WorldWideScience

Sample records for high-alloy steel forgings

  1. Dynamic Recrystallization Behavior of Microalloyed Forged Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; CHEN Jun; ZHAO Zhen; RUAN Xue-yu

    2008-01-01

    The dynamic recrystallization behavior of microalloyed forged steel was investigated with a compression test in the temperature range of 1 223--1 473 K and a strain rate of 0. 01--5 s-1. Activation energy was calculated to be 305. 9 kJ/mol by regression analysis. Modeling equations were developed to represent the dynamic reerystalliza-tion volume fraction and grain size. Parameters of the modeling equations were determined as a function of the Zener-Hollomon parameter. The developed modeling equation will be combined with finite element modeling to prediet microstructural change during the hot forging processing.

  2. Thermodynamic Modeling as a Strategy for Casting High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Peri Reddy V; S Raman Sankaranarayanan

    2009-01-01

    Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.

  3. Medium carbon vanadium micro alloyed steels for drop forging

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-12-31

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author) 17 refs., 19 figs., 5 tabs.

  4. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-02-01

    Forged stainless steels are used as the materials of construction for tritium reservoirs. During service, tritium diffuses into the reservoir walls and radioactively decays to helium-3. Tritium and decay helium cause a higher propensity for cracking which could lead to a tritium leak or delayed failure of a tritium reservoir. The factors that affect the tendency for crack formation and propagation include: Environment; steel type and microstructure; and, vessel configuration (geometry, pressure, residual stress). Fracture toughness properties are needed for evaluating the long-term effects of tritium on their structural properties. Until now, these effects have been characterized by measuring the effects of tritium on the tensile and fracture toughness properties of specimens fabricated from experimental forgings in the form of forward-extruded cylinders. A key result of those studies is that the long-term cracking resistance of stainless steels in tritium service depends greatly on the interaction between decay helium and the steels’ forged microstructure. New experimental research programs are underway and are designed to measure tritium and decay helium effects on the cracking properties of stainless steels using actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured should be more representative of actual reservoir properties because the microstructure of the specimens tested will be more like that of the tritium reservoirs. The programs are designed to measure the effects of key forging variables on tritium compatibility and include three stainless steels, multiple yield strengths, and four different forging processes. The effects on fracture toughness of hydrogen and crack orientation were measured for type 316L forgings. In addition, hydrogen effects on toughness were measured for Type 304L block forgings having two different yield strengths. Finally, fracture toughness properties of type 304L

  5. 77 FR 14445 - Application for a License To Export Steel Forging

    Science.gov (United States)

    2012-03-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Steel Forging Pursuant to 10 CFR 110.70(b) ``Public Notice of... Spain. December 15, 2011 head steel head steel February 7, 2012 forging. forging will be XR175...

  6. Developments of New Lubricants for Cold Forging of Stainless Steel

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Christensen, Erik; Olesen, P.

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect...

  7. New low-carbon steel for hot, warm, or cold forging

    Energy Technology Data Exchange (ETDEWEB)

    Ollilainen, V.; Hocksell, E. [Imatra Steel Oy Ab, Imatra Steelworks (Finland)

    2000-05-01

    The development of a new high-strength steel started from the needs of cold forging and continued into hot- and warm-forging areas. The steel has a very low carbon content (<0.1% C) and chromium-boron alloying. Its hardening is simple: just water quenching without tempering. Hot forgings of this steel are directly quenched from forging temperature, resulting in process cost savings and weight reduction. (orig.)

  8. Hot Forging of Nitrogen Alloyed Duplex Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    P.Chandramohan; S.S. Mohamed Nazirudeen; S.S. Ramakrishnan

    2007-01-01

    Duplex stainless steels are gaining global importance because of the need for a high strength corrosion resistant material. Three compositions of this group were selected with three different nitrogen contents viz, 0.15 wt pct (alloy 1), 0.23 wt pct (alloy 2) and 0.32 wt pct (alloy 3). The steels were melted in a high frequency induction furnace and hot forged to various reductions from 16% to 62%. In this work, the effect of hot forging on the ferrite content, hardness, yield strength, impact strength and grain orientation (texture) were studied. Fracture analysis on all the forged specimens using SEM reveals that a size reduction of 48% results in maximum ductility and impact strength as well as minimal ferrite content and grain size. Thus the mechanical properties are found to have a direct correlation to ferrite content and grain size. The highest impact strength was observed in specimens with the smallest grain size, which was observed in specimens forged to 48% reduction in size.

  9. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  10. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2010-11-01

    ... COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... stainless steel flanges from India and Taiwan. SUMMARY: The Commission hereby gives notice that it has... determine whether revocation of the antidumping duty orders on forged stainless steel flanges from India...

  11. Mechanism of Annealing Softening of Rolled or Forged Tool Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to reduce hardness of rolled or forged steels after annealing and improve processability, the diameter and dispersity of carbides were measured by SEM and quantitative metallography. The microstructure of annealed steel was analyzed by TEM. The effects of the factors such as solute atoms, carbides, grain boundary and interphase boundary were studied. The mechanism of annealing softening of steels was analyzed on the examples of steels H13, S5, S7, X45CrNiMo4, which are treated with new technology. The results showed that the softening of H13, S7, S5 is easier obtained by isothermal or slow cooling annealing from slightly below A1, but hardness of X45CrNiMo4 after annealing is reduced effectively by obtaining coarse lamellar pearlite. Economic results can be obtained from good processability.

  12. Mechanical properties of the as-forged and the forged-and-milled steels for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Yoon, Ji Hyun; Kim, Joo Hak; Oh, Yong Jun; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-04-01

    The mechanical properties of the as-forged and the forged and milled SA508-Gr.3 reactor pressure vessel steels were evaluated. The full Charpy impact curves obtained for four different locations in test materials. The various data including yield strengths, tensile strengths, elongations were obtained from the tensile strengths, elongations were obtained from the tensile test results for two locations in test materials. The detailed test results were integrated and analysed in this report. 6 refs., 7 figs., 5 tabs. (Author)

  13. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  14. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    Energy Technology Data Exchange (ETDEWEB)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  15. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reduction in cold forward rod extrusion....

  16. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2011-02-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... steel flanges from India and Taiwan would be likely to lead to continuation or recurrence of...

  17. The development and production of thermo-mechanically forged tool steel spur gears

    Science.gov (United States)

    Bamberger, E. N.

    1973-01-01

    A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.

  18. Determination and Analysis of Hardenability for Hot-Forging Die Steels with Deep-Hardening

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    ERH end-quenching method was us ed to determine the hardenability of four kinds hot-forging die steels with dee p-hardening and hence the order of their hardenability was given. The tempering hardness of the steels was measured and the tempering resistance was studied. It was approved that ERH method is effective for the determination of hardenability of deep-hardening steel and the beginning of hardness drop in the ERH specimen is caused by bainite occurring.

  19. Large size austenitic stainless steel forgings for nuclear and cryogenic application - development, manufacturing and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Keizo; Suzuki, Komei; Sato, Ikuo; Murai, Etuso (Japan Steel Works Ltd., Muroran Plant, Hokkaido (Japan))

    1992-01-01

    The high quality one-piece large austenetic stainless steel forgings are required in the several components such as nuclear reactors and run tanks for rocket engine test stand in order to assure the structural integrity and to make it easy to fabricate and inspect the components. When the austenitic stainless steel forgings are increased in size, various problems must be overcome to assure the high quality forgings. The ingot making and hot working play an important role in determining the quality of the products. In such points, the lastest manufacturing techniques such as steel making of large size ingot and hot working to get uniform and fine grains are discussed together with the fundamental data of the material properties. (orig.).

  20. Microstructure Evolution of Multi-Heat Forging and Numerical Simulation for 316LN Steel

    Directory of Open Access Journals (Sweden)

    Duan Xing-Wang

    2014-02-01

    Full Text Available Microstructure evolution has been studied by multi-heat forging experiments and numerical simulation in order to determine the reasonable forging technology of 316 LN steel. The microstructure evolution models were obtained by hot compressive tests and heat treatment tests of 316 LN steels. The one-heat and three-heat upsetting experiments were carried on. Meanwhile, the corresponding numerical simulations were performed. The results show that, the grain uniformity of three-heat upsetting is much better that of one-heat upsetting. The average grain size of three-heat upsetting is smaller than that of one-heat upsetting. So, the forging technology of multi-heat and little deformation should be adopted for 316 LN steel forging. By comparing experimental average grain sizes with simulated average grain sizes for three-heat upsetting, it is found that the simulated values are in agreement with experimental values, which shows that the numerical simulation can be employed to predict the forging microstructure evolution of 316 LN steel.

  1. Simulative Testing of Friction and Lubrication in Cold Forging of Steel and Aluminum

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Aida, Tetsuo

    2012-01-01

    A new, simulative test of friction and lubrication in cold forging is developed by the authors. The test is based on a backward can extrusion process in which the workpiece rotates relatively to the conical punch. An analytical model is presented determining the friction stress from the measured ...... coating plus MoS2 and single bathe lubrication with PULS and aluminum provided with 6 different lubricant systems. The new test is so severe, that it is possible to break down the best lubrication systems for cold forging of steel and aluminum....

  2. The effect of variable loading onintegrity of a welded joint of high alloy-steel X20

    Directory of Open Access Journals (Sweden)

    Z. Burzić

    2013-04-01

    Full Text Available In present paper, experimental investigations have included the effect of exploitation conditions (exploitation time and temperature on properties of high-cycle fatigue and parameters of fatigue-crack growth of a welded joint of steel X20 CrMoV 12-1 (X20. The effect of exploitation conditions was analysed by testing new pipe and the pipe having been exploited for 116 000 hours. The results obtained by testing and their analysis provide a practical contribution to assessment of quality of a welded joint of steel X20, the aim of which is revitalisation and extension of exploitation life of vital components of thermal power plants manufactured from high-alloy steel for operation at elevated temperatures.

  3. 2016 Accomplishments. Tritium aging studies on stainless steel. Forging process effects on the fracture toughness properties of tritium-precharged stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that fracture modes

  4. Design of Controlled Processing Conditions for Drop Forgings Made of Microalloy Steel Grades for Mining Industry

    Directory of Open Access Journals (Sweden)

    Skubisz P.

    2015-04-01

    Full Text Available Effect of plastic processing and controlled cooling on microstructure and mechanical properties of experimental steel grades with microalloyed with Ti, V and/or Nb, varying in the content of Mo is presented as an offer for mining industry for replacement traditionally heat-treatable hardenability grades. The goal of the work is producing microstructure condition, which after controlled hot forging and direct heat treatment, involving quenching and self-tempering, are meant to provide good combination of mechanical properties, such as TYS 800 MPa, UTS 1050 MPa, elongation to fracture at least A5 15% and/or impact strength at room temperature KCV 60 J/cm2. Hardenability assessment and dilatometric examination allowed formulation of direct heat treatment guidelines, taking into consideration fields of temperature and strain in a typical hot forging process, estimated numerically, with the use of plastometric tests results, as well as the use of unique cooling cycles after forging.

  5. Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-qi; CHEN Kang-min; CUI Xiang-hong; JIANG Qi-chuan; HONG Bian

    2006-01-01

    The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.

  6. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    NARCIS (Netherlands)

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; Ijsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to

  7. The coarsening effect of SA508-3 steel used as heavy forgings material

    Directory of Open Access Journals (Sweden)

    Dingqian Dong

    2015-01-01

    Full Text Available SA508Gr.3 steel is popularly used to produce core unit of nuclear power reactors due to its outstanding ability of anti-neutron irradiation and good fracture toughness. The forging process takes important role in manufacturing to refine the grain size and improve the material properties. But due to their huge size, heavy forgings cannot be cooled down quickly, and the refined grains usually have long time to grow in high temperature conditions. If the forging process is not adequately scheduled or implemented, very large grains up to millimetres in size may be found in this steel and cannot be eliminated in the subsequent heat treatment. To fix the condition which may causes the coarsening of the steel, hot upsetting experiments in the industrial production environment were performed under different working conditions and the corresponding grain sizes were measured and analysed. The observation showed that the grain will abnormally grow if the deformation is less than a critical value. The strain energy takes a critical role in the grain evolution. If dynamic recrystallization consumes the strain energy as much as possible, the normal grains will be obtained. While if not, the stored strain energy will promote abnormal growth of the grains.

  8. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  9. Tribo-thermal fatigue of the steel used for the forging die construction

    Science.gov (United States)

    Drumeanu, A. C.

    2017-02-01

    Frequently the durability of the forging dies is firstly determined by the non-isothermal fatigue wear, which causes the cracks appearance on their internal surfaces, much more before their abrasion wear to reach the limit value. In these conditions it is necessary to design the forging dies firstly by the point of view of the non-isothermal fatigue wear. For a correctly choosing and using of metallic material, it is necessary to determine their intrinsic characteristics regarding its cyclic non-isothermal stresses durability. The experimental determination of these characteristics implies a lot of experiments, which are done in specific conditions, different from those used for isothermal mechanical fatigue durability determination. The paper presents the experimental results concerning intrinsic characteristic determination of the forging dies steel. Based on these results there were determined specific equations which characterize this kind of stresses, and the diagrams that represent their graphic image. These data can be used both in designing and exploitation of the forging dies.

