing instability--underpin this development of periodic breathing during sleep; (6) because periodic breathing may elevate rather than reduce mean SaO2 during sleep, this may represent an adaptive rather than maladaptive response; (7) although oral acetazolamide is an effective means to reduce periodic breathing by 50-80%, recent studies using positive airway pressure devices to increase dead space, hyponotics and theophylline are emerging but appear less practical and effective compared to acetazolamide. Finally, we suggest avenues for future research, and discuss implications for understanding sleep pathology.

  16. Recent contributions of glaciers and ice caps to sea level rise.

    Science.gov (United States)

    Jacob, Thomas; Wahr, John; Pfeffer, W Tad; Swenson, Sean

    2012-02-08

    Glaciers and ice caps (GICs) are important contributors to present-day global mean sea level rise. Most previous global mass balance estimates for GICs rely on extrapolation of sparse mass balance measurements representing only a small fraction of the GIC area, leaving their overall contribution to sea level rise unclear. Here we show that GICs, excluding the Greenland and Antarctic peripheral GICs, lost mass at a rate of 148 ± 30 Gt yr(-1) from January 2003 to December 2010, contributing 0.41 ± 0.08 mm yr(-1) to sea level rise. Our results are based on a global, simultaneous inversion of monthly GRACE-derived satellite gravity fields, from which we calculate the mass change over all ice-covered regions greater in area than 100 km(2). The GIC rate for 2003-2010 is about 30 per cent smaller than the previous mass balance estimate that most closely matches our study period. The high mountains of Asia, in particular, show a mass loss of only 4 ± 20 Gt yr(-1) for 2003-2010, compared with 47-55 Gt yr(-1) in previously published estimates. For completeness, we also estimate that the Greenland and Antarctic ice sheets, including their peripheral GICs, contributed 1.06 ± 0.19 mm yr(-1) to sea level rise over the same time period. The total contribution to sea level rise from all ice-covered regions is thus 1.48 ± 0.26 mm (-1), which agrees well with independent estimates of sea level rise originating from land ice loss and other terrestrial sources.

  17. Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015

    Science.gov (United States)

    Millan, Romain; Mouginot, Jeremie; Rignot, Eric

    2017-02-01

    Recent studies indicate that the glaciers and ice caps in Queen Elizabeth Islands (QEI), Canada have experienced an increase in ice mass loss during the last two decades, but the contribution of ice dynamics to this loss is not well known. We present a comprehensive mapping of ice velocity using a suite of satellite data from year 1991 to 2015, combined with ice thickness data from NASA Operation IceBridge, to calculate ice discharge. We find that ice discharge increased significantly after 2011 in Prince of Wales Icefield, maintained or decreased in other sectors, whereas glacier surges have little impact on long-term trends in ice discharge. During 1991–2005, the QEI mass loss averaged 6.3 ± 1.1 Gt yr‑1, 52% from ice discharge and the rest from surface mass balance (SMB). During 2005–2014, the mass loss from ice discharge averaged 3.5 ± 0.2 Gt yr‑1 (10%) versus 29.6 ± 3.0 Gt yr‑1 (90%) from SMB. SMB processes therefore dominate the QEI mass balance, with ice dynamics playing a significant role only in a few basins.

  18. Geometric changes and mass balance of the Austfonna ice cap, Svalbard

    Directory of Open Access Journals (Sweden)

    G. Moholdt

    2010-01-01

    Full Text Available The dynamics and mass balance regime of the Austfonna ice cap, the largest glacier on Svalbard, deviates significantly from most other glaciers in the region and is not fully understood. We have compared ICESat laser altimetry, airborne laser altimetry, GNSS surface profiles and radio echo-sounding data to estimate elevation change rates for the periods 1983–2007 and 2002–2008. The data sets indicate a pronounced interior thickening of up to 0.5 m y−1, at the same time as the margins are thinning at a rate of 1–3 m y−1. The southern basins are thickening at a higher rate than the northern basins due to a higher accumulation rate. The overall volume change in the 2002–2008 period is estimated to be −1.3±0.5 km3 w.e. y−1 (or −0.16±0.06 m w.e. y−1 where the entire net loss is due to a rapid retreat of the calving fronts. Since most of the marine ice loss occurs below sea level, Austfonna's current contribution to sea level change is close to zero. The geodetic results are compared to in-situ mass balance measurements which indicate that the 2004–2008 surface net mass balance has been slightly positive (0.05 m w.e. y−1 though with large annual variations. Similarities between local net mass balances and local elevation changes indicate that most of the ice cap is slow-moving and not in dynamic equilibrium with the current climate. More knowledge is needed about century-scale dynamic processes in order to predict the future evolution of Austfonna based on climate scenarios.

  19. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images

    OpenAIRE

    J. M. C. Belart; E. Berthier; E. Magnússon; Anderson, L.S.; F. Pálsson; Thorsteinsson, T; Howat, I. M.; Aðalgeirsdóttir, G.; Jóhannesson, T.; A. H. Jarosch

    2017-01-01

    Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Sta...

  20. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    Science.gov (United States)

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema. PMID:25478294

  1. Sleep at high altitude: guesses and facts.

    Science.gov (United States)

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease.

  2. Use of Tephrochronology in the Evaluation of Accumulation Rates on Nelson Ice Cap,South Shetland Isands,Antarctica

    Institute of Scientific and Technical Information of China (English)

    秦大河; G A.Zielinski; M.S.Germain; 任贾文; 王晓香; 王文悌

    1994-01-01

    A volcanic ash layer was observed in the 3 ice cores on the Nelson Ice Cap,Antarctica.Acomparison of major elemental composition of glass shards from the 3 tephra layers with average whole-rockcompositions of 1967-1970 eruptions on the Deception Island and of glass shards from other suspected De-ception Island eruptions collected from Antarctic ice and firn indicate that the most reasonable source for thetephra in the Nelson Ice Cap cores is the 1970 eruption on the Deception Island.From the depth of the vol-canic ash layer and measured density profile of the cores,the net accumulation rate at the summit,CoreGW,is 1200 g·cm-2·a-1 during the past 20 years,and the net accumulation rates are 700 g·cm-2·a-1and 6 g·cm-2·a-1 at sites N30 and N50,respectively.In the eastern part of the Nelson Ice Cap,the accu-mulation rate may be higher than that in the northern part,because no volcanic ash in ice cores was observedat similar depths collected from this region.

  3. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  4. In-situ glacier monitoring in Zackenberg (NE Greenland): Freya Glacier and A.P. Olsen Ice Cap

    Science.gov (United States)

    Hynek, Bernhard; Hillerup Larsen, Signe; Binder, Daniel; Weyss, Gernot; Citterio, Michele; Schöner, Wolfgang; Ahlstrøm, Andreas Peter

    2015-04-01

    Due to the scarceness of glacier mass balance measurements from glaciers and local ice caps in East Greenland and the strong impact that local glaciers and ice caps outside the Ice Sheet are expected to exert on sea level rise in the present century, in 2007 and 2008 two glaciological monitoring programmes of peripheral Greenlandic glaciers started to operate near the Zackenberg Research Station in NE Greenland (74° N, 21° W). Freya (Fröya) Glacier is a 6 km long valley glacier situated on Clavering Island 10 km southeast of the Zackenberg research station with a surface area of 5.3 km2 (2013), reaching from 1305 m to 273 m a.s.l. The glacier is mainly oriented to NW and surrounded by high mountain ridges on both sides. A.P. Olsen Ice Cap is a 295 km2 peripheral ice cap located 35 km northeast of Zackenberg. The mass balance monitoring network is situated on the SE outlet glacier reaching from 1425 m to 525 m which drains into the hydrological basin of Zackenberg. This outlet glacier dams a lake which caused several glacial outburst floods within the period of investigation. The two studied glaciers are very close to each other (35 km), but they are complementary in many ways. Apart from the difference in size, which requires different monitoring strategies, Freya Glacier is nearer to the coast and therefore exposed to a more maritime climate with higher winter accumulation. The different area-altitude distribution of both glaciers is one of the main reason for the significantly more positive mean specific mass balance of A.P. Olsen Ice Cap compared to Freya Glacier. In this talk we present the glaciological monitoring on both glaciers and the main results of the first seven years of data.

  5. Geodetic glacier mass balancing on ice caps - inseparably connected to firn modelling?

    Science.gov (United States)

    Saß, Björn L.; Sauter, Tobias; Seehaus, Thorsten; Braun, Matthias H.

    2017-04-01

    Observed melting of glaciers and ice caps in the polar regions contribute to the ongoing global sea level rise (SLR). A rising sea level and its consequences are one of the major challenges for coastal societies in the next decades to centuries. Gaining knowledge about the main drivers of SLR and bringing it together is one recent key-challenge for environmental science. The high arctic Svalbard archipelago faced a strong climatic change in the last decades, associated with a change in the cryosphere. Vestfonna, a major Arctic ice cap in the north east of Svalbard, harbors land and marine terminating glaciers, which expose a variability of behavior. We use high resolution remote sensing data from space-borne radar (TanDEM-X, TerraSAR-X, Sentinel-1a), acquired between 2009 and 2015, to estimate glacier velocity and high accurate surface elevation changes. For DEM registration we use space-borne laser altimetry (ICESat) and an existing in-situ data archive (IPY Kinnvika). In order to separate individual glacier basin changes for a detailed mass balance study and for further SLR contribution estimates, we use glacier outlines from the Global Land Ice Measurements from Space (GLIMS) project. Remaining challenges of space-borne observations are the reduction of measurement uncertainties, in the case of Synthetic Aperture Radar most notably signal penetration into the glacier surface. Furthermore, in order to convert volume to mass change one has to use the density of the changed mass (conversion factor) and one has to account for the mass conservation processes in the firn package (firn compaction). Both, the conversion factor and the firn compaction are not (yet) measurable for extensive ice bodies. They have to be modelled by coupling point measurements and regional gridded climate data. Results indicate a slight interior thickening contrasted with wide spread thinning in the ablation zone of the marine terminating outlets. While one glacier system draining to the

  6. The High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  7. Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western Alps

    Science.gov (United States)

    Chery, Jean; Genti, Manon; Vernant, Philippe

    2016-04-01

    More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the Alps and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the Alps, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central Alps, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.

  8. Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap

    Science.gov (United States)

    Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.

    2008-12-01

    The discovery of substantial amounts of magnesium and perchlorate by Phoenix' "Wet Chemistry Lab" (WCL) in the soil of Polar Mars suggests that magnesium perchlorate could be the dominant salt in the polar region's soils. This prospect opens some unexpected doors for moving liquid water around at temperatures as low as -68C. In its fully hydrated form ,this salt water mixture has a high density (~ 1700 kgm /cubic meter) (Besley and Bottomley,1969) and a freezing point of -68C (Pestova et al., 2005).This perchlorate is very deliquescent and gives off heat as it melts ice. About 1.8 gram of ice can be 'melted' by 1 gm of pure magnesium perchlorate . If the reported 1 percent perchlorate is typical of polar soils and if 5 percent of the Northern Permanent Ice Cap is soil then the perchorate , makes up about 0.0005 the of the ice cap. Given the average thickness of the ice cap is about 2000 meters,this suggests there enough perchorate in the ice cap to generate about 2m of salty water at the bed. Because of its density the perclorate salty water would pool over impervious layers and make the bed into a perchorate sludge that could be mobilized and deformed by the overburden of ice. The deformation of mobile beds is a well known phenomenon on some terrestrial glaciers presently and was thought to have played a major role during the Wisconsinan ice age (Fisher et al., 1985) . The perchorate sludge would be deformed and moved outwards possibly resulting its re-introduction to the polar environment. Having a deliquescent salt sludge at the bed whose melting point is -68C would mean that the ice cap could slide on its deformable bed while the ice itself was still very cold and stiff . This possibility has been modeled with a 2D time varying model . Adding the deformable bed material allows ice cap motion even at ice temperatures cold enough to generate and preserve the scarp/trough features. When the perchlorate formation mechanisms and rates are known the ultimate

  9. Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjokull ice cap, Iceland

    Science.gov (United States)

    Hall, D.K.; Williams, R.S.; Barton, J.S.; Sigurdsson, O.; Smith, L.C.; Garvin, J.B.

    2000-01-01

    Dynamic surficial changes and changes in the position of the firn line and the areal extent of Hofsjökull ice cap, Iceland, were studied through analysis of a time series (1973–98) of synthetic-aperture radar (SAR) and Landsat data. A digital elevation model of Hofsjökull, which was constructed using SAR interferometry, was used to plot the SAR backscatter coefficient (σ°) vs elevation and air temperature along transects across the ice cap. Seasonal and daily σ° patterns are caused by freezing or thawing of the ice-cap surface, and abrupt changes in σ° are noted when the air temperature ranges from ∼−5° to 0°C. Late-summer 1997 σ° (SAR) and reflectance (Landsat) boundaries agree and appear to be coincident with the firn line and a SAR σ° boundary that can be seen in the January 1998 SAR image. In January 1994 through 1998, the elevation of this σ° boundary on the ice capwas quite stable, ranging from 1000 to 1300 m, while the equilibrium-line altitude, as measured on the ground, varied considerably. Thus the equilibrium line may be obscured by firn from previous years. Techniques are established to measure long-term changes in the elevation of the firn line and changes in the position of the ice margin.

  10. Mass loss of the Greenland peripheral glaciers and ice caps from satellite altimetry

    Science.gov (United States)

    Wouters, Bert; Noël, Brice; Moholdt, Geir; Ligtenberg, Stefan; van den Broeke, Michiel

    2017-04-01

    At its rapidly warming margins, the Greenland Ice Sheet is surrounded by (semi-)detached glaciers and ice caps (GIC). Although they cover only roughly 5% of the total glaciated area in the region, they are estimated to account for 15-20% of the total sea level rise contribution of Greenland. The spatial and temporal evolution of the mass changes of the peripheral GICs, however, remains poorly constrained. In this presentation, we use satellite altimetry from ICESat and Cryosat-2 combined with a high-resolution regional climate model to derive a 14 year time series (2003-2016) of regional elevation and mass changes. The total mass loss has been relatively constant during this period, but regionally, the GICs show marked temporal variations. Whereas thinning was concentrated along the eastern margin during 2003-2009, western GICs became the prime sea level rise contributors in recent years. Mass loss in the northern region has been steadily increasing throughout the record, due to a strong atmospheric warning and a deterioration of the capacity of the firn layer to buffer the resulting melt water.

  11. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps.

    Science.gov (United States)

    Noël, B; van de Berg, W J; Lhermitte, S; Wouters, B; Machguth, H; Howat, I; Citterio, M; Moholdt, G; Lenaerts, J T M; van den Broeke, M R

    2017-03-31

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt(-1), or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  12. A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps

    Science.gov (United States)

    Noël, B.; van de Berg, W. J.; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.

    2017-03-01

    Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (+/-5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36+/-16 Gt-1, or ~14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

  13. Atmospheric Controls of Snow Accumulation on Glaciers and Ice Caps in High Asia

    Science.gov (United States)

    Scherer, D.; Curio, J.

    2015-12-01

    Snowfall is the major contributor to snow accumulation on glaciers and ice caps. Unfortunately, its quantification is rather difficult, both by observations and by numerical modelling. Field measurements of snowfall are generally problematic, and particularly inaccurate in mountainous regions. This holds true also for data from remote sensing systems like the TRMM. Numerical modelling of precipitation in general, and of snowfall in particular, is depending on parameterization of sub-grid processes occurring at a wide range of spatial scales. The scarcity of reliable observational data on snowfall required to test and validate the relevant parameterization schemes is one of the major obstacles for deepening our understanding of atmospheric controls of snow accumulation on glaciers and ice caps. In addition, the often made assumption that easy-to-measure snow accumulation equals snowfall is not valid in areas where other processes like snowdrift or avalanches cause snow deposition or erosion. Besides a general discussion of the above-mentioned problems, the presentation will focus on results obtained from a gridded atmospheric data set, i.e., the so-called High Asia Refined analysis (HAR), covering the study region by two nested domains of 30 km and 10 km grid spacing. Starting from autumn 2000, three-hourly (30 km) and hourly (10 km) data are available for a comprehensive set of atmospheric variables (see www.klima.tu-berlin.de/HAR). HAR data was used to analyse annual and seasonal patterns of precipitation and atmospheric water transport, as well as to drive numerical models for surface mass balance of glaciers and ice sheets. A new study, which is the main subject of this presentation, reveals specific regimes of dynamic controls of precipitation in different regions of High Asia. One of the striking results is that the analysis identified a specific regime that is able to explain some of the atmospheric controls behind the so-called Karakoram anomaly (glaciers in

  14. Quantifying the mass loss of peripheral Greenland glaciers and ice caps (1958-2014).

    Science.gov (United States)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; van den Broeke, Michiel

    2016-04-01

    Since the 2000s, mass loss from Greenland peripheral glaciers and ice caps (GICs) has accelerated, becoming an important contributor to sea level rise. Under continued warming throughout the 21st century, GICs might yield up to 7.5 to 11 mm sea level rise, with increasing dominance of surface runoff at the expense of ice discharge. However, despite multiple observation campaigns, little remains known about the contribution of GICs to total Greenland mass loss. Furthermore, the relatively coarse resolutions in regional climate models, i.e. 5 km to 20 km, fail to represent the small scale patterns of surface mass balance (SMB) components over these topographically complex regions including also narrow valley glaciers. Here, we present a novel approach to quantify the contribution of GICs to surface melt and runoff, based on an elevation dependent downscaling method. GICs daily SMB components at 1 km resolution are obtained by statistically downscaling the outputs of RACMO2.3 at 11 km resolution to a down-sampled version of the GIMP DEM for the period 1958-2014. This method has recently been successfully validated over the Greenland ice sheet and is now applied to GICs. In this study, we first evaluate the 1 km daily downscaled GICs SMB against a newly available and comprehensive dataset of ablation stake measurements. Then, we investigate present-day trends of meltwater production and SMB for different regions and estimate GICs contribution to total Greenland mass loss. These data are considered valuable for model evaluation and prediction of future sea level rise.

  15. HAWC - The High Altitude Water Cherenkov Detector

    Science.gov (United States)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  16. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  17. Protocol: An improved high-throughput method for generating tissue samples in 96-well format for plant genotyping (Ice-Cap 2.0

    Directory of Open Access Journals (Sweden)

    Krysan Patrick J

    2007-06-01

    Full Text Available Abstract Background We previously developed a high-throughput system called 'Ice-Cap' for growing Arabidopsis seedlings in a 96-well format and rapidly collecting tissue for subsequent DNA extraction and genotyping. While the originally described Ice-Cap method is an effective tool for high-throughput genotyping, one shortcoming of the first version of Ice-Cap is that optimal seedling growth is highly dependent on specific environmental conditions. Here we describe several technical improvements to the Ice-Cap method that make it much more robust and provide a detailed protocol for implementing the method. Results The key innovation underlying Ice-Cap 2.0 is the development of a continuous watering system. The addition of the watering system allows the seedling growth plates to be incubated without a lid for the duration of the growth period, which in turn allows for much more uniform and robust seedling growth than was observed using the original method. We also determined that inserting wooden skewers between the upper and lower plates prior to tissue harvest made it easier to separate the plates following freezing. Seedlings grown using the Ice-Cap 2.0 method remain viable in the Ice-Cap plates twice as long as seedlings grown using the original method. Conclusion The continuous watering system that we have developed provides an effective solution to the problem of sub-optimal seedling growth that can be encountered when using the originally described Ice-Cap system. This novel watering system and several additional modifications to the Ice-Cap procedure have improved the robustness and utility of the method.

  18. Assessment of heat sources on the control of fast flow of Vestfonna Ice Cap, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2013-10-01

    Full Text Available The dynamic regime of Svalbard's Nordaustlandet ice caps is dominated by fast flowing outlet glaciers, making assessment of their response to climate change challenging. A key element of the challenge lies in the fact that the motion of fast outlet glaciers occurs largely through basal sliding, and is governed by physical processes at the glacier bed, processes that are difficult both to observe and to simulate. Up to now, most of the sliding laws used in ice flow models were based on uniform parameters with a condition on temperature to identify regions of basal sliding. However these models are usually not able to reproduce observed velocities with sufficient accuracy. With the development of inverse methods, it is now common to infer a spatially varying field of sliding parameters from surface ice-velocity observations. These parameter distributions usually reflect a high spatial variability and represent valuable information to understand and test various hypotheses on physical processes involved in sliding. However, in these models, basal sliding is uncoupled from the thermal regime of basal ice and the evolution of the sliding parameters in prognostic simulations remains problematic. Here we explore the role of different heat sources (friction heating, strain heating and latent heat through percolation of melt water on the development of sliding and fast flow through thermomechanical coupling on Nordaustlandet outlet glaciers. We focus on Vestfonna with a special emphasis on Franklinbreen, a fast flowing outlet glacier which has been observed to accelerate between 1995 and 2008 and possibly already prior to 1995. We try to reconcile the impacts of temperature and heat sources on basal friction coefficients inferred from observed surface velocities during these two periods. Our simulations reproduce a temperature profile from borehole measurements, allowing an interpretation of the vertical temperature structure in terms of temporal

  19. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry

    Directory of Open Access Journals (Sweden)

    N. Neckel

    2013-10-01

    Full Text Available Due to their remoteness, altitude and harsh climatic conditions, little is known about the glaciological parameters of ice caps on the Tibetan Plateau. This study presents a geodetic mass balance estimate of the Purogangri Ice Cap, Tibet's largest ice field between 2000 and 2012. We utilized data from the actual TerraSAR-X mission and its add-on for digital elevation measurements and compared it with elevation data from the Shuttle Radar Topography Mission. The employed data sets are ideal for this approach as both data sets were acquired at X-band at nearly the same time of the year and are available at a fine grid spacing. In order to derive surface elevation changes we employed two different methods. The first method is based on differential synthetic radar interferometry while the second method uses common DEM differencing. Both approaches revealed a slightly negative mass budget of −44 ± 15 and −38 ± 23 mm w.eq. a−1 (millimeter water equivalent respectively. A slightly negative trend of −0.15 ± 0.01 km2 a−1 in glacier extent was found for the same time period employing a time series of Landsat data. Overall, our results show an almost balanced mass budget for the studied time period. Additionally, we detected one continuously advancing glacier tongue in the eastern part of the ice cap.

  20. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    Science.gov (United States)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún; van Dam, Tonie; Bordoni, Andrea; Barletta, Valentina; Spada, Giorgio

    2017-06-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to-peak vertical amplitudes over 20 mm for those sites in the Central Highlands. Here for the first time for Iceland, we demonstrate the utility of these cGPS-measured displacements for estimating seasonal and shorter-term ice cap mass changes. We calculate unit responses to each of the five largest ice caps in central Iceland at each of the 62 cGPS locations using an elastic half-space model and estimate ice mass variations from the cGPS time series using a simple least squares inversion scheme. We utilize all three components of motion, taking advantage of the seasonal motion recorded in the horizontal. We remove secular velocities and accelerations and explore the impact that seasonal motions due to atmospheric, hydrologic, and nontidal ocean loading have on our inversion results. Our results match available summer and winter mass balance measurements well, and we reproduce the seasonal stake-based observations of loading and melting within the 1σ confidence bounds of the inversion. We identify nonperiodic ice mass changes associated with interannual variability in precipitation and other processes such as increased melting due to reduced ice surface albedo or decreased melting due to ice cap insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements.

  1. THE HIGH ALTITUDE GAMMA RAY OBSERVATORY, HAWC

    Directory of Open Access Journals (Sweden)

    M. M. González

    2011-01-01

    Full Text Available El volcán Sierra Negra en Puebla, México fue seleccionado para albergar a HAWC (High Altitude Water Cherenkov, un observatorio de gran apertura (2Pi sr, único en el mundo, capaz de observar contínuamente el cielo a energías de 0.1 a 100 TeV. HAWC consiste en un arreglo a una altitud de 4100 m sobre el nivel del mar de 300 contenedores de 7.3 m de diámetro y 5 m de altura llenos de agua pura y sensores de luz que observan partículas sumamente energ´eticas provenientes de los eventos más violentos del universo y será 15 veces más sensible que su antecesor Milagro. Las aportaciones científicas de Milagro han demostrado las capacidades únicas de este tipo de observatorios. En este trabajo se presentará HAWC y se discutirá brevemente su caso científico y capacidades.

  2. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  3. The High-Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  4. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  5. The High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  6. Development of the High Altitude Student Platform

    Science.gov (United States)

    Guzik, T. G.; Besse, S.; Calongne, A.; Dominique, A.; Ellison, S. B.; Gould, R.; Granger, D.; Olano, D.; Smith, D.; Stewart, M.; Wefel, J. P.

    2008-11-01

    The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.

  7. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  8. Pulmonary embolism in young natives of high altitude

    Directory of Open Access Journals (Sweden)

    Sanjay Singhal

    2016-01-01

    Full Text Available Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude.

  9. High altitude pulmonary oedema (HAPE) in an Indian pilgrim.

    Science.gov (United States)

    Panthi, Sagar; Basnyat, Buddha

    2013-11-01

    Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population.

  10. The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean

    Science.gov (United States)

    Lee, S.; Yi, Y.

    2014-12-01

    The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.

  11. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  12. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  13. Ice-Atmosphere Interactions on the Devon Ice Cap, Canada: The Effects of Climate Warming on Surface Energy Balance, Melting, and Firn Stratigraphy

    Science.gov (United States)

    Gascon, Gabrielle

    In order to better constrain the magnitude of projected sea-level rise from Canadian Arctic glaciers during the 21st century warming, it is critical to understand the environmental mechanisms that enhance surface warming and melt, and how the projected increase in surface melt will translate into increased runoff. Between 2004 and 2010, a 4 °C increase in mean air summer temperature, and a 6.1 day yr-1 increase in melt season duration were observed on the Devon Ice Cap, Nunavut. At the same time, a combination of strengthening of the 500 hPa ridge over the Arctic in June-July, and more frequent south-westerly low-pressure systems in August after 2005 created atmospheric conditions that contributed to an increase in the surface energy balance of the ice cap. At 1400m elevation, these changes led to a doubling of the available melt energy and surface melt between 2007 and 2010. Currently, refreezing of meltwater in firn buffers the relationship between increased surface melt and runoff. Between 2007 and 2012, increased meltwater percolation and infiltration ice formation associated with high surface melt rates modified the stratigraphy of firn in the ice cap's accumulation area very substantially. Growth of a 0.5-4.5 m thick ice layer that filled much of the pore volume of the upper part of the firn reduced vertical percolation of meltwater into deeper parts of the firn. This progressively limited the water storage potential of the firn reservoir, and likely caused a significant increase in surface runoff. An evaluation of the snowpack model Crocus against ground observations for the period 2004-2012 showed that, although the model simulated observed density/depth profiles relatively well at all sites, its representation of heterogeneous percolation as a homogeneous process created conditions that favoured excessive near-surface freezing. At the same time, Crocus's parameterization of the permeability of ice layers forced meltwater to percolate through them

  14. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  15. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  16. CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps

    Directory of Open Access Journals (Sweden)

    L. Gray

    2015-05-01

    Full Text Available We show that the CryoSat-2 radar altimeter can provide useful estimates of surface elevation change on a variety of Arctic ice caps, on both monthly and yearly time scales. Changing conditions, however, can lead to a varying bias between the elevation estimated from the radar altimeter and the physical surface due to changes in the contribution of subsurface to surface backscatter. Under melting conditions the radar returns are predominantly from the surface so that if surface melt is extensive across the ice cap estimates of summer elevation loss can be made with the frequent coverage provided by CryoSat-2. For example, the average summer elevation decreases on the Barnes Ice Cap, Baffin Island, Canada were 2.05 ± 0.36 m (2011, 2.55 ± 0.32 m (2012, 1.38 ± 0.40 m (2013 and 1.44 ± 0.37 m (2014, losses which were not balanced by the winter snow accumulation. As winter-to-winter conditions were similar, the net elevation losses were 1.0 ± 0.2 m (winter 2010/2011 to winter 2011/2012, 1.39 ± 0.2 m (2011/2012 to 2012/2013 and 0.36 ± 0.2 m (2012/2013 to 2013/2014; for a total surface elevation loss of 2.75 ± 0.2 m over this 3 year period. In contrast, the uncertainty in height change results from Devon Ice Cap, Canada, and Austfonna, Svalbard, can be up to twice as large because of the presence of firn and the possibility of a varying bias between the true surface and the detected elevation due to changing year-to-year conditions. Nevertheless, the surface elevation change estimates from CryoSat for both ice caps are consistent with field and meteorological measurements. For example, the average 3 year elevation difference for footprints within 100 m of a repeated surface GPS track on Austfonna differed from the GPS change by 0.18 m.

  17. Simulating the evolution of Hardangerjøkulen ice cap in southern Norway since the mid-Holocene and its sensitivity to climate change

    Science.gov (United States)

    Åkesson, Henning; Nisancioglu, Kerim H.; Giesen, Rianne H.; Morlighem, Mathieu

    2017-01-01

    Understanding of long-term dynamics of glaciers and ice caps is vital to assess their recent and future changes, yet few long-term reconstructions using ice flow models exist. Here we present simulations of the maritime Hardangerjøkulen ice cap in Norway from the mid-Holocene through the Little Ice Age (LIA) to the present day, using a numerical ice flow model combined with glacier and climate reconstructions. In our simulation, under a linear climate forcing, we find that Hardangerjøkulen grows from ice-free conditions in the mid-Holocene to its maximum extent during the LIA in a nonlinear, spatially asynchronous fashion. During its fastest stage of growth (2300-1300 BP), the ice cap triples its volume in less than 1000 years. The modeled ice cap extent and outlet glacier length changes from the LIA until today agree well with available observations. Volume and area for Hardangerjøkulen and several of its outlet glaciers vary out-of-phase for several centuries during the Holocene. This volume-area disequilibrium varies in time and from one outlet glacier to the next, illustrating that linear relations between ice extent, volume and glacier proxy records, as generally used in paleoclimatic reconstructions, have only limited validity. We also show that the present-day ice cap is highly sensitive to surface mass balance changes and that the effect of the ice cap hypsometry on the mass balance-altitude feedback is essential to this sensitivity. A mass balance shift by +0.5 m w.e. relative to the mass balance from the last decades almost doubles ice volume, while a decrease of 0.2 m w.e. or more induces a strong mass balance-altitude feedback and makes Hardangerjøkulen disappear entirely. Furthermore, once disappeared, an additional +0.1 m w.e. relative to the present mass balance is needed to regrow the ice cap to its present-day extent. We expect that other ice caps with comparable geometry in, for example, Norway, Iceland, Patagonia and peripheral Greenland may

  18. Introductory address: lessons to be learned from high altitude.

    Science.gov (United States)

    Houston, C S

    1979-07-01

    A historical account of the important landmarks in man's experience with the high altitude environment is followed by comments on the important stages in the understanding of its physiological effects. The work of The Mount Logan High Altitude Physiology Study on acute mountain sickness is reviewed from its inception in 1967 until the present.

  19. Soldier at High Altitude: Problem & Preventive Measures

    Directory of Open Access Journals (Sweden)

    S.S Purkayastha

    2000-04-01

    Full Text Available Due to military and j trategic reasons, a large body of troops is being regularly dcployed in the snowbound areas through ut the Himalayan regions to guard Ihe Ironliers. Thc mountain environment at high 'allitude (HA consisls of several faclors alien lo plain dwellers, which evoke a series of physiological responses in human system. Some of the sea' level residents on induction to HA suffer from several unloward symploms of HA" ailmenls varying from mild-lo-severe degrees. Suddenexposure to HA is detrimental to physical and mental  performance of the low landers and  certain cases, may even lead to dreaded condition like high altitude pulmonary oedema (HAPO. These may make a man Jisturbed physically and mentally. So, there is a need lo prevent such hazards v(hich ispossible if the individual is aware of the problems and prevenlive measures ofHA ailments in advance, before going to HA for a safe and happy living there. Hence, a noble effort has been made to provide guidelines to create awareness about physical and physiological problems of life at HA and themethods of protection against its ill-effects for the soldiers, mountaineers and sojourners conducting scientific trials it HA. In th.:s revieJ, an attempt has been made to describe vital aspects of HA in a popular way, st~ing with its concept and various environmental factors which exert considerableettects on human body functions, heallh and performance on exposure to such environment, on the b¥is of a series of studies coitlucted at Ithe Defence Institute of Physiology & Allied Sciences, Delhi, oVer the years. The most important featurelof HA (3,000 m and above is hypoxia or deficiency ofoxygej1 in the body. Olher cnvironmental tactors are: scverc cold, high velocity wind, low rclalivc humidily, high solar radiatior, increased ultraviolet radialion and difficult terrain. These faclors are responsible for various HA cWtdc old syndromes, viz., acute mountain sickness, HAPO, dehydration,4

  20. An Intercomparison of Predicted Sea Ice Concentration from Global Ocean Forecast System & Arctic Cap Nowcast/Forecast System

    Science.gov (United States)

    Rosemond, K.

    2015-12-01

    The objective of this research is to provide an evaluation of improvements in marginal ice zone (MIZ) and pack ice estimations from the Global Ocean Forecast System (GOFS) model compared to the current operational model, the Arctic Cap Nowcast/Forecast System (ACNFS). This will be determined by an intercomparison between the subjectively estimated operational ice concentration data from the National Ice Center (NIC) MIZ analysis and the ice concentration estimates from GOFS and ACNFS. This will help ascertain which nowcast from the models compares best to the NIC operational data stream needed for vessel support. It will also provide a quantitative assessment of GOFS and ACNFS performance and be used in the Operational Evaluation (OPEVAL) report from the NIC to NRL. The intercomparison results are based on statistical evaluations through a series of map overlays from both models ACNFS, GOFS with the NIC's MIZ data. All data was transformed to a common grid and difference maps were generated to determine which model had the greatest difference compared to the MIZ ice concentrations. This was provided daily for both the freeze-up and meltout seasons. Results indicated the GOFS model surpassed the ACNFS model, however both models were comparable. These results will help US Navy and NWS Anchorage ice forecasters understand model biases and know which model guidance is likely to provide the best estimate of future ice conditions.The objective of this research is to provide an evaluation of improvements in marginal ice zone (MIZ) and pack ice estimations from the Global Ocean Forecast System (GOFS) model compared to the current operational model, the Arctic Cap Nowcast/Forecast System (ACNFS). This will be determined by an intercomparison between the subjectively estimated operational ice concentration data from the National Ice Center (NIC) MIZ analysis and the ice concentration estimates from GOFS and ACNFS. This will help ascertain which nowcast from the models

  1. Analysis of vanillic acid in polar ice cores as a biomass burning proxy - preliminary results from the Akademii Nauk Ice Cap in Siberia

    Science.gov (United States)

    Grieman, M. M.; Jimenez, R.; McConnell, J. R.; Fritzsche, D.; Saltzman, E. S.

    2013-12-01

    Biomass burning influences global climate change and the composition of the atmosphere. The drivers, effects, and climate feedbacks related to fire are poorly understood. Many different proxies have been used to reconstruct past fire frequency from lake sediments and polar ice cores. Reconstruction of historical trends in biomass burning is challenging because of regional variability and the qualitative nature of various proxies. Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a product of the combustion of conifer lignin that is known to occur in biomass burning aerosols. Biomass burning is likely the only significant source of vanillic acid in polar ice. In this study we describe an analytical method for quantifying vanillic acid in polar ice using HPLC with electrospray ionization and tandem mass spectrometric detection. The method has a detection limit of 100 pM and a precision of × 10% at the 100 pM level for analysis of 100 μl of ice melt water. The method was used to analyze more than 1000 discrete samples from the Akademii Nauk ice cap on Severnaya Zemlya in the high Russia Arctic (79°30'N, 97°45'E) (Fritzsche et al., 2002; Fritzsche et al., 2005; Weiler et al., 2005). The samples range in age over the past 2,000 years. The results show a mean vanillic acid concentration of 440 × 710 pM (1σ), with elevated levels during the periods from 300-600 and 1450-1550 C.E.

  2. Mars residual north polar cap - Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals

    Science.gov (United States)

    Clark, R. N.; Mccord, T. B.

    1982-01-01

    A description is presented of new earth-based reflectance spectra of the Martian north residual polar cap. The spectra indicate that the composition is at least mostly water ice plus another component with a 'gray' reflectance. The other minerals in the ice cap appear to be hydrated. The data were obtained with a cooled circular variable filter spectrometer on February 20, 1978, using the 2.2-m telescope on Mauna Kea, Hawaii. It is pointed out that the identification of water ice in the north polar cap alone does not indicate that water makes up all or even most of the bulk of the cap. Kieffer (1970) has shown that a small amount of water will mask the spectral features of CO2.

  3. Aging, High Altitude, and Blood Pressure: A Complex Relationship.

    Science.gov (United States)

    Parati, Gianfranco; Ochoa, Juan Eugenio; Torlasco, Camilla; Salvi, Paolo; Lombardi, Carolina; Bilo, Grzegorz

    2015-06-01

    Parati, Gianfranco, Juan Eugenio Ochoa, Camilla Torlasco, Paolo Salvi, Carolina Lombardi, and Grzegorz Bilo. Aging, high altitude, and blood pressure: A complex relationship. High Alt Biol Med 16:97-109, 2015.--Both aging and high altitude exposure may induce important changes in BP regulation, leading to significant increases in BP levels. By inducing atherosclerotic changes, stiffening of large arteries, renal dysfunction, and arterial baroreflex impairment, advancing age may induce progressive increases in systolic BP levels, promoting development and progression of arterial hypertension. It is also known, although mainly from studies in young or middle-aged subjects, that exposure to high altitude may influence different mechanisms involved in BP regulation (i.e., neural central and reflex control of sympathetic activity), leading to important increases in BP levels. The evidence is less clear, however, on whether and to what extent advancing age may influence the BP response to acute or chronic high altitude exposure. This is a question not only of scientific interest but also of practical relevance given the consistent number of elderly individuals who are exposed for short time periods (either for leisure or work) or live permanently at high altitude, in whom arterial hypertension is frequently observed. This article will review the evidence available on the relationship between aging and blood pressure levels at high altitude, the pathophysiological mechanisms behind this complex association, as well as some questions of practical interest regarding antihypertensive treatment in elderly subjects, and the effects of antihypertensive drugs on blood pressure response during high altitude exposure.

  4. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard).

    Science.gov (United States)

    Möller, Marco; Schneider, Christoph

    2015-01-28

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21(st) century for all RCPs considered. Glacier-wide mass-balance rates will drop down to -4 m a(-1) w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario.

  5. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    D. Bocchiola

    2011-04-01

    Full Text Available In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060 hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2, nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated.

    The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050–2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the

  6. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    D. Bocchiola

    2011-07-01

    Full Text Available In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060 hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2, nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated.

    The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050–2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of

  7. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  8. Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland

    Science.gov (United States)

    Wittmann, Monika; Dorothea Groot Zwaaftink, Christine; Steffensen Schmidt, Louise; Guðmundsson, Sverrir; Pálsson, Finnur; Arnalds, Olafur; Björnsson, Helgi; Thorsteinsson, Throstur; Stohl, Andreas

    2017-03-01

    Deposition of small amounts of airborne dust on glaciers causes positive radiative forcing and enhanced melting due to the reduction of surface albedo. To study the effects of dust deposition on the mass balance of Brúarjökull, an outlet glacier of the largest ice cap in Iceland, Vatnajökull, a study of dust deposition events in the year 2012 was carried out. The dust-mobilisation module FLEXDUST was used to calculate spatio-temporally resolved dust emissions from Iceland and the dispersion model FLEXPART was used to simulate atmospheric dust dispersion and deposition. We used albedo measurements at two automatic weather stations on Brúarjökull to evaluate the dust impacts. Both stations are situated in the accumulation area of the glacier, but the lower station is close to the equilibrium line. For this site ( ˜ 1210 m a.s.l.), the dispersion model produced 10 major dust deposition events and a total annual deposition of 20.5 g m-2. At the station located higher on the glacier ( ˜ 1525 m a.s.l.), the model produced nine dust events, with one single event causing ˜ 5 g m-2 of dust deposition and a total deposition of ˜ 10 g m-2 yr-1. The main dust source was found to be the Dyngjusandur floodplain north of Vatnajökull; northerly winds prevailed 80 % of the time at the lower station when dust events occurred. In all of the simulated dust events, a corresponding albedo drop was observed at the weather stations. The influence of the dust on the albedo was estimated using the regional climate model HIRHAM5 to simulate the albedo of a clean glacier surface without dust. By comparing the measured albedo to the modelled albedo, we determine the influence of dust events on the snow albedo and the surface energy balance. We estimate that the dust deposition caused an additional 1.1 m w.e. (water equivalent) of snowmelt (or 42 % of the 2.8 m w.e. total melt) compared to a hypothetical clean glacier surface at the lower station, and 0.6 m w.e. more melt (or 38 % of

  9. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  10. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  11. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  12. Travelling to new heights: practical high altitude medicine.

    Science.gov (United States)

    Plant, Tracie; Aref-Adib, Golnar

    2008-06-01

    Over 40 million people travel to high altitude for both work and pleasure each year, and all of them are at risk of the acute effects of hypoxia. This article reviews the prevention, diagnostic features and treatments of these illnesses.

  13. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  14. Increased oxidative stress following acute and chronic high altitude exposure.

    Science.gov (United States)

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  15. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions, design scheme, the main performances and parameters of the test facilities, as well as...

  16. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  17. The effect of high altitude on nasal nitric oxide levels.

    Science.gov (United States)

    Altundag, Aytug; Salihoglu, Murat; Cayonu, Melih; Cingi, Cemal; Tekeli, Hakan; Hummel, Thomas

    2014-09-01

    The aim of the present study was to investigate whether nasal nitric oxide (nNO) levels change in relation to high altitude in a natural setting where the weather conditions were favorable. The present study included 41 healthy volunteers without a history of acute rhinosinusitis within 3 weeks and nasal polyposis. The study group consisted of 31 males (76 %) and 10 females (24 %) and the mean age of the study population was 38 ± 10 years. The volunteers encamped for 2 days in a mountain village at an altitude of 1,500 m above sea level (masl) and proceeded to highlands at an altitude of 2,200 masl throughout the day. The measurements of nNO were done randomly, either first at the mountain village or at sea level. Each participant had nNO values both at sea level and at high altitude at the end of the study. The nNO values of sea level and high altitude were compared to investigate the effect of high altitude on nNO levels. The mean of average nNO measurements at the high altitude was 74.2 ± 41 parts-per-billion (ppb) and the mean of the measurements at sea level was 93.4 ± 45 ppb. The change in nNO depending on the altitude level was statistically significant (p high altitude even if the weather conditions were favorable, such as temperature, humidity, and wind.

  18. Testing models of ice cap extent, South Georgia, sub-Antarctic

    OpenAIRE

    Barlow, NLM; Bentley, MJ; G. Spada; Evans, DJA; Hansom, JD; Brader, MD; White, DA; Zander, A; Berg, S.

    2016-01-01

    The extent of Last Glacial Maximum ice in South Georgia is contested, with two alternative hypotheses: an extensive (maximum) model of ice reaching the edge of the continental shelf, or a restricted (minimum) model with ice constrained within the inner fjords. We present a new relative sea-level dataset for South Georgia, summarising published and new geomorphological evidence for the marine limit and elevations of former sea levels on the island. Using a glacial isostatic adjustment model (A...

  19. Modelled non-linear response to climate of Hardangerjøkulen ice cap, southern Norway, since the mid-Holocene

    Science.gov (United States)

    Åkesson, Henning; Nisancioglu, Kerim H.; Giesen, Rianne H.; Morlighem, Mathieu

    2016-04-01

    Glacier and ice cap volume changes currently amount to half of the total cryospheric contribution to sea-level rise and are projected to remain substantial throughout the 21st century. To simulate glacier behavior on centennial and longer time scales, models rely on simplified dynamics and tunable parameters for processes not well understood. Model calibration is often done using present-day observations, even though the relationship between parameters and parametrized processes may be altered for significantly different glacier states. In this study, we simulate the Hardangerjøkulen ice cap in southern Norway since the mid-Holocene, through the Little Ice Age (LIA) and into the future. We run an ensemble for both calibration and transient experiments, using a two-dimensional ice flow model with mesh refinement. For the Holocene, we apply a simple mass balance forcing based on climate reconstructions. For the LIA until 1962, we use geomorphological evidence and measured outlet glacier positions to find a mass balance history, while we use direct mass balance measurements from 1963 until today. Given a linear climate forcing, we show that Hardangerøkulen grew from ice-free conditions in the mid-Holocene, to its maximum LIA extent in a highly non-linear fashion. We relate this to local bed topography and demonstrate that volume and area of some but not all outlet glaciers, as well as the entire ice cap, become decoupled for several centuries during our simulation of the late Holocene, before co-varying approaching the LIA. Our model is able to simulate most recorded ice cap and outlet glacier changes from the LIA until today. We show that present-day Hardangerøkulen is highly sensitive to mass balance changes, and estimate that the ice cap will melt completely by the year 2100.

  20. Can the Solid State Greenhouse Effect Produce ~100 Year Cycles in the Mars South Polar Residual CO2 Ice Cap?

    Science.gov (United States)

    Line, M. R.; Ingersoll, A. P.

    2010-12-01

    Malin et al. (2001) reported that the south perennial cap consists of quasi-circular pits ~8 meters deep, with a flat surface in between. The walls of the pits are retreating at a rate of 1 to 3 meters per year. Byrne and Ingersoll (2003a, 2003b) showed evidence that the floors of the pits are water ice and the upper layer is CO2. This layer will be gone in a few Martian centuries, if the observations are taken at face value. This raises some difficult questions: How likely is it that mankind would be witnessing the final few hundred years of the residual CO2 frost on Mars? Can one imagine extreme weather events that could recharge the residual CO2 frost once it is gone? Both seem unlikely, and we propose a different mechanism. Kieffer et al. (2000) showed that sunlight can penetrate several meters through the seasonal CO2 frost, where it warms the surface below. We have observational evidence that the same is happening in the perennial CO2 frost. Further, we have a model that shows how this "solid-state greenhouse" can lead to cyclic behavior, in which layers of CO2 build up on a water ice substrate, are heated internally by sunlight and lose mass from within. Eventually the layer becomes too weak to support itself, and it collapses to form pits. Then a new CO2 layer accumulates and the process repeats. Our study addresses fundamental questions of long-term stability of the Martian polar caps and how the caps control the atmospheric pressure. Instead of invoking extreme climate events to explain the data, we propose that processes within the frost itself can lead to cyclic growth and collapse of the pits. Our model implies that there is no long-term change in the ~8 meter layer of CO2 and no extreme weather events to make it change.

  1. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    Science.gov (United States)

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  2. Volcanic unrest primed by ice cap melting: A case study of Snæfellsjökull volcano, Western Iceland

    Science.gov (United States)

    Bakker, Richard; Lupi, Matteo; Frehner, Marcel; Berger, Julien; Fuchs, Florian

    2014-05-01

    The most dramatic effect of global warming is the water level rise due to rapid melting of ice sheets. In addition, recent studies suggest that accelerated glacial retreat and associated lithospheric relaxation may enhance upwelling of magmatic fluids through the crust. Here, we investigate whether, also at short geological timescales, shallow magmatic systems may be affected by rapid melting of ice caps. As a case study, we chose the Snæfellsjökull volcanic system in western Iceland, whose ice cap is rapidly melting with 1.25 m(w.e.)/year. To investigate the role of deglaciation in promoting volcanic unrest we use a cross-disciplinary approach integrating geophysical field data, laboratory rheological rock tests, and numerical finite-element analysis. Initial results from seismic data acquisition and interpretation in 2011 show seismic activity (occasionally in swarm sequences) at around a depth range of 8-13 km, indicating the presence of a magmatic reservoir in the crust. In addition, a temporary seismic network of 21 broad-band stations has been deployed in spring 2013 and continuously collected data for several months, which will help better constrain the subsurface geometry. During summer 2013 we collected samples of Tertiary basaltic bedrock from the flanks of Snæfellsjökull, which we assume to be representative for the subsurface volcanic system. Cores drilled from these samples were tri-axially deformed in a Paterson-type apparatus at a constant strain rate of 10-5 s-1, a confining pressure of 50 MPa (i.e. ~2 km depth), and a temperature ranging from 200 °C to 1000 °C (i.e. various proximities to magma chamber). From the obtained stress-strain curves the static Young's modulus is calculated to be around 35 (±2) GPa, which is not significantly influenced by increasing temperatures up to 800 °C. Beyond the elastic domain, cataclastic shear bands develop, accommodating up to 7% strain before brittle failure. The subsurface geometrical constraints from

  3. Investigating a newly discovered firn aquifer on Disko Ice Cap, west Greenland: Insights from ground observations, remote sensing, and modeling

    Science.gov (United States)

    Trusel, L. D.; Das, S. B.; Smith, B.; Kuipers Munneke, P.; Evans, M. J.; Frey, K. E.; Osman, M.; York, A.

    2015-12-01

    Expanding and intensifying surface melt have accelerated contributions from Greenland to global sea level rise in recent decades. Yet, important questions remain regarding the evolution and eventual fate of this meltwater over time and space, a fact underscored by recent observations of expansive aquifers within the Greenland Ice Sheet firn. In April 2015 we observed liquid water retained at depth in an ice cap on Disko Island, central west Greenland. Two adjacent ~20 m firn/ice cores were collected before intercepting a layer saturated with liquid water as evident by water drainage from our cores. Borehole temperature profiling confirms increasing temperature with depth, revealing 0°C isothermal firn below ~10 m depth. Detailed physical stratigraphic analyses conducted on these cores allow us to assess firn properties and their small scale (1 m) and likely impermeable refrozen melt horizons exist above the inferred aquifer surface, raising questions about processes of aquifer formation. To discern the spatial character of the observed firn liquid water and melt stratigraphy, we utilize ground penetrating radar collected in 2014, as well as airborne radar data collected through NASA Operation IceBridge in 2012 and 12 days prior to our field observations in 2015. Glaciochemical analyses on our ice cores reveal preservation of an annual signal allowing derivation of net snow accumulation rates. Combined with surface mass balance modeled by RACMO2.3 and melt assessed via microwave remote sensing, we investigate the recently prevailing climatic and glaciological conditions on Disko. This work will provide new insights into mechanisms of firn aquifer formation and sustenance more broadly, as well as the representation of aquifers in existing radar observations and firn models.

  4. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  5. Travel to High Altitude Following Solid Organ Transplantation.

    Science.gov (United States)

    Luks, Andrew M

    2016-09-01

    Luks, Andrew M. Clinician's corner: travel to high altitude following solid organ transplantation. High Alt Med Biol. 17:147-156, 2016.-As they regain active lifestyles following successful organ transplantation, transplant recipients may travel to high altitude for a variety of activities, including skiing, climbing, and trekking. This review is intended to provide information for medical providers who may encounter transplant patients seeking advice before planned high altitude travel or care for medical issues that develop during the actual sojourn. There is currently limited information in the literature about outcomes during high-altitude travel following solid organ transplantation, but the available evidence suggests that the physiologic responses to hypobaric hypoxia are comparable to those seen in nontransplanted individuals and well-selected transplant recipients with no evidence of organ rejection can tolerate ascents as high as 6200 m. All transplant recipients planning high-altitude travel should undergo pretravel assessment and counseling with an emphasis on the recognition, prevention, and treatment of altitude illness, as well as the importance of preventing infection and limiting sun exposure. Transplant recipients can use the standard medications for altitude illness prophylaxis and treatment, but the choice and dose of medication should take into account the patient's preexisting medication regimen and current renal function. With careful attention to these and other details, the healthy transplant recipient can safely experience the rewards of traveling in the mountains.

  6. Time Evolution and Inter-Annual Variability of Seasonal Ice on the Mars Northern Polar Cap

    Science.gov (United States)

    Mount, C.; Titus, T. N.

    2012-03-01

    We explore the temporal density variations of Mars' NPSC and use ice depth and density estimates to constrain the CROCUS date for a specific location and compare it to the CROCUS dates from three previous Mars years.

  7. Pleistocene reduction of polar ice caps: Evidence from Cariaco Basin marine sediments

    Science.gov (United States)

    Poore, R.Z.; Dowsett, H.J.

    2001-01-01

    Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar ice sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar ice sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar ice sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10-20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar ice sheets and is consistent with the interpretation that the West Antarctic ice sheet and the Greenland ice sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar ice sheets. The potential for increased rates of sea level rise related to polar ice sheet decay should be considered as a potential natural

  8. Testing models of ice cap extents, South Georgia, sub-Antarctic

    OpenAIRE

    N. L. M. Barlow; Bentley, M.J.; G. Spada; Evans, D.J.A.; Hansom, J.D.; Brader, M.D.; White, D. A.; Zander, A; Berg, S.

    2016-01-01

    The extent of Last Glacial Maximum ice in South Georgia is\\ud contested, with two alternative hypotheses: an extensive (maximum) model ofice reaching the edge of the continental shelf, or a restricted(minimum) model with ice constrained within the inner fjords. We present new relative sea-level dataset for South Georgia, summarising published\\ud and new geomorphological evidence for the marine limit and elevations offormer sea levels on the island. Using a glacial isostatic adjustmentmodel (A...