  10. Effects of Different Forging Processes on Microstructure Evolution for 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Sui, Dashan; Zhu, Lingling; Wang, Tao; Zhang, Peipei; Cui, Zhenshan

    2017-07-01

    Forging experiments were designed and carried out on a 3150 kN hydraulic press to investigate the effects of different processes on the microstructure evolution for 316LN steel. The forging processes included single-pass (upsetting) and multipass (stretching) deformations, and the experimental results indicated that the average grain size varied with forging processes. Moreover, the size had distinct differences at different positions in the workpiece. Meanwhile, numerical simulations were implemented to study the influence of temperature, strain, and strain rate on microstructure evolution. The results of experiments and simulations comprehensively demonstrated that dynamic, static, and meta-dynamic recrystallization could coexist in the hot forging process and that the recrystallization process could easily occur under the conditions of higher temperature, larger strain, and higher strain rate. Moreover, the temperature had more significant influence on both recrystallization and grain growth. A higher temperature could not only promote the recrystallization but also speed up the grain growth. Therefore, a lower temperature is beneficial to obtain refinement grains on the premise that the recrystallization can occur completely.

  11. Standard method of macroetch testing steel bars, billets, blooms, and forgings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 Macroetching, which is the etching of specimens for macrostructural examination at low magnifications, is a frequently used technique for evaluating steel products such as bars, billets, blooms, and forgings. 1.2 Included in this method is a procedure for rating steel specimens by a graded series of photographs showing the incidence of certain conditions. The method is limited in application to bars, billets, blooms, and forgings of carbon and low alloy steels. 1.3 A number of different etching reagents may be used depending upon the type of examination to be made. Steels react differently to etching reagents because of variations in chemical composition, method of manufacture, heat treatment and many other variables. Establishment of general standards for acceptance or rejection for all conditions is impractical as some conditions must be considered relative to the part in which it occurs. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is ...

  12. MODELING OF MICROSTRUCTURAL EVOLUTION IN MICROALLOYED STEEL DURING HOT FORGING PROCESS

    Institute of Scientific and Technical Information of China (English)

    J. Wang; J. Chen; Z. Zhao; X.Y. Ruan

    2006-01-01

    The microstructural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation, the parameters of which were determined by single hit compression tests. Double hit compression tests were performed to model the equation describing the static recrystallized fraction, and the obtained predicted values were in good agreement with the measured values. Austenitic grain growth was modeled as: Dinc5=D05 +1.6×1032t·exp(-716870/RT) using isothermal tests. Furthermore, an equation describing the dynamic recrystallized grain size was given as Ddyn=3771·Z-0.2.The models of microstructural evolution could be applied to the numerical simulation of hot forging.

  13. Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling

    Science.gov (United States)

    Turpin, T.; Dulcy, J.; Gantois, M.

    2005-10-01

    Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters ( T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.

  14. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Science.gov (United States)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  15. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel

    Science.gov (United States)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.

    2017-02-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  16. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    Science.gov (United States)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  17. New microalloyed steels for heavy duty forgings in cars and trucks

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, J. [CDP Bharat Forge GmbH, Ennepetal (Germany)

    2005-07-01

    CDP Bharat Forge has carried out a substantial alloy and process development on microalloyed steels for controlled cooling. The main focus was put on the introduction of this development into series production of parts that were 100% heat treated before. The R+D-activities resulted in the new grades cdpSo38 and cdpSo40. For the grade cdpSo38 an impact energy of >25J (RT) and an elongation of >14% can be guaranteed for the series production of safety critical chassis parts at a yield strength of >600MPa. For the cdpSo40 a yield strength of >700MPa at 10% elongation can be guaranteed in series production. Two of the biggest truck manufacturers in the world have already changed their steering knuckles from heat treated steels 42CrMo4 and 30MnB5 to the new cdpBF-grades. (orig.)

  18. Microstructural study of oxides and carbides used for abrasion properties in high alloyed steels

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Magnée, Adrien

    2001-01-01

    For long applications and for many others, a material with properties between hard metal and high speed steel is necessary. This material should have a high resistance to wear together with good toughness. An attractive solution consists in combining in a composite the properties of a tough ferrous matrix with those of hard reinforced particles. In varying the nature and the proportions of reinforcement and matrix, the properties of the composite can cover many applications. Peer reviewed

  19. Comparison of Solid and Hollow Torque Transducer Shaft Response in a High Alloy Stainless Steel

    Science.gov (United States)

    Milby, Christopher L.; Hecox, Bryan G.; Wiewel, Joseph L.; Boley, Mark S.

    2007-03-01

    Recent investigations of the torque transducer response function (ambient field signal versus applied torque or shear stress) have been conducted in a 13% chromium and 8% nickel stainless steel alloy in both the hollow shaft and solid shaft configuration. An understanding of both is needed for applications with differing yield strength and hardness requirements. Axial hysteresis measurements conducted before and after heat treatment exhibited little difference in coercivity and retentivity between the two sample types. However, the field mapping and transducer sensitivity studies showed the hollow shaft configuration to have a far superior degree of polarization in the sensory region and to exhibit an enhanced sensitivity, especially after heat treatment. This is most likely due to its more efficient provision of closed circumferential geometry for the field lines and improved grain alignment during heat treatment.

  20. Decarburization of ferrochrome and high alloy steels with optimized gas and slag phases towards improved Cr retention

    Directory of Open Access Journals (Sweden)

    Wang H.

    2013-01-01

    Full Text Available Chromium is a high value metal and the retention of the same during the refining of high carbon ferrochrome as well as high alloy steel has significant economic and environmental impacts. The loss of chromium during the decarburization is generally minimized using argon-oxygen mixtures thereby reducing the oxygen partial pressure (PO2 of the oxidant gas. In the current study, experiments were carried out in an induction furnace and CO2 was introduced with the view to partly reduce PO2 and partly as an oxidizer. During these experiments, the decarburization of molten Cr-alloy was conducted using pure O2, pure CO2 or O2+CO2 mixtures. The results demonstrated that the Cr loss can be minimized under CO2 introduction. The kinetic analysis showed that the mass transfer is effective due to the production of 2CO gas molecules from one CO2 molecule during the reaction which will improve the stirring of the bath. Besides, CO2 reacts with carbon in melt is an endothermic reaction, introduction of CO2 could be a cooler during the refining process, hence the temperature could be controlled by controlling the diluting gas amount, in this case, the over heat of bath refractory could be prevented and the lifetime of refractory could be extended.

  1. Effect of Hot Forging on Microstructural Evolution and Impact Toughness in Ultra-high Carbon Low Alloy Steel

    Science.gov (United States)

    Kim, J. B.; Kim, J. H.; Kang, C. Y.

    2016-12-01

    The effect of a hot forging ratio on the microstructural variation and tensile properties of ultra-high carbon low alloy steel was investigated. Scanning electron microscopic analyses depict that with an increase in the hot forging ratio, the thickness of the network and acicular proeutectoid cementite decreased. Moreover, the lamella spacing and thickness of the eutectoid cementite decreased and broke up into particle shapes, which then became spheroidized as the hot forging ratio increased. Furthermore, when the forging ratio exceeded 65%, the network and acicular shape of the as-cast state disappeared. By increasing the hot forging ratio, the tensile strength and elongation remained below 50%, but they increased rapidly with an increase in the forging ratio. Strength and elongation were not affected by the thickness of the proeutectoid and eutectoid cementites, but were greatly affected by the shape of the proeutectoid cementite. Due to the decrease in the austenite grain size, as well as the spheroidization of the cementite, the tensile strength and elongation sharply increased.

  2. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    Science.gov (United States)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  3. Determination of optimum welding parameters in connecting high alloyed X53CrMnNiN219 and X45CrSi93 steels by friction welding

    Indian Academy of Sciences (India)

    Mehmet Uzkut; Bekir Sadik Ünlü; Mustafa Akdağ

    2011-07-01

    In this study, different welding parameters were applied to two different steels with high alloys and mechanical and metallographical investigations are performed. Thus, the optimum welding parameters were determined for these materials and working conditions. 12.30 diameter steel bars made up of 1.4871 (X53CrMnNiN219) and 1.4718 (X45CrSi93) steel were used as experimental material. The material loss increased with increase in friction and rotating pressure. No fracture at the welding region was observed and the highest fracture energy was identified in B5 group. Based on micro hardness investigation; the hardness profile reached its minimum value at the welding region.

  4. Three-dimensional Numerical Simulation and Experimental Analysis of Austenite Grain Growth Behavior in Hot Forging Processes of 300M Steel Large Components

    Institute of Scientific and Technical Information of China (English)

    Jiao LUO; Ying-gang LIU; Miao-quan LI

    2016-01-01

    The microstructure models were integrated into finite element (FE)code,and a three-dimensional (3D) FE analysis on the entire hot forging processes of 300M steel large components was performed to predict the distri-butions of effective strain,temperature field and austenite grain size.The simulated results show that the finest grains distribute in the maximum effective strain region because large strain induces the occurrence of dynamic re-crystallization.However,coarse macro-grains appear in the minimum effective strain region.Then,300M steel forg-ing test was performed to validate the results of FE simulation,and microstructure observations and quantitative analysis were implemented.The average relative difference between the calculated and experimental austenite grain size is 7.5 6%,implying that the present microstructure models are reasonable and can be used to analyze the hot forging processes of 300M steel.

  5. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  6. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    Science.gov (United States)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  7. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    Science.gov (United States)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  8. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    Science.gov (United States)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  9. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS)

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, R.; Wei, L.; Fuerbeth, W. [Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main (Germany); Grooters, M.; Kuklinski, A. [University of Duisburg-Essen, Biofilm Centre, Geibelstrasse 41, 47057 Duisburg (Germany)

    2010-12-15

    Extracellular polymeric substances (EPS) were studied with regard to their potential application as inhibitors of biocorrosion. EPS that have been isolated from biofilms of sulphate-reducing bacteria (SRB) were adsorbed on samples of high alloyed steel (type 1.4301) at different temperatures. The samples were exposed to SRB containing solution and afterwards analysed by fluorescence microscopy (FM). The results show that the EPS form an incomplete layer and lead to a smaller amount of cell adhesion when compared to pure surfaces. The results are discussed with regard to the application of EPS for the prevention of biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Influence of local mechanical properties of high strength steel from large size forged ingot on ultrasonic wave velocities

    Science.gov (United States)

    Dupont-Marillia, Frederic; Jahazi, Mohamad; Lafreniere, Serge; Belanger, Pierre

    2017-02-01

    In the metallurgical industry, ultrasonic inspection is routinely used for the detection of defects. For the non-destructive inspection of small high strength steel parts, the material can be considered isotropic. However, when the size of the parts under inspection is large, the isotropic material hypothesis does not necessarily hold. The aim of this study is to investigate the effect of the variation in mechanical properties such as grain size, Young's modulus, Poissons ratio, chemical composition on longitudinal and transversal ultrasonic wave velocities. A 2 cm thick slice cut from a 40-ton bainitic steel ingot that was forged and heat treated was divided into 875 parallelepiped samples of 2x4x7 cm3. A metallurgical study has been performed to identify the phase and measure the grain size. Ultrasonic velocity measurements at 2.25 MHz for longitudinal and transversal waves were performed. The original location of the parallelepiped samples in the large forged ingot, and the measured velocities were used to produce an ultrasonic velocity map. Using a local isotropy assumption as well as the local density of the parallelepiped samples calculated from the chemical composition of the ingot provided by a previously published study, Youngs modulus and Poissons ratio were calculated from the longitudinal and transversal wave velocities. Micro-tensile test was used to validate Youngs modulus obtained by the ultrasonic wave velocity and an excellent agreement was observed.

  11. Manufacturing of Precision Forgings by Radial Forging

    Science.gov (United States)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  12. Yttrium modifying influence on the shape and amount of nonmetallic inclusions in the austenitic high alloy steel

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Патюпкін

    2016-07-01

    Full Text Available Yttrium influence on the form and amount of non-metallic inclusions in steel 06H23N18M5 was studied. It has been found that yttrium binds oxygen and other elements into heterogeneous compounds, it resulting in the transition of impurities into passive state. Oxide inclusions, sulfide inclusions and globules formed as a result of steel components reactions with oxygen, sulfur and nitrogen dissolved in metal are mostly found in the structure. It was found that by modifying and refining austenitic steels with yttrium service properties of the deposited layer can be adjusted. X-ray diffraction and X-ray spectrum analysis revealed that the modified steel 06H23N18M5 + 0.02% Y has a heterogeneous structure with uniformly distributed inclusions of σ-phase and composite carbides (Fe, Cr, Mo 23C6. It is possible that Y modification resulted in the appearance of chemically resistant intermetallic σ-phase in these steels, for nucleation was facilitated by increasing the number of crystallization centers as dispersed primary yttrium oxy-sulfide compounds

  13. PROSPECTS OF MANUFACTURING TUNNELING AND DRILLING EQUIPMENT TOOLING IN THE RECYCLING OF HIGH-ALLOY STEELS WASTES

    Directory of Open Access Journals (Sweden)

    D. M. Kukui

    2012-01-01

    Full Text Available The technological aspects of processing and remelting of dispersed metal scrap, generated during polishing and grinding of tools made from high speed steel and carbide and lump scrap for the manufacture of drilling equipment and mining equipment are investigated.