  9. Children's exercise capacity at high altitude in Tibet.

    Science.gov (United States)

    Bianba; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Bjertness, Espen

    2014-11-01

    Maximal oxygen uptake (exercise capacity) is a vital parameter in the evaluation of adaptation to high altitude, providing an index of the integrated function of the oxygen transport system. Previous studies of maximal oxygen uptake in population at high altitude have mainly focused on adults and adolescents, though data on children are uncommon. Maximal oxygen uptake can be measured directly, using an oxygen analyser, or indirectly through the development of equations for estimation from the maximal power output (W(max)). Such estimations and studies of the physiological aspects of children's capacity to work and live at different altitudes in Tibet ancestry were not reported previously, although differences similar to those seen in adults may be expected to occur. The present paper summarized the findings of studies on exercise capacity among children living at high altitude in Tibet.

  10. Microcomputer-controlled high-altitude data aquisition system

    Science.gov (United States)

    1985-05-01

    A new microcomputer controlled high altitude data acquisition system was developed. The system provides a new technique for data acquisition from China's astronomical, meteorological and other high altitude experiments and opens up new territory in microcomputer applications. This microcomputer controlled high altitude data acquisition system is made up of a Z80 single board computer, 10 K memory expansion board, and keyboard and display board which can collect 16 analog signals simultaneously, and through analog/digital conversion can convert external analog signals into digital signals then encode them in a certain form through program modulation and store them on audio cassette. The data is immediately retrieved from the tape and sent to the surface microcomputer system for data processing and analysis.

  11. The yak genome and adaptation to life at high altitude.

    Science.gov (United States)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Wang, Jian; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-07-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.

  12. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  13. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  14. Neurophysiological Problems in Snow Bound High Altitude Areas

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  15. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    Science.gov (United States)

    Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.

    2013-01-01

    Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or

  16. Early 21st-Century Mass loss of the North-Atlantic Glaciers and Ice Caps (Arne Richter Award for Outstanding Young Scientists Lecture)

    Science.gov (United States)

    Wouters, Bert; Ligtenberg, Stefan; Moholdt, Geir; Gardner, Alex S.; Noel, Brice; Kuipers Munneke, Peter; van den Broeke, Michiel; Bamber, Jonathan L.

    2016-04-01

    Historically, ice loss from mountain glaciers and ice caps has been one of the largest contributors to sea level rise over the last century. Of particular interest are the glaciers and ice caps in the North-Atlantic region of the Arctic. Despite the cold climate in this area, considerable melting and runoff occurs in summer. A small increase in temperature will have an immediate effect on these processes, so that a large change in the Arctic ice volume can be expected in response to the anticipated climate change in the coming century. Unfortunately, direct observations of glaciers are sparse and are biased toward glaciers systems in accessible, mostly maritime, climate conditions. Remote sensing is therefore essential to monitor the state of the the North-Atlantic glaciers and ice caps. In this presentation, we will discuss the progress that has been made in estimating the ice mass balance of these regions, with a particular focus on measurements made by ESA's Cryosat-2 radar altimeter mission (2010-present). Compared to earlier altimeter mission, Cryosat-2 provides unprecedented coverage of the cryosphere, with a resolution down to 1 km or better and sampling at monthly intervals. Combining the Cryosat-2 measurements with the laser altimetry data from ICESat (2003-2009) gives us a 12 yr time series of glacial mass loss in the North Atlantic. We find excellent agreement between the altimetry measurements and independent observations by the GRACE mission, which directly 'weighs' the ice caps, albeit at a much lower resolution. Mass loss in the region has increased from 120 Gigatonnes per year in 2003-2009 to roughly 140 Gt/yr in 2010-2014, with an important contribution from Greenland's peripheral glaciers and ice caps. Importantly, the mass loss is not stationary, but shows large regional interannual variability, with mass loss shifting between eastern and western regions from year to year. Comparison with regional climate models shows that these shifts can be

  17. Mass budget of Queen Elizabeth Islands glaciers and ice caps, Canada, from 1992 to present

    Science.gov (United States)

    Millan, R.; Rignot, E. J.; Mouginot, J.

    2015-12-01

    Recent studies indicate to say that the Canadian Artic Archipelago's mass loss has increased in recent years. However the role of ice dynamics changes in this area is not well known. In this study, we present a comprehensive velocity mapping of the CAA using ALOS/PALSAR, RADARSAT-1, ERS1 and Landsat data between 1992 and 2015. Glaciers speed are calculated using a speckle and feature tracking algorithm.The results reveals that three large marine-terminating glaciers have accelerated significantly after 2010, while most others have slowed down or retreated to a sill to become similar to land-terminating glaciers. By combining the velocities of these glaciers with ice thickness measurements from NASA's Operation IceBridge, we calculate their ice discharge. The fluxes of these glaciers increased significantly since 2000 with a marked increase after 2011. The comparison of ice discharge with the surface mass balance from RACMO-2, shows that these glaciers came out of balance after 2011, which is also a time period where their discharge almost doubled. The analysis of RACMO-2 reveals an increase in runoff between 1970's and today and a precipitation with no significant trend. We digitalize the calving front positions of the glaciers and show an increasing rate retreat since 1976. We conclude that global pattern of velocity changes shows that the mass losses due to surface mass balance will likely going to raise in the coming years and that ice discharge will have a smaller part in the contribution of the CAA to sea level rise.

  18. Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps

    Science.gov (United States)

    Chéry, J.; Genti, M.; Vernant, P.

    2016-04-01

    More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western Alps. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the Alps, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the Alps, therefore allowing a weak vertical rheological anomaly over the entire lithosphere.

  19. Trace element analyses of spheres from the melt zone of the Greenland ice cap using synchrotron X ray fluorescence

    Science.gov (United States)

    Chevallier, P.; Wang, J.; Jehanno, C.; Maurette, M.; Sutton, S. R.

    1986-01-01

    Synchrotron X-ray fluorescence spectra of unpolished iron and chondritic spheres extracted from sediments collected on the melt zone of the Greenland ice cap allow the analysis of Ni, Cu, Zn, Ga, Ge, Pb, and Se with minimum detection limits on the order of several parts per million. All detected elements are depleted relative to chondritic abundance with the exception of Pb, which shows enrichments up to a factor of 500. An apparent anticorrelation between the Ni-content and trace element concentration was observed in both types of spherules. The fractionation patterns of the iron and chondritic spheres are not complementary and consequently the two iron spheres examined in this study are unlikely to result from ejection of globules of Fe/Ni from parent chondritic micrometeoroids.

  20. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  1. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  2. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  3. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  4. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a f

  5. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  6. Reduced autonomic activity during stepwise exposure to high altitude

    NARCIS (Netherlands)

    Sevre, K; Bendz, B; Hanko, E; Nakstad, AR; Hauge, A; Kasin, JI; Lefrandt, JD; Smit, AJ; Eide, [No Value; Rostrup, M

    2001-01-01

    Several studies have shown increased sympathetic activity during acute exposure to hypobaric hypoxia. In a recent field study we found reduced plasma catecholamines during the first days after a stepwise ascent to high altitude. In the present study 14 subjects were exposed to a simulated ascent in

  7. Abnormal blood flow in the sublingual microcirculation at high altitude

    NARCIS (Netherlands)

    Martin, D.S.; Ince, C.; Goedhart, P.; Levett, D.Z.H.; Grocott, M.P.W.

    2009-01-01

    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas.

  8. Acute occlusive mesenteric ischemia in high altitude of ...

    African Journals Online (AJOL)

    in our region. Keywords: Acute mesenteric ischemia, high altitude, Saudi Arabia. Résumé .... Saudi Arabia for many diseases such as stroke,[13] deep venous .... intestinal vascular failure: a collective review of 43 cases in Taiwan. Br J Clin ...

  9. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  10. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...

  11. Preparation for football competition at moderate to high altitude.

    Science.gov (United States)

    Gore, C J; McSharry, P E; Hewitt, A J; Saunders, P U

    2008-08-01

    Analysis of approximately 100 years of home-and-away South American World Cup matches illustrate that football competition at moderate/high altitude (>2000 m) favors the home team, although this is more than compensated by the likelihood of sea-level teams winning at home against the same opponents who have descended from altitude. Nevertheless, the home team advantage at altitudes above approximately 2000 m may reflect that traditionally, teams from sea level or low altitude have not spent 1-2 weeks acclimatizing at altitude. Despite large differences between individuals, in the first few days at high altitude (e.g. La Paz, 3600 m) some players experience symptoms of acute mountain sickness (AMS) such as headache and disrupted sleep, and their maximum aerobic power (VO2max) is approximately 25% reduced while their ventilation, heart rate and blood lactate during submaximal exercise are elevated. Simulated altitude for a few weeks before competition at altitude can be used to attain partial ventilatory acclimation and ameliorated symptoms of AMS. The variety of simulated altitude exposures usually created with enriched nitrogen mixtures of air include resting or exercising for a few hours per day or sleeping approximately 8 h/night in hypoxia. Preparation for competition at moderate/high altitude by training at altitude is probably superior to simulated exposure; however, the optimal duration at moderate/high altitude is unclear. Preparing for 1-2 weeks at moderate/high altitude is a reasonable compromise between the benefits associated with overcoming AMS and partial restoration of VO2max vs the likelihood of detraining.

  12. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  13. The structure of high altitude O+ energization and outflow: a case study

    Directory of Open Access Journals (Sweden)

    C. W. Carlson

    2004-07-01

    Full Text Available Multi-spacecraft observations from the CIS ion spectrometers on board the Cluster spacecraft have been used to study the structure of high-altitude oxygen ion energization and outflow. A case study taken from 12 April 2004 is discussed in more detail. In this case the spacecraft crossed the polar cap, mantle and high-altitude cusp region at altitudes between 4RE and 8RE and 2 of the spacecraft provided data. The oxygen ions were seen as a beam with narrow energy distribution, and increasing field-aligned velocity and temperature at higher altitude further in the upstream flow direction. The peak O+ energy was typically just above the highest energy of observed protons. The observed energies reached the upper limit of the CIS ion spectrometer, i.e. 38keV. Moment data from the spacecraft have been cross-correlated to determine cross-correlation coefficients, as well as the phase delay between the spacecraft. Structures in ion density, temperature and field-aligned flow appear to drift with the observed field-perpendicular drift. This, together with a velocity dispersion analysis, indicates that much of the structure can be explained by transverse heating well below the spacecraft. However, temperature isotropy and the particle flux as a function of field-aligned velocity are inconsistent with a single altitude Maxwellian source. Heating over extended altitude intervals, possibly all the way up to the observation point, seem consistent with the observations.

  14. Initial Feasibility Assessment of a High Altitude Long Endurance Airship

    Science.gov (United States)

    Colozza, Anthony; Dolce, James (Technical Monitor)

    2003-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.

  15. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  16. Body Structure and Respiratory Efficiency among High Altitude Himalayan Populations

    OpenAIRE

    2005-01-01

    To understand the morphological and physiological variations among the temporary and permanent residents of high altitude, this study was undertaken at Leh, Ladakh. It is situated at 3500 m (11500 feet) above sea level, the mean barometric pressure was 500 tors and air temperature varied from 2 °C to 20 °C. The highland Tibetans showed broadest chest and most developed musculature closely followed by Ladakhi Bods. These high altude natives also displayed significantly higher value of vital ca...

  17. Lens autofluorescence is not increased at high altitude

    DEFF Research Database (Denmark)

    Kessel, Line; Kofoed, Peter Kristian; Zubieta-Calleja, Gustavo

    2010-01-01

    PURPOSE: To study the relation between ambient environmental ultraviolet radiation exposure and lens fluorescence. METHODS: Non-invasive lens fluorometry measurements were compared in healthy Bolivian and Danish subjects. Background ultraviolet radiation was 4.5 times higher in Bolivia than...... in Denmark. RESULTS: No significant differences in lens fluorescence or transmittance were found between Bolivian and Danish volunteers. CONCLUSION: Age-corrected lens fluorescence and transmittance were comparable for healthy participants living at high altitude near the equator and healthy volunteers...

  18. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  19. Blood-Brain Barrier Changes in High Altitude.

    Science.gov (United States)

    Lafuente, José V; Bermudez, Garazi; Camargo-Arce, Lorena; Bulnes, Susana

    2016-01-01

    Cerebral syndromes related to high-altitude exposure are becoming more frequent as the number of trips to high altitudes has increased in the last decade. The commonest symptom is headache, followed by acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), which can be fatal. The pathophysiology of these syndromes is not fully understood. The classical "tight-fit hypothesis" posits that there are some anatomical variations that would obstruct the sinovenous outflow and worsen vasogenic edema and intracranial hypertension reactive to hypoxia. This could explain microhemorrhages seen in autopsies. However, recent magnetic resonance imaging studies have demonstrated some components of cytotoxic edema in HACE absent in AMS, suggesting a dysfunction in water balance at the cellular level. Currently, the "red-ox theory" supports trigemino-vascular system activation by free radicals formed after hypoxia and the consequent oxidative stress cascades. Apart from trigemino-vascular system activation, free radicals can also provoke membrane destabilisation mediated by lipid peroxidation, inflammation, and local hypoxia inducible factor-1α and vascular endothelial growth factor activation, resulting in gross blood-brain barrier (BBB) dysfunction. Besides alterations in endothelial cells such as increased pinocytotic vesicles and disassembly of interendothelial tight junction proteins, capillary permeability may also increase with subsequent swelling of astrocyte end-feet. In conclusion, although the pathophysiology of AMS and HACE is not completely understood, recent evidence proposes a multifactorial entity, with brain swelling and compromise of the BBB considered to play an important role. A fuller comprehension of these processes is crucial to reduce and prevent BBB alterations during high-altitude exposure.

  20. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia.

    Science.gov (United States)

    Jefferson, J Ashley; Escudero, Elizabeth; Hurtado, Maria-Elena; Kelly, Jackeline Pando; Swenson, Erik R; Wener, Mark H; Burnier, Michel; Maillard, Marc; Schreiner, George F; Schoene, Robert B; Hurtado, Abdias; Johnson, Richard J

    2002-06-01

    Chronic exposure to high altitude is associated with the development of erythrocytosis, proteinuria, and, in some cases, hyperuricemia. We examined the relationship between high-altitude polycythemia and proteinuria and hyperuricemia in Cerro de Pasco, Peru (altitude, 4,300 m). We studied 25 adult men with hematocrits less than 65% and 27 subjects with excessive erythrocytosis (EE; hematocrit > 65%) living in Cerro de Pasco, Peru and compared them with 28 control subjects living in Lima, Peru (at sea level) and after 48 hours of exposure to high altitude. Serum urate levels were significantly elevated in patients with EE at altitude, and gout occurred in 4 of 27 of these subjects. Urate level strongly correlated with hematocrit (r = 0.71; P < 0.0001). Urate production (24-hour urine urate excretion and urine urate-creatinine ratio) was increased in this group compared with those at sea level. Fractional urate excretion was not increased, and fractional lithium excretion was reduced, in keeping with increased proximal reabsorption of filtrate. Significantly higher blood pressures and decreased renin levels in the EE group were in keeping with increased proximal sodium reabsorption. Serum urate levels correlated with mean blood pressure (r = 0.50; P < 0.0001). Significant proteinuria was more prevalent in the EE group despite normal renal function. Hyperuricemia is common in subjects living at high altitude and associated with EE, hypertension, and proteinuria. The increase in uric acid levels appears to be caused by increased urate generation secondary to systemic hypoxia, although a relative impairment in renal excretion also may contribute.

  1. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  2. Effectiveness of Preacclimatization Strategies for High-Altitude Exposure

    Science.gov (United States)

    2013-01-01

    hypobaric conditions. IAE 15, 15 d of intermittent altitude exposure; IAE 7, 7 d of intermittent altitude expo- sure; NH (Sleep), Ambient normobaric hypoxia ...than those using norm(!)baric hypoxia (breathing, ង.9% ox-ygen). Key Words: hypobaric hypoxia , normobaric hypoxia , staging, acute mountain sickness...large decrements in endurance exercise performance occur when unacclimatized individuals rapidly ascend to high altitudes. Six altitude and hypoxia

  3. The genetic architecture of adaptations to high altitude in Ethiopia.

    Science.gov (United States)

    Alkorta-Aranburu, Gorka; Beall, Cynthia M; Witonsky, David B; Gebremedhin, Amha; Pritchard, Jonathan K; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  4. Joseph Barcroft's studies of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2013-10-15

    Joseph Barcroft (1872-1947) was an eminent British physiologist who made contributions to many areas. Some of his studies at high altitude and related topics are reviewed here. In a remarkable experiment he spent 6 days in a small sealed room while the oxygen concentration of the air gradually fell, simulating an ascent to an altitude of nearly 5,500 m. The study was prompted by earlier reports by J. S. Haldane that the lung secreted oxygen at high altitude. Barcroft tested this by having blood removed from an exposed radial artery during both rest and exercise. No evidence for oxygen secretion was found, and the combination of 6 days incarceration and the loss of an artery was heroic. To obtain more data, Barcroft organized an expedition to Cerro de Pasco, Peru, altitude 4,300 m, that included investigators from both Cambridge, UK and Harvard. Again oxygen secretion was ruled out. The protocol included neuropsychometric measurements, and Barcroft famously concluded that all dwellers at high altitude are persons of impaired physical and mental powers, an assertion that has been hotly debated. Another colorful experiment in a low-pressure chamber involved reducing the pressure below that at the summit of Mt. Everest but giving the subjects 100% oxygen to breathe while exercising as a climber would on Everest. The conclusion was that it would be possible to reach the summit while breathing 100% oxygen. Barcroft was exceptional for his self-experimentation under hazardous conditions.

  5. Dynamics of three outlet glaciers on the Vatnajökull ice cap reconstructed through landsystem analysis

    Science.gov (United States)

    Maclachlan, John; Lee, Rebecca; Eyles, Carolyn

    2016-04-01

    Landsystem analysis uses genetically related landform-sediment assemblages, known as landsystem tracts, as evidence in the reconstruction of the geomorphic evolution of a landscape and subsequently provides further insight into the morphogenetic record. When used in conjunction with sedimentological data, results from this methodology are used to inform models of the subglacial conditions through the movement characteristics of the overriding glacier. Ultimately landsystem analysis allows modern systems to be used as analogues for ancient systems, which in turn facilitates more accurate paleoenvironmental reconstruction of ancient glacial sediments. The proglacial till plains, consisting of subglacial, proglacial and supraglacial sediments and landforms of three outlet glaciers of the Vatnajökull Ice Cap in southeast Iceland were explored using a combination of remote sensing techniques, geospatial analysis and field investigations. The three glaciers selected for study (Svínafellsjökull, Skaftafellsjökull and Morsárjökull) are separated by small mountain ridges but lie within close spatial proximity, limiting climatic variability on their behavior but allowing for variability in local influences such as variability in valley morphology. Although the three glaciers are sourced by the same ice cap and are within close proximity there are wide variations in the type, distribution and scale of landforms in the proglacial region including the presence of streamlined features, the relative relief of the landforms, and sediment types. Initial mapping of the proglacial region of each glacier was performed using geospatial software to explore and analyze LiDAR data and aerial imagery obtained from the Icelandic Meteorological Office. A high-resolution digital elevation model (DEM) of the proglacial region of each glacier was created from these remotely sensed data to illustrate the spatial distribution and scale of landforms. These features were ground-checked using

  6. Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland

    Science.gov (United States)

    Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur

    2016-09-01

    Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.

  7. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico)

    OpenAIRE

    2008-01-01

    Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l.), considering also possible future developments of the glaciers on the v...

  8. A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

    Directory of Open Access Journals (Sweden)

    Geir Moholdt

    2012-05-01

    Full Text Available We present a new digital elevation model (DEM of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2 in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS and airborne laser altimetry, yielding root mean square (RMS errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

  9. Textural and Geochemical Characteristics of Proglacial Sediments:A Case Study in the Foreland of the Nelson Ice Cap, Antarctica

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaodong; SUN Liguang; YIN Xuebin

    2004-01-01

    This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modem Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials.Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes,evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglaciai sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the progiacial foreland of modern glacier.

  10. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.

    Science.gov (United States)

    Luo, Yongjun; Wang, Yuxiao; Lu, Hongxiang; Gao, Yuqi

    2014-11-01

    The main physiological challenge in high-altitude plateau environments is hypoxia. When people living in a plain environment migrate to the plateau, they face the threat of hypoxia. Most people can acclimatize to high altitudes; the acclimatization process mainly consists of short-term hyperventilation and long-term compensation by increased oxygen uptake, transport, and use due to increased red blood cell mass, myoglobin, and mitochondria. If individuals cannot acclimatize to high altitude, they may suffer from a high-altitude disease, such as acute mountain disease (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE) or chronic mountain sickness (CMS). Because some individuals are more susceptible to high altitude diseases than others, the incidence of these high-altitude diseases is variable and cannot be predicted. Studying "omes" using genomics, proteomics, metabolomics, transcriptomics, lipidomics, immunomics, glycomics and RNomics can help us understand the factors that mediate susceptibility to high altitude illnesses. Moreover, analysis of the "omes" using a systems biology approach may provide a greater understanding of high-altitude illness pathogenesis and improve the efficiency of the diagnosis and treatment of high-altitude illnesses in the future. Below, we summarize the current literature regarding the role of "omes" in high-altitude acclimatization/adaptation and disease and discuss key research gaps to better understand the contribution of "omes" to high-altitude illness susceptibility.

  11. Evaporites on Ice: Experimental Assessment of Evaporites Formation on Antarctica (and on Martian North Polar Residual Cap)

    Science.gov (United States)

    Losiak, Anna; Derkowski, Arkadiusz; Skala, Aleksander; Trzcinski, Jerzy

    2016-04-01

    Evaporites are highly water soluble minerals, formed as a result of the evaporation or freezing of bodies of water. They are common weathering minerals found on rocks (including meteorites) on Antarctic ice sheet [1,2,3,4]. The water necessary for the reaction is produced by melting of ice below the dark-colored meteorites which can heat up to a few degrees above 0 °C due to insolation heating during wind-free summer days [5,6]. The Martian North Polar Residual Cap is surrounded by a young [7] dune field that is rich in evaporitic mineral: gypsum [8]. Its existence implies that relatively recently in the Martian history (in late Amazonian, when surface conditions were comparable to the current ones) there was a significant amount of liquid water present on the Mars surface. One of the proposed solutions to this problem is that gypsum is formed by weathering on/in ice [9,10,11,12,13], similarly to the process occurring on the Antarctic ice sheet. Recently, Losiak et al. 2015 showed that that during the warmest days of the Martian summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles lying on the steepest sections of the equator-facing slopes of the spiral troughs within Martian NPRC. Under the current irradiation conditions, melting is possible in very restricted areas of the NPRC and it lasts for up to couple of hours, but during the times of high irradiance at the north pole [15] this process could have been much more pronounced. Liquid water can be metastable at the NPRC because the pressure during the summer season is ~760-650 Pa [16] which is above the triple point of water. The rate of free-surface "clean" liquid water evaporation under average Martian conditions determined experimentally by [17] is comparable to the rate of melting determined by [21] (if there is no wind at the surface). In the current study we attempt to determine experimentally how many melting-freezing cycles are required to form

  12. The genetic architecture of adaptations to high altitude in Ethiopia.

    Directory of Open Access Journals (Sweden)

    Gorka Alkorta-Aranburu

    Full Text Available Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  13. Ergogenic properties of metformin in simulated high altitude.

    Science.gov (United States)

    Scalzo, Rebecca L; Paris, Hunter L; Binns, Scott E; Davis, Janelle L; Beals, Joseph W; Melby, Christopher L; Luckasen, Gary J; Hickey, Matthew S; Miller, Benjamin F; Hamilton, Karyn L; Bell, Christopher

    2017-07-01

    Metformin augments glucose/glycogen regulation and may acutely promote fatigue resistance during high-intensity exercise. In hypobaric environments, such as high altitude, the important contribution of carbohydrates to physiological function is accentuated as glucose/glycogen dependence is increased. Because hypoxia/hypobaria decreases insulin sensitivity, replenishing skeletal muscle glycogen in high altitude becomes challenging and subsequent physical performance may be compromised. We hypothesized that in conditions where glycogen repletion was critical to physical outcomes, metformin would attenuate hypoxia-mediated decrements in exercise performance. On three separate randomly ordered occasions, 13 healthy men performed glycogen-depleting exercise and ingested a low-carbohydrate dinner (1200 kcals, metformin (500 mg BID) was consumed 3 days prior to each hypoxia visit. Subjects completed a 12.5 km cycle ergometer time trial 3.5 hours following breakfast. Hypoxia decreased resting and exercise oxyhemoglobin saturation (Pmetformin affected the glucose response to breakfast (P=.977), however, compared with placebo, metformin lowered insulin concentration in hypoxia 45 minutes after breakfast (64.1±6.6 μU/mL vs 48.5±7.8 μU/mL; mean±SE; Pmetformin (+81%; P=.006), but not in hypoxia with placebo (+27%; P=.167). Hypoxia decreased time trial performance compared with normoxia (Pmetformin (+1.6±0.3 minutes). These results indicate that metformin promotes glycogen synthesis but not endurance exercise performance in healthy men exposed to simulated high altitude. © 2017 John Wiley & Sons Australia, Ltd.

  14. High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms

    Science.gov (United States)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  15. First scientific contributions from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  16. the APL Balloonborne High Altitude Research Platform (HARP)

    Science.gov (United States)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C

  17. Edema pulmonar de gran altura HIGH ALTITUDE PULMONARY EDEMA

    Directory of Open Access Journals (Sweden)

    FELIPE UNDURRAGA M

    2003-04-01

    Full Text Available Las enfermedades de altura son de causa cerebral y pulmonar. Las primeras se refieren fundamentalmente al mal agudo de montaña y al edema cerebral de altura y las segundas al edema pulmonar agudo de montaña. Actuales evidencias señalan que el edema cerebral sería un fenómeno universal de los que ascienden a altura y que tres de cada cuatro individuos sanos que se expongan a altura desarrollarán un edema pulmonar agudo de montaña subclínico. La hipoxia de altura es la responsable de estos cuadros y los sujetos susceptibles serían aquellos que genéticamente tienen una respuesta ventilatoria reducida a la hipoxia y una exagerada respuesta vasopresora pulmonar al ejercicio.Se presenta un caso de edema pulmonar agudo de montaña en un deportista previamente sano que participó en una expedición al cerro El Plomo (5.280 msnm en la Cordillera de los Andes central. Posteriormente, se comenta la fisiopatología y tratamiento de esta condiciónHigh altitude diseases are originated from brain and lung. The first are Acute Mountain Sickness and Brain edema and the second is High Altitude Pulmonary Edema (HAPE. Current evidence shows that brain edema is an universal event of the people who are exposed to high altitude. By other hand 3 out of 4 healthy subjects exposed to high altitude will present a subclinical HAPE. Hypoxia of altitude is the responsable for this condition. The susceptible subjects would be those who genetically have a low ventilatory response to hypoxia and an exaggerated increase of vascular pulmonary pressure during exercise. A clinical case of acute pulmonary edema in a young sportman who participated in an expedition to Cerro El Plomo (5.280 m in Chilean Central Andes Mountains is presented. Pathophysiology and treatment of these conditions are discussed

  18. Magnetic Monopole Search at high altitude with the SLIM experiment

    CERN Document Server

    Balestra, S; Cozzi, M; Errico, M; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Mandrioli, G; Marcellini, S; Margiotta, A; Medinaceli, E; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sahnoun, Z; Sirri, G; Spurio, M; Togo, V; Velarde, A; Zanini, A

    2008-01-01

    The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.

  19. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  20. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-altitude balloon flights are an inexpensive method used to lift payloads to high altitudes. Federal Aviation Administration (FAA) regulations permit payloads...

  1. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    Science.gov (United States)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  2. Contemporary sediment production and transfer in high-altitude glaciers

    Science.gov (United States)

    Owen, Lewis A.; Derbyshire, Edward; Scott, Christine H.

    2003-01-01

    The nature of fine-grained sediment production and transfer in high-altitude debris-covered glaciers was studied by examining the Rakhiot and Chungphar glaciers in the Nanga Parbat Himalaya, Northern Pakistan. Transport pathways, from the source areas to the glacier snout, were mapped and samples collected for particle size analysis and scanning electron microscopy. Positive down-glacier trends in sediment fining and increased weathering showed that debris transport in the supraglacial zone of these Himalayan glaciers is an important contributor to contemporary glacial sediment production, resulting in intense comminution that yields large volumes of fine sediment. These findings cast doubt on the traditional view that the basal traction zone of glaciers is the only major source of fine sediment production in glaciated environments, although that view may hold true for classic alpine glaciers that are at lower altitudes and, as a consequence, generally have less supraglacial debris cover. To test this hypothesis, the Glacier de Cheilon, in the Swiss Alps was also studied. This glacier did not exhibit such striking down-glacier trends in the particle size characteristics measured. It is thus suggested that a thick debris-cover may be an important source of fine-grained sediments on glaciers that occur in high-altitude environments.

  3. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  4. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2011-01-01

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in indi

  5. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in ind

  6. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  7. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  8. Glaciers and small ice caps in the macro-scale hydrological cycle - an assessment of present conditions and future changes

    Science.gov (United States)

    Lammers, Richard; Hock, Regine; Prusevich, Alexander; Bliss, Andrew; Radic, Valentina; Glidden, Stanley; Grogan, Danielle; Frolking, Steve

    2014-05-01

    Glacier and small ice cap melt water contributions to the global hydrologic cycle are an important component of human water supply and for sea level rise. This melt water is used in many arid and semi-arid parts of the world for direct human consumption as well as indirect consumption by irrigation for crops, serving as frozen reservoirs of water that supplement runoff during warm and dry periods of summer when it is needed the most. Additionally, this melt water reaching the oceans represents a direct input to sea level rise and therefore accurate estimates of this contribution have profound economic and geopolitical implications. It has been demonstrated that, on the scale of glacierized river catchments, land surface hydrological models can successfully simulate glacier contribution to streamflow. However, at global scales, the implementation of glacier melt in hydrological models has been rudimentary or non-existent. In this study, a global glacier mass balance model is coupled with the University of New Hampshire Water Balance/Transport Model (WBM) to assess recent and projected future glacier contributions to the hydrological cycle over the global land surface (excluding the ice sheets of Greenland and Antarctica). For instance, results of WBM simulations indicate that seasonal glacier melt water in many arid climate watersheds comprises 40 % or more of their discharge. Implicitly coupled glacier and WBM models compute monthly glacier mass changes and resulting runoff at the glacier terminus for each individual glacier from the globally complete Randolph Glacier Inventory including over 200 000 glaciers. The time series of glacier runoff is aggregated over each hydrological modeling unit and delivered to the hydrological model for routing downstream and mixing with non-glacial contribution of runoff to each drainage basin outlet. WBM tracks and uses glacial and non-glacial components of the in-stream water for filling reservoirs, transfers of water between

  9. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  10. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  11. Status of the large high altitude air shower observatory project

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Min, E-mail: zham@ihep.ac.cn [Key Laboratory of Astroparticle and Cosmic Ray, Institute of High Energy Physics, YuQuan Road 19 B, 100049 Beijing (China)

    2012-11-11

    The Large High Altitude Air Shower Observatory (LHAASO) project is a multipurpose project. The main scientific tasks can be summarized as follows: (1) searching for galactic cosmic ray origins through gamma ray source detection above 30 TeV; (2) wide field of view survey for gamma ray sources at energies higher than 100 GeV; (3) energy spectrum measurements for individual cosmic ray species from 30 TeV to 10 PeV. To target above tasks, a complex detector array is designed. This paper describes the progress on the research and development of all kind of detectors. Construction and operation of a prototype detector array at Tibet site with 4300 m a.s.l. are also presented.

  12. STEERABLE ANTENNAS MOVEMENT COMPENSATION FOR HIGH ALTITUDE PLATFORM

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenyong; Liu Xiaowei; Li Zhuoshi

    2011-01-01

    High Altitude Platform (HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With analysis on HAP movement models for predicting the geographical coverage in the cases of shift horizontally and vertically,yaw,roll and pitch,the mechanisms of steerable antennas movement compensation are investigated.The mechanism is applied to a scenario of 127 cell architecture,with a cell cluster size of four.By the simulation results of Carrier to Interference Ratio (CIR),the steerable antenna movement compensation mechanism decrease influence of HAP movement and guarantee effective coverage of the service area.

  13. First year results of the High Altitude Water Cherenkov observatory

    CERN Document Server

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (>95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volc\\'an Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC gamma-ray observatory.

  14. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  15. High-altitude wind resources in the Middle East.

    Science.gov (United States)

    Yip, Chak Man Andrew; Gunturu, Udaya Bhaskar; Stenchikov, Georgiy L

    2017-08-29

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  16. Radiation Physics for Space and High Altitude Air Travel

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  17. First year results of the High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  18. The High-Altitude Water Cherenkov Observatory: First Light

    Science.gov (United States)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  19. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  20. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  1. Basal friction evolution and crevasse distribution during the surge of Basin 3, Austfonna ice-cap - offline coupling between a continuum ice dynamic model and a discrete element model

    Science.gov (United States)

    Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John

    2017-04-01

    The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.

  2. Deglaciated areas of Kilimanjaro as a source of volcanic trace elements deposited on the ice cap during the late Holocene

    Science.gov (United States)

    Gabrielli, P.; Hardy, D. R.; Kehrwald, N.; Davis, M.; Cozzi, G.; Turetta, C.; Barbante, C.; Thompson, L. G.

    2014-06-01

    Ice fields on Kilimanjaro (5895 m a.s.l., Tanzania) are retreating and 85% of the ice cover has been lost since 1912. The degree to which this recession is exceptional during the Holocene is uncertain, as age control of the entire ice stratigraphy exists only for the very shallow and very bottom ice of the Northern Ice Field. This empirical evidence suggests that the Kilimanjaro ice cover may be a persistent Holocene feature, while a model based on maximum possible extent and a constant shrinkage rate of the summit glaciers suggests a cyclic decay time on the order of one to two centuries. Today the mass balance of these ice fields is negative and no persistent ice accumulation zones are observed over multiannual scales. The expanding deglaciated area within the Kilimanjaro caldera should act as an increasingly larger and productive source of volcanic-origin aeolian dust that is quickly deposited onto the surface of the adjacent ice fields, particularly in the seasonal absence of caldera snow cover. Variations in the local dust influx may directly influence albedo and the energy balance of these ice fields. Investigating the characteristics of insoluble material entrapped in the ice remnants of Kilimanjaro can thus provide insights into the extent of ice and/or continuity of the summit snow cover through time. Here we report the trace element composition linked to the insoluble particles entrapped in Holocene Kilimanjaro ice in the context of the current understanding of the past ice accumulation processes (including solid precipitations and ablation) contributing to build the horizontal caldera ice fields. For this purpose we analysed an ice core drilled to bedrock from the Northern Ice Field thought to span the late Holocene (2200 BC-1950 AD). The ultra low trace element concentrations recorded in this Kilimanjaro core are consistent with a generally low volcanic dust source availability (i.e. limited exposure of the deglaciated area in the caldera) and fairly

  3. Thermal cracking of CO2 slab ice as the main driving force for albedo increase of the martian seasonal polar caps

    Science.gov (United States)

    Philippe, S.; Schmitt, B.; Beck, P.; Brissaud, O.

    2015-10-01

    Understanding the microphysical processes occuring on the Martian seasonal cap is critical since their radiative properties can affect the martian climate. A well documented phenomenom is the albedo increase of the Martian seasonal caps during spring, Fig.1. There are a lot of hypotheses that have been proposed as an explanation for this observation : the decrease of the CO2 grain size [2], a cleaning process of the CO2 slab that would imply either the sinking or the ejection of the dust contained in its volume ([1], [2], [5]), a water-layer accumulation on the top of the slab [5], the role played by aerosols [2] etc ... So far, no experimental simulations have been realized to discriminate between these processes. We designed an experiment to investigate the hypothesis of CO2 ice grain size decrease through thermal cracking as well as that of dust segregation as the possible reasons for albedo increase.

  4. Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes

    Science.gov (United States)

    Samaniego, Pablo; Barba, Diego; Robin, Claude; Fornari, Michel; Bernard, Benjamin

    2012-04-01

    century, and the average time interval between the events is about 1000 yr, Chimborazo must be considered as a potentially active volcano. The presence of a thick ice cap covering the summit, its steep flanks and its position above the populated lowland area of Riobamba and Ambato, are factors that result in a high potential risk.

  5. A late Holocene metal record of Andean climate and anthropogenic activity in lake sediments near Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Stroup, J. S.; Osterberg, E. C.

    2011-12-01

    The tropical hypothesis maintains that major changes in global climate are motivated by phenomena based at tropical latitudes. Evidence for this hypothesis lies in: modern-day observations of El Niño Southern Oscillation (ENSO); East African lake sediment records of Intertropical Convergence Zone (ITCZ) position that precede high-latitude changes; and the potential for ITCZ shifts to cause major CO2 degassing from the Southern Ocean. In order to improve the understanding of these phenomena we present an ~1800 year record of atmospheric metal deposition in a lake sediment core near Quelccaya Ice Cap, Peru (13.9 °S). In June, 2010 we collected a 1.45 meter-long core from Yanacocha - a small, closed-basin tarn that has been isolated from glacial input since ~11,200 BP. The chronology for the core is based on 4 of 6 AMS 14C dates on aquatic macrofossils and one sharp Zr/Ti anomaly at 36 cm, likely derived from the 350 BP eruption of Huaynaputina. We completely digested organic-rich core samples at 1 cm resolution using HNO3, HCl, and HF in a closed-vessel microwave system, and then analyzed the digestates for 67 metals by inductively coupled plasma mass spectrometry. Here we show fluxes of lithogenic metals (Fe, Nb, Ti, and Zr) that reflect changes in wind strength and aridity, fluxes of lithogenic metal isotopes (REEs and Pb) that reflect wind direction, and enrichment factors (EFs) of metals (Ag, As, Cd, Cu, Hg, and Pb) that reflect anthropogenic activity. Five episodic peaks in lithogenic metal fluxes, centered around 1800, 1300, 900, 600, and 100 yrs BP, are thought to result from either drier or windier conditions, potentially caused by a northern ITCZ position or a more persistent El Niño state. The provenance of atmospheric deposition, evidenced by REE ratios (light REEs / heavy REEs), suggest that high lithogenic fluxes are associated with a change in wind direction, possibly caused by a change in the ENSO state, which will be explored with forthcoming Pb

  6. Ataxia, acute mountain sickness, and high altitude cerebral edema

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Ma Siqing; Bian Huiping; Zhang Minming

    2013-01-01

    Previous investigations suggest that ataxia is common and often one of the most reliable warning signs of high altitude cerebral edema(HACE).The aim of this study was to investigate the diagnostic role of ataxia in acute mountain sickness (AMS) and HACE among mountain rescuers on the quake areas,and in approaching the relation between AMS and HACE.After the earthquake on April 14,2010,approximately 24080 lowland rescuers were rapidly transported from sea level or lowlands to the mountainous rescue sites at 3750 ~ 4568 m,and extremely hardly worked for an emergency treatment after arrival.Assessments of acute altitude illness on the quake areas were using the Lake Louise Scoring System.73 % of the rescuers were found to be developed AMS.The incidence of high altitude pulmonary edema(HAPE) and HACE was 0.73 % and 0.26 %,respectively,on the second to third day at altitude.Ataxia sign was measured by simple tests of coordination including a modified Romberg test.The clinical features of 62 patients with HACE were analyzed.It was found that the most frequent,serious neurological symptoms and signs were altered mental status(50/62,80.6 %)and truncal ataxia (47/62,75.8 %).Mental status change was rated slightly higher than ataxia,but ataxia occurred earlier than mental status change and other symptoms.The earliest sign of ataxia was a vague unsteadiness of gait,which may be present alone in association with or without AMS.Advanced ataxia was correlated with the AMS scores,but mild ataxia did not correlate with AMS scores at altitudes of 3750~4568 m.Of them,14 patients were further examined by computerized tomographic scanning of the brain and cerebral magnetic resonance imagines were examined in another 15 cases.These imaging studies indicated that the presence of the cerebral edema was in 97 % of cases who were clinically diagnosed as HACE (28/29).Ataxia seems to be a reliable sign of advanced AMS or HACE,so does altered mental status.

  7. Response of the ice cap Hardangerjøkulen in southern Norway to the 20th and 21st century climates

    Directory of Open Access Journals (Sweden)

    R. H. Giesen

    2010-05-01

    Full Text Available Glaciers respond to mass balance changes by adjusting their surface elevation and area. These properties in their turn affect the local and area-averaged mass balance. To incorporate this interdependence in the response of glaciers to climate change, models should include an interactive scheme coupling mass balance and ice dynamics. In this study, a spatially distributed mass balance model, comprising surface energy balance calculations, was coupled to a vertically integrated ice-flow model based on the shallow ice approximation. The coupled model was applied to the ice cap Hardangerjøkulen in southern Norway. The available glacio-meteorological records, mass balance and glacier length change measurements were utilized for model calibration and validation. Forced with meteorological data from nearby synoptic weather stations, the coupled model realistically simulated the observed mass balance and glacier length changes during the 20th century. The mean climate for the period 1961–1990, computed from local meteorological data, was used as a basis to prescribe climate projections for the 21st century at Hardangerjøkulen. For a linear temperature increase of 3 °C from 1961–1990 to 2071–2100, the modelled net mass balance soon becomes negative at all altitudes and Hardangerjøkulen disappears around the year 2100. The projected changes in the other meteorological variables could at most partly compensate for the effect of the projected warming.

  8. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds.

    Science.gov (United States)

    Zhou, Taicheng; Shen, Xuejuan; Irwin, David M; Shen, Yongyi; Zhang, Yaping

    2014-09-01

    Galliform birds inhabit very diverse habitats, including plateaus that are above 3000 m in altitude. At high altitude, lower temperature and hypoxia are two important factors influencing survival. Mitochondria, as the ultimate oxygen transductor, play an important role in aerobic respiration through oxidative phosphorylation (OXPHOS). We analyzed the mitochondrial genomes of six high-altitude phasianidae birds and sixteen low-altitude relatives in an attempt to determine the role of mitochondrial genes in high-altitude adaptation. We reconstructed the phylogenetic relationships of these phasianidae birds and relatives and found at least four lineages that independently occupied this high-altitude habitat. Selective analyses revealed significant evidence for positive selection in the genes ND2, ND4, and ATP6 in three of the high-altitude lineages. This result strongly suggests that adaptive evolution of mitochondrial genes played a critical role during the independent acclimatization to high altitude by galliform birds.

  9. Medical continuing education: reform of teaching methods about high altitude disease in China.

    Science.gov (United States)

    Luo, Yongjun; Zhou, Qiquan; Huang, Jianjun; Luo, Rong; Yang, Xiaohong; Gao, Yuqi

    2013-06-01

    The purpose of high altitude continuing medical education is to adapt knowledge and skills for practical application on the plateau. Most trainees have experience with academic education and grassroots work experience on the plateau, so they want knowledge about new advances in the pathogenesis, diagnosis, and treatment of high altitude disease. As such, traditional classroom teaching methods are not useful to them. Training objects, content, and methods should attempt to conduct a variety of teaching practices. Through continuing medical education on high altitude disease, the authors seek to change the traditional teaching model away from a single classroom and traditional written examinations to expand trainees' abilities. These innovative methods of training can improve both the quality of teaching and students' abilities to prevent and treat acute mountain sickness, high altitude pulmonary edema, high altitude cerebral edema, and chronic mountain sickness to increase the quality of high altitude medical care.

  10. Latest news from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  11. An automatic parachute release for high altitude scientific balloons

    Science.gov (United States)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  12. 21st Century Lightning Protection for High Altitude Observatories

    Science.gov (United States)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  13. Increased choroidal thickness in patient with high-altitude retinopathy

    Directory of Open Access Journals (Sweden)

    Kyoko Hirukawa-Nakayama

    2014-01-01

    Full Text Available We report a case of high-altitude retinopathy with increased choroidal thickness detected by spectral-domain optical coherence tomography (SD-OCT. A 36-year-old Japanese man developed an acute vision decrease in his left eye after he had trekked at an altitude of 4600 m in Tibet for 1 week. His visual acuity was 20/20 OD and 20/200 OS with refractive errors of − 0.25 diopters (D OD and − 0.50 D OS 3 weeks after the onset of the visual decrease. Funduscopic examinations revealed multiple intraretinal hemorrhages bilaterally and a macular hemorrhage in the left eye. SD-OCT showed that the thickness of choroidal layer at the fovea was 530 μm OD and 490 μm OS which is thicker than that in normal subjects of approximately 300 μm. We suggest that the increase in the retinal blood flow under hypoxic conditions may be associated with an increase in the choroidal blood flow resulting in an increase in choroidal thickness.

  14. Scientific verification of High Altitude Water Cherenkov observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Antonio, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); Sparks, Kathryne [Department of Physics, Pennsylvania State University, University Park, PA (United States); Alfaro, Ruben [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); González, María Magdalena; Patricelli, Barbara; Fraija, Nissim [Instituto de Astronomia, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico)

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m{sup 2}, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  15. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  16. High altitude headache occurs frequently among construction workers in Yushu

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Li Shuzhi; Jin Xinhui; Zhang Jianqing

    2013-01-01

    The aim was to measure the incidence of high altitude headache (HAH) and to determine clinical features,as well as the relation between acute mountain sickness (AMS) and HAH through a prospective study.We conducted a questionnaire-based study among construction workers in Yushu after a serious earthquake; they were under reconstruction using a structured questionnaire incorporating International Headache Society (IHS) and AMS Lake Louise Scoring System.A total of 608 workers were enrolled after their first ascent to altitudes of 3 750~4528 m.The results showed that 96 % reported at least 1 HAH(median 3.8,range from 1 to 10) in workers at a mean altitude of 4250 m.The magnitude of headache was divided as mild (38 %),moderate (44 %) and severe (18 %).This study indicates that HAH is the most common symptom of acute altitude exposure and closely correlated with altitude (r=0.165,p<0.001).However,52 % of headache was one of the main symptoms of AMS,while the other 48 % was the sole symptom of HAH.On the contrary we found that 2 % of AMS without headache,thus the "painless AMS" actually existed.The clinical features of HAH are presented,and the relationship between AMS and HAH is discussed.

  17. Naturally enhanced ion-acoustic lines at high altitudes

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2006-12-01

    Full Text Available Naturally enhanced ion-acoustic lines (NEIALs between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT Svalbard radar (ESR at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.

  18. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    Science.gov (United States)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  19. Highlights from the High Altitude Water Cherenkov Observatory

    CERN Document Server

    Pretz, John

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a numb...

  20. High altitude hypoxia and blood pressure dysregulation in adult chickens.

    Science.gov (United States)

    Herrera, E A; Salinas, C E; Blanco, C E; Villena, M; Giussani, D A

    2013-02-01

    Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood.

  1. Scientific verification of High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  2. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Directory of Open Access Journals (Sweden)

    Pandey P

    2015-11-01

    Full Text Available Priyanka Pandey,1,2 Ghulam Mohammad,1,3 Yogendra Singh,1,2 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, Maharashtra, 3Department of Medicine, SNM Hospital, Leh, Ladakh, Jammu and Kashmir, IndiaObjective: To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early, and morbid disorder, high altitude pulmonary edema (HAPE. This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation.Methods: For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225, HAPE controls (n=210, and highlanders (n=259 by Sequenom MS (TOF-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups.Results: A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728 with HAPE (P=0.03 and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336 with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively. ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009. MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006 and lower association with adaptation (P=1E–06, whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001 and higher association with adaptation (P=1E–06. Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working

  3. Glacial areas, lake areas, and snowlines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru

    Directory of Open Access Journals (Sweden)

    M. N. Hanshaw

    2013-02-01

    Full Text Available Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far, yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 144 multi-spectral satellite images spanning almost four decades, from 1975–2012, to obtain glacial and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. In a second step, we have estimated the snowline altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: first, since 1988 glacial areas throughout the Cordillera Vilcanota have been declining at a rate of 5.46 ± 1.70 km2 yr−1 (22-yr average, 1988–2010, with 95% confidence interval. The Quelccaya Ica Cap, specifically, has been declining at a rate of 0.67 ± 0.18 km2 yr−1 since 1980 (31-yr average, 1980–2011, also with 95% confidence interval; Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000–2011 as compared to the preceding decade (1990–2000; Third, the snowline of the Quelccaya Ice Cap is retreating to higher elevations as glacial areas decrease, by a total of almost 300 m between its lowest recorded elevation in 1989 and its highest in 1998; and fourth, as glacial regions have decreased, 61% of lakes connected to glacial watersheds have shown a roughly synchronous increase in lake area, while 84% of lakes not connected to glacial watersheds have remained stable or have declined in area. Our new and detailed data on glacial and lake areas over 37 yr provide an important spatiotemporal assessment of climate

  4. Glacial areas, lake areas, and snowlines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru

    Science.gov (United States)

    Hanshaw, M. N.; Bookhagen, B.

    2013-02-01

    Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far), yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 144 multi-spectral satellite images spanning almost four decades, from 1975-2012, to obtain glacial and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. In a second step, we have estimated the snowline altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: first, since 1988 glacial areas throughout the Cordillera Vilcanota have been declining at a rate of 5.46 ± 1.70 km2 yr-1 (22-yr average, 1988-2010, with 95% confidence interval). The Quelccaya Ica Cap, specifically, has been declining at a rate of 0.67 ± 0.18 km2 yr-1 since 1980 (31-yr average, 1980-2011, also with 95% confidence interval); Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000-2011) as compared to the preceding decade (1990-2000); Third, the snowline of the Quelccaya Ice Cap is retreating to higher elevations as glacial areas decrease, by a total of almost 300 m between its lowest recorded elevation in 1989 and its highest in 1998; and fourth, as glacial regions have decreased, 61% of lakes connected to glacial watersheds have shown a roughly synchronous increase in lake area, while 84% of lakes not connected to glacial watersheds have remained stable or have declined in area. Our new and detailed data on glacial and lake areas over 37 yr provide an important spatiotemporal assessment of climate variability in this area. These data can be integrated into further studies

  5. Glacial areas, lakes areas, and snowlines from 1975-2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru

    Science.gov (United States)

    Hanshaw, Maiana Natania

    Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far), yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 144 multi-spectral satellite images spanning almost four decades, from 1975-2012, to obtain glacial and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. In a second step, we have estimated the snowline altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: First, since 1988 glacial areas throughout the Cordillera Vilcanota have been declining at a rate of 5.46 +/- 1.70 km2/yr (22-year average, 1988-2010, with 95 % confidence interval). The Quelccaya Ica Cap, specifically, has been declining at a rate of 0.67 +/- 0.18 km2/yr since 1980 (31-year average, 1980-2011, also with 95 % confidence interval); Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000-2011) as compared to the preceding decade (1990-2000); Third, the snowline of the Quelccaya Ice Cap is retreating to higher elevations as glacial areas decrease, by a total of almost 300 m between its lowest recorded elevation in 1989 and its highest in 1998; and fourth, as glacial regions have decreased, 61 % of lakes connected to glacial watersheds have shown a roughly synchronous increase in lake area, while 84 % of lakes not connected to glacial watersheds have remained stable or have declined in area. Our new and detailed data on glacial and lake areas over 37 years provide an important spatiotemporal assessment of climate variability in this area. These data can be integrated into further

  6. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  7. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  8. Effect of simulated high-altitude hypoxia on Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jing-jing HUANG

    2012-04-01

    Full Text Available Objective To investigate the effects of simulated high-altitude hypoxia on the detection rate and endotoxin level of Porphyromonas gingivalis (Pg of subgingival bacterial plagues in rabbit periodontitis models. Methods Forty male rabbits were randomly divided into four groups, namely, normoxia control group (group A1, normoxia experimental group (group A2, hypoxia control group (group B1, and hypoxia experimental group (group B2. Each group included 10 rabbits. Periodontitis models was established in groups A2 and B2 combined by ligating both lower central incisors with steel ligature and feeding periodontitis diets, and then the animals were housed in a hypoxia chamber (simulating 5000m altitude, 23h per day. Groups A1 and A2 were raised normal diet in normoxia environment. After eight weeks, the rabbit periodontitis model was evaluated by observing radiographic features of the X-ray films and histopathologic changes under a light microscope. Subgingival plague sample from periodontal pockets on both lower central incisors were collected for isolation, culture and identification of Pg, and for detection of the endotoxin level. Results The histopathologic observation and X-ray examination results showed that the periodontitis of rabbits in group B2 was significantly more severe than that in group A2. The detection rates of Pg in group A1, A2, B1 and B2 was 0%, 50%, 55% and 95% (P < 0.05. Pg detection rate and endotoxin level were higher in group B2 (95%, 0.46±0.04EU/ml than in group A2 (50%, 0.38±0.02EU/ml, P < 0.05. Conclusions The process speed and damage degree of periodontitis in hypoxic environment is higher than that in normoxic environment. Moreover, the hypoxic environment is more suitable in the colonization of Pg with higher endotoxin level in subgingival plague.