  14. Diffusion kinetics of boron in the X200CrMoV12 high-alloy steel

    Directory of Open Access Journals (Sweden)

    Azouani O.

    2015-01-01

    Full Text Available In this work, the kinetics of formation of the boride layers (FeB/Fe2B, formed on the X200CrMoV12 steel used for the coldworking, was investigated. The boriding treatment was carried out in the powder mixture consisting of 5%B4C, 5% NaBF4 and 90% SiC. The boriding parameters are : 900, 950 and 1000°C with treatment times of 2, 4 and 6 h. The obtained borided layers (FeB/Fe2B were characterized by the following experimental techniques: optical microscopy, scanning electron microscopy coupled to EDS analysis and XRD analysis. The kinetics of boron diffusion in the X200CrMoV12 steel was also studied. As a result, the time dependence of the borided layers thicknesses followed a growth parabolic law. The boron activation energy was estimated as 199.37 kJ mol-1 for the X200CrMoV12 steel. A full factorial design with 2 factors at 3 levels was employed to estimate the total boride layer thickness as a function of the boriding parameters (time and temperature and a simple equation was proposed. Finally, an iso-thickness diagram was given as a tool to predict the total boride layers thicknesses in relation with the practical utilization of this kind of steel.

  15. Improvement of the Corrosion Resistance of High Alloyed Austenitic Cr-Ni-Mo Stainless Steels by Solution Nitriding

    Institute of Scientific and Technical Information of China (English)

    Christine Eckstein; Heinz- Joachim Spies; Jochen Albrecht

    2004-01-01

    Characteristic features of austenitic steel grades combine a good corrosion resistance with a low hardness, wear resistance and scratch resistance. An interesting possibility for improving the wear behaviour of these steels without loss of their corrosion resistance lies in enriching the near surface region with nitrogen. The process of a solution nitriding allows the rise of the solution of nitrogen in the solid phase. On this state nitrogen increases the corrosion resistance and the tribilogical load-bearing capacity. The aim of the study was, to investigate the improvement of the pitting corrosion behaviour by solution nitriding. A special topic was to observe the effect of nitrogen by different molybdenum content. So austenitic stainless steels (18% Cr, 12% Ni, Mo gradation between 0.06 to 3.6%) had been solution nitrided. The samples could be prepared with various surface content of nitrogen from 0.04 to 0.45% with a step-by-step grinding. The susceptibility against pitting corrosion of these samples had been tested by determination of the stable pitting potential in 0.5M and 1M NaCl at 25℃. For the investigated steel composition and the used corrosion system there is no influence of molybdenum on the effectiveness of nitrogen. The influence of nitrogen to all of the determined parameters can be corrosion tests. Additionally surface investigations with an acid elektolyte (0,1M HCl + 0,4M NaCI) were performed. In this case the passivation effective nitrogen content increases markedly with rising molybdenum concentration of the steel.Obviously an interaction of Mo and N is connected with a strongly acid electrolyte.

  16. A Physically Based Dynamic Recrystallization Model Considering Orientation Effects for a Nitrogen Alloyed Ultralow Carbon Stainless Steel during Hot Forging

    Institute of Scientific and Technical Information of China (English)

    Gan-lin XIE; An HE; Hai-long ZHANG; Gen-qi WANG; Xi-tao WANG

    2016-01-01

    The nitrogen alloyed ultralow carbon stainless steel is a good candidate material for primary loop pipes of AP1000 nuclear power plant.These pipes are manufactured by hot forging,during which dynamic recrystallization acts as the most important microstructural evolution mechanism.A physically based model was proposed to describe and predict the microstructural evolution in the hot forging process of those pipes.In this model,the coupled effects of dislocation density change,dynamic recovery,dynamic recrystallization and grain orientation function were con-sidered.Besides,physically based simulation experiments were conducted on a Gleeble-3500 thermo-mechanical sim-ulator,and the specimens after deformation were observed by optical metallography (OM)and electron back-scat-tered diffraction (EBSD)method.The results confirm that dynamic recrystallization is easy to occur with increasing deformation temperature or strain rate.The grains become much finer after full dynamic recrystallization.The model shows a good agreement with experimental results obtained by OM and EBSD in terms of stress-strain curves,grain size,and recrystallization kinetics.Besides,this model obtains an acceptable accuracy and a wide applying scope for engineering calculation.

  17. Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel

    Science.gov (United States)

    Yan, Lutao; Yuan, Songmei; Liu, Qiang

    2012-05-01

    The minimum quantity of lubrication (MQL) technique is becoming increasingly more popular due to the safety of environment. Moreover, MQL technique not only leads to economical benefits by way of saving lubricant costs but also presents better machinability. However, the effect of MQL parameters on machining is still not clear, which needs to be overcome. In this paper, the effect of different modes of lubrication, i.e., conventional way using flushing, dry cutting and using the minimum quantity lubrication (MQL) technique on the machinability in end milling of a forged steel (50CrMnMo), is investigated. The influence of MQL parameters on tool wear and surface roughness is also discussed. MQL parameters include nozzle direction in relation to feed direction, nozzle elevation angle, distance from the nozzle tip to the cutting zone, lubricant flow rate and air pressure. The investigation results show that MQL technique lowers the tool wear and surface roughness values compared with that of conventional flood cutting fluid supply and dry cutting conditions. Based on the investigations of chip morphology and color, MQL technique reduces the cutting temperature to some extent. The relative nozzle-feed position at 120°, the angle elevation of 60° and distance from nozzle tip to cutting zone at 20 mm provide the prolonged tool life and reduced surface roughness values. This fact is due to the oil mists can penetrate in the inner zones of the tool edges in a very efficient way. Improvement in tool life and surface finish could be achieved utilizing higher oil flow rate and higher compressed air pressure. Moreover, oil flow rate increased from 43.8 mL/h to 58.4 mL/h leads to a small decrease of flank wear, but it is not very significant. The results obtained in this paper can be used to determine optimal conditions for milling of forged steel under MQL conditions.

  18. Analog Studies of Thermomechanical Fatigue and Abrasive Wear of Cast and Forged Steels for "Autoforge" Dies

    Science.gov (United States)

    Kolesnikov, M. S.; Mironova, Yu. S.; Mukhametzyanova, G. F.; Novikova, I. E.; Novikov, V. Yu.

    2014-07-01

    Processes of thermomechanical fatigue and abrasive wear of suspension-cast precipitation-hardening ferrite-carbide steel 30T6NTiC-1.5 and standard steel 4Kh5MFS are studied. The dominant kinds of fracture typical for dies for semisolid stamping are determined. The factors and parameters of cyclic temperature and force loading are shown to produce a selective action on the competing kinds of damage of the die steels. A comparative analysis of the properties of the steels is performed. Steel 30T6NTiC-1.5 is shown to have substantial advantages over steel 4Kh5FMS traditionally used for making "Autoforge" dies.

  19. Stress corrosion cracking tests for low and high alloy steels in sour oilfield service. Tests performed at VTT

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity; Haemaelaeinen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Engineering Materials

    1996-10-01

    The purpose of the studies was to validate the usefulness of the proposed NACE slow strain rate testing method and compare it with the EFC document. In the NACE document the testing takes place at a temperature of 177 deg C, the test solution contains 20 wt% NaCl, the partial pressure of H{sub 2}S varies between 14 and 28 bar and the partial pressure of CO{sub 2} between 14 and 55 bar. In the NACE document the strain rate is determined as 4 x 10{sup -6} 1/s and in the EFC document 1 x 10{sup -6} 1/s. The results showed brittle behaviour for the test material in all of the test environments, and in each case the elongation was less than 5%. For comparison purposes the SSRT was conducted with the test material also in an inert environment (N{sub 2} gas), where the fracture was ductile and elongation 65%. The tests conducted with different strain rates gave the same result, which shows that the difference between EFC and NACE documents within the strain rate is not significant in the environments studied. However, since the alloy 654 SMO, which is considered to have a high resistance to corrosion, failed the SSRT test in the environments determined in the NACE document, the NACE document can be considered too severe for testing of austenitic stainless steels. Since contrary to the NACE document the EFC document does not determine levels for hydrogen sulphide and carbon dioxide, the EFC document can be considered more suitable than the NACE document for testing of austenitic stainless steels for sour service. (author)

  20. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Hazra

    2014-01-01

    Full Text Available In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

  1. Optimization of the welding process of high alloyed steels and improvement of corrosion behaviour of welded joints; Optimierung des Schweissprozesses hochlegierter Staehle und Verbesserung der Korrosionsbestaendigkeit der Schweissverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, K.; Goellner, J. [Otto-von-Guericke-Universitaet Magdeburg, IWW, PF 4120, D-39016 Magdeburg (Germany); Ryspaev, T.; Reiter, R.; Wesling, V. [Technische Universitaet Clausthal, Agricolastrasse 2, D-38678 Clausthal-Zellerfeld (Germany)

    2005-03-01

    The optimization of welding processes is necessary to obtain a good durability of the welded joints connected with a minimization of the corrosion performance. Welding processes represent a considerable influence of the material. The formation of precipitations, strong structure changes, increasing of the residual stress and not at all undefined surface layers are possible. All these changes have a great influence on the corrosion behaviour. Particularly tempering tarnish changes the passive layer which is decisive for the corrosion resistance. But also surface treatment methods can influence the corrosion behaviour. Therefore both the welding process and an ''after-care'' coordinated with the respective welding process had to be optimized. The optimization of the welding process was carried out by variation of the energy per unit length and the use of different protective gases. For a selection of a surface treatment method it has to be taken into account that an obvious remove of the tempering tarnish doesn't lead to an improvement in the corrosion behaviour. Traces of the working tool which can have a negative effect on the corrosion behaviour often remain on the surface. The influence of these different parameters on the corrosion property could be proved by electrochemical and surface analytical examinations. The investigations were carried out at specimens of two typical representatives of high alloyed austenitic steels and at welded joints, which had different surface treatments. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Die Optimierung von Schweissprozessen ist erforderlich, um eine gute Haltbarkeit der Schweissverbindungen und eine Minimierung der Korrosionsneigung zu erzielen. Schweissprozesse stellen eine erhebliche Beeinflussung fuer den Werkstoff dar. Es kann dabei zu Ausscheidungen bzw. zu starken Gefuegeveraenderungen, zur Erhoehung der Eigenspannungen und nicht zuletzt zu Schichtbildungen kommen. All

  2. Normalizing treatment influence on the forged steel SAE 8620 fracture properties

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Vida Gomes

    2005-03-01

    Full Text Available In a PWR nuclear power plant, the reactor pressure vessel (RPV contains the fuel assemblies and reactor vessels internals and keeps the coolant at high temperature and high pressure during normal operation. The RPV integrity must be assured all along its useful life to protect the general public against a significant radiation liberation damage. One of the critical issues relative to the VPR structural integrity refers to the pressurized thermal shock (PTS accident evaluation. To better understand the effects of this kind of event, a PTS experiment has been planned using an RPV prototype. The RPV material fracture behavior characterization in the ductile-brittle transition region represents one of the most important aspects of the structural assessment process of RPV's under PTS. This work presents the results of fracture toughness tests carried out to characterize the RPV prototype material behavior. The test data includes Charpy energy curves, T0 reference temperatures for definition of master curves, and fracture surfaces observed in electronic microscope. The results are given for the vessel steel in the "as received" and normalized conditions. This way, the influence of the normalizing treatment on the fracture properties of the steel could be evaluated.

  3. 高锰无磁钢护环锻造特点及锻造工艺%Forging characteristics and process of high manganese non-magnetic steel retaining ring

    Institute of Scientific and Technical Information of China (English)

    曾艳玲

    2013-01-01

    The forging process requirement of high manganese steel retaining ring is relatively high.According to the forging characteristics of high manganese steel retaining ring,the forging process development and improving measures were put forward.After trial production,the satisfied effect was obtained.By carrying out the improved forging process in the factory,the influence of forging characteristics for high manganese steel on forging process was reduced,the internal and appearance qualities of retaining ring and the tooling life were improved,and the heating number and energy consumption were reduced.%高锰无磁钢护环在加工过程中的锻造工艺要求比较高,本文在针对高锰无磁钢护环锻造特点的基础上,提出了对锻造过程的工艺开发及改进措施.经试制后达到了令人满意的效果,将经过改良后的锻造工艺在工厂里进行实施,降低了高锰无磁钢锻造特点对锻造工艺的影响,提高了护环的内部质量和外观质量,同时也提高了工装的寿命,减少了生产火次和能源的消耗.

  4. Comment on "Origin of low-temperature shoulder internal friction peak of Snoek-Köster peak in a medium carbon high alloyed steel" by Lu et al. [Solid State Communications 195 (2014) 31

    Science.gov (United States)

    Hoyos, J. J.; Mari, D.

    2016-01-01

    We want to discuss the interpretation of low-temperature shoulder internal friction peak of Snoek-Köster peak (LTS-SK). Lu et al. (2015) [1] attributed it to the interaction between the carbon atoms and twin boundaries in martensite. Nevertheless, the decrease of the amplitude of LTS-SK peak due to carbon segregation is correlated with the interstitial carbon content in solid solution in martensite (Hoyos et al., 2015 [2]). Therefore, this peak can also be attributed to the presence of an internal friction athermal background, which is proportional to the concentration of interstitial carbon in solid solution (Tkalcec et al., 2015 [2,3]). In addition, they used an alloyed steel, in which ε carbide precipitated above of the LTS-SK peak temperature. As this behavior cannot be generalized for carbon and high alloyed steels, the carbide precipitates could made an additional contribution to the internal friction.

  5. Mechanics and forming theory of liquid metal forging

    Institute of Scientific and Technical Information of China (English)

    罗守靖; 姜巨福; 王迎; 藤东东

    2003-01-01

    On the basis of steel liquid forging and aluminium alloy liquid forging, liquid metal forging was investigated, such as the assembly model, metal plastic flowing, the force-displacement curves, the harmonious equation, calculation of value of altitude deformation and determination of specific pressure of liquid metal forging. On the basis of the theory of metal plastic forming and the characteristics of liquid metal forging, the achievements on the mechanics and forming theory of liquid metal forging were given out by combining the theory and experiments systematically, and an important preparation for establishing liquid metal forging theory was suggested.

  6. 2017 Status report-Tritium aging studies on stainless steel: Effect of hydrogen, tritium and decay helium on the fracture-toughness properties of stem, cup and block forgings

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The materials of construction of tritium reservoirs are forged stainless steels. During service, the structural properties of the stainless steel change over time because of the diffusion of tritium into the reservoir wall and its radioactive decay to helium-3. This aging effect can cause cracks to initiate and grow which could result in a tritium leak or delayed failure of a tritium reservoir. Numerous factors affect the tendency for crack formation and propagation and are being investigated in this program. The goal of the research is to provide relevant fracture mechanics data that can be used by the design agencies in their assessments of tritium reservoir structural integrity. In this status report, new experimental results are presented on the effects of tritium and decay helium on the cracking properties of specimens taken from actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured are more representative of actual reservoir properties because the microstructure of the specimens tested are more like that of the actual tritium reservoirs. The program was designed to measure the effects of material variables on tritium compatibility and includes two stainless steels (Type 304L and 316L stainless steel), multiple yield strengths (360-500 MPa), and multiple forging shapes (Stem, Cup, and Block).

  7. Forging Cr12MoV Steel Rolling Method of Influence on Quality of Wire Wheel Research%锻造方法对Cr12MoV钢滚丝轮质量的影响研究

    Institute of Scientific and Technical Information of China (English)

    王金发; 宋学全; 张珂禹; 姜连德

    2011-01-01

    The influences to the unevenness, forging inside crack, mechanical properties, heat treatment deformation and service life of the carbide of Cr12MoV steel rolling wire which occurred by different forging methods was studied by comparing the different forging technology of upsetting and drawing, forming, margining and so on.%通过镦拔、成形、滚边等不同锻造工艺的对比,研究了锻造方法对Cr12MoV钢滚丝轮碳化物不均匀度、锻件内裂、机械性能、热处理变形量、使用寿命等的影响.

  8. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  9. 高合金钢过饱和固体渗碳的计算机模拟%Computer Simulation of Super-saturated Solid Carburization of High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    叶健松; 匡琦; 戚正风

    2001-01-01

    The process of super-saturated carburization of high alloy steels was discussed,and the corresponding mathematical model was presented.The carbon profile of carburized layer for 3Cr13 and Cr10 with solid carburization is simulated by computer.The simulation result is basically agreement with the experimental one.This testifies that the mathematical model and method are feasible.%本文讨论了高合金钢过饱和渗碳过程,提出了计算高合金钢固体渗碳的碳浓度分布的数学模型,以此模型对3Cr13和Cr10固体渗碳的碳浓度分布进行了计算机模拟。模拟结果与相应的实验结果基本吻合,表明了本文的数学模型及方法是可行的。

  10. Soft ceramics for high temperature lubrication: graphite-free lubricants for hot and warm forging of steel

    NARCIS (Netherlands)

    Gonzalez Rodriguez, Pablo

    2016-01-01

    The main research focus of this thesis is on the development of the next generation of solid lubricants for high temperature forming of steel. These lubricants are based on ceramic nanoparticles which are more resistant to temperature and oxidation than traditional lubricants. Nowadays, the most com

  11. Soft ceramics for high temperature lubrication: graphite-free lubricants for hot and warm forging of steel

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.

    2016-01-01

    The main research focus of this thesis is on the development of the next generation of solid lubricants for high temperature forming of steel. These lubricants are based on ceramic nanoparticles which are more resistant to temperature and oxidation than traditional lubricants. Nowadays, the most

  12. Properties of thick welded joints on superheater collectors made from new generation high alloy martensitic creep-resisting steels for supercritical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, Janusz; Zielinski, Adam [Institute for Ferrous Metallurgy, Gliwice (Poland); Pasternak, Jerzy [Boiler Engineering Company RAFAKO S.A., Raciborz (Poland)

    2010-07-01

    The continuously developing power generation sector, including boilers with supercritical parameters, requires applications of new creep-resistant steel grades for construction of boilers steam superheater components. This paper presents selected information, experience within the field of research and implementation of a new group of creep-resistant as X10CrMoVNb9-1(P91), X10CrWMoVNb9-2(P92) and X12CrCoWVNb12-2-2(VM12) grades, containing 9-12%Cr. During welding and examination process the results of mechanical properties, requested level for base material and welded joints, as well as: tensile strength, impact strength and technological properties have been evaluated. Additional destructive examinations, with evaluation of structure stability, hardness distribution, for base material and welded joints after welding, heat treatment, again process have been determined. Recommendations due to the implementation influence of operating parameters of the main boiler components are part of this paper. (orig.)

  13. Design of Heat Treatment Technology of GGr1 5 Steel after Forging%GGr15钢的锻后热处理方案设计

    Institute of Scientific and Technical Information of China (English)

    周波

    2014-01-01

    介绍了锻造后GGr15钢的一套完整热处理工艺方案,其工艺过程为:1)预先热处理,780℃球化退火0.5 h,炉冷至659℃后出炉空冷,710℃等温退火710℃,保温2 h,空冷;2)最终热处理,840℃淬火0.5 h,出炉,机油冷却,油温30~60℃,150℃回火2 h,空冷,120℃补充回火3 h,空冷。对热处理后试验用钢的硬度以及显微组织进行分析可知,其硬度>63 HRC,达到了使用要求。%The paper introduced a set of heat treatment process on the structure and hardness of GGr1 5 steel after forg-ing.The process is that first pre-heat treating including sorbide heat treatment process in air-cooling solution treatment on 780 ℃ for 0.5 h after cooling for 659 ℃,isothermal anneal in air-cooling solution treatment on 710 ℃ for 2 h.,and then e-ventually treating including quenching about oil-cooling(oil temperature is 30~60 ℃)solution on 840 ℃ for 0.5 h aged con-dition.tempering in air-cooling solution treatment on 150 ℃ for 2h,at last,additional tempering is air-cooling solution treatment on 120℃ for 3 h.The hardness of stainless steels was markedly increased after heat treatment process .The hard-ness of the GGr15 bearing steel reached above 63 HRC,which met the requirements of usage.

  14. 车轴钢超声波探伤缺陷和改锻的研究%Defect Study on Axle steel with Ultrasonic Test and Its Re-forging

    Institute of Scientific and Technical Information of China (English)

    李伟林

    2011-01-01

    Through confirming defect's grade with ultrasonic test, the accuracy of ultrasonic test was improved. The reasonable forging process parameters, such as temperature, deformation amount and stress state, were chosen, so the steel products over the standard request with ultrasonic test were successfully re-forged.%通过检验对超声波探伤发现的缺陷性质进行确定,从而提高了超声波探伤定性的准确性.由此合理选择锻造工艺参教,如温度、变形量、应力状态等,对超声波探伤缺陷超标的钢材进行了成功的改锻.

  15. Mechanical properties of forgings depending on the changes in shape and chemical composition of inclusions

    Directory of Open Access Journals (Sweden)

    O. Híreš

    2010-10-01

    Full Text Available The article deals with mechanical properties of forgings used for special technology in cannon barrels production. The forgings are treated by elctroslag remelting technology (ESR to enhance its plastic properties and yield point. Described experiments are focused on mechanical properties and metallurgical quality (microstructure of steels from which are the forgings made. The article includes microstructure photographs and description of inclusions located in examined steels. Experimental results compare forgings treated by ESR and next ones without ESR.

  16. Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Hyun; Lee, Sung-Yul; Lee, Myeong-Hoon; Moon, Kyung-Man [Korea Maritime University, Dong Sam-Dong,Yong Do-ku, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-04-15

    A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H{sub 2}SO{sub 4} solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

  17. Microstructure and tempering hardness of Cr-W-Mo-V high alloy medium-upper carbon steel%Cr-W-Mo-V高合金中高碳钢的显微组织及回火硬度

    Institute of Scientific and Technical Information of China (English)

    马永庆; 章晓静; 梁玉芬

    2016-01-01

    The microstructure and tempering hardness of Cr-W-Mo-V high alloy meddle-upper carbon steels with four different components were studied, and the effect of alloy contents on microstructure and tempering hardness was analyzed and discussed by phase equilibrium thermodynamic theory .The results show that in process of heating and cooling of α1γtransformation of these steels , the dissolution and precipitation of M 23 C61M6 C carbides transformation can be used to carbides distributing uniform refinement , such as the undissolved carbide size after quenching is less than 0.8 μm when the steels composition is under the suitable proportion .The over adding of Mo ( or W) will lead to coarsening of carbide particles , and over adding of V will appear small of the bulk MC carbide , so the heterogeneity of carbides is increasing.Tempering hardness is higher of 62-64 HRC when the steels composition is under the suitable proportion .The increasing of Mo content is benefit to the carbides precipitation strengthening near intermediate temperature , will significantly improve the tempering hardness as the highest hardness can also up to 665.HRC.Increasing V will make the dispersion degree of precipitation temperature increase , so the tempering hardness will decrease.%研究了4种不同成分的Cr-W-Mo-V高合金中高碳钢的显微组织及回火硬度,并以相平衡热力学理论分析讨论了合金含量变化对显微组织及二次硬化的影响。结果表明,该类钢在α1γ相变的加热和冷却过程,发生M 23C 61M6 C相互转变,碳化物的溶解和析出过程使之细化分布均匀,在合适的成分比率时淬火未溶碳化物小于0.8μm。而Mo(或 W)含量过高会导致碳化物颗粒粗化,V含量过高时出现少量的大块MC碳化物,使其不均匀性加重。该类钢在合适成分比率时回火硬度可达62~64 HRC。提高Mo含量有利于各种碳化物沉淀强化向中间温度靠近,明显提高回

  18. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades

    Science.gov (United States)

    Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.

    2010-02-01

    All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings

  19. HPPMS (Cr1-xAlx)N WSy Coatings for the Application in Dry Cold Forging of Steel: Sythesis and Raman Characterization

    OpenAIRE

    Bobzin, Kirsten

    2016-01-01

    Lubricants are applied to reduce friction between workpieces and forming tools in cold forging processes. There is a strong demand to avoid lubricants due to economic, ecological and legislative aspects. PVD coatings took over the tasks of lubricants in numerous applications in the recent years. They may enormously reduce tool and workpiece wear in cold forging or deliver special functions even in the absence of lubricants. However, the abdication of lubricants goes along with the requirement...

  20. Fractography analysis of tool samples used for cold forging

    DEFF Research Database (Denmark)

    Dahl, K.V.

    2002-01-01

    Three fractured tool dies used for industrial cold forging have been investigated using light optical microscopy and scanning electron microscopy. Two of the specimens were produced using the traditional Böhler P/M steel grade s790, while the lastspecimen was a third generation P/M steel produced...... using new technology developed by Böhler. All three steels have the same nominal composition of alloying elements. The failure in both types of material occurs as a crack formation at a notch inside ofthe tool. Generally the cold forging dies constructed in third generation steels have a longer lifetime...

  1. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    the conversion coatings are based on zinc phosphates but different requirements to the coating properties have to be met in different cold forging operations. This is obtained by adopting different oxidants leading to different composition, layer thickness and morphology of the conversion coatings. Concerning...... a detailed description of the state of art for lubricant systems for cold forging of C-steels and low alloy steels as well as aluminium alloys including all the basic operations such as cleaning of the slugs, application of eventual conversion coating and lubrication. As regards cold forging of steel...... aluminium unalloyed and softer alloys like the AA 1000, 3000 and 6000 series can be cold forged with either grease, oil or zinc stearate whereas the harder alloys from series AA 2000, 5000 and 7000 require a conversion coating to carry the lubricant. Three different types of conversion coating are described...