  9. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    Science.gov (United States)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  10. Response of Eyjafjallajökull, Torfajökull and Tindfjallajökull ice caps in Iceland to regional warming, deduced by remote sensing

    Directory of Open Access Journals (Sweden)

    Jørgen Dall

    2011-07-01

    Full Text Available We assess the volume change and mass balance of three ice caps in southern Iceland for two periods, 1979–1984 to 1998 and 1998 to 2004, by comparing digital elevation models (DEMs. The ice caps are Eyjafjallajökull (ca. 81 km2, Tindfjallajökull (ca. 15 km2 and Torfajökull (ca. 14 km2. The DEMs were compiled using aerial photographs from 1979 to 1984, airborne Synthetic Aperture Radar (SAR images obtained in 1998 and two image pairs from the SPOT 5 satellite's high-resolution stereoscopic (HRS instrument acquired in 2004. The ice-free part of the accurate DEM from 1998 was used as a reference map for co-registration and correction of the vertical offset of the other DEMs. The average specific mass balance was estimated from the mean elevation difference between glaciated areas of the DEMs. The glacier mass balance declined significantly between the two periods: from −0.2 to 0.2 m yr−1 w. eq. during the earlier period (1980s through 1998 to −1.8 to −1.5 m yr−1 w. eq. for the more recent period (1998–2004. The declining mass balance is consistent with increased temperature over the two periods. The low mass balance and the small accumulation area ratio of Tindfjallajökull and Torfajökull indicate that they will disappear if the present-day climate continues. The future lowering rate of Eyjafjallajökull will, however, be influenced by the 2010 subglacial eruption in the Eyjafjallajökull volcano.

  11. Real-time Data Assimilation of Satellite Derived Ice Concentration into the Arctic Cap Nowcast/Forecast System (ACNFS)

    Science.gov (United States)

    2011-09-01

    North America , Technology Solutions Group Stennis Space Center, MS 39529 USA M.W. Phelps Jacobs Engineering Stennis Space Center, MS 39529 USA...precipitation rates (i.e., snowfall ); a model of ice dynamics that predicts the velocity field of the ice pack based on a model of the material strength of the...the Data Assimilation and Model Evaluation Experiments North Atlantic data, the International Bathymetric Chart of the Arctic Ocean data, the

  12. Schistosomiasis transmission at high altitude crater lakes in Western Uganda

    Directory of Open Access Journals (Sweden)

    Philbert Clouds

    2008-08-01

    Full Text Available Abstract Background Contrary to previous reports which indicated no transmission of schistosomiasis at altitude >1,400 m above sea level in Uganda, in this study it has been established that schistosomiasis transmission can take place at an altitude range of 1487–1682 m above sea level in western Uganda. Methods An epidemiological survey of intestinal schistosomiasis was carried out in school children staying around 13 high altitude crater lakes in Western Uganda. Stool samples were collected and then processed with the Kato-Katz technique using 42 mg templates. Thereafter schistosome eggs were counted under a microscope and eggs per gram (epg of stool calculated. A semi-structured questionnaire was used to obtain demographic data and information on risk factors. Results 36.7% of the pupils studied used crater lakes as the main source of domestic water and the crater lakes studied were at altitude ranging from 1487–1682 m above sea level. 84.6% of the crater lakes studied were infective with over 50% of the users infected. The overall prevalence of Schistosoma mansoni infection was 27.8% (103/370 with stool egg load ranging from 24–6048 per gram of stool. 84.3%( 312 had light infections (400 egg/gm of stool. Prevalence was highest in the age group 12–14 years (49.5% and geometric mean intensity was highest in the age group 9–11 years (238 epg. The prevalence and geometric mean intensity of infection among girls was lower (26%; 290 epg compared to that of boys (29.6%; 463 epg (t = 4.383, p Conclusion and recommendations The altitudinal threshold for S. mansoni transmission in Uganda has changed and use of crater water at an altitude higher than 1,400 m above sea level poses a risk of acquiring S. mansoni infection in western Uganda. However, further research is required to establish whether the observed altitudinal threshold change is as a result of climate change or other factors. It is also necessary to establish the impact this could

  13. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    Science.gov (United States)

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

  14. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-12-01

    The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at

  15. Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru

    Science.gov (United States)

    Hanshaw, M. N.; Bookhagen, B.

    2014-03-01

    Glaciers in the tropical Andes of southern Peru have received limited attention compared to glaciers in other regions (both near and far), yet remain of vital importance to agriculture, fresh water, and hydropower supplies of downstream communities. Little is known about recent glacial-area changes and how the glaciers in this region respond to climate changes, and, ultimately, how these changes will affect lake and water supplies. To remedy this, we have used 158 multi-spectral satellite images spanning almost 4 decades, from 1975 to 2012, to obtain glacial- and lake-area outlines for the understudied Cordillera Vilcanota region, including the Quelccaya Ice Cap. Additionally, we have estimated the snow-line altitude of the Quelccaya Ice Cap using spectral unmixing methods. We have made the following four key observations: first, since 1988 glacial areas throughout the Cordillera Vilcanota (1988 glacial area: 361 km2) have been declining at a rate of 3.99 ± 1.15 km2 yr-1 (22 year average, 1988-2010, with 95% confidence interval (CI), n = 8 images). Since 1980, the Quelccaya Ice Cap (1980 glacial area: 63.1 km2) has been declining at a rate of 0.57 ± 0.10 km2 yr-1 (30 year average, 1980-2010, with 95% CI, n = 14). Second, decline rates for individual glacierized regions have been accelerating during the past decade (2000-2010) as compared to the preceding decade (1988-1999) with an average increase from 37.5 to 42.3 × 10-3 km2 yr-1 km-2 (13%). Third, glaciers with lower median elevations are declining at higher rates than those with higher median elevations. Specifically, glaciers with median elevations around 5200 m a.s.l. are retreating to higher elevations at a rate of ~1 m yr-1 faster than glaciers with median elevations around 5400 m a.s.l. Fourth, as glacial regions have decreased, 77% of lakes connected to glacial watersheds have either remained stable or shown a roughly synchronous increase in lake area, while 42% of lakes not connected to glacial

  16. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Science.gov (United States)

    Pandey, Priyanka; Mohammad, Ghulam; Singh, Yogendra; Qadar Pasha, MA

    2015-01-01

    Objective To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation. Methods For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups. Results A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E–06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E–06). Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working of ROCK2 and MYLK. Conclusion The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation. PMID:26586960

  17. Volume changes of Vatnajökull ice cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnson, Helgi; Dall, Jørgen

    2005-01-01

    We present observed changes in the geometry of western Vatnajökull over a period of about ten years which are caused by the surface mass balance, ice flow (both during surges and quiescent periods), and basal melting due to geothermal and volcanic activity. Comparison of two digital elevation...

  18. In-situ Ice Core Analysis of Longyearbreen Glacier Using a Cryobot: Preparation for the Northern Polar Cap of Mars

    Science.gov (United States)

    Anderson, F.; Hecht, M. H.; Carsey, F. D.; Conrad, P. G.; Zimmerman, W. F.; French, L. C.; Engelhardt, H.

    2001-12-01

    A prototype cryobot will be used to provide an in-situ analysis of Longyearbreen glacier, in Svalbard. The cryobot is a small steerable robotic vehicle capable of melting through ice at a rate of ~20 m/day and carries a suite of instruments commonly used for ice core analysis. Terrestrial ice cores record climatological and geological history, such as changing atmospheric chemistry or volcanic eruptions. Unfortunately, coring or drilling in remote and harsh environmental conditions can be difficult and expensive. Furthermore, drilling and coring technologies are limited in penetration depth and commonly contaminate the sample with drilling fluids or surface debris. We present results from a cryobot designed to obtain geologic, climatologic, and biologic data while avoiding the problems of current methods; it can be installed in the ice with minimal effort, can be operated remotely, is relatively inexpensive, and is environmentally safe. The prototype will be used to record optical, pH, conductivity, redox, density, and temperature profiles of the Longyearbreen, glacier in Svalbard, Norway, which is 160 m deep, and located at 75N. These results will be compared with adjacent ice core measurements, for a direct comparison of the two technologies for obtaining science data. The ice core data will also be used to test the sensitivity and operating constraints a suite of instruments under development for use in the cryobot, including visible/near IR spectroscopy, UV fluorescence, and biomass identification. We have proposed the cryobot for use on a Scout class mission to Mars. The Svalbard melt test will serve as a simple Mars analog and a demonstration of the scientific return of the cryobot vehicle and instrument suite.

  19. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  20. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico)

    Science.gov (United States)

    Schneider, D.; Delgado Granados, H.; Huggel, C.; Kääb, A.

    2008-06-01

    Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l.), considering also possible future developments of the glaciers on the volcano. Observations of the glacial extent are important for estimations of future hazard scenarios, especially in a rapidly changing tropical glacial environment. In this study, analysis of the glaciers on Iztaccíhuatl shows a dramatic retreat during the last 150 years: the glaciated area in 2007 corresponds to only 4% of the one in 1850 AD and the glaciers are expected to survive no later than the year 2020. Most of the glacial retreat is considered to be related to climate change but in-situ observations suggest also that geo- and hydrothermal heat flow at the summit-crater area can not be ruled out, as emphasized by fumarolic activity documented in a former study. However, development of crater lakes and englacial water reservoirs are supposed to be a more realistic scenario for lahar generation than sudden ice melting by rigorous volcano-ice interaction. Model calculations show that possible outburst floods have to be larger than ~5×105 m3 or to achieve an H/L ratio (Height/runout Length) of 0.2 and lower in order to reach the populated lower flanks. This threshold volume equals 2.4% melted ice of Iztaccíhuatl's total ice volume in 2007, assuming 40% water and 60% volumetric debris content of a potential lahar. The model sensitivity analysis reveals important effects of the generic type of the Digital Terrain Model (DTM) used on the results. As a consequence, the predicted affected areas can vary significantly. For such hazard zonation, we therefore suggest the use of

  1. Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccíhuatl (Central Mexico

    Directory of Open Access Journals (Sweden)

    D. Schneider

    2008-06-01

    Full Text Available Lahars frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interactions during eruptions but also by processes such as intense precipitation or by outbursts of glacial water bodies not directly related to eruptive activity. We use remote sensing, GIS and lahar models in combination with ground observations for an initial lahar hazard assessment on Iztaccíhuatl volcano (5230 m a.s.l., considering also possible future developments of the glaciers on the volcano. Observations of the glacial extent are important for estimations of future hazard scenarios, especially in a rapidly changing tropical glacial environment. In this study, analysis of the glaciers on Iztaccíhuatl shows a dramatic retreat during the last 150 years: the glaciated area in 2007 corresponds to only 4% of the one in 1850 AD and the glaciers are expected to survive no later than the year 2020. Most of the glacial retreat is considered to be related to climate change but in-situ observations suggest also that geo- and hydrothermal heat flow at the summit-crater area can not be ruled out, as emphasized by fumarolic activity documented in a former study. However, development of crater lakes and englacial water reservoirs are supposed to be a more realistic scenario for lahar generation than sudden ice melting by rigorous volcano-ice interaction. Model calculations show that possible outburst floods have to be larger than ~5×105 m3 or to achieve an H/L ratio (Height/runout Length of 0.2 and lower in order to reach the populated lower flanks. This threshold volume equals 2.4% melted ice of Iztaccíhuatl's total ice volume in 2007, assuming 40% water and 60% volumetric debris content of a potential lahar. The model sensitivity analysis reveals important effects of the generic type of the Digital Terrain Model (DTM used on the results. As a consequence, the predicted affected areas can vary significantly. For such

  2. Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017

    Directory of Open Access Journals (Sweden)

    Tazio Strozzi

    2017-09-01

    Full Text Available We computed circum-Arctic surface velocity maps of glaciers and ice caps over the Canadian Arctic, Svalbard and the Russian Arctic for at least two times between the 1990s and 2017 using satellite SAR data. Our analyses are mainly performed with offset-tracking of ALOS-1 PALSAR-1 (2007–2011 and Sentinel-1 (2015–2017 data. In certain cases JERS-1 SAR (1994–1998, TerraSAR-X (2008–2012, Radarsat-2 (2009–2016 and ALOS-2 PALSAR-2 (2015–2016 data were used to fill-in spatial or temporal gaps. Validation of the latest Sentinel-1 results was accomplished by means of SAR data at higher spatial resolution (Radarsat-2 Wide Ultra Fine and ground-based measurements. In general, we observe a deceleration of flow velocities for the major tidewater glaciers in the Canadian Arctic and an increase in frontal velocity along with a retreat of frontal positions over Svalbard and the Russian Arctic. However, all regions have strong accelerations for selected glaciers. The latter developments can be well traced based on the very high temporal sampling of Sentinel-1 acquisitions since 2015, revealing new insights in glacier dynamics. For example, surges on Spitsbergen (e.g., Negribreen, Nathorsbreen, Penckbreen and Strongbreen have a different characteristic and timing than those over Eastern Austfonna and Edgeoya (e.g., Basin 3, Basin 2 and Stonebreen. Events similar to those ongoing on Eastern Austofonna were also observed over the Vavilov Ice Cap on Severnaya Zemlya and possibly Simony Glacier on Franz-Josef Land. Collectively, there seems to be a recently increasing number of glaciers with frontal destabilization over Eastern Svalbard and the Russian Arctic compared to the 1990s.

  3. Characterization of Modern and Fossil Mineral Dust Transported to High Altitude in the Western Alps: Saharan Sources and Transport Patterns

    Directory of Open Access Journals (Sweden)

    Florian Thevenon

    2012-01-01

    Full Text Available Mineral dust aerosols recently collected at the high-altitude Jungfraujoch research station (N, E; 3580 m a.s.l. were compared to mineral dust deposited at the Colle Gnifetti glacier (N, E; 4455 m a.s.l. over the last millennium. Radiogenic isotope signatures and backward trajectories analyses indicate that major dust sources are situated in the north-central to north-western part of the Saharan desert. Less radiogenic Sr isotopic compositions of PM10 aerosols and of mineral particles deposited during periods of low dust transfer likely result from the enhancement of the background chemically-weathered Saharan source. Saharan dust mobilization and transport were relatively reduced during the second part of the Little Ice Age (ca. 1690–1870 except within the greatest Saharan dust event deposited around 1770. After ca. 1870, sustained dust deposition suggests that increased mineral dust transport over the Alps during the last century could be due to stronger spring/summer North Atlantic southwesterlies and drier winters in North Africa. On the other hand, increasing carbonaceous particle emissions from fossil fuel combustion combined to a higher lead enrichment factor point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers during the last century.

  4. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  5. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    Science.gov (United States)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  6. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  7. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P < .05) but had similar rates of neonatal intensive care unit admission (P = not significant). Our results suggest pregnant women who are active in outdoor sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations

    Directory of Open Access Journals (Sweden)

    W. Frey

    2014-05-01

    Full Text Available The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature. Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible

  9. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-05-01

    The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km) though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible cirrus formation, and

  10. Missing correlation of retinal vessel diameter with high-altitude headache

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M Dominik; Schommer, Kai; Bärtsch, Peter; Gekeler, Florian; Schatz, Andreas

    2014-01-01

    The most common altitude-related symptom, high-altitude headache (HAH), has recently been suggested to originate from restricted cerebral venous drainage in the presence of increased inflow caused by hypoxia. In support of this novel hypothesis, retinal venous distension was shown to correlate with the degree of HAH. We quantified for the first time retinal vessel diameter changes at 4559 m using infrared fundus images obtained from a state of the art Spectralis™ HRA+OCT with a semiautomatic VesselMap 1® software. High-altitude exposure resulted in altered arterial and venous diameter changes at high altitude, however, independent of headache burden. PMID:25356382

  11. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    ) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite......Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen...

  12. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Directory of Open Access Journals (Sweden)

    Kenneth S. Whitlow,

    2014-11-01

    Full Text Available High altitude pulmonary edema (HAPE is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. [West J Emerg Med. 2014;15(7:–0.

  13. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Science.gov (United States)

    Whitlow, Kenneth S.; Davis, Babette W.

    2014-01-01

    High altitude pulmonary edema (HAPE) is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. PMID:25493133

  14. Volume changes of Vatnajökull ice cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnson, Helgi; Dall, Jørgen

    2005-01-01

    We present observed changes in the geometry of western Vatnajökull over a period of about ten years which are caused by the surface mass balance, ice flow (both during surges and quiescent periods), and basal melting due to geothermal and volcanic activity. Comparison of two digital elevation...... models shows that from 1985 to 1998 the outlet glaciers have lost 14 ± 5 km3, on the average 1 m/yr...

  15. Combination of SAR remote sensing and GIS for monitoring subglacial volcanic activity – recent results from Vatnajökull ice cap (Iceland

    Directory of Open Access Journals (Sweden)

    U. Münzer

    2007-11-01

    Full Text Available This paper presents latest results from the combined use of SAR (Synthetic Aperture Radar remote sensing and GIS providing detailed insights into recent volcanic activity under Vatnajökull ice cap (Iceland. Glaciers atop active volcanoes pose a constant potential danger to adjacent inhabited regions and infrastructure. Besides the usual volcanic hazards (lava flows, pyroclastic clouds, tephra falls, etc., the volcano-ice interaction leads to enormous meltwater torrents (icelandic: jökulhlaup, devastating large areas in the surroundings of the affected glacier. The presented monitoring strategy addresses the three crucial questions: When will an eruption occur, where is the eruption site and which area is endangered by the accompanying jökulhlaup. Therefore, sufficient early-warning and hazard zonation for future subglacial volcanic eruptions becomes possible, as demonstrated for the Bardárbunga volcano under the northern parts of Vatnajökull. Seismic activity revealed unrest at the northern flanks of Bardárbunga caldera at the end of September 2006. The exact location of the corresponding active vent and therefore a potentially eruptive area could be detected by continuous ENVISAT-ASAR monitoring. With this knowledge a precise prediction of peri-glacial regions prone to a devastating outburst flood accompanying a possible future eruption is possible.

  16. Cervical Cap

    Science.gov (United States)

    ... I Help Someone Who's Being Bullied? Volunteering Cervical Cap KidsHealth > For Teens > Cervical Cap Print A A ... and a female's egg. How Does a Cervical Cap Work? The cervical cap keeps sperm from entering ...

  17. High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.

    2015-12-01

    The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that

  18. Karakorum-Hindukush-western Himalaya: assessing high-altitude water resources

    Science.gov (United States)

    Winiger, M.; Gumpert, M.; Yamout, H.

    2005-08-01

    The high mountains of Central and South Asia provide irrigation water for their adjacent lowlands. The Indus Irrigation Scheme depends on approximately 50% of its runoff originating from snowmelt and glacier melt from the eastern Hindukush, Karakorum and western Himalaya. The Atlas of Pakistan indicates that these mountains gain a total annual rainfall of between 200 and 500 mm, amounts that are generally derived from valley-based stations and not representative for elevated zones. High-altitude snowfall seems to be neglected and is obviously still rather unknown. Estimates derived from accumulation pits runoff above 4000 m range from 1000 mm to more than 3000 mm, depending on the site and time of investigation, as well as on the method applied.To assess the vertical spatio-temporal distribution of total annual precipitation, a combined approach is presented. This approach links in situ measurements of snow depth and water equivalent (10-year time series derived from automatic weather stations at elevations between 1500 and 4700 m a.s.l.), the spatial distribution and period of snow coverage (remotely sensed data and digital elevation models), and the runoff characteristics of streams originating from snow or snow/ice-covered watersheds (modified snowmelt runoff model, including intermediate snowfall and glacier runoff).Based on conservative assumptions, the vertically changing seasonal ratio between liquid and solid precipitation is calculated. Using a combined snow cover and ablation model, total annual amounts of precipitation are derived for different altitudinal zones. Amounts of modelled and measured runoff complement the investigation. Horizontal gradients along the Indus-Gilgit-Hunza transect indicate the varying dominance of seasonal precipitation regimes (monsoonal, Mediterranean and continental disturbances) south of Nanga Parbat, between Nanga Parbat and Batura Wall (=West Karakorum rainfall regime: 1500-1800 mm year-1 at 5000 m) and areas north of

  19. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  20. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  1. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  2. Is Pulse Oximetry Useful for Screening Neonates for Critical Congenital Heart Disease at High Altitudes?

    Science.gov (United States)

    Hoffman, Julien I E

    2016-06-01

    Now that pulse oximetry is used widely to screen for critical congenital heart disease, it is time to consider whether this screening method is applicable to those who live at high altitudes. Consideration of basic physical principles and reports from the literature indicate that not only is the 95 % cutoff point for arterial oxygen saturation incorrect at high altitudes, but the lower saturations are accompanied by greater variability and therefore there is the possibility of a greater percentage of false-positive screening tests at high altitudes. Because of ethnic differences in response to high altitudes, normative data will have to be collected separately in different countries and perhaps for different ethnic groups.

  3. QT interval changes in term pregnant women living at moderately high altitude.

    Science.gov (United States)

    Batmaz, G; Aksoy, A N; Aydın, S; Ay, N K; Dane, B

    2016-01-01

    This study aimed to compare the QT interval changes in women with term pregnancy living at moderately high altitude (1890 m in Erzurum, Turkey) with those of women living at sea level (31 m in İstanbul, Turkey). One-hundred ten women (n = 55, for each group) with full-term and single child pregnancies. Two different locations in that state were selected: İstanbul, Turkey, which is at 31 m above sea level (Group 1) and Erzurum, Turkey, at 1890 m above sea level (Group 2). Physicians from the two locations participated in the study. We estimated QTc, QTc Max, QTc Min, QT, and QTcd intervals. Moderately high altitude group had significantly longer QT parameters (QTc, QTc Max, QTc Min, QT, and QTcd intervals) compared with sea level group (P anges occur in term pregnant women living moderately high altitude. These changes may be associated with pregnancy-related cardiovascular complications in moderately high altitude.

  4. Subclinical high altitude pulmonary edema:A clinical observation of 12 cases in Yushu

    Institute of Scientific and Technical Information of China (English)

    Li Shuzhi; Zheng Bihai; Wu Tianyi; Chen Huixing; Zhang Ming

    2013-01-01

    During the Yushu Earthquake on April 14,2010,a high incidence of acute high altitude illness was observed in the mountain rescuers,and 0.73 % of these patients suffered from high altitude pulmonary edema,of which 12 patients developed subclinical pulmonary edema and concomitantly contracted acute mountain sickness.Symptoms and signs were atypically high heart rate with high respiratory rate,striking cyanosis,and significantly low oxygen saturation,whereas no moist rates were heard on auscultation,and Chest X-ray showed peripheral with a patchy distribution of mottled infiltrations in one or both lung fields.We believe that subclinical high altitude pulmonary edema is an earliest stage of pulmonary edema at high altitude.The possible pathogenesis and the diagnosis were discussed.

  5. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  6. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    Science.gov (United States)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries

  7. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial.......059) to limit mass-specific maximal oxidative phosphorylation capacity. These data suggest that 9-11 days of exposure to high altitude do not markedly modify integrated measures of mitochondrial functional capacity in skeletal muscle despite significant decrements in the concentrations of enzymes involved...

  8. Analysis of mitochondrial DNA in Tibetan gastric cancer patients at high altitude

    OpenAIRE

    Jiang, Jun; Zhao, Jun-Hui; Wang, Xue-Lian; DI, JI; Liu, Zhi-Bo; Li, Guo-Yuan; WANG, MIAO-ZHOU; Li, Yan; Chen, Rong; Ge, Ri-Li

    2015-01-01

    The highest risk areas of gastric cancer are currently Japan, Korea and China; Qinghai, a high-altitude area, has one of the highest gastric cancer rates in China. The incidence of gastric cancer is higher in the Tibetan ethnic group compared to that in the Han ethnic group in Qinghai. This study was conducted to determine the clinical characteristics of mitochondrial DNA (mtDNA) mutations and copy numbers among Tibetans with gastric cancer residing at high altitudes and investigate the assoc...

  9. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  10. ROCK2 and MYLK variants and high-altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2016-08-01

    Full Text Available Gaurav Sikri, Srinivasa Bhattachar Department of Physiology, Armed Forces Medical College, Pune, Maharashtra, IndiaWe have read the article titled “ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation” by Pandey et al1 with profound interest. View the original paper by Pandey and colleagues.

  11. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  12. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  13. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein

    Science.gov (United States)

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer’s disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500m altitude, 3650m altitude, 3day, 1, and 3 month post arriving at the base camp (4400m), and 1 month after coming back to the 500m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction. PMID:26731740

  14. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  15. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    Science.gov (United States)

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.

  16. Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats.

    Science.gov (United States)

    Gasco, M; Rubio, J; Chung, A; Villegas, L; Gonzales, G F

    2003-12-01

    The present study was designed to determine the effect of exposure to high altitude on spermatogenesis using transillumination technique and sperm count in male rats. In addition, the effect of oral intubation for intragastric administration of vehicle on testicular parameters in adult male rats in a schedule of 42 days was assessed. Male rats were exposed to Cerro de Pasco (Peru) at 4340 m for 3, 7, 14, 21, 28, 35 and 42 days resulting in a modification of the pattern of the seminiferous tubule stages. At day 3, stages I, IV-V, VI, VII and IX-XI were relatively shorter at high altitude than at sea level. At day 7, stages VIII, IX-XI, XII and XIII-XIV were reduced. At day 14, stages VII, VIII and IX-XI were reduced. At day 21 and 28, stages VIII, XII and XIII-XIV were significantly increased at high altitude. At day 35 an increase in stage XIII-XIV was observed. At day 42, stages II-III, IX-XI and XII were significantly increased at high altitude. Epididymal sperm count was significantly reduced at day 7 of exposure to high altitude and maintained low levels with respect to sea level up to 42 days. In conclusion, high altitude exposure affects spermatogenesis, particularly onset of mitosis and spermiation. This in turn affects epididymal sperm count.

  17. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  18. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension.

    Science.gov (United States)

    Berger, Marc M; Dehnert, Christoph; Bailey, Damian M; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Mairbäurl, Heimo; Bärtsch, Peter; Swenson, Erik R

    2009-01-01

    Berger, Marc M., Christoph Dehnert, Damian M. Bailey, Andrew M. Luks, Elmar Menold, Christian Castell, Guido Schendler, Vitalie Faoro, Heimo Mairbäurl, Peter Bärtsch, and Eric R. Swenson. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt. Med. Biol. 10:17-24, 2009.- Thirty-four mountaineers were studied at low (110 m) and high altitude (4559 m) to evaluate if increased pulmonary artery systolic pressure (PASP) at high altitude is associated with increased pulmonary endothelin-1 (ET-1) availability and alterations in nitrite metabolism across the lung. Blood samples were obtained using central venous and radial artery catheters for plasma ET-1 and nitrite. Pulmonary blood flow was measured by inert gas rebreathing to calculate transpulmonary exchange of plasma ET-1 and nitrite, and PASP was assessed by transthoracic Doppler echocardiography. After ascent to high altitude, PASP increased from 23 +/- 4 to 39 +/- 10 mmHg. Arterial and central venous plasma ET-1 increased, while plasma nitrite did not change significantly. At low altitude there was a transpulmonary loss of plasma ET-1, but a transpulmonary gain at high altitude. In contrast was a transpulmonary gain of plasma nitrite at low altitude and a transpulmonary loss at high altitude. PASP positively correlated with a transpulmonary gain of plasma ET-1 and negatively correlated with a transpulmonary loss of plasma nitrite. These results suggest that a transpulmonary gain of plasma ET- 1 is associated with higher PASP at high altitude. Transpulmonary loss of plasma nitrite indicates either less pulmonary nitric oxide (NO) production, which contributes to higher PASP, or increased NO bioavailability arising from nitrite reduction, which may oppose ET-1-mediated vasoconstriction.

  19. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  20. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.

  1. Historical and Future Black Carbon Deposition on the Three Ice Caps: Ice Core Measurements and Model Simulations from 1850 to 2100

    Science.gov (United States)

    Bauer, Susanne E.; Bausch, Alexandra; Nazarenko, Larissa; Tsigaridis, Kostas; Xu, Baiqing; Edwards. Ross; Bisiaux, Marion; McConnell, Joe

    2013-01-01

    Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850-2005) and future (2005-2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic.

  2. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    Science.gov (United States)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  3. Chronic intermittent high altitude exposure, occupation, and body mass index in workers of mining industry.

    Science.gov (United States)

    Esenamanova, Marina K; Kochkorova, Firuza A; Tsivinskaya, Tatyana A; Vinnikov, Denis; Aikimbaev, Kairgeldy

    2014-09-01

    The obesity and overweight rates in population exposed to chronic intermittent exposure to high altitudes are not well studied. The aim of the retrospective study was to evaluate whether there are differences in body mass index in different occupation groups working in intermittent shifts at mining industry at high altitude: 3800-4500 meters above sea level. Our study demonstrated that obesity and overweight are common in workers of high altitude mining industry exposed to chronic intermittent hypoxia. The obesity rate was lowest among miners as compared to blue- and white-collar employees (9.5% vs. 15.6% and 14.7%, p=0.013). Obesity and overweight were associated with older age, higher rates of increased blood pressure (8.79% and 5.72% vs. 1.92%), cholesterol (45.8% and 45.6% vs. 32.8%) and glucose (4.3% and 1.26% vs. 0.57%) levels as compared to normal body mass index category (pmining industry exposed to intermittent high-altitude hypoxia. Therefore, assessment and monitoring of body mass index seems to be essential in those who live and work at high altitudes to supply the correct nutrition, modify risk factors, and prevent related disorders.

  4. Lidar observations of tropical high-altitude cirrus clouds: results from dual-wavelength Raman lidar measurements during the ALBATROSS campaign 1996

    Science.gov (United States)

    Beyerle, Georg; Schaefer, H. J.; Schrems, Otto; Neuber, R.; Rairoux, P.; McDermid, I. S.

    1997-05-01

    Results from dual wavelength Raman lidar observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus clouds were present in more than 50% of the observations at latitudes between 23.5 degrees south and 23.5 degrees north and altitudes between 11 and 16 km. Volume depolarization is found to be a sensitive parameter for the detection of subvisible cloud layers. Using Mie scattering calculations estimates of the ice water content are derived.

  5. Major Holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, México: Implications for future hazards

    Science.gov (United States)

    Siebe, Claus; Abrams, Michael; Sheridan, Michael F.

    1993-12-01

    A major block-and-ash fan extends more than 14 km westward from the summit of Pico de Orizaba volcano in the eastern part of the Trans-Mexican Volcanic Belt. Radiocarbon dating of charcoal within the fan deposits yielded Holocene ages that range between 4040 ± 80 and 4660 ± 100 y.B.P. Stratigraphical, sedimentological, geochemical, and scanning electron microscope studies indicate that this fan originated within a relatively short time-span by multiple volcanic explosions at the summit crater. This activity produced a series of pyroclastic flows (mainly block-and-ash flows) and lahars which were channelized by a glacial cirque and connecting U-shaped valleys as they descended toward the base of the volcano. A recurrence of a similar eruption today would pose severe hazards to the population of more than 50,000 people, who live in a potentially dangerous zone. A detailed reconstruction of the sequence of events that led to the formation of the block-and-ash fan is presented to help mitigate the risk. Special attention is given to the effects of an ice-cap and the role of pre-existing glacial morphology on the distribution of products from such an eruption.

  6. Ancient versus modern mineral dust transported to high-altitude alpine glaciers evidences saharan sources and atmospheric circulation changes

    Directory of Open Access Journals (Sweden)

    F. Thevenon

    2011-01-01

    Full Text Available Mineral dust aerosols collected during the years 2008/09 at the high-altitude research station Jungfraujoch (46°33' N, 7°59' E; 3580 m a.s.l. were compared to windblown mineral dust deposited at the Colle Gnifetti glacier (45°55' N, 7°52' E, 4455 m a.s.l. over the last millennium. Insoluble dust has been characterized in terms of mineralogy, Sr and Nd isotopic ratios, and trace element composition. Results demonstrate that the Saharan origin of the airborne dust did not change significantly throughout the past. Backward trajectories analysis of modern analogs furthermore confirms that major dust sources are situated in the north-central to north-western part of the Saharan desert. By contrast, less radiogenic Sr isotopic compositions are associated with lower abundances of crustal elements during low rates of dust deposition, suggesting intercontinental transport of background dust rather than activation of a secondary source. Saharan dust mobilization and meridional advection of air masses were relatively reduced during the second part of the Little Ice Age (ca. 1690–1870, except within the greatest Saharan dust event deposited around 1780–1790. Higher dust deposition with larger mean grain size and Saharan fingerprint began ca. 20 years after the industrial revolution of 1850, suggesting that increased mineral dust transport over the Alps during the last century was primarily due to drier winters in North Africa and stronger spring/summer North Atlantic southwesterlies, rather than to direct anthropogenic sources. Meanwhile, increasing carbonaceous particle emissions from fossil fuels combustion combined to higher lead enrichment factor during the last century, point to concomitant anthropogenic sources of particulate pollutants reaching high-altitude European glaciers.

  7. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  8. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  9. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  10. HAMP - the microwave package on the upcoming High Altitude and LOng range aircraft HALO

    Science.gov (United States)

    Mech, M.; Crewell, S.; Peters, G.; Hirsch, L.

    2009-04-01

    New cloud observation techniques are needed to improve our understanding of the impact of clouds on the earth's water cycle and radiation budget, which represents still one of the largest uncertainties in global and regional climate modeling. An airborne platform for such observation techniques will be provided by the new German research aircraft HALO (High Altitude Long Range) that will be commissioned in 2009. HALO will open a new dimension for climate and atmospheric research. By HALO it will be possible to survey the atmosphere on continental scales but with much finer resolution and with more powerful instrumentation than feasible on space borne platforms. An advanced set of microwave remote cloud sensing instruments (HAMP - HALO Microwave Package) will be operated on board of HALO. It consists of a cloud radar and a suite of passive radiometers in different frequency bands. The radar MIRA-36 operates at 36.5 GHz. Although this is an unusual low frequency, it benefits from the wider range of applications due to less signal attenuation in deep clouds and rain, compared to the 94 GHz radar operated on CloudSat. The frequencies for the passive microwave radiometers were selected in allusion to the AMSU-A and -B sounder. Thereby the 150 GHz channel of AMSU-B has been replaced by frequencies in the 118 GHz oxygen band. In combination with the 60 GHz oxygen complex channels, this frequencies can be used for precipitation retrieval after Bauer and Mugnai (2003). Furthermore by including channels in the water vapor lines at 22.235 GHz and 183.31 GHz and higher microwave channels sensitive to scattering in the ice phase, various precipitation retrieval algorithms can be compared by measurements with HAMP. This presentation introduces the microwave package on HALO. It further shows the potential of the observations by presenting results of a simulation study for the selected microwave frequencies and the cloud radar. The potential of the selected frequencies for

  11. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  12. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus

    DEFF Research Database (Denmark)

    Weber, Roy E.; Hiebl, Inge; Braunitzer, Gerhard

    1988-01-01

    structures of the constituent polypeptide chains to trace molecular adaptations to high-altitude respiration, and to physiological factors (pulmonary hypoxia and hypocapnia, body temperature shifts, and lung and nasal gas and heat exchange) to discern their possible survival value at altitudes of 11300 m.......Functional characteristics of the stripped composite hemoglobins (Hbs) of lhevultures Gyps rueppellii and Aegypills monachus that can fly at extremely high altitudes, and of component Hbs of G. rueppellii are reported, in relation to influences of pH, temperalure and inositol hexaphosphate. G...

  13. Out of air: Is going to high altitude safe for your patient?

    Science.gov (United States)

    Mendenhall, Ann M; Forest, Christopher P

    2017-08-01

    As more people travel to high altitudes for recreation or work, more travelers with underlying medical conditions will need advice before traveling or treatment for altitude illness. This article focuses on the two main issues for travelers: whether travel to a high altitude will have a negative effect on their underlying medical condition and whether the medical condition increases the patient's risk of developing altitude illness. Although patients with severe pulmonary or cardiac conditions are most at risk in the hypoxic environment, other conditions such as diabetes and pregnancy warrant attention as well.

  14. Incidence of high altitude pulmonary edema in low-landers during re-exposure to high altitude after a sojourn in the plains

    Science.gov (United States)

    Apte, C.V.; Tomar, R.K.S.; Sharma, D.

    2015-01-01

    Background There is uncertainty whether acclimatized low-landers who return to high altitude after a sojourn at low altitude have a higher incidence of pulmonary edema than during the first exposure to high altitude. Methods This was a prospective cohort study consisting of men ascending to 3400 m by road (N = 1003) or by air (N = 4178). The study compared the incidence of high altitude pulmonary edema during first exposure vs the incidence during re-exposure in each of these cohorts. Results Pulmonary edema occurred in 13 of the 4178 entries by air (Incidence: 0.31%, 95% CI: 0.18%–0.53%). The incidence during first exposure was 0.18% (0.05%–0.66%) and 0.36% (0.2%–0.64%) during re-exposure (Fisher Exact Test for differences in the incidence (two-tailed) p = 0.534). The relative risk for the re-exposure cohort was 1.95 (95% CI, 0.43%–8.80%). Pulmonary edema occurred in 3 of the 1003 road entrants (Incidence: 0.30%, 95% CI: 0.08%–0.95%). All three cases occurred in the re-exposure cohort. Conclusion The large overlap of confidence intervals between incidence during first exposure and re-exposure; the nature of the confidence interval of the relative risk; and the result of the Fisher exact test, all suggest that this difference in incidence could have occurred purely by chance. We did not find evidence for a significantly higher incidence of HAPE during re-entry to HA after a sojourn in the plains. PMID:26288488

  15. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    Science.gov (United States)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  16. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  17. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  18. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  19. Update on high altitude cerebral edema including recent work on the eye.

    Science.gov (United States)

    Willmann, Gabriel; Gekeler, Florian; Schommer, Kai; Bärtsch, Peter

    2014-06-01

    This review summarizes recent research on high altitude cerebral edema (HACE) and on the eye with focus on the retina and optic nerve as visible brain tissue at high altitude. Hemosiderin deposits in the corpus callosum have been characterized as rather specific long-lasting footprints of HACE, indicating a leak of the blood-brain barrier (BBB) and resulting in microhemorrhages. These are compatible with the concept of increased capillary pressure due to venous outflow limitation as suggested by Wilson et al. There are no human data on the role of vascular permeability in HACE, while animal models of uncertain relevance for human HACE suggest that an impaired integrity of the BBB through VEGF and ROS is more important than hemodynamic changes. Examinations by ultrasound show an inconsistent increase of the optic nerve sheath diameter, whereas unequivocal optic disc swelling (ODS), increased retinal vessel diameter, as well as retinal vessel leakage occur at high altitude. However, whether these morphological changes correlate with symptoms of AMS as a possible precursor of HACE or high altitude headache supporting the concept of venous outflow limitation remains questionable and is discussed in detail in this article.

  20. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya

    NARCIS (Netherlands)

    Shea, J. M.; Wagnon, P.; Immerzeel, W. W.; Biron, R.; Brun, F.; Pellicciotti, F.

    2015-01-01

    Meteorological studies in high-mountain environments form the basis of our understanding of catchment hydrology and glacier accumulation and melt processes, yet high-altitude (>4000 m above sea level, asl) observatories are rare. This research presents meteorological data recorded between December 2

  1. Oxygen enrichment and its application to life support systems for workers in high-altitude areas.

    Science.gov (United States)

    Li, Yongling; Liu, Yingshu

    2014-01-01

    Workers coming from lowland regions are at risk of developing acute mountain sickness (AMS) when working in low oxygen high-altitude areas. The aim of this study was to improve the conditions that lead to hypoxia and ensure the safety of the high-altitude workers. We analyzed the influence of low atmospheric pressure on the oxygen enrichment process in high-altitude areas using an engineering method called low-pressure swing adsorption (LPSA). Fourteen male subjects were screened and divided into three groups by type of oxygen supply system used: (1) oxygen cylinder group; (2) LPSA oxygen dispersal group; and (3) control group. These tests included arterial oxygen saturation (SaO2), pulse rate (PR), breaths per minute (BPM), and blood pressure (BP). The results showed that after supplying oxygen using the LPSA method at the tunnel face, the SaO2 of workers increased; the incidence of acute mountain sickness, PR, and BPM significantly decreased. The LPSA life support system was found to be a simple, convenient, efficient, reliable, and applicable approach to ensure proper working conditions at construction sites in high-altitude areas.

  2. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Raina

    2016-01-01

    Full Text Available Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8 were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9% as compared to females (8/131; 6%. Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7% while it was the highest in the age group of 40–49 among females (7/8; 87%. Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations.

  3. Prevalence of Hypertension in a Tribal Land Locked Population at High Altitude

    Science.gov (United States)

    Raina, Sunil Kumar; Chander, Vishav; Prasher, Chaman Lal; Raina, Sujeet

    2016-01-01

    Introduction. Extensive pubmed search reveals paucity of data on prevalence of hypertension in tribal population at high altitude. The data is all the more scarce from our part of India. Studies among tribal populations at high altitudes provide an interesting epidemiological window to study human evolution and adaptation to hypobaric hypoxia. Material and Methods. 401 participants above the age of 20 years were evaluated for blood pressure using a stratified simple random technique among villages located at high altitude. Results. Out of a total of 401 individuals studied 43 (males: 35; females: 8) were identified as hypertensive yielding a crude prevalence of 10.7%. The prevalence was higher in males (35/270; 12.9%) as compared to females (8/131; 6%). Prevalence was the highest in the age group of 30–39 among males (16/35; 45.7%) while it was the highest in the age group of 40–49 among females (7/8; 87%). Conclusions. Prevalence of 10.5% is noteworthy when interpreted in light of prevalence of hypertension in general population especially if hypobaric hypoxia is considered to have a protective effect on blood pressure in high altitude native populations. PMID:26989560

  4. Pregnancy at high altitude in the Andes leads to increased total vessel density in healthy newborns

    NARCIS (Netherlands)

    Gassmann, N.N. (Norina N.); H.A. van Elteren (Hugo); T.G. Goos (Tom); Morales, C.R. (Claudia R.); Rivera-Ch, M. (Maria); D.S. Martin; Peralta, P.C. (Patricia Cabala); Del Carpio, A.P. (Agustin Passano); MacHaca, S.A. (Saul Aranibar); Huicho, L. (Luis); I.K.M. Reiss (Irwin); Gassmann, M. (Max); R.C.J. de Jonge (Rogier)

    2016-01-01

    markdownabstractThe developing human fetus is able to cope with the physiological reduction in oxygen supply occurring in utero. However, it is not known if microvascularization of the fetus is augmented when pregnancy occurs at high altitude. Fifty-three healthy term newborns in Puno, Peru (3,840

  5. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  6. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    . At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...

  7. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  8. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  9. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco, a

  10. Elevated Suicide Rates at High Altitude: Sociodemographic and Health Issues May Be to Blame

    Science.gov (United States)

    Betz, Marian E.; Valley, Morgan A.; Lowenstein, Steven R.; Hedegaard, Holly; Thomas, Deborah; Stallones, Lorann; Honigman, Benjamin

    2011-01-01

    Suicide rates are higher at high altitudes; some hypothesize that hypoxia is the cause. We examined 8,871 suicides recorded in 2006 in 15 states by the National Violent Death Reporting System, with the victim's home county altitude determined from the National Elevation Dataset through FIPS code matching. We grouped cases by altitude (low less…

  11. Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    Directory of Open Access Journals (Sweden)

    Gaurav Sikri

    2015-10-01

    Full Text Available We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions. With this, as with most emergency department (ED patients, it must be understood that the initial treatment reflected the breadth of our differential diagnosis.

  12. Radiocarbon dating of glacier ice: overview, optimisation, validation and potential

    Science.gov (United States)

    Uglietti, Chiara; Zapf, Alexander; Jenk, Theo Manuel; Sigl, Michael; Szidat, Sönke; Salazar, Gary; Schwikowski, Margit

    2016-12-01

    High-altitude glaciers and ice caps from midlatitudes and tropical regions contain valuable signals of past climatic and environmental conditions as well as human activities, but for a meaningful interpretation this information needs to be placed in a precise chronological context. For dating the upper part of ice cores from such sites, several relatively precise methods exist, but they fail in the older and deeper parts, where plastic deformation of the ice results in strong annual layer thinning and a non-linear age-depth relationship. If sufficient organic matter such as plant, wood or insect fragments were found, radiocarbon (14C) analysis would have thus been the only option for a direct and absolute dating of deeper ice core sections. However such fragments are rarely found and, even then, they would not be very likely to occur at the desired depth and resolution. About 10 years ago, a new, complementary dating tool was therefore introduced by our group. It is based on extracting the µg-amounts of the water-insoluble organic carbon (WIOC) fraction of carbonaceous aerosols embedded in the ice matrix for subsequent 14C dating. Since then this new approach has been improved considerably by reducing the measurement time and improving the overall precision. Samples with ˜ 10 µg WIOC mass can now be dated with reasonable uncertainty of around 10-20 % (variable depending on sample age). This requires about 300 to 800 g of ice for WIOC concentrations typically found in midlatitude and low-latitude glacier ice. Dating polar ice with satisfactory age precision is still not possible since WIOC concentrations are around 1 order of magnitude lower. The accuracy of the WIOC 14C method was validated by applying it to independently dated ice. With this method, the deepest parts of the ice cores from Colle Gnifetti and the Mt Ortles glacier in the European Alps, Illimani glacier in the Bolivian Andes, Tsambagarav ice cap in the Mongolian Altai, and Belukha glacier in the

  13. The body weight loss during acute exposure to high-altitude hypoxia in sea level residents.

    Science.gov (United States)

    Ge, Ri-Li; Wood, Helen; Yang, Hui-Huang; Liu, Yi-Ning; Wang, Xiu-Juan; Babb, Tony

    2010-12-25

    Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate altitude group (2.97±1.38), and was significantly correlated with baseline body weight

  14. High altitude syndromes at intermediate altitudes: a pilot study in the Australian Alps.

    Science.gov (United States)

    Slaney, Graham; Cook, Angus; Weinstein, Philip

    2013-10-01

    Our hypothesis is that symptoms of high altitude syndromes are detectable even at intermediate altitudes, as commonly encountered under Australian conditions (flatus expulsion (HAFE). Symptoms of high altitude syndromes are of growing concern because of the global trend toward increasing numbers of tourists and workers exposed to both rapid ascent and sustained physical activity at high altitude. However, in Australia, high altitude medicine has almost no profile because of our relatively low altitudes by international standards. Three factors lead us to believe that altitude sickness in Australia deserves more serious consideration: Australia is subject to rapid growth in alpine recreational industries; altitude sickness is highly variable between individuals, and some people do experience symptoms already at 1500 m; and there is potential for an occupational health and safety issue amongst workers. To test this hypothesis we examined the relationship between any high altitude symptoms and a rapid ascent to an intermediate altitude (1800 m) by undertaking an intervention study in a cohort of eight medical clinic staff, conducted during July of the 2012 (Southern Hemisphere) ski season, using self-reporting questionnaires, at Mansfield (316 m above sea level) and at the Ski Resort of Mt Buller (1800 m), Victoria, Australia. The intervention consisted of ascent by car from Mansfield to Mt Buller (approx. 40 min drive). Participants completed a self-reporting questionnaire including demographic data and information on frequency of normal homeostatic processes (fluid intake and output, food intake and output, symptoms including thirst and headaches, and frequency of passing wind or urine). Data were recorded in hourly periods extending over 18 h before and 18 h after ascent. We found that the frequency of flatus production more than doubled following ascent, with a post-ascent frequency of approximately 14 expulsions per person over the 18 h recording period (Rate

  15. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.

    Science.gov (United States)

    van Patot, Martha C Tissot; Gassmann, Max

    2011-01-01

    Living at high altitude is demanding and thus drives adaptational mechanisms. The Tibetan population has had a longer evolutionary period to adapt to high altitude than other mountain populations such as Andeans. As a result, some Tibetans living at high altitudes do not show markedly elevated red blood cell production as compared to South American high altitude natives such as Quechuas or Aymaras, thereby avoiding high blood viscosity creating cardiovascular risk. Unexpectedly, the responsible mutation(s) reducing red blood cell production do not involve either the gene encoding the blood hormone erythropoietin (Epo), or the corresponding regulatory sequences flanking the Epo gene. Similarly, functional mutations in the hypoxia-inducible transcription factor 1α (HIF-1α) gene that represents the oxygen-dependent subunit of the HIF-1 heterodimer, the latter being the main regulator of over 100 hypoxia-inducible genes, have not been described so far. It was not until very recently that three independent groups showed that the gene encoding HIF-2α, EPAS-1 (Wenger et al. 1997), represents a key gene mutated in Tibetan populations adapted to living at high altitudes (Beall et al. 2010 , Yi et al. 2010 , Simonson et al. 2010). Hypoxia-inducible transcription factors were first identified by the description of HIF-1 (Semenza et al. 1991 , 1992), which was subsequently found to enhance transcription of multiple genes that encode proteins necessary for rescuing from hypoxic exposure, including erythropoietic, angiogenic and glycolytic proteins. Then HIF-2 was identified (Ema et al. 1997 ; Flamme et al. 1997 ; Hogenesch et al. 1997 ; and Tian et al. 1997) and although it is highly similar to HIF-1 and has the potential to bind (Camenisch et al. 2001) and mediate (Mole et al. 2009) many of the same genes as HIF-1, its biological actions in response to hypoxia are distinct from those of HIF-1 (reviewed by Loboda et al. 2010). By now, several of these HIF-2 mediated

  16. Role of the altitude level on cerebral autoregulation in residents at high altitude.

    Science.gov (United States)

    Jansen, Gerard F A; Krins, Anne; Basnyat, Buddha; Odoom, Joseph A; Ince, Can

    2007-08-01

    Cerebral autoregulation is impaired in Himalayan high-altitude residents who live above 4,200 m. This study was undertaken to determine the altitude at which this impairment of autoregulation occurs. A second aim of the study was to test the hypothesis that administration of oxygen can reverse this impairment in autoregulation at high altitudes. In four groups of 10 Himalayan high-altitude dwellers residing at 1,330, 2,650, 3,440, and 4,243 m, arterial oxygen saturation (Sa(O(2))), blood pressure, and middle cerebral artery blood velocity were monitored during infusion of phenylephrine to determine static cerebral autoregulation. On the basis of these measurements, the cerebral autoregulation index (AI) was calculated. Normally, AI is between zero and 1. AI of 0 implies absent autoregulation, and AI of 1 implies intact autoregulation. At 1,330 m (Sa(O(2)) = 97%), 2,650 m (Sa(O(2)) = 96%), and 3,440 m (Sa(O(2)) = 93%), AI values (mean +/- SD) were, respectively, 0.63 +/- 0.27, 0.57 +/- 0.22, and 0.57 +/- 0.15. At 4,243 m (Sa(O(2)) = 88%), AI was 0.22 +/- 0.18 (P < 0.0005, compared with AI at the lower altitudes) and increased to 0.49 +/- 0.23 (P = 0.008, paired t-test) when oxygen was administered (Sa(O(2)) = 98%). In conclusion, high-altitude residents living at 4,243 m have almost total loss of cerebral autoregulation, which improved during oxygen administration. Those people living at 3,440 m and lower have still functioning cerebral autoregulation. This study showed that the altitude region between 3,440 and 4,243 m, marked by Sa(O(2)) in the high-altitude dwellers of 93% and 88%, is a transitional zone, above which cerebral autoregulation becomes critically impaired.

  17. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    Science.gov (United States)

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  18. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    Directory of Open Access Journals (Sweden)

    Bigham Abigail W

    2009-12-01

    Full Text Available Abstract High-altitude environments (>2,500 m provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude.

  19. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes.