  2. Analysis and control on forging cracks of steel 0 Cr17 Ni4 Cu4 Nb%0 Cr17 Ni4 Cu4 Nb钢锻造裂纹分析与控制

    Institute of Scientific and Technical Information of China (English)

    郎荣兴; 李贵全; 殷春云

    2016-01-01

    For raw materials and forging technology of stainless steel 0Cr17Ni4Cu4Nb, it was found that the main reason for cracks pro-duced in forging was the excessive amounts of the delta ferrite in material internal microstructure. When the content of delta ferrite excee-ded a certain amount, the forging plasticity of material significantly decreased and the deformation resistance increased. Once deformation gradually increased to a certain amount, the cracks appeared, and became more serious with the increase of deformation. Research results show that check and control the content of delta ferrite in raw materials before using to ensure that the materials still have good plasticity in the hot working process and the ferrite content is less than 20% and meets or above the standard of F7 level of CB/T 1209—1992. At the same time roughness of the blank must achieve above Ra1. 6μm-Ra0. 8μm and the forging tools should be preheated and the forging de-formation of each heat should be strictly controlled to satisfy the requirement of design and quality of forgings.%针对0Cr17Ni4Cu4Nb不锈钢锻造生产过程中产生的锻造裂纹,对原材料和锻造工艺进行分析发现,产生裂纹的主要原因是由于材料内部组织中的δ铁素体含量超过一定量时,会极大地降低材料的锻造塑性,使得变形抗力增大;当变形量逐渐增加到一定量时,裂纹开始出现,并且随着变形量的增加裂纹越来越严重。研究结果表明,在使用该材料时,需要对原材料进行铁素体含量检查并加以控制,铁素体含量要求<20%,符合CB/T 1209—1992 F7级以上标准,保证该材料良好的热加工工艺塑性;毛坯粗糙度要求达到Ra=1.6~0.8μm以上,预热锻造工具,严格控制每一火次的锻造变形量,以满足锻件的设计和质量要求。

  3. Comparative studies on ultrasonic, friction, laser and resistance pressure welding of NiTi shape memory alloys with high-alloy steels. Final report; Vergleichende Untersuchungen zum Ultraschall-, Reib-, Laserstrahl- und Widerstandspressschweissen von NiTi-Shape-Memory-Metall mit hochlegierten Staehlen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zuckschwerdt, K.

    2000-04-01

    The suitability of different welding techniques for welding of NiTi shape memory alloys with high-alloy steel (C12CrNi17-7, X5CrNiNb19-9, X20Cr13) was investigated. The quality of the welds was analyzed using mechanical-technological, fractographic, metallographic and electron microscopy analysis. [German] Ziel dieses Forschungsvorhabens ist es, die Eignung der einzelnen Schweissverfahren fuer das Fuegen von NiTi-Formgedaechtnislegierungen mit hochlegiertem Stahl (X12CrNi17-7, X5CrNiNb19-9, X20Cr13) darzustellen und zu beurteilen. Die Qualitaet der Fuegeverbindungen wird mit Hilfe mechanisch-technologischer, fraktographischer, metallographischer und elektronenmikroskopischer Untersuchungen bewertet.

  4. Market challenges for steel

    Energy Technology Data Exchange (ETDEWEB)

    Lauprecht, W.E.; Bulla, W.

    1981-11-01

    Country-wise division of generation of high-alloyed steels, stainless steel and alloyed steel in Western Europe/the Western World. Review of expanding markets for alloyed steels on sectors like-oil field pipes, offshore structure gas- and oil transport in pipelines, coal conversion, nuclear energy, condenser tubes, solar energy, car industry, environmental protection and chemistry.

  5. Investigation of the influence of hybrid layers on the life time of hot forging dies

    Directory of Open Access Journals (Sweden)

    S. Legutko

    2013-04-01

    Full Text Available The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical loads, as well as intensive abrasion at raised temperature. The examination has been performed on a set of forging tools made of Unimax steel and intended for forging steel rings of gear box synchronizer in the factory FAS in Swarzedz (Poland.

  6. Microstructure, state of internal stress and corrosion resistance of the short-time laser heat-treated nitrogen high-alloyed tool steel X30CrMoN151; Mikrostruktur, Eigenspannungszustand und Korrosionsbestaendigkeit des kurzzeitlaserwaermebehandelten hochstickstofflegierten Werkzeugstahls X30CrMoN151

    Energy Technology Data Exchange (ETDEWEB)

    Bohne, C. (ed.)

    2000-07-01

    This study compares the crystalline structure, state of internal stress and chemical properties of the high-alloyed nitrogen tool steel X30CrMoN15 1 and conventional cold work steel X39CrMo17 1. Transformation points A{sub c}1b and A{sub c}1e were calculated from residual austenite analysis and the c{sub m}/a{sub m} martensite ratios for various heating rates. This was used to generate a TTA (time-temperature-austenitisation) graph for X30CrMoN15 1 for the first time. Transmission electron microscopy and small-angle neutron scattering show that precipitates in nitrogen high-alloyed steel X30CrMoN15 1 can be eliminated completely by short-time laser heat treatment. The corrosion tests show that in contrast to X39CrMo17 1 X30CrMoN15 1 reacts more sensitively to parameter changes during short-time heat treatment in oxidising acid at pH 5-6. [German] Im Rahmen der Arbeit werden die Gefuegeausbildung, Eigenspannungen und chemische Eigenschaften des hochstickstofflegierten Werkzeugstahls X30CrMoN15 1 und des konventionellen Kaltarbeitsstahls X39CrMo17 1 verglichen. Aus den Restaustenitanalysen und den c{sub m}/a{sub m}-Verhaeltnissen des Martensits konnten die Umwandlungspunkte A{sub c1b} und A{sub c1e} fuer verschiedene Aufheizraten bestimmt und daraus ein bisher nicht bekanntes ZTA-Schaubild fuer den X30CrMoN15 1 erstellt werden. Transmissionselektronenmikroskopie und Neutronenkleinwinkelstreuung zeigen, dass sich die Ausscheidungen im hochstickstofflegierten Stahl X30CrMoN14 1 durch die Kurzzeitlaserwaermebehandlung vollstaendig aufloesen koennen. Die Korrosionsversuche zeigen, dass im Gegensatz zum X39CrMo17 1 der X30CrMoN15 1 in oxidierender Saeure bei pH 5-6 empfindlicher auf Parameteraenderungen bei der Kurzzeitwaermebehandlung reagiert. (orig.)

  7. Estimation of temperature in the lubricant film during cold forging of stainless steel based on studies of phase transformation in the film

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Olsen, J.S.; Christensen, Erik

    1999-01-01

    Changes in friction during backward can extrusion of stainless steel war observed for four different lubricant systems. The observed changes in friction are believed to be caused by phase transitions in the lubricant. The lubricant systems consisted of two different carrier coatings (crystalline Zn...

  8. Modeling of Closed-Die Forging for Estimating Forging Load

    Science.gov (United States)

    Sheth, Debashish; Das, Santanu; Chatterjee, Avik; Bhattacharya, Anirban

    2017-02-01

    Closed die forging is one common metal forming process used for making a range of products. Enough load is to exert on the billet for deforming the material. This forging load is dependent on work material property and frictional characteristics of the work material with the punch and die. Several researchers worked on estimation of forging load for specific products under different process variables. Experimental data on deformation resistance and friction were used to calculate the load. In this work, theoretical estimation of forging load is made to compare this value with that obtained through LS-DYNA model facilitating the finite element analysis. Theoretical work uses slab method to assess forging load for an axi-symmetric upsetting job made of lead. Theoretical forging load estimate shows slightly higher value than the experimental one; however, simulation shows quite close matching with experimental forging load, indicating possibility of wide use of this simulation software.

  9. Optimization of pulsed current GTAW process parameters for sintered hot forged AISI 4135 P/M steel welds by simulated annealing and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Joby; Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi's L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters.

  10. The new forging process of a wheel hub drop forging

    OpenAIRE

    A. Gontarz

    2006-01-01

    Purpose: The main purpose of the research was working out a new flashless forming process of wheel hubforging in three-slide forging press (TSFP). It was assumed that the new process would be more effective thanthe forging processes applied in typical forging machines.Design/methodology/approach: The designing of the new process was based on the simulation by finiteelement method with the assumption of 3D state of strain. Calculations were made mainly for the analysis of thematerial flow kine...

  11. 焊接工艺对40CrMnMo小齿轮补焊抗裂性的影响%The Influence of Welding Technology to CrackResistance of Forged Steel 40CrMnMo Pinion Defects Welding Repair

    Institute of Scientific and Technical Information of China (English)

    李家森; 赵宏明

    2014-01-01

    The cracks about forged steel 40CrMnMo pinion was introduced , and the weldability of 40CrMnMo was analyzed . Take defects welding repair of forged steel 40CrMnMo Pinion for example , the connection between the welding technology and the crack resistance was expounded .Pointed out that the welding technology has a direct impact to improve carack resistance , only compiled reasonable welding technology to ensure welding quality .%本文介绍了锻钢40CrMnMo 小齿轮裂纹情况,分析了40CrMnMo 的焊接性,以40CrMnMo小齿轮补焊为例,阐述了焊接工艺与抗裂性的关系。指出焊接工艺对提高抗裂性有直接影响,只有制定合理的焊接工艺才能确保焊接质量。

  12. The prediction of the evolution of grain size of land-gear forging during the die-forging process

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2015-01-01

    Full Text Available The land-gear forgings are the most important structure parts, made of high strength steel 300M. Because of the bad service environment, the microstructure and performance of the part are very strict requirements. In this article the evolution of grain size during the die-forging process is predicted, the volume fraction of dynamic recrystallization, grain refinement and development of grain size in-homogeneity, and the affection of billet shape on the grain size distribution are analyzed. The simulated results show that the grain size differences on the different billet positions are very large at the deformation beginning. But in final forging stage, the difference of the average grain size is smaller. At some center zones of the part the maximum difference of grain size is bigger than 100 μm.

  13. The new forging process of a wheel hub drop forging

    Directory of Open Access Journals (Sweden)

    A. Gontarz

    2006-08-01

    Full Text Available Purpose: The main purpose of the research was working out a new flashless forming process of wheel hubforging in three-slide forging press (TSFP. It was assumed that the new process would be more effective thanthe forging processes applied in typical forging machines.Design/methodology/approach: The designing of the new process was based on the simulation by finiteelement method with the assumption of 3D state of strain. Calculations were made mainly for the analysis of thematerial flow kinematics and the process loads parameters. Experimental research were also made determiningthe dependency of clamping load in the function of forming load. On the basis of the analysis, the formingprocess of a wheel hub drop forging on the TSFP was worked out.Findings: The results of research confirmed the possibility of flashless forming process of wheel hub forgingin TSFP with axial cavities. The main parameters limiting the forming processes of wheel hub forgings are:permissible upsetting ratio and reciprocal relation of forming and clamping forces.Research limitations/implications: The further research within the range of determining force parameters fordifferent types of material and schemata of forming in TSFP were considered as purposeful. The works dealingwith analysis of forming processes of different types of products in order to classify drop forgings possible toform in this press will be examined.Practical implications: The comparison of the new forming process with the forging process on hammershowed majority of advantages which include: decrease of time and energy, decrease of drop forging weight andmachining, decrease of material consumption.Originality/value: The new process of wheel hub forging forming with axial cavities was worked out. Theparameters important during designing of forming processes in TSFP were provided. The relations betweenforces of forming tools were also determined.

  14. 高速列车锻钢制动盘多裂纹间作用机制研究%Study on Interaction Mechanism between Cracks at Forged Steel Brake Disc for High Speed Train

    Institute of Scientific and Technical Information of China (English)

    石晓玲; 李强; 薛海; 赵方伟

    2016-01-01

    To address the multiple crack problem occurring to the forged steel brake discs of high-speed train in the practical application,the interaction mechanism between cracks was studied by combining the 1 ∶1 bench test with finite element calculation.The findings from the 1∶1 bench test on brake disc proved a certain regu-larity in crack propagation.In order to further investigate the interaction mechanism between cracks,the ther-mal stress on brake disc was calculated in the case of emergency braking three times with the speed of 200 km/h by using the finite element method.Based on the above research,the crack model of brake disk surface was established using FRANC3D software to analyze the stress intensity factor of crack front and the interaction mechanism between cracks.The results showed that the interaction between the main cracks and secondary cracks changed with the change of the number of cracks and the crack location.Different ratio between the depth and length had different effect.The more the number of the radial cracks was,the slower surface crack growth.As a result,the fatigue failure of the brake disc was effectively delayed.The analysis results were con-sistent with the interaction regularity of the brake disc from the 1∶1 bench test.%针对高速列车锻钢制动盘在实际运用中出现的多裂纹问题,通过1∶1台架试验与有限元计算相结合的方法研究了制动盘多裂纹间的作用机制。依据制动盘1∶1台架试验结果发现,盘面裂纹的扩展具有一定的规律性。为进一步研究裂纹间的作用机制,运用有限元方法计算了制动盘在3次连续200 km/h 紧急制动后的热应力。在此基础上,采用 FRANC3D 软件建立了制动盘盘面的裂纹模型,分析研究了制动盘裂纹前缘的应力强度因子及多裂纹间的作用机制。分析结果表明,主、副裂纹间的相互作用随着裂纹数量和空间位置的变化而变化,不同的深长比有不同的

  15. Instant forgedUI starter

    CERN Document Server

    Luiz, Joseandro

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.The book is a Starter guide to learning ForgedUI. This book will start by unfolding the installation and creating a simple application using Titanium and ForgedUI, followed by taking you through the features to model an engaging UI and generate multi-platform code with Titanium, while covering the best design practice for Apple and Android application development. Last but not least, you will also come across the available resources where you can

  16. 长轴类大锻件自由锻造工艺研究%Research on free-forging process of long-shaft heavy forging

    Institute of Scientific and Technical Information of China (English)

    张鹏; 夏琴香; 李哲林; 谢合清; 潘勇

    2011-01-01

    The traditional forging technology was studied and improved. The 7. 8 t propeller-shaft heavy forging was forged through the 4 t electrohydraulic hammer using the reasonable steel ingot and by squaring with 300 mm width flat anvil, stretching, chamfering and rolling processes. Experimental result shows that the defects, such as the shrinkage cavity, porosity, etc., can be clogged by the reasonable forging process. High mechanical properties of the propeller shaft heavy forgings were obtained after quenching and tempering. The characteristics of simple tool, broad universal and large flexible of free forging were fully utilized in this research. The free-forging of long-shaft heavy forging was realized.%对传统的锻造工艺进行了研究和改进,通过合理选用钢锭及采用宽300 mm平砧压方、拔长、倒棱滚圆等工序,实现用4 t电液锤锻造7.8 t螺旋桨轴大锻件.试验结果证明,合理的锻造工艺路线锻合了钢锭内部的缩孔、疏松等缺陷,所获得的螺旋桨轴大锻件经过锻后调质热处理能得到较好的综合力学性能.项目的研究充分发挥了自由锻造工具简单、通用性强、灵活性大的特点,实现了长轴类大锻件的自由锻造.

  17. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    Science.gov (United States)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  18. Anisotropic Distortion of D2 Tool Steel During Gas Quenching and Tempering%D2工具钢在气淬和回火过程中的各向异性畸变

    Institute of Scientific and Technical Information of China (English)

    魏建飞; O.Kessler; F.Hoffmann; P.Mayr

    2004-01-01

    The distortion behavior of high alloyed cold work tool steel D2 during gas quenching and tempering was investigated.The steels were studied in casted,as well as casted and forged state with two different forging degrees.Experimental results showed that the distortion of cast specimens was nearly isotropic but the distortion of forged specimens was apparently anisotropic.The anisotropic distortion was increased with higher austenitizing temperature.The influence of different forging degrees on anisotropic distortion was small in the investigated range.After tempering,anisotropic distortion was partially reduced.Using dilatometric and metallographic examination the possible mechanism of the anisotropic distrotion was investigated and discussed.%分别使用铸造试样及两种不同锻造程度的锻件试样,对高合金冷作模具钢D2在气淬和回火过程中的畸变行为进行了研究.试验结果表明,铸造试样的畸变是等向性的,而锻造试样的畸变显然呈各向异性.各向异性畸变程度随奥氏体化温度的升高而增加.在本试验范围内,不同的锻造程度对各向异性的畸变程度影响不大.回火后各向异性畸变程度有所降低.使用测膨胀方法及金相检验探讨了产生各向异性畸变的可能机制.

  19. Powder Metallurgy Forged Gear Development

    Science.gov (United States)

    1985-03-01

    Unclassified) 12. PERSONAL AUTHOR(S) D. H. Ro, B. L. Ferguson, S. Pillay, D. T. Ostberg 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month...Method Water Atomized SelecCion -Initial Alloy Distribution Prealloyed -Particle Size Distribution -100 Mesh kForging Quality) Uxmtpaction -Lubricant Zinc

  20. Closed Die Hammer Forging of Inconel 718

    Directory of Open Access Journals (Sweden)

    S. Chenna Krishna

    2014-01-01

    Full Text Available A method for the production of Inconel 718 (IN-718 hemispherical domes by closed die hammer forging is proposed. Different combination of operations employed for production are as follows: (i preforging + final forging + air cooling, (ii preforging + final forging + controlled cooling, (iii direct forging + controlled cooling, and (iv direct forging + air cooling. Last three combinations yielded a crack free hemispherical dome. The forged hemispherical domes were solution annealed at 980°C for 1 h and air cooled. The grain size of the domes at all locations was finer than ASTM No 4. Mechanical properties of the forged dome in solution treated and aged condition (STA were better than feedstock used.

  1. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following

  2. 汽轮机用钢2Cr11MoVNbN 的锻造工艺及锻后热处理工艺%Forging Process and Heat Treatment Process after Forging of 2Cr11MoVNbN Steel Used for Steam Turbine

    Institute of Scientific and Technical Information of China (English)

    赵森; 黄冬明

    2013-01-01

    2Cr11MoVNbN steel is one of the steel grades with best heat-resistant property among 12% Cr steels, and it is an ideal material used for subcritical and supercritical steam turbine blades .Through smelting with VOD meth-od, drawing with top flat anvil and bottom V type anvil , and upsetting with more than one heat and small percent reduc-tion, the 2Cr11MoVNbN steel blades has been produced successfully to meet technical requirements .%  2Cr11MoVNbN钢是目前12%Cr系耐热性能最好的钢种之一,是一种较为理想的亚临界、超临界汽轮机叶片用材料。通过采用 VOD炼钢,上平砧,下 V型砧拔长下料,多火次,小压下量镦粗工艺,成功锻出2Cr11MoVNbN叶片,质量达到要求。

  3. Progress in the development of steels satisfying special demands of the markets

    Energy Technology Data Exchange (ETDEWEB)

    Bulla, W.; Lauprecht, W.E.; Diesburg, D.E.

    1981-11-16

    Large-diameter pipes, effect of seawater on steel, reduction of weight (automobile construction) and more stringent demands are discussed in the following chapters: Steels for oil- and gas-field pipes; large-diameter pipes; dual-phase steel; case-hardened steels for gear parts; creep-resistant components; high-alloy stainless steels for the chemical industry, environment and sea water.

  4. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  5. RESEARCH ON KNOWLEDGE-BASED CAPP SYSTEM FOR ROTOR FORGING

    Institute of Scientific and Technical Information of China (English)

    Wang Leigang; Deng Dongrnei; Liu Zhubai

    2000-01-01

    Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.

  6. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  7. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  8. Numerical simulation of the dynamic recrystallization behaviour in hot precision forging helical gears

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-01-01

    Full Text Available In hot precision forging helical gears, the dynamic recrystallization phenomena will occur, which affect the microstructure of the formed part and in turn decide their mechanical properties. To investigate the effect of deformation temperature on the dynamic recrystallization in hot precision forging helical gears, a three dimensional (3D finite element (FE model was created by coupling the thermo-mechanical model with the microstructure evolution model developed based on the hot compressive experimental data of 20CrMnTiH steel. The hot precision forging process was simulated and the effect laws of the deformation temperature on the microstructure evolution the formed part were investigated. The results show that the dynamic recrystallization volume fraction and the average grain sizes increased with the increasing deformation temperature and the higher deformation temperature is beneficial to dynamic recrystallization and grain refinement.

  9. Analysis Of Potentiometric Methods Used For Crack Detection In Forging Tools

    Science.gov (United States)

    Pilc, Jozef; Drbúl, Mário; Stančeková, Dana; Varga, Daniel; Martinček, Juraj; Kuždák, Viktor

    2015-12-01

    Increased use of forging tools in mass production causes their increased wear and creates pressure to design more efficient renovation process. Renovation is complicated because of the identification of cracks expanding from the surface to the core material. Given that the production of forging tools is expensive, caused by the cost of tool steels and the thermo-chemical treatment, it is important to design forging tool with its easy renovation in mind. It is important to choose the right renovation technology, which will be able to restore the instrument to its original state while maintaining financial rentability. Choosing the right technology is difficult because of nitrided and heat-treated surface for high hardness and wear resistance. Article discusses the use of non-destructive method of detecting cracks taking into account the size of the cracks formed during working process.

  10. Quenching and Tempering for 42 CrMo4 Steel Forged Gear Ring%42 CrM o4钢锻辗齿圈的调质处理

    Institute of Scientific and Technical Information of China (English)

    王松林; 任秀凤; 张永庆; 刘守峰; 银伟; 王聪

    2014-01-01

    通过改进调质工艺,使用8%~10%的无机水基淬火液,改进淬火冷却工艺参数,解决了42CrMo4钢齿圈淬火开裂的问题。%By improving the tempering and quenching process , 8%~10%of inorganic water-based quenching liq-uid is used to improve the quench cooling process parameters and solve the crack problem during 42CrMo4 steel gear ring quenching .

  11. Research on Forging Die Design Ontology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenlei; FAN Yushun

    2006-01-01

    Forging die design is heavily dependent on engineers' experiences. But traditional AI technologies can barely provide a standard knowledge representation style for knowledge transferring. This paper introduces ontology into forging die design. 3-layer forging die design ontology is built, which includes Meta-ontology, Domain-ontology and Bottom ontology. Further, by conceptualization, the concepts and their relations are formally addressed by primitives such as Term, Relation and Function etc, which are explicitly expressed by concept tree. Bottom ontology uses Knowledge Item and Prototype to represent and capture general knowledge for knowledge reuse and share. Forging die design ontology building approach is discussed for standard knowledge representation, knowledge mine and knowledge driven CAD design etc. And OWL language is employed for integration among different domain ontologies integration. Finally a locomotive forging die KBE system is presented to demonstrate this approach.

  12. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  13. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Nematzadeh, Fardin [Materials and Energy Research Center, Tehran (Iran, Islamic Republic of); Akbarpour, Mohammad Reza, E-mail: mreza.akbarpour@gmail.com [Materials and Energy Research Center, Tehran (Iran, Islamic Republic of); Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-12-15

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the {gamma} matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  14. Tribological Investigations of Hard-Faced Layers and Base Materials of Forging Dies with Different Kinds of Lubricants Applied

    Directory of Open Access Journals (Sweden)

    V. Lazić

    2010-12-01

    Full Text Available This paper gives a procedure for choosing the right technology for reparative hard facing of damaged forging dies. Since they are subject to impact loads and cyclic temperature elevations, forging dies should be made of steel that is able to withstand great impact loads, maintain good mechanical properties at elevated temperatures and that is resistant to wear and thermal fatigue. For these reasons, forging dies are made of conditionally weldable alloy tool steels; however it makes hard facing of damaged tools even more difficult. In this paper, wear resistance of base materials, hard-faced layers and heat-affected zones are tribologically investigated when two different lubricants - pure synthetical oil LM 76 and LM 76 with 6% molybdenum disulfide (MoS2 are applied. Tribological investigations have shown that the wear resistance of the hard faced layers is considerably greater than the wear resistance of the base material. However, the base material has better properties concerning friction.

  15. Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel%Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    R Paventhan; P R Lakshminarayanan; V Balasubramanian

    2012-01-01

    Friction weIding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. An attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, incorporating the process parameters such as friction pressure, forging pressure, friction time and forging time, which have great influence on strength of the joints. Response surface methodology was applied to optimize the friction welding process parameters to attain maximum tensile strength of the joint. The maximum tensile strength of 543 MPa could be obtained for the joints fabricated under the welding conditions of friction pressure of 90 MPa, forging pressure of 90 MPa, friction time of 6 s and forging time of 6 s.

  16. International cooperation in cold forging technology

    DEFF Research Database (Denmark)

    Bay, Niels; Lange, K

    1992-01-01

    of the ICFG are personally elected by the Plenary as experts within the field, often representing national groups within cold forging. The main work within the ICFG is carried out in its subgroups which are established by the Plenary to collect, compile and evaluate data and eventually also produce data......International cooperation in the field of cold forging technology started in 1961 by formation of the OECD Group of Experts on Metal Forming. In 1967 this group was transformed into the International Cold Forging Group, ICFG, an independent body which has now been operative for 25 years. Members...

  17. Processing and Characterization of Sub-delta Solvus Forged Hemispherical Forgings of Inconel 718

    Science.gov (United States)

    Chenna Krishna, S.; Rao, G. Sudarasana; Singh, Satish Kumar; Narayana Murty, S. V. S.; Venkatanarayana, G.; Jha, Abhay K.; Pant, Bhanu; Venkitakrishnan, P. V.

    2016-12-01

    In this paper, microstructure and mechanical properties of 200 mm diameter Inconel 718 hemispherical domes processed at 1025 °C through closed die hammer forging have been investigated. Microstructure and mechanical properties of the forgings in radial and tangential directions were characterized using optical microscopy, scanning electron microscopy, impact testing, and tensile testing. Grain size of the forgings at three different locations was fine with an average grain size of ASTM No. 8-9. The typical tensile properties of the forgings in solution-treated and aged condition were ultimate tensile strength-1450 MPa, yield strength-1240 MPa, and ductility-25%. The fine grain size achieved in forgings has been attributed to delta phase present at grain boundaries which pinned the grains during forging and prevented grain coarsening.

  18. Numerical simulation and experimental study for the die forging process of a high-speed railway brake disc hub

    Science.gov (United States)

    Sun, Mingyue; Xu, Bin; Zhang, Long; LI, Dianzhong

    2013-05-01

    With the aim of manufacturing a near-net shape forging product of a brake disk hub for the high-speed railway, the die forging process was designed and optimized in this study. Firstly, based on the measured stress-strain curves at different strain rates and the thermal-physical parameters of 40Cr A steel, a finite element model for the forging process of a high-speed railway brake disc hub was established. Then, the temperature, stress and strain fields were studied and analyzed at the pre-forging and the finial-forging stages. Besides, in order to trace the stress and strain evolution, five points at different positions were chosen on the billet, and the comparison of the state conditions was made among these points. The results have demonstrated that the product can be well formed by an elaborately designed three-stage forging process, which may reduce the metal machine allowance and the producing cost effectively. Finally, an industrial trial was made and a machined product with sound quality was obtained.