    Science.gov (United States)

    Aguilera, Ximena; Lazzaro, Xavier; Coronel, Jorge S

    2013-09-01

    Tropical high-altitude Andean lakes are physically harsh ecosystems. Located above the treeline (≥4000 m a.s.l.), they share common features with temperate alpine lakes, which impose extreme conditions on their aquatic organisms: e.g., strong winds, broad diel variations in water temperature, and intense solar ultraviolet radiation (UVR). However, because of their latitude, they differ in two major ecological characteristics: they lack ice cover during the winter and they do not present summer water column stratification. We sampled 26 tropical high-altitude Andean lakes from three regions of the Bolivian Eastern Andes Cordillera during the wet period (austral summer). We performed an ordination to better describe the typology of Andean lakes in relation to the environmental variables, and we assessed the relationships among them, focussing on the UV-A transparency (360 nm) throughout the water column. We found a positive correlation between UV-A transparency calculated as Z(1%) (the depth which reaches 1% of the surface UV-A), the lake maximum depth and Secchi transparency (r = 0.61). Z(1%) of UV-A was smaller in shallow lakes than in deep lakes, indicating that shallow lakes are less transparent to UV-A than deep lakes. We hypothesize that, compared to shallow lakes, deep lakes (maximum depth > 10 m) may have lower dissolved organic carbon (DOC) concentrations (that absorb UV radiation) due to lower temperature and reduced macrophyte cover. Based on our data, tropical high-altitude Andean lakes are less transparent to UV-A (K(d) range = 1.4-11.0 m(-1); Z(1%) depth range = 0.4-3.2 m) than typical temperate alpine lakes (1-6 m(-1), 3-45 m, respectively). Moreover, they differ in vertical profiles of UV-A, chlorophyll-a, and temperature, suggesting that they may have a distinct ecological functioning. Such peculiarities justify treating tropical high-altitude Andean lakes as a separate category of alpine lakes. Tropical high-altitude Andean lakes have been poorly

  20. Ice Crystal Icing Research at NASA

    Science.gov (United States)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  1. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  2. Structural and functional changes of the human macula during acute exposure to high altitude.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available BACKGROUND: This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO study. METHODOLOGY/PRINCIPAL FINDINGS: Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m. High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT in all four outer ETDRS grid subfields during acute altitude exposure (TRT(outer = 2.80 ± 1.00 μm; mean change ± 95%CI. This change was inverted towards the inner four subfields (TRT(inner = -1.89 ± 0.97 μm with significant reduction of TRT in the fovea (TRT(foveal = -6.62 ± 0.90 μm at altitude. BCVA revealed no significant difference compared to baseline (0.06 ± 0.08 logMAR. Microperimetry showed stable mean sensitivity in all but the foveal subfield (MS(foveal = -1.12 ± 0.68 dB. At baseline recordings before and >2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. CONCLUSIONS/SIGNIFICANCE: During acute exposure to high altitude central retinal thickness is subject to minor, yet statistically significant changes. These alterations describe a function of eccentricity with an increase in regions with relatively higher retinal nerve fiber content and vascular arcades. However, these changes did not correlate with measures of central retinal function or acute mountain sickness. For the first time a quantitative approach has been used to assess these changes during acute

  3. Structural and Functional Changes of the Human Macula during Acute Exposure to High Altitude

    Science.gov (United States)

    Fischer, M. Dominik; Willmann, Gabriel; Schatz, Andreas; Schommer, Kai; Zhour, Ahmad; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2012-01-01

    Background This study aimed to quantify structural and functional changes at the macula during acute exposure to high altitude and to assess their structure/function relationship. This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings Spectral domain optical coherence tomography and microperimetry were used to quantify changes of central retinal structure and function in 14 healthy subjects during acute exposure to high altitude (4559 m). High-resolution volume scans and fundus-controlled microperimetry of the posterior pole were performed in addition to best-corrected visual acuity (BCVA) measurements and assessment of acute mountain sickness. Analysis of measurements at altitude vs. baseline revealed increased total retinal thickness (TRT) in all four outer ETDRS grid subfields during acute altitude exposure (TRTouter = 2.80±1.00 μm; mean change±95%CI). This change was inverted towards the inner four subfields (TRTinner = −1.89±0.97 μm) with significant reduction of TRT in the fovea (TRTfoveal = −6.62±0.90 μm) at altitude. BCVA revealed no significant difference compared to baseline (0.06±0.08 logMAR). Microperimetry showed stable mean sensitivity in all but the foveal subfield (MSfoveal = −1.12±0.68 dB). At baseline recordings before and >2 weeks after high altitude exposure, all subjects showed equal levels with no sign of persisting structural or functional sequels. Conclusions/Significance During acute exposure to high altitude central retinal thickness is subject to minor, yet statistically significant changes. These alterations describe a function of eccentricity with an increase in regions with relatively higher retinal nerve fiber content and vascular arcades. However, these changes did not correlate with measures of central retinal function or acute mountain sickness. For the first time a quantitative approach has been used to assess these changes during acute, non

  4. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carni

  5. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carni

  6. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12

  7. Effect of reduced pressure, vibration and orientation to simulate high altitude testing of liquid pharmaceutical glass and plastic bottles

    NARCIS (Netherlands)

    Singh, S. Paul; Burgess, Gary; Kremer, Matt; Lockhart, Hugh

    2007-01-01

    This paper discusses the impact of high-altitude shipments of glass and plastic bottles on package integrity. High altitudes are encountered when trucks travel over mountain passes and when cargo and feeder aircraft transport packages in non-pressurized or partially pressurized cargo holds. This is

  8. The ICESat-2 Inland Water Height Data Product: Evaluation of Water Profiles Using High Altitude Photon Counting Lidar

    Science.gov (United States)

    Jasinski, M. F.; Stoll, J.; Cook, W. B.; Arp, C. D.; Birkett, C. M.; Brunt, K. M.; Harding, D. J.; Jones, B. M.; Markus, T.; Neumann, T.

    2015-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2), scheduled to launch in 2017, is a low energy, high repetition rate, short pulse width, 532 nm lidar. Although primarily designed for icecap and sea ice monitoring, ATLAS also will record dense observations over Pan-Arctic inland water bodies throughout its designed three year life span. These measurements will offer improved understanding of the linkages between climate variability and Arctic hydrology including closure of the Pan-Arctic water balance. An ICESat-2 Inland Water Body Height Data Product is being developed consisting of along-track water surface height, slope, and roughness for each ATLAS strong beam, and also aspect and slope between adjacent beams. The data product will be computed for all global inland water bodies that are traversed by ICESat-2 during clear to moderately clear atmospheric conditions. While the domain of the ATL13 data product is global, the focus is on high-latitude terrestrial regions where the convergence of the ICESat-2 orbits will provide spatially dense observations. Water bodies will be identified primarily through the use of an "Inland Water Body Shape Mask". In preparation for the mission, the Multiple Beam Altimeter Lidar Experimental Lidar (MABEL), was built and flown during numerous high altitude experiments, observing a wide range of water targets. The current analysis examines several MABEL inland and near coastal coastal targets during 2012 to 2015, focusing on along track surface water height, light penetration into water under a range of atmospheric and water conditions. Sites include several Alaska lakes, the Chesapeake Bay, and the near shore Atlantic coast. Results indicate very good capability for retrieving along track surface water height and standard deviation and penetration depth. Overall, the MABEL data and subsequent analyses have demonstrated the feasibility of the ATL13 algorithm for

  9. Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

  10. Association between Serum Interleukin-17A Level and High-Altitude Deacclimatization Syndrome.

    Science.gov (United States)

    He, Binfeng; Li, Hongli; Hu, Mingdong; Dong, Weijie; Wei, Zhenghua; Li, Jin; Yao, Wei; Guo, Xiaolan

    2016-01-01

    High-altitude deacclimatization syndrome (HADAS) is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p HADAS subjects compared with controls (p HADAS incidence and severity (p HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.

  11. A strategy for reducing neonatal mortality at high altitude using oxygen conditioning.

    Science.gov (United States)

    West, J B

    2015-11-01

    Neonatal mortality increases with altitude. For example, in Peru the incidence of neonatal mortality in the highlands has been shown to be about double that at lower altitudes. An important factor is the low inspired PO2 of newborn babies. Typically, expectant mothers at high altitude will travel to low altitude to have their babies if possible, but often this is not feasible because of economic factors. The procedure described here raises the oxygen concentration in the air of rooms where neonates are being housed and, in effect, this means that both the mother and baby are at a much lower altitude. Oxygen conditioning is similar to air conditioning except that the oxygen concentration of the air is increased rather than the temperature being reduced. The procedure is now used at high altitude in many hotels, dormitories and telescope facilities, and has been shown to be feasible and effective.

  12. Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science

    Science.gov (United States)

    Varga, Denise M.; Dischner, Zach

    2015-01-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.

  13. [High frequency of dyslipidemia and impaired fasting glycemia in a high altitude Peruvian population].

    Science.gov (United States)

    Málaga, Germán; Zevallos-Palacios, Claudia; Lazo, María de los Ángeles; Huayanay, Carlos

    2010-01-01

    We performed a cross sectional study in Lari (3600 m), a highland rural community from Arequipa, Peru. We evaluated a body mass index (BMI), glycemia and lipid profile in 74 over 18 year persons. The mean age was 51.7 ± 18.0 years, 62.2% were women, mean of BMI was 25.6 ± 3.7. Prevalence of hypercholesterolemia was 40.6%, "low HDL" in 77% of the population (93.5% in women vs 50% in men, p <0.001) and elevated level of LDL was 71.7%. The prevalence of impaired fasting glycemia was 27%. In conclusion, we found high prevalence of impaired fasting glycemia, hypercholesterolemia and especially "low HDL" in high altitude rural natives. These findings must be considered to realize interventions in high altitude populations to avoid future cardiovascular complications.

  14. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  15. A gloss of Chronic Hypoxia in normal and diseased individuals at high altitude

    Institute of Scientific and Technical Information of China (English)

    Zubieta-Castillo,G.; Zubieta-Calleja,G.R.; Zubieta-Calleja L.

    2004-01-01

    @@ Introduction Millenary populations that live at high altitude in different continents like Asia (1) and South America (8), have endured biological adaptation in very adverse environmental conditions, of which to our understanding, paradoxically, chronic hypoxia is the most tolerable. Patients with pulmonary diseases at high altitude tolerate tissue hypoxia with an arterial tension (PaO2) even as low as 30 mmHg. Current scientific knowledge has made progress in many areas, clarifying many doubts, however due to preconception and lack of broad social studies chronic hypoxia is still not fully understood. Beings that inhabit different areas of the planet earth have lived under a variety of different hostile conditions: intense cold in the polar regions,intense heat in Africa and in the Middle East desserts,great pressure in the depth of the oceans, intense darkness of the caves and naturally the hypoxia of extreme altitudes.

  16. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A.S.H.; Dommen, J.; Furger, M.; Graber, W.K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  17. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    OpenAIRE

    2016-01-01

    ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot) on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of a...

  18. Feasibility of Laser Power Transmission to a High-Altitude Unmanned Aerial Vehicle

    Science.gov (United States)

    2011-01-01

    possible to imagine the laser beam arriving at the UAV from above, perhaps bounced down from a satel- lite or airship , but this seems like an excessive...thus lending themselves to applica- tion on the aerodynamic surfaces of a UAV. InGaAs cells can also be used to convert laser light at longer wavelengths...Design and Predictions for a High-Altitude (Low- Reynolds-Number) Aerodynamic Flight Experiment, Edwards Air Force Base, Calif.: NASA Dryden Flight

  19. America’s Achilles Heel: Defense Against High-altitude Electromagnetic Pulse-policy vs. Practice

    Science.gov (United States)

    2014-12-12

    Energy Regulatory Commission FM Field Manual GRID Act Grid Reliability and Infrastructure Defense Act HEMP High-Altitude Electromagnetic Pulse JP...product to the end user.41 Across the U.S., there are upwards of 40,000 miles of gathering lines from the oil wells, both on and offshore , that feed into...particles are emitted at nearly the speed of light. The emissions can cause disturbances in the solar wind that disrupt satellites and create powerful

  20. Fasciola hepatica and lymnaeid snails occurring at very high altitude in South America.

    Science.gov (United States)

    Mas-Coma, S; Funatsu, I R; Bargues, M D

    2001-01-01

    Fascioliasis due to the digenean species Fasciola hepatica has recently proved to be an important public health problem, with human cases reported in countries of the five continents, including severe symptoms and pathology, with singular epidemiological characteristics, and presenting human endemic areas ranging from hypo- to hyperendemic. One of the singular epidemiological characteristics of human fascioliasis is the link of the hyperendemic areas to very high altitude regions, at least in South America. The Northern Bolivian Altiplano, located at very high altitude (3800-4100 m), presents the highest prevalences and intensities of human fascioliasis known. Sequences of the internal transcribed spacers ITS-1 and ITS-2 of the nuclear ribosomal DNA of Altiplanic Fasciola hepatica and the intermediate snail host Lymnaea truncatula suggest that both were recently introduced from Europe. Studies were undertaken to understand how the liver fluke and its lymnaeid snail host adapted to the extreme environmental conditions of the high altitude and succeeded in giving rise to high infection rates. In experimental infections of Altiplanic lymnaeids carried out with liver fluke isolates from Altiplanic sheep and cattle, the following aspects were studied: miracidium development inside the egg, infectivity of miracidia, prepatent period, shedding period, chronobiology of cercarial emergence, number of cercariae shed by individual snails, survival of molluscs at the beginning of the shedding process, survival of infected snails after the end of the shedding period and longevity of shedding and non-shedding snails. When comparing the development characteristics of European F. hepatica and L. truncatula, a longer cercarial shedding period and a higher cercarial production were observed, both aspects related to a greater survival capacity of the infected lymnaeid snails from the Altiplano. These differences would appear to favour transmission and may be interpreted as strategies

  1. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas.

    Directory of Open Access Journals (Sweden)

    Masayuki Hanaoka

    Full Text Available Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1 gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388 in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.

  2. Influence of acute exposure to high altitude on basal and postprandial plasma levels of gastroenteropancreatic peptides.

    Directory of Open Access Journals (Sweden)

    Rudolf L Riepl

    Full Text Available Acute mountain sickness (AMS is characterized by headache often accompanied by gastrointestinal complaints that vary from anorexia through nausea to vomiting. The aim of this study was to investigate the influence of high altitude on plasma levels of gastroenteropancreatic (GEP peptides and their association to AMS symptoms. Plasma levels of 6 GEP peptides were measured by radioimmunoassay in 11 subjects at 490 m (Munich, Germany and, after rapid passive ascent to 3454 m (Jungfraujoch, Switzerland, over the course of three days. In a second study (n = 5, the same peptides and ghrelin were measured in subjects who consumed standardized liquid meals at these two elevations. AMS symptoms and oxygen saturation were monitored. In the first study, both fasting (morning 8 a.m. and stimulated (evening 8 p.m. plasma levels of pancreatic polypeptide (PP and cholecystokinin (CCK were significantly lower at high altitude as compared to baseline, whereas gastrin and motilin concentrations were significantly increased. Fasting plasma neurotensin was significantly enhanced whereas stimulated levels were reduced. Both fasting and stimulated plasma motilin levels correlated with gastrointestinal symptom severity (r = 0.294, p = 0.05, and r = 0.41, p = 0.006, respectively. Mean O(2-saturation dropped from 96% to 88% at high altitude. In the second study, meal-stimulated integrated (= area under curve plasma CCK, PP, and neurotensin values were significantly suppressed at high altitude, whereas integrated levels of gastrin were increased and integrated VIP and ghrelin levels were unchanged. In summary, our data show that acute exposure to a hypobaric hypoxic environment causes significant changes in fasting and stimulated plasma levels of GEP peptides over consecutive days and after a standardized meal. The changes of peptide levels were not uniform. Based on the inhibition of PP and neurotensin release a reduction of the cholinergic tone can be postulated.

  3. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  4. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    OpenAIRE

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured mig...

  5. Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness

    OpenAIRE

    Villafuerte, Francisco C.; Macarlupú, José Luis; Anza-Ramírez, Cecilia; Corrales-Melgar, Daniela; Vizcardo-Galindo, Gustavo; Corante, Noemí; León-Velarde, Fabiola

    2014-01-01

    Excessive erythrocytosis (EE) is the hallmark of chronic mountain sickness (CMS), a prevalent syndrome in high-altitude Andean populations. Although hypoxemia represents its underlying stimulus, why some individuals develop EE despite having altitude-normal blood erythropoietin (Epo) concentration is still unclear. A soluble form of the Epo receptor (sEpoR) has been identified in human blood and competes directly for Epo with its membrane counterpart (mEpoR). Thus, reduced levels of circulati...

  6. On the HEMP (high-altitude electromagnetic pulse) environment for protective relays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (USA)); Barnes, P.R. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    An assessment of the transient environment for protective relays produced by high-altitude electromagnetic pulse (HEMP) events is presented in this paper. Several mechanisms for coupling of HEMP to relay terminals are used to develop estimates of possible HEMP threats to relays. These predicted relay responses to HEMP events are compared to measured data on a solid state based relay's impulse strength. 12 refs., 13 figs., 3 tabs.

  7. Placental villus morphology in relation to maternal hypoxia at high altitude.

    Science.gov (United States)

    Espinoza, J; Sebire, N J; McAuliffe, F; Krampl, E; Nicolaides, K H

    2001-07-01

    Pregnancy at high altitude is associated with maternal hypoxaemic hypoxia with resultant intervillus blood hypoxia. Maternal haemoglobin concentration and blood gases were measured in pregnant women in two cities in Peru; Lima at sea level (n=18) and Cerro de Pasco at 4300 metres above sea level (n=12). Following delivery, placental sections from both groups were examined histomorphometrically using an image analysis system. Villus diameter, villus cross-sectional area, capillary diameter, capillary cross-sectional area and the percentage of villus cross-sectional area occupied by villus capillaries were calculated and parameters were compared between the two altitude groups. Maternal haemoglobin concentration and maternal blood pH were significantly higher, and maternal pO(2), pCO(2)and O(2)saturation were significantly lower in the high altitude group compared to those at sea level. The villus vessel area as a percentage of villus cross-sectional area and capillary diameter were significantly greater in the cases from the high altitude group and villus vessel area as a percentage of the villus cross-sectional area was significantly related to maternal pO(2)(r=-0.7, P=0.01), and maternal pCO(2)(r=0.7, P=0.02), but multiple regression analysis demonstrated that only pO(2)remained significantly independently associated with these villus histological findings (P=0.03). Placental terminal villi from term pregnancies at high altitude show different morphological features from pregnancies at sea level, and these changes are primarily related to maternal pO(2). The predominant morphological alteration is an increase in villus capillary diameter and therefore of the proportion of villus cross-sectional area occupied by capillary lumens.

  8. Mass and surface energy balance of A.P. Olsen ice cap, NE Greenland, from observations and modeling (1995-2011)

    Science.gov (United States)

    Hillerup Larsen, S.; Citterio, M.; Hock, R. M.; Ahlstrom, A. P.

    2012-12-01

    The A.P. Olsen Ice Cap (74.6 N, 21.5 W) in NE Greenland covers an area of 295 km2, is composed by two domes, of which the western is the largest, and spans an elevation range between 200 and 1450 m a.s.l. In this study we calculate the 2008-2011 annual glacier mass balance based on in situ observations, we model the surface energy balance over the same period, and we reconstruct annual glacier mass balance since 1995. We use GlacioBasis Monitoring Programme observations from a network of 15 ablation stakes and three automatic weather stations (AWS) at 600 m (ca. 100 m higher than the terminus) and at 840 m on the main glacier outlet of the western dome, and at 1430 m in the accumulation area. Accumulation is measured every year in springtime by snow radar surveys calibrated with manual probing and density profiles from snow pits. GlacioBasis data start in 2008, but a longer time series starting in 1995 is available from a weather station at 44 m a.s.l. close to Zackenberg Research Station, ca. 30 km further west. Shorter data series from three more AWS on land at 145 m, 410 m and 1283 m a.s.l. are used to estimate monthly average temperature lapse rates outside of the glacier boundary layer, and to detect the occurrence of temperature inversions. The surface energy mass balance is dominated by the radiative fluxes. We discuss the effect of shadows from the valley sides over parts of the tongue, especially early and late in the melt season when the sun is lower over the horizon, and analyze the modeled mass balance sensitivity to a 1 °C temperature increase. A temperature index model driven by the 1995-2008 time series and calibrated using post-2008 glacier mass balance measurements shows large interannual variability, with 5 of the most negative mass balance years of the entire 1995-2011period occurring between 2003 and 2008. In particular during 2008 the glacier experienced almost no net accumulation over the entire elevation range. This matches 2008 mass balance

  9. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Liu, Zhihua; Wang, Chu; Yu, Linxiao; Ding, Yan

    2011-08-01

    In order to evaluate the effects of altitude on the pollutant emissions of a diesel engine, an experimental research was carried out using an engine test bench with an altitude simulation system. The emissions of HC, CO, NOx, smoke, and particle number of a heavy-duty diesel engine were measured under steady state operating conditions at sea level and simulated altitudes of 1000 and 2000 m. The experimental results indicate that the high altitude increases the emissions of HC, CO and smoke of the diesel engine, the average increasing rates of which are 30%, 35% and 34% with addition of altitude of 1000 m, respectively. The effect of high altitudes on the NOx emission varies with the engine types and working conditions. At 1000 m the particles number emissions are 1.6 to 4.2 times the levels at the low altitude. The pattern of the particle size distributions at 1000 m is similar with that at sea-level, which is the mono-modal lognormal distribution with geometric mean diameter around 0.1 μm. However, the peak number concentrations of particles are bigger and the exhausted particles are smaller at the high altitude.

  10. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  11. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    Science.gov (United States)

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.

  12. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption.

    Science.gov (United States)

    Hu, Quanjun; Ma, Tao; Wang, Kun; Xu, Ting; Liu, Jianquan; Qiu, Qiang

    2012-11-07

    The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  13. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    Science.gov (United States)

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. Copyright © 2015 the American Physiological Society.

  14. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  15. Changes in body fluid compartments on re-induction to high altitude and effect of diuretics

    Science.gov (United States)

    Singh, M. V.; Rawal, S. B.; Tyagi, A. K.; Bhagat, Maj J. K.; Parshad, R.; Divekar, H. M.

    1988-03-01

    Studies were carried out in 29 healthy young adults in the Indian Army stationed in the plains and posted at an elevation of 3500 m for more than 6 months. After exposure to a low elevation in Delhi (260 m) for 3 weeks they were reinduced to a height of 3500 m. The subjects were divided into three groups, each of which was treated with either placebo or acetazolamide or spironolactone. The drug treatment was started immediately after their landing at high altitude and continued for 2 days only. Total body water, extracellular fluid, intracellular fluid, plasma volume, blood pH, PaO2, PaCO2 and blood viscosity were determined on exposure at Delhi and on re-induction to high altitude. Plasma volume was increased after the descent from high altitude and remained high for up to 21 day's study. This increased plasma volume may have some significance in the pathogenesis of pulmonary oedema. Total body water and intracellular fluid content were increased at 260 m elevation, while extracellular fluid decreased. On re-induction there was a decrease in total body water with no change in the extracellular fluid content.

  16. Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

    Science.gov (United States)

    Lee, Jaewon; Park, Inchun; Kim, Junsik; Lee, Jaejin; Hwang, Junga; Kim, Young-chul

    2014-03-01

    This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a highaltitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of 15.27 mSv) of aircrew at the high-altitude are an order of magnitude larger than those (an average of 0.30 mSv) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC- 800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

  17. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  18. On the Survival of High-Altitude Open Clusters within the Milky Way Galaxy Tides

    CERN Document Server

    Martinez-Medina, L A; Peimbert, A; Moreno, E

    2016-01-01

    It is a common assumption that high-altitude open clusters live longer compared with clusters moving close to the Galactic plane. This is because at high altitudes, open clusters are far from the disruptive effects of in-plane substructures, such as spiral arms, molecular clouds and the bar. However, an important aspect to consider in this scenario is that orbits of high-altitude open clusters will eventually cross the Galactic plane, where the vertical tidal field of the disk is strong. In this work we simulate the interaction of open clusters with the tidal field of a detailed Milky Way Galactic model at different average altitudes and galactocentric radii. We find that the life expectancy of clusters decreases as the maximum orbital altitude increases and reaches a minimum at altitudes of approximately 600 pc. Clusters near the Galactic plane live longer because they do not experience strong vertical tidal shocks from the Galactic disk; then, for orbital altitudes higher than 600 pc, clusters start again t...

  19. The Kilimanjaro score for assessing fitness to fly paragliders at high altitude.

    Science.gov (United States)

    Wilkes, Matt; Simpson, Alistair; Knox, Matt; Summers, Luke

    2013-09-01

    Extreme sports such as paragliding are increasing in popularity, providing continued challenges for the development of safe practice techniques. In January and February 2013, the Wings of Kilimanjaro expedition aimed to launch 95 paragliders from the summit of Mount Kilimanjaro, 5790 m above sea level. A safe launch was paramount but risked being impaired by adverse environmental conditions, in particular the pathophysiological effects of high altitude. There are no existing scores to assess fitness for high-altitude paraglider launches present in the literature. A novel scoring system, the Kilimanjaro Score, was therefore developed to rapidly assess pilots pre-flight. The Kilimanjaro Score aimed to assess cognition, memory, and visual-spatial skill within the context of standard pre-flight checks. Further testing, including the Lake Louise Score, was to be performed if the pilot's Kilimanjaro Score was deemed unsatisfactory. We present the Kilimanjaro Score here for comment and refinement, and we invite other parties to consider its use in the field for high altitude paragliding activities.

  20. A GIS-aided response model of high-altitude permafrost to global change

    Institute of Scientific and Technical Information of China (English)

    李新; 程国栋

    1999-01-01

    Two models are used to simulate the high-altitude permafrost distribution on the Qinghai-Xizang Plateau. The two models are the "altitude model", a Gaussian distribution function used to describe the latitudinal zonation of permafrost based on the three-dimensional rules of high-altitude permafrost, and the "frost number model", a dimensionless ratio defined by manipulation of freezing and thawing degree-day sums. The results show that the "altitude model" can simulate the high-altitude permafrost distribution under present climate conditions accurately. Given the essential hypotheses and using the GCM scenarios from HADCM2, the "altitude model" is used for predicting the permafrost distribution change on the Qinghai-Xizang Plateau. The results show that the permafrost on the plateau will not change significantly during 20—50 a, the percentage of the total disappeared area will not be over 19%. However, by the year 2099, if the air temperature increases by an average of 2.91℃ on the plateau, the decre

  1. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide

    Science.gov (United States)

    Singh, S. B.; Chatterjee, A.; Panjwani, U.; Yadav, D. K.; Selvamurthy, W.; Sharma, K. N.

    Sensitivity to the taste of phenylthiocarbamide (PTC) was studied using the Harris-Kalmus method in healthy human volunteers at sea level and then subsequently at an altitude of 3500 m over a period of 3 weeks, after which they were brought back to sea level. Blood sugar, insulin and blood cortisol levels were estimated weekly. The results indicated that, out of 51 subjects studied, 26 (55%) were PTC tasters at sea level. Eight of those unable to taste PTC at sea level tested as tasters at high altitude, and 2 of them reverted to being non-tasters on return to sea level. In the blood, an increase in cortisol and blood insulin levels was seen without any significant change in sugar levels. All the changes recorded at high altitude tended to return to basal values after re-induction to sea level. The study suggests that high-altitude hypoxia in some way, possibly involving changes in hormonal profile among other factors, causes an alteration in sensitivity to the taste of PTC, resulting in some of the individuals shifting to lower PTC sensitivity.

  2. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  3. High altitude environmental monitoring: the SHARE project and CEOP-HE

    Science.gov (United States)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP

  4. Assessing high altitude glacier volume change and remaining thickness using cost-efficient scientific techniques: the case of Nevado Coropuna (Peru

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2009-10-01

    Full Text Available Higher temperature and change in precipitation patterns have induced an acute decrease in Andean glaciers, thus leading to an additional stress on water supply. To adapt to climate changes, local governments need information on the rate of glacier volume losses and on current ice thickness. We show how volume changes can be accurately estimated in remote areas using readily available low-cost digital elevation models derived from both topographic maps and satellite images. They were used for estimating the volume changes over the Coropuna glacier (Peru from 1955 to 2002. Ice thickness was measured in 2004 using a georadar coupled with Ground Positioning System during a field expedition. It provided profiles of ice thickness on different slopes, orientations and altitudes. These were used to model the current glacier volume using Geographical Information System and statistical multiple regressions techniques. Computers were modified to resists to high altitude (6500 m temperatures and low pressure conditions. The results delineated a significant glacier volume loss and provided an estimate of the remaining ice. It provided the scientific evidence needed by local Peruvian NGO, COPASA, and the German Cooperation Program in order to alert local governments and communities and for enforcing new climate change adaptation policies.