  19. Forging of FeAl intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L. [UNAM, Cuernavaca (Mexico). Lab. de Cuernavaca; Schneibel, J.H. [Oak Ridge National Lab., TN (United States)

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  20. Mechanical Testing Development for Reservoir Forgings

    Energy Technology Data Exchange (ETDEWEB)

    Wenski, E.G.

    2000-05-22

    The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.

  1. Metallurgical modelling of superalloy disc isothermal forgings

    Science.gov (United States)

    Evans, R. W.

    1988-08-01

    The metallurgical structure of superalloy aeroengine disc forgings is a complex function of the forging operation parameters and the post forging heat treatment. It is often desirable to obtain certain specific structures in parts of the disc which are, for instance, resistant to crack propagation and this has traditionally been accomplished by means of a series of production trials. This expensive and time consuming procedure can be considerably shortened if the development of microstructure during the forging can be accurately modelled by a suitable computer code. Described here is such a model and its use in the design of isothermal forged components. The model discribed is a fully thermally coupled viscoplasticity finite element algorithm. It treats nodal velocities as the basic unknowns and both the mesh geometry and the various metallurgical structural terms are updated by a single step Euler scheme. Facilities are available for ensuring that surface nodes follow die shapes after impingement, that flow is incompressible and that suitable surface friction forces are applied. Throughout the whole forging process (which may involve the re-meshing of severely distorted elements), the metallurgical history of elements is retained so that the effects of subsequent heat treatments can be assessed.

  2. Intelligent Control of a Novel Hydraulic Forging Manipulator

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-01-01

    Full Text Available The increased demand for large-size forgings has led to developments and innovations of heavy-duty forging manipulators. Besides the huge carrying capacity, some robot features such as force perception, delicacy and flexibility, forging manipulators should also possess. The aim of the work is to develop a heavy-duty forging manipulator with robot features by means of combination of methods in mechanical, hydraulic, and control field. In this paper, through kinematic analysis of a novel forging manipulator, control strategy of the manipulator is proposed considering the function and motion of forging manipulators. Hybrid pressure/position control of hydraulic actuators in forging manipulator is realized. The feasibility of the control method has been verified by the experiments on a real prototype of the novel hydraulic forging manipulator in our institute. The intelligent control of the forging manipulator is performed with programmable logic controller which is suitable for industrial applications.

  3. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    Science.gov (United States)

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  4. Hot Cutting of Real-Time Cast-Forged GS Ductile Iron for Automotive Rods

    Science.gov (United States)

    Fouilland, Laurence; Mansori, Mohamed El

    2011-01-01

    In the global economy context, automotive industry suppliers have to keep a constant advance on products design and manufacturing process. Concerning automotive rods, the substitution of forged steel by spherical graphite iron (SG iron) with high mechanical properties constitutes a valid economic alternative. Such rods are produced using a complex coupled process: casting and forging followed by an austempered heat treatment. The forging operation is capable to shape the cast rod which introduces hot deformation to increase mechanical properties of net-shape SG iron rod. However, the intermediate re-heating between casting and forging must be avoided to keep competitive manufacturing costs. A major concern of this new process development is the cracks produced in rod's surface which are consecutive to hot spruing involved after casting operations. This issue is addressed in this paper which discusses the physical mechanisms involved in the hot ductile damage of SG iron. Hot cutting tests were performed to simulate the spruing operation which shows the close interactions between microstructure, machining parameters and resulting damages. The damage mechanisms in terms of crack initiation and its growth have been studied with respect to the constituent phases (austenite+graphite nodules), the cut surface morphology and the hot cutting performance.

  5. RTNDT drop weight test of no ductility transition temperature for 12Cr2Mo1 alloy steel forgings used for the reactor internals in nuclear power station%核电站金属堆内构件设备用12Cr2Mo1合金钢锻件落锤试验

    Institute of Scientific and Technical Information of China (English)

    韩建成; 王毅; 吴志军; 石长仁

    2011-01-01

    12Cr2Mo1合金钢锻件是高温气冷堆核电站示范工程金属堆内构件设备所用主体材质,为保证该材质在反应堆整个寿命期内的性能不发生失效,在制造时要求进行无延性转变温度RTNDT小于等于-25℃的落锤试验,而国内锻件生产企业以往从无此技术要求的铬钼合金钢锻件制造经验和实践活动,为实现在高温堆核岛主设备上的成功应用通过试验和科研攻关掌握了其核心制造技术.介绍了12Cr2Mo1材质锻件在制造过程中所出现的质量问题、原因分析、采取的改进措施及取得成效等,将对今后GW级高温堆核电设备的国产化用材提供借鉴.%12Cr2Mol alloy steel forging material is widely used for reactor internals in the demonstrate project of high temperature gas-cooled reactor nuclear power plant.In order to avoid the faiure of properties of the material during the service life cycle of the reactor,drop weight test under the condition of RTNDT≤-25℃ was required for the material manufacturing.Chinese manufacturers have less experience in the manufacturing before the project.To master the key manufacturing technique,experiments and research were carried on.The quality problems occurred in the manufacturing of the material,the cause analysis,improvement approach,and the achieved effects were introduced,which will provide a good experience for the domestic material application in 1000 MW high temperature gas-cooled reactor nuclear power plant.

  6. Application of Magnetic Kinds of Nondestructive Inspection to Parts From Die Tool Steels

    Science.gov (United States)

    Kornilova, A. V.; Selishchev, A. I.; Idarmachev, I. M.

    2016-01-01

    Possibilities of control of the level of accumulated damage in dies for cold and hot forming as a function of the coercivity are considered. The coercivity of the material of dies for hot forging and cold stamping is studied. Formulas are obtained for determining the coercivity in steels for hot die forging in the state as delivered.

  7. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    Science.gov (United States)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  8. A Knowledge base model for complex forging die machining

    OpenAIRE

    Mawussi, Kwamiwi; Tapie, Laurent

    2011-01-01

    International audience; Recent evolutions on forging process induce more complex shape on forging die. These evolutions, combined with High Speed Machining (HSM) process of forging die lead to important increase in time for machining preparation. In this context, an original approach for generating machining process based on machining knowledge is proposed in this paper. The core of this approach is to decompose a CAD model of complex forging die in geometric features. Technological data and ...

  9. Forging Performance Comparison of New Composite Surface-anvil%新型复合曲面型砧的锻造性能比较

    Institute of Scientific and Technical Information of China (English)

    李静; 孟祥龙; 陈荣强; 于晶晶

    2011-01-01

    Taking the large-scale steel ingot forging process as study object, through theory modeling and numerical imulation, the uniformity of the heavy forging distortion was researched; through comparing the forging effect between V swage block and compound surface swage block, the forging's internal stress and strain condition was discussed. The results show that the compound surface swage block in the forging structure and property optimization has superiority, which can enable the large-scale forging core to obtain very well compactive effort, effectively eliminate the segregation, shrink and porosity flaw that appears in the steel ingot interior, also can make the large-scale forging surface's metal flow under very good control, and eliminate the difficult deformation range in the forging process.%以大型钢锭锻造过程为研究对象,通过理论建模和数值模拟,对大锻件变形的均匀性进行研究,将新型复合曲面型砧和传统V型砧的锻造结果进行比较,以求技出在用不同砧子进行锻造时,锻件内部的应力、应变状态.结果表明,复合曲面型砧在锻件组织性能优化上具有优势,其不但能使大型锻件心部得到很好的压实效果,有效地消除了钢锭内部出现的偏析、疏松及缩孔缺陷,而且大型锻件表面金属变形也能得到很好的控制,消除了锻造过程中的难变形区.

  10. Near-Net Forging Technology Demonstration Program

    Science.gov (United States)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  11. Die forging of the alloys Az80 and Zk60

    NARCIS (Netherlands)

    Kurz, G.; Clauw, B.; Sillekens, W.H.; Letzig, D.

    2009-01-01

    Overall goal of the MagForge project is to provide tailored and cost-effective technologies for the industrial manufacturing of magnesium forged components. Scientific and technological aspects are new alloys/feedstock materials with improved performance, forging process modeling and design tools wi

  12. Computer-Aided Design of Manufacturing Chain Based on Closed Die Forging for Hardly Deformable Cu-Based Alloys

    Science.gov (United States)

    Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof

    2013-07-01

    Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.

  13. Backward can extrusion with conical,rotating punch as a cold forging tribology test

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Tetsuo, A.

    2011-01-01

    A new, simulative test of friction and lubrication in cold forging is developed by the authors. The test is based on a backward can extrusion process in which the workpiece rotates. An analytical model is presented determining the friction stress from the measured torque during testing combined...... with an analysis of the sliding velocity distribution along the punch nose. The latter is determined by FE analysis of the test. Results show friction stress for unalloyed low C-steel provided with different types of lubricants, e.g. phosphate coating plus soap, phosphate coating plus MoS2 and single bathe...... lubrication with PULS. The new test is so severe, that it is possible to break down the best lubrication systems for cold forging, such as phosphate coating plus soap and MoS2....

  14. Qualification of laser based additive production for manufacturing of forging Tools

    Directory of Open Access Journals (Sweden)

    Junker Daniel

    2015-01-01

    Full Text Available Mass customization leads to very short product life cycles, so the costs of a tool have to be amortized with a low number of workpieces. Especially for highly loaded tools, like those for forging, that leads to expensive products. Therefore more economical production processes for tool manufacturing have to be investigated. As laser additive manufacturing is already used for the production of moulds for injection moulding, this technology maybe could also improve the forging tool production. Within this paper laser metal deposition, which is industrially used for tool repair, will be investigated for the use in tool manufacturing. Therefore a mechanical characterization of parts built with different laser process parameters out of the hot work tool steel 1.2709 is made by upsetting tests and hardness measurements. So the influence of the additive manufacturing process on the hardness distribution is analysed.

  15. Effect of Forging Allowance Value on the Power Consumption of Machining Process

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The paper aim is to develop and study possible energy-efficiency measures for machined forgings drawing on analysis of the impact of the allowance for machining and its scatter.The most sophisticated option to take into consideration the effect of the cut depth is the work-piece machining in which the forging allowance value results from the blank production.Research of power consumption was conducted for turning the cylindrical surface of 144 mm length and  1,5 33 0,5   diameter on forgings of the work-pieces "screw of steering control" made from steel 60PP. A radial dimension allowance at said cylindrical surface at six points of the five sections was sized to assess the allowance value dispersion. The size of the sample measurements at the control points was n = 600. Statistic processing has shown normal law of distribution and sample homogeneity.To analyze the results of experiments was calculated a range of allowances for this workpiece. Calculated minimum and maximum allowance per one side for rough lathing were, respectively, 0.905 mm and 1.905mm. It was found that 77% points under control lie in calculated range of allowance values. And there are no points out of the range on lesser side that proves a lack of rejects; but there are points out of the range on the bigger side, that will require additional costs for machining the specified surface, including the cost of electricity.There were three power consumption calculations based on factory- recommended duty: for processing the entire sample of forgings with an average allowance, for machining forgings allowances of which are within the recommended design range of allowance, and for processing the entire sample of forgings with a minimum value of allowance.It was found that elimination of allowance values which are outside the recommended range enables to reduce the power consumption, at least, by 6%, and the overall power consumption for processing the measured forgings

  16. Forging Collaborative Partnerships: The Waterloo Neighborhood Project.

    Science.gov (United States)

    Gruenewald, Anne

    The Forging Collaborative Partnerships Project in Waterloo, Iowa is a collaborative venture to assist voluntary agencies in developing tools and strategies to strengthen collaborative relationships among public and nonprofit child welfare agencies and other key stakeholders as they adopt a family-focused philosophy. This monograph details how the…

  17. Modelling and Testing of Friction in Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2007-01-01

    Knowledge about friction is still limited in forging. The theoretical models applied presently for process analysis are not satisfactory compared to the advanced and detailed studies possible to carry out by plastic FEM analyses and more refined models have to be based on experimental testing...

  18. 29 CFR 1910.218 - Forging machines.

    Science.gov (United States)

    2010-07-01

    ... a man to reach the full length of the die without placing his hand or arm between the dies. (vii... specifications or dimensions shown in Table O-11. (2) Hydraulic forging presses. When dies are being changed or maintenance is being performed on the press, the following shall be accomplished: (i) The hydraulic pumps and...

  19. Business Intelligence for Strategic Steel Constructions Sourcing

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2010-01-01

    markets, government support for industry and stability of government}, to source steel constructions strategically. I undertook this project as a consultation for JB Contractors A/S {JBC} now referred to as Strongstaal A/S. JBC builds on its core competences in steel constructions, forgings, pressure...... vessels, welding, machining, heat treatment, corrosive treatment and quality control. It uses these core competencies to manufacture heavy duty, labour-intensive welded and machine processed steel structures in Eastern Europe. It has many years of sound project management experience and has enjoyed great...... success in performing both large and small integrated projects in the steel manufacturing industry and cement industry among others....