  5. Cerebrovascular responses to hypoxia and hypocapnia in high-altitude dwellers.

    Science.gov (United States)

    Norcliffe, L J; Rivera-Ch, M; Claydon, V E; Moore, J P; Leon-Velarde, F; Appenzeller, O; Hainsworth, R

    2005-07-01

    Cerebral blood flow is known to increase in response to hypoxia and to decrease with hypocapnia. It is not known, however, whether these responses are altered in high-altitude dwellers who are not only chronically hypoxic and hypocapnic, but also polycythaemic. Here we examined cerebral blood flow responses to hypoxia and hypocapnia, separately and together, in Andean high-altitude dwellers, including some with chronic mountain sickness (CMS), which is characterized by excessive polycythaemia. Studies were carried out at high altitude (Cerro de Pasco (CP), Peru; barometric pressure (P(B)) 450 mmHg) and repeated, following relief of the hypoxia, on the day following arrival at sea level (Lima, Peru; P(B) 755 mmHg). We compared these results with those from eight sea-level residents studied at sea level. In nine high-altitude normal subjects (HA) and nine CMS patients, we recorded middle cerebral artery mean blood flow velocity (MCAVm) using transcranial Doppler ultrasonography, and expressed responses as changes from baseline. MCAVm responses to hypoxia were determined by changing end-tidal partial pressure of oxygen (P(ET,O2)) from 100 to 50 mmHg, with end-tidal partial pressure of carbon dioxide clamped. MCAVm responses to hypocapnia were studied by voluntary hyperventilation with (P(ET,O2)) clamped at 100 and 50 mmHg. There were no significant differences between the cerebrovascular responses of the two groups to any of the interventions at either location. In both groups, the MCAVm responses to hypoxia were significantly greater at Lima than at CP (HA, 12.1 +/- 1.3 and 6.1 +/- 1.0%; CMS, 12.5 +/- 0.8 and 5.6 +/- 1.2%; P < 0.01 both groups). The responses at Lima were similar to those in the sea-level subjects (13.6 +/- 2.3%). The responses to normoxic hypocapnia in the altitude subjects were also similar at both locations and greater than those in sea-level residents. During hypoxia, both high-altitude groups showed responses to hypocapnia that were

  6. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  7. Reflections on the VI World Congress of Mountain Medicine and High-Altitude Physiology in Xining and Lhasa, August 2004

    Institute of Scientific and Technical Information of China (English)

    John B. West

    2005-01-01

    @@ The VI World Congress of Mountain Medicine and High-Altitude Physiology in Xining and Lhasa which was held in August 2004 was a landmark event in the burgeoning area of high-altitude life studies. These congresses have taken place every two years, often in exotic venues, and always related to geographical areas of interest in high-altitude medicine. The first five high congresses were held in La Paz, Bolivia; Cusco, Peru; Matsumoto, Japan; Arica, Chile; and Barcelona, Spain. As can be seen from these venues, the previous congresses were located near the South American Andes, the Japanese Alps, and the European Pyrenees and Alps.

  8. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  9. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas

    Energy Technology Data Exchange (ETDEWEB)

    Burn-Nunes, Laurie, E-mail: L.Nunes@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia); Vallelonga, Paul [Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Lee, Khanghyun [Environmental Measurement and Analysis Center, National Institute of Environmental Research, Environmental Research Complex, Kyungseo-dong, Seo-gu, Incheon 404-170 (Korea, Republic of); Hong, Sungmin [Department of Ocean Sciences, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751 (Korea, Republic of); Burton, Graeme [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia); Hou, Shugui [Key Laboratory of Coast and Island development of Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Moy, Andrew [Department of the Environment, Australian Antarctic Division, Channel Highway, Kingston 7050, Tasmania (Australia); Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart 7001, Tasmania (Australia); Edwards, Ross; Loss, Robert; Rosman, Kevin [Department of Imaging and Applied Physics, Curtin University, GPO Box U 1987, Perth 6845, Western Australia (Australia)

    2014-07-01

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a < 110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ∼ 1953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. - Highlights: • Pb isotopes in ice and snow show seasonality in Mt Everest atmospheric chemistry. • Local (Himalayan) mineral dust inputs are present year round. • Regional and long-range mineral dust inputs are evident during non-monsoon times. • Snow samples indicate increased anthropogenic inputs during non-monsoon times. • Anthropogenic inputs are linked with Indian, South Asian and Central Asian sources.

  10. Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar.

    Directory of Open Access Journals (Sweden)

    Daniel L Jeffries

    Full Text Available Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends and drivers (aphid abundance, air temperature, wind speed and rainfall of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis. These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude

  11. Exercise at simulated high altitude facilitates the increase in capillarity in skeletal muscle of rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the changes in capillarity of skeletal muscle during acclimation to high altitude, and explore the effects of a certain extent physical activity under hypoxia on capillary formation and the role of vascular endothelial growth factor (VEGF) in this process. METHODS: 48 Wistar rats were divided into 3 groups: Ⅰ normoxic control; Ⅱ hypoxia and Ⅲ hypoxia+exercise. Rats of Ⅱ and Ⅲ groups were subjected to hypobaric hypoxia for 5 weeks (23 h/d). They were first brought to simulated 4 000 m altitude, where rats of the Ⅲgroup were forced to swim for 1 h/d (6 d/week). Then the animals were ascent to 5 000 m. Biomicrosphere method was used to determine blood flow of skeletal muscle. The mean fiber cross-sectional area (FCSA), capillary density (CD) and capillary/fiber ratio (C/F) of red portion of the lateral head of the gastrocneminus were assayed by myofibrillar ATPase histochemistry. VEGF and its receptor KDR were assayed with immunohistochemistry method.RESULTS: By comparison with the normoxic control, 5-week hypoxic exposure resulted in a decrease in cross-sectional area of skeletal muscle fiber and an increase in CD, but the C/F remained unchanged. The blood supply to the gastrocnemius was not changed. After 5-week-exercise at high altitude, the muscle fibers did not undergo atrophy. CD, C/F, and the blood flow at rest increased significantly. VEGF protein was found primarily in the matrix between muscle fibers; KDR were shown mainly in endothelial cells of capillary. VEGF was more strongly stained in the skeletal muscle of hypoxia-exercise rats.CONCLUSION: Hypoxia itself can not induce neovascularization. While exercise during hypoxic exposure can lead to capillary formation. VEGF and KDR may play roles in it. New capillary formation benefits the blood supply, oxygen delivery and working performance at high altitude.

  12. Cerebral autoregulation in subjects adapted and not adapted to high altitude.

    Science.gov (United States)

    Jansen, G F; Krins, A; Basnyat, B; Bosch, A; Odoom, J A

    2000-10-01

    Impaired cerebral autoregulation (CA) from high-altitude hypoxia may cause high-altitude cerebral edema in newcomers to a higher altitude. Furthermore, it is assumed that high-altitude natives have preserved CA. However, cerebral autoregulation has not been studied at altitude. We studied CA in 10 subjects at sea level and in 9 Sherpas and 10 newcomers at an altitude of 4243 m by evaluating the effect of an increase of mean arterial blood pressure (MABP) with phenylephrine infusion on the blood flow velocity in the middle cerebral artery (Vmca), using transcranial Doppler. Theoretically, no change of Vmca in response to an increase in MABP would imply perfect autoregulation. Complete loss of autoregulation is present if Vmca changes proportionally with changes of MABP. In the sea-level group, at a relative MABP increase of 23+/-4% during phenylephrine infusion, relative Vmca did not change essentially from baseline Vmca (2+/-7%, P=0.36), which indicated intact autoregulation. In the Sherpa group, at a relative MABP increase of 29+/-7%, there was a uniform and significant increase of Vmca of 24+/-9% (P<0.0001) from baseline Vmca, which indicated loss of autoregulation. The newcomers showed large variations of Vmca in response to a relative MABP increase of 21+/-6%. Five subjects showed increases of Vmca of 22% to 35%, and 2 subjects showed decreases of Vmca of 21% and 23%. All Sherpas and the majority of the newcomers showed impaired CA. It indicates that an intact autoregulatory response to changes in blood pressure is probably not a hallmark of the normal human cerebral vasculature at altitude and that impaired CA does not play a major role in the occurrence of cerebral edema in newcomers to the altitude.

  13. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  14. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend?

    Science.gov (United States)

    Storz, Jay F

    2016-10-15

    In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates. © 2016. Published by The Company of Biologists Ltd.

  15. High altitude airship configuration and power technology and method for operation of same

    Science.gov (United States)

    Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)

    2011-01-01

    A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.

  16. Ozone Exposure System Designed and Used to High-Altitude Airship Materials

    Science.gov (United States)

    Miller, Sharon K.

    2005-01-01

    High-altitude airships can receive high doses of ozone over short mission durations. For example, in 1 year at an altitude of 70,000 ft, the ozone fluence (number arriving per unit area) can be as high as 1.2 1024 molecules/sq cm. Ozone exposure at these levels can embrittle materials or change the performance of solar cells. It is important to expose components and materials to the expected ozone dosage to determine if the ozone exposure could cause any mission-critical failures.

  17. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  18. High-Altitude Ballooning Program at the Indian Institute of Astrophysics

    CERN Document Server

    Nayak, A; Safonova, M; Murthy, Jayant

    2013-01-01

    We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bangalore. Recent advances in balloons as well as in electronics have made possible scientific payloads at costs accessible to university departments. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but to also explore phenomena occurring in the upper atmosphere, including sprites and meteorite impacts, using balloon-borne payloads. This paper discusses the results of three tethered balloon experiments carried out at the CREST campus of IIA, Hosakote and our plans for the future. We also describe the stages of payload development for these experiments.

  19. Effect of surface catalycity on high-altitude aerothermodynamics of reentry vehicles

    Science.gov (United States)

    Molchanova, A. N.; Kashkovsky, A. V.; Bondar, Ye. A.

    2016-10-01

    This work is aimed at the development of surface chemistry models for the Direct Simulation Monte Carlo (DSMC) method applicable to non-equilibrium high-temperature flows about reentry vehicles. Probabilities of the surface processes dependent on individual properties of each particular molecule are determined from the macroscopic reaction rate data. Two different macroscopic finite rate sets are used for construction of DSMC surface recombination models. The models are implemented in the SMILE++ software system for DSMC computations. A comparison with available experimental data is performed. Effects of surface recombination on the aerothermodynamics of a blunt body at high-altitude reentry conditions are numerically studied with the DSMC method.

  20. Measuring TeV cosmic rays at the High Altitude Water Cherenkov Observatory

    OpenAIRE

    BenZvi Segev

    2015-01-01

    The High-Altitude Water Cherenkov Observatory, or HAWC, is an air shower array designed to observe cosmic rays and gamma rays between 100 GeV and 100 TeV. HAWC, located between the peaks Sierra Negra and Pico de Orizaba in central Mexico, will be completed in the spring of 2015. However, the observatory has been collecting data in a partial configuration since mid-2013. With only part of the final array in data acquisition, HAWC has already accumulated a data set of nearly 100 billion air sho...

  1. NUCLEOTIDE COMPARISON OF GDF9 GENE IN INDIAN YAK AND GADDI GOAT: HIGH ALTITUDE LIVESTOCK ANIMALS

    Directory of Open Access Journals (Sweden)

    Lakshya Veer Singh

    2013-06-01

    Full Text Available The present study was undertaken to characterize exon 1 and exon 2 sequence of one of fecundity genes: GDF9 (Growth differentiation factor 9, in high altitude livestock animal (Yak and Gaddi goat. Six nucleotide differences were identified between sheep (AF078545 and goats (EF446168 in exon 1 and exon 2. Sequencing revealed nine novel single nucleotide mutations in exon 1 and exon 2 of Indian yak that compared with Bos taurus (GQ922451. These results preliminarily showed that the GDF9 gene might be a major gene that influences prolificacy of Gaddi goats and Indian yak.

  2. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland

    Science.gov (United States)

    Okumiya, Kiyohito; Sakamoto, Ryota; Ishimoto, Yasuko; Kimura, Yumi; Fukutomi, Eriko; Ishikawa, Motonao; Suwa, Kuniaki; Imai, Hissei; Chen, Wenling; Kato, Emiko; Nakatsuka, Masahiro; Kasahara, Yoriko; Fujisawa, Michiko; Wada, Taizo; Wang, Hongxin; Dai, Qingxiang; Xu, Huining; Qiao, Haisheng; Ge, Ri-Li; Norboo, Tsering; Tsering, Norboo; Kosaka, Yasuyuki; Nose, Mitsuhiro; Yamaguchi, Takayoshi; Tsukihara, Toshihiro; Ando, Kazuo; Inamura, Tetsuya; Takeda, Shinya; Ishine, Masayuki; Otsuka, Kuniaki; Matsubayashi, Kozo

    2016-01-01

    Objectives To clarify the association between glucose intolerance and high altitudes (2900–4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Design Cross-sectional epidemiological study on Tibetan highlanders. Participants We enrolled 1258 participants aged 40–87 years. The rural population comprised farmers in Domkhar (altitude 2900–3800 m) and nomads in Haiyan (3000–3100 m), Ryuho (4400 m) and Changthang (4300–4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Main outcome measure Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. Results The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500–4499 m were 3.59/4.36 and 2.07/1.76 vs 3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing. PMID:26908520

  3. Incidence and possible causes of dental pain during simulated high altitude flights.

    Science.gov (United States)

    Kollmann, W

    1993-03-01

    Of 11,617 personnel participating in simulated high altitude flights up to 43,000 feet, only 30 (0.26%) complained of toothache (barodontalgia). The cause of the barodontalgia in 28 episodes of pain in 25 of these subjects was investigated. Chronic pulpitis was suspected as the cause in 22 cases and maxillary sinusitis in 2. No pathosis was detected in the other four. In 10 cases in which the pulpitis was treated by root filling or replacing a deep filling, subsequent exposure to low pressure caused no pain.

  4. The molecular basis of convergence in hemoglobin function in high-altitude Andean birds

    DEFF Research Database (Denmark)

    Storz, Jay; Natarajan, Chandrasekhar; Witt, Christopher C.

    2016-01-01

    was correct that adaptive modifications of Hb function are typically attributable to a small number of substitutions at key positions, then the clear prediction is that the same mutations will be preferentially fixed in different species that have independently evolved Hbs with similar functional properties....... For example, in high-altitude ertebrates that have convergently evolved elevated Hb-O2 affinities, Perutz’s hypothesis predicts that parallel amino acid substitutions should be pervasive. We investigated the predictability of genetic adaptation by examining the molecular basis of convergence in hemoglobin (Hb...

  5. Analysis of High-altitude Syndrome and the Underlying Gene Polymorphisms Associated with Acute Mountain Sickness after a Rapid Ascent to High-altitude

    Science.gov (United States)

    Yu, Jie; Zeng, Ying; Chen, Guozhu; Bian, Shizhu; Qiu, Youzhu; Liu, Xi; Xu, Baida; Song, Pan; Zhang, Jihang; Qin, Jun; Huang, Lan

    2016-12-01

    To investigated the objective indicators and potential genotypes for acute mountain sickness (AMS). 176 male subjects were evaluated for symptoms scores and physiological parameters at 3700 m. EPAS1 gene polymorphisms were explored and verified effects of potential genotypes on pulmonary function by inhaled budesonide. The incidence of AMS was 53.98% (95/176). The individuals who suffered from headache with anxiety and greater changes in heart rate (HR), the forced vital capacity (FVC), and mean flow velocity of basilar artery (Vm-BA), all of which were likely to develop AMS. The rs4953348 polymorphism of EPAS1 gene had a significant correlation with the SaO2 level and AMS, and a significant difference in the AG and GG genotype distribution between the AMS and non-AMS groups. The spirometric parameters were significantly lower, but HR (P = 0.036) and Vm-BA (P = 0.042) significantly higher in the AMS subjects with the G allele than those with the A allele. In summary, changes in HR (≥82 beats/min), FVC (≤4.2 Lt) and Vm-BA (≥43 cm/s) levels may serve as predictors for diagnosing AMS accompanied by high-altitude syndrome. The A allele of rs4953348 is a protective factor for AMS through HR and Vm-BA compensation, while the G allele may contribute to hypoxic pulmonary hypertension in AMS.

  6. Response to Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    Directory of Open Access Journals (Sweden)

    Whitlow, K. Scott

    2015-10-01

    Full Text Available We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions.

  7. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians.

    Science.gov (United States)

    Yang, Xinwang; Wang, Ying; Zhang, Yue; Lee, Wen-Hui; Zhang, Yun

    2016-01-27

    Elucidating the mechanisms of high-altitude adaptation is an important research area in modern biology. To date, however, knowledge has been limited to the genetic mechanisms of adaptation to the lower oxygen and temperature levels prevalent at high altitudes, with adaptation to UV radiation largely neglected. Furthermore, few proteomic or peptidomic analyses of these factors have been performed. In this study, the molecular adaptation of high-altitude Odorrana andersonii and cavernicolous O. wuchuanensis to elevated UV radiation was investigated. Compared with O. wuchuanensis, O. andersonii exhibited greater diversity and free radical scavenging potentiality of skin antioxidant peptides to cope with UV radiation. This implied that O. andersonii evolved a much more complicated and powerful skin antioxidant peptide system to survive high-altitude UV levels. Our results provided valuable peptidomic clues for understanding the novel molecular basis for adaptation to high elevation habitats.

  8. Quantification of optic disc edema during exposure to high altitude shows no correlation to acute mountain sickness.

    Directory of Open Access Journals (Sweden)

    Gabriel Willmann

    Full Text Available BACKGROUND: The study aimed to quantify changes of the optic nerve head (ONH during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS. This work is related to the Tuebingen High Altitude Ophthalmology (THAO study. METHODOLOGY/PRINCIPAL FINDINGS: A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3® was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m. Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL and AMS-cerebral (AMS-c scores; oxygen saturation (SpO₂ and heart rate (HR were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation changed significantly at high altitude compared to baseline (p<0.05 and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO₂ or HR. CONCLUSIONS/SIGNIFICANCE: Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO₂ and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS.

  9. Quantification of Optic Disc Edema during Exposure to High Altitude Shows No Correlation to Acute Mountain Sickness

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M. Dominik; Schatz, Andreas; Schommer, Kai; Messias, Andre; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2011-01-01

    Background The study aimed to quantify changes of the optic nerve head (ONH) during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS). This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3®) was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m). Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL) and AMS-cerebral (AMS-c) scores; oxygen saturation (SpO2) and heart rate (HR) were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE) 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation) changed significantly at high altitude compared to baseline (p<0.05) and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO2 or HR. Conclusions/Significance Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO2 and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS. PMID:22069483

  10. Anatomical and hemodynamic evaluations of the heart and pulmonary arterial pressure in healthy children residing at high altitude in China

    Directory of Open Access Journals (Sweden)

    Hai-Ying Qi

    2015-06-01

    Conclusions: Children living at high altitude in China have significantly higher mPAP, dilated right heart and slower regression of right ventricular hypertrophy in the first 14 years of life. Systolic and diastolic functions of both ventricles were reduced with a paradoxically higher CI. There was no significant difference in these features between the Hans and the Tibetans. These values provide references for the care of healthy children and the sick ones with cardiopulmonary diseases at high altitude.

  11. Reduced oxygen due to high-altitude exposure relates to atrophy in motor-function brain areas.

    Science.gov (United States)

    Di Paola, M; Paola, M D; Bozzali, M; Fadda, L; Musicco, M; Sabatini, U; Caltagirone, C

    2008-10-01

    At high altitudes barometric pressure is reduced and, thus, less oxygen is inhaled. Reduced oxygen concentration in brain tissue can lead to cerebral damage and neurological and cognitive deficits. The present study was designed to explore the effects of high-altitude exposure using a quantitative MRI technique, voxel-based morphometry. We studied nine world-class mountain climbers before (baseline) and after (follow-up) an extremely high-altitude ascent of Everest and K2. We investigated the effects of repeated extremely high-altitude exposures by comparing mountain climbers' scans at baseline with scans of 19 controls. In addition, we measured the effects of a single extremely high-altitude expedition by comparing mountain climbers' scans at baseline and follow-up. A region of reduced white matter density/volume was found in the left pyramidal tract near the primary (BA 4) and supplementary (BA 6) motor cortex when mountain climbers at baseline were compared with controls. Further, when mountain climbers' scans before and after the expedition were compared, a region of reduced grey matter density/volume was found in the left angular gyrus (BA 39). These findings suggest that extremely high-altitude exposures may cause subtle white and grey matter changes that mainly affect brain regions involved in motor activity.

  12. The Expression Plasticity of Hypoxia Related Genes in High-Altitude and Plains Nanorana parkeri Populations

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Xingzhi HAN; Robert H S KRAUS; Le YANG; Liqing FAN; Yinzi YE; Yi TAO

    2016-01-01

    For species that have a broad geographic distribution, adaptive variation may be attributable to gene expression plasticity. Nanorana parkeri is an anuran endemic to the southern Tibetan Plateau where it has an extensive altitudinal range (2850 to 5100 m asl). Low oxygen concentration is one of the main environmental characteristics of the Tibetan Plateau. Hypoxia-inducible factor α subunits (HIF-1α and HIF-2α, encoded by Endothelial PAS domain protein 1 (EPAS1)) and associated genes (e.g., vascular endothelial growth factor (VEGF) and Erythropoietin (EPO)) play crucial roles in maintaining oxygen homeostasis. In this study, we compared the expression of HIF-1A, VEGF, EPAS1 and EPO mRNA between two populations of N. parkeri: one population inhabiting the native high altitudes, and the second living in, and being acclimated to, the lower plains (70 m asl). The expression of HIF-1A, VEGF and EPAS1 mRNA in the high altitude population were significantly higher than in the acclimated population, whereas there was no significant difference for EPO between two groups. Our results indicated that gene expression plasticity may make significant contributions to local adaptation of species that have broad altitudinal distributions. In addition, we deepen our understanding of the adaptive potential of this species by evaluating the experiments in the scope of its evolutionary history.

  13. Water level changes of high altitude lakes in Himalaya–Karakoram from ICESat altimetry

    Indian Academy of Sciences (India)

    Priyeshu Srivastava; Rakesh Bhambri; Prashant Kawishwar; D P Dobhal

    2013-12-01

    Himalaya–Karakoram (H–K) region hosts large number of high altitude lakes but are poorly gauged by in-situ water level monitoring method due to tough terrain conditions and poor accessibility. After the campaigns of ICESat during 2003–2009, now it is possible to achieve lake levels at decimetre accuracy. Therefore, in present study, high altitude lake levels were observed using ICESat/GLAS altimetry in H–K between 2003 and 2009 to generate baseline information. The study reveals that out of 13 lakes, 10 lakes show increasing trend of water levels at different rate (mean rate 0.173 m/y) whereas three lakes unveiled decreasing trend (mean rate −0.056 m/y). Out of five freshwater lakes, four lakes show an increasing trend of their level (mean rate 0.084 m/y) whereas comparatively six salt lakes (out of seven salt lakes) exhibited ∼3 times higher mean rate of lake level increase (0.233 m/y). These observed lake level rise can be attributed to the increased melt runoffs (i.e., seasonal snow and glacier melts) owing to the enhanced mean annual and seasonal air temperature during past decade in north-western (NW) Himalaya. Further, varied behaviours of lake level rises in inter- and intra-basins suggest that the local climatic fluctuations play prominent role along with regional and global climate in complex geographical system of NW Himalaya.

  14. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    Directory of Open Access Journals (Sweden)

    He Chuan

    2012-01-01

    Full Text Available The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA. Then, a novel swarm intelligence algorithm named propagation algorithm (PA is combined with the key node search algorithm (KNSA to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  15. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm.

    Science.gov (United States)

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  16. Prehistoric Human Dispersal to the Tibetan Plateau and Adaptation to the High Altitude Environment

    Science.gov (United States)

    Zhang, Dongju; Dong, Guanghui; Chen, Fahu

    2016-04-01

    Human history of the Tibetan Plateau and human adaptation to the high altitude environment is hotly debated in the past decade among archaeological, anthropological, genetic, and even past climate change studies. Based on previous studies on the Tibetan Plateau and our own archaeological studies in northeastern Tibetan Plateau (NETP), we propose that human migrated to the Tibetan Plateau from the last Deglacial period to late Holocene mainly from North China via Yellow River valley and its tributary valleys in NETP. This migration is constituted of four stages (Upper Paleolithic, Epi-Paleolithic, Neolithic and Bronze Age) when human adapted to the high altitude environment and climate change with different strategies and techniques. Particularly, the prevail of microlithic technology in North China provoked hunter-gatherers' first visit to the NETP in relatively ameliorated last Deglacial period, and the quick development of millet farming and subsequent mixed barley-wheat farming and sheep herding facilitated farmers and herders permanently settled in NETP, even above 3000 masl, during mid- and late Holocene.

  17. The role of oxygen-increased respirator in humans ascending to high altitude

    Directory of Open Access Journals (Sweden)

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  18. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  19. Association between Serum Interleukin-17A Level and High-Altitude Deacclimatization Syndrome

    Directory of Open Access Journals (Sweden)

    Binfeng He

    2016-01-01

    Full Text Available High-altitude deacclimatization syndrome (HADAS is emerging as a severe public health issue that threatens the quality of life of individuals who return to lower altitude from high altitude. In this study, we measured serum levels of SOD, MDA, IL-17A, IL-10, TNF-α, and HADAS score in HADAS subjects at baseline and 50th and 100th days and to evaluate the relationship between interleukins, including IL-17A, and HADAS. Our data showed that and the serum IL-17A levels and HADAS score decreased over time in the HADAS group, and serum IL-17A levels were significantly higher in the HADAS group at baseline and 50th day compared with controls (p<0.05. Furthermore, baseline serum levels of MDA and TNF-α were significantly higher, while SOD and IL-10 levels were lower in HADAS subjects compared with controls (p<0.05. It is interesting that serum levels of IL-17A were clearly interrelated with HADAS incidence and severity (p<0.05. ROC curve analysis showed that combined serum IL-17A and IL-10 levels were a better predictor of HADAS incidence than serum levels of IL-17A or IL-10 alone. These data suggest that serum levels of IL-17A are a novel predictive index of HADAS.

  20. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.