  20. Advanced Thermomechanical Processing for a High-Mn Austenitic Steel

    Science.gov (United States)

    Kusakin, Pavel; Tsuzaki, Kaneaki; Molodov, Dmitri A.; Kaibyshev, Rustam; Belyakov, Andrey

    2016-12-01

    The microstructures and mechanical properties of a warm-forged and annealed Fe-18Mn-0.6C-1.5Al TWIP steel were studied. The high dislocation density was evolved by warm forging and the ultrafine grains were developed by subsequent annealing. The dislocation strengthening and the grain refinement result in increased yield strength ranging from 500 to 1000 MPa and the product of ultimate tensile strength by total elongation as high as 70,000 MPa pct.

  1. DEVELOPMENTS IN THE FIELD OF STEEL AND CAST IRON

    Directory of Open Access Journals (Sweden)

    E. B. Ten

    2013-01-01

    Full Text Available The article describes the use of a number of promising casting technologies applied to produce the castings of steel and cast iron with special properties. Such as, technology of centrifugal casting of large-size workpieces made of steel, forecasting method composition of slag in the smelting of high-manganese steels, method of complex modifying chromium cast irons, analysis of properties of perspective high-alloy aluminium cast iron.

  2. A new nanoscale metastable iron phase in carbon steels

    OpenAIRE

    Tianwei Liu; Danxia Zhang; Qing Liu; Yanjun Zheng; Yanjing Su; Xinqing Zhao; Jiang Yin; Minghui Song; Dehai Ping

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by t...

  3. Dynamic Recrystallization and Grain Growth Behavior of 20SiMn Low Carbon Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    DONG Lanfeng; ZHONG Yuexian; MA Qingxian; YUAN Chaolong; MA Lishen

    2008-01-01

    A senes of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel.A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the expenment data.Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase.The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.

  4. High Fragmentation Steel Production Process

    Science.gov (United States)

    1984-01-01

    processes which might result in anamolies and to use the data to establish processing parameters for forging and machining operations. The first...from different vendors to investigate these variations. Another concern of this phase was the cooling method used by steel producers in the event of...10% coarse pearlite. There were no vivid white spots (which would indicate preci- pitated carbides) detected on the sample. The hardness and

  5. Defining a method of evaluating die life performance by using finite element models (FEM) and a practical open die hot forging method

    Science.gov (United States)

    Marashi, J.; Foster, J.; Zante, R.

    2016-10-01

    Die wear, which is defined as a surface damage or removal of material from one or both of two solid surfaces in a sliding, rolling or impact motion relative to one another, is considered the main cause of tool failure. Wear is responsible for 70% of tool failure and a potential source of high costs; as much as 30% per forging unit in the forging industries [1]. This paper presents a unique wear prediction and measurement method for open die forging using a modified Archard equation, 3D FE simulation (to represent the actual forging process precisely) and an industrial scale forging trial. The proposed tool and experimental design is aimed at facilitating a cost effective method of tool wear analysis and to establish a repeatable method of measurement. It creates a platform to test different type of lubricants and coatings on industrial scale environment. The forging trial was carried out using 2100T Schuler Screw press. A full factorial experiment design was used on 3D simulation to identify the process setting for creating a measurable amount of tool wear. Wear prediction of 28.5 µm based on the simulation correlated with both Infinite Focus Optical Microscope and Coordinate Measuring Machine (CMM) measurement results of the practical trial. Thermal camera reading showed temperature raise on the area with maximum wear, which suggests that increase in contact time, causes thermal softening on tool steel. The measurement showed that abrasive wear and adhesive wear are dominant failure modes on the tool under these process conditions.

  6. Modelling of defects in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter

    experimentally by utilizing downscaled lead model ingots (billets) being compressed by a tool with different lower die angles. Centreline defects, occurring due to the ingot casting processes, are modelled by drilling holes through the centreline of the cast billets. The experiments showed a marked influence...... are in closer agreement with the general understanding of the ingot forging process. Therefore porous metal plasticity should not be used solely when evaluating the soundness of the final, forged ingot based on FEM simulations. Based on an analysis of forming fracture limit diagrams combined with uncoupled...... ductile damage criteria, it is found that the normalized Cockcroft & Latham criterion is most suited for modelling damage in bulk metal forming, if the forming fracture limit diagram can be described by a straight line having a slope of -1/2. A damage criterion independent of slope is presented. Often...

  7. FEA Based Tool Life Quantity Estimation of Hot Forging Dies Under Cyclic Thermo-Mechanical Loads

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Schäfer, F.; Hadifi, T.

    2011-01-01

    Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element analysis (FEA) may serve as a means for process design and process optimisation. So far the FEA based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. Two industrial forging processes, where clear fatigue crack initiation has been observed are considered for a fatigue analysis. For this purpose the relevant tool components are modelled with elasto-plastic material behaviour. The predicted sites, where crack initiation occurs, agree with the ones observed on the real die component.

  8. Decomposition of forging dies for machining planning

    CERN Document Server

    Tapie, Laurent; Anselmetti, Bernard

    2009-01-01

    This paper will provide a method to decompose forging dies for machining planning in the case of high speed machining finishing operations. This method lies on a machining feature approach model presented in the following paper. The two main decomposition phases, called Basic Machining Features Extraction and Process Planning Generation, are presented. These two decomposition phases integrates machining resources models and expert machining knowledge to provide an outstanding process planning.

  9. Decomposition of forging dies for machining planning

    OpenAIRE

    Tapie, Laurent; Mawussi, Kwamiwi; Anselmetti, Bernard

    2009-01-01

    International audience; This paper will provide a method to decompose forging dies for machining planning in the case of high speed machining finishing operations. This method lies on a machining feature approach model presented in the following paper. The two main decomposition phases, called Basic Machining Features Extraction and Process Planning Generation, are presented. These two decomposition phases integrates machining resources models and expert machining knowledge to provide an outs...

  10. Improvements in the process of boss bar upset forging into a horizontal forging machine with the aim of joint knuckle forging quality improvement

    Science.gov (United States)

    Pankratov, D. L.; Nizamov, R. S.; Kharisov, I. Zh

    2016-06-01

    A new technique for tapered composing transition shaping has been put forward in the process of upset forging with the use of an experimental tool. The results of the upset forging process with the use of a new composing transition has been computer simulated.

  11. A Knowledge base model for complex forging die machining

    CERN Document Server

    Mawussi, Kwamiwi; 10.1016/j.cie.2011.02.016

    2011-01-01

    Recent evolutions on forging process induce more complex shape on forging die. These evolutions, combined with High Speed Machining (HSM) process of forging die lead to important increase in time for machining preparation. In this context, an original approach for generating machining process based on machining knowledge is proposed in this paper. The core of this approach is to decompose a CAD model of complex forging die in geometric features. Technological data and topological relations are aggregated to a geometric feature in order to create machining features. Technological data, such as material, surface roughness and form tolerance are defined during forging process and dies design. These data are used to choose cutting tools and machining strategies. Topological relations define relative positions between the surfaces of the die CAD model. After machining features identification cutting tools and machining strategies currently used in HSM of forging die, are associated to them in order to generate mac...

  12. Influence of Forging on Static Pricing Scheme for Priority Services

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-cheng; SHI Bing-xin; YANG Xue-nan; LI Bo

    2005-01-01

    The influence of ISP's ( internet service provider) forging on static pricing scheme for priority services is analyzed. If ISP is honest, besides the price, after users enter the network market, it can't affect the market; if it forges, it can change its utility. The economical analysis proves that forging is possible, when ISP gains more than its loss, ISP will take the action. In response to forging, users may adapt their traffic allocation vectors to maximize their net benefit. If users will submit more traffic or in higher priority service class, ISP gains from the behavior, if users will submit less traffic or even exits the market, ISP 's utility decrease. The market is completely different from before, forging changes the market. Several examples are presented to illustrate the results. At the same time, how the utility function and the willingness to pay affect forging is discussed.

  13. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  14. Improving Hygienic Characteristics of Coated Electrodes for Welding High-Alloy Steels

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Ivanov, K. V.; Sadikov, I. D.

    2017-01-01

    The article presents the results of experimental studies showing that the use of an inverter power supply instead of a diode rectifier provides:: fine-droplet electrode metal transfer which reduces generation time by 46% and transfer time by 28%; transfer of alloying elements from welding materials into the weld metal which reduces its loss from the welding line by 6% and the heat affected area by 3%; reducing the emission rate of welding fumes and their components by 23%; reducing specific emission of welding fumes and their components by 23%.

  15. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Directory of Open Access Journals (Sweden)

    Katarina Monkova

    2014-02-01

    Full Text Available The paper deals with the process of 3D digitization as a tool for increasing production efficiency of complex shaped parts. Utilizes the concept of reverse engineering and new the model of NC program generation STEP-NC, for the of templates production for winding the stator coil of electromotors that is for electric household appliances. The manual production of prototype was substituted by manufacturing with NC machines. A 3D scanner was used for data digitizing, CAD/CAM system Pro/Engineering was used for NC program generation, and 3D measuring equipment was used for verification of new produced parts. The company estimated that only due to the implementation of STEP NC standard into production process it was allowed to read the 3D geometry of the product without problems. It helps the workshop to shorten the time needed for part production by about 30%.

  16. Dry metal forming of high alloy steel using laser generated aluminum bronze tools

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2015-01-01

    Full Text Available Regarding the optimization of forming technology in economic and environmental aspects, avoiding lubricants is an approach to realize the vision of a new green technology. The resulting direct contact between the tool and the sheet in non-lubricated deep drawing causes higher stress and depends mainly on the material combination. The tribological system in dry sliding has to be assessed by means on the one hand of the resulting friction coefficient and on the other hand of the wear of the tool and sheet material. The potential to generate tailored tribological systems for dry metal forming could be shown within the investigations by using different material combinations and by applying different laser cladding process parameters. Furthermore, the feasibility of additive manufacturing of a deep drawing tool was demonstrated. The tool was successfully applied to form circular cups in a dry metal forming process.

  17. Dry metal forming of high alloy steel using laser generated aluminum bronze tools

    OpenAIRE

    Freiße Hannes; Köhler Henry; Seefeld Thomas; Vollertsen Frank

    2015-01-01

    Regarding the optimization of forming technology in economic and environmental aspects, avoiding lubricants is an approach to realize the vision of a new green technology. The resulting direct contact between the tool and the sheet in non-lubricated deep drawing causes higher stress and depends mainly on the material combination. The tribological system in dry sliding has to be assessed by means on the one hand of the resulting friction coefficient and on the other hand of the wear of the too...

  18. New microalloyed steel applications for the automotive sector

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, D.K.; Krauss, G.; Speer, J.G. [Advanced Steel Processing and Products Research Center, Colorado School of Mines, Golden, CO (United States)

    2005-07-01

    Developments related to the use of microalloy additions, primarily of Ti, Nb, and V, and controlled processing are reviewed to illustrate how steels with tailored microstructures and properties are produced from either bar or sheet steels for new automotive components. Microalloying additions are shown to control the necessary strengthening mechanisms to produce high strength materials with the desired toughness or formability for a specific application. Selected examples of direct cooled forging steels, microalloyed carburizing steels, and advanced high strength sheet (AHSS) steels are discussed. (orig.)

  19. Numerical modelling of the forging process of rolls for rolling mills

    OpenAIRE

    Charles, J F; Castagne, S.; Zhang, Lihong; Habraken, Anne; Cescotto, Serge

    2000-01-01

    This article presents comparisons of forging processes between two flat tools, between two round tools, and at different forging temperatures. Simulation results help to recover and better understa,d long practice in the forging industry. Peer reviewed

  20. Effect of cast steel production metallurgy on the emergence of casting defects

    Directory of Open Access Journals (Sweden)

    L. Čamek

    2016-10-01

    Full Text Available The paper documents metallurgical possibilities of high alloy cast steel production in open induction medium frequency furnaces and an electric arc furnace in a gravity die casting foundry. The observation was focused on the emergence of gas defects in steel castings. The content of gases achieved during the metallurgical processes was evaluated for every unit of the production equipment and the casting ladle before casting into disposable sand moulds. The sand mould area was considered to be constant. The aim was to evaluate the current metallurgical possibilities of affecting the content of gases in high alloy cast steel in the current technical conditions of the foundry.

  1. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  2. Advanced numerical models for the thermo-mechanical-metallurgical analysis in hot forging processes

    Science.gov (United States)

    Ducato, Antonino; Fratini, Livan; Micari, Fabrizio

    2013-05-01

    In the paper a literature review of the numerical modeling of thermo-mechanical-metallurgical evolutions of a metal in hot forging operations is presented. In particular models of multiaxial loading tests are considered for carbon steels. The collected examples from literature regard phases transformations, also martensitic transformations, morphologies evolutions and transformation plasticity phenomena. The purpose of the tests is to show the correlation between the mechanical and the metallurgical behavior of a carbon steel during a combination of several types of loads. In particular a few mechanical tests with heat treatment are analyzed. Furthermore, Ti-6Al-4V titanium alloy is considered. Such material is a multi-phasic alloy, at room temperature made of two main different phases, namely Alpha and Beta, which evolve during both cooling and heating stages. Several numerical applications, conducted using a commercial implicit lagrangian FEM code are presented too. This code can conduct tri-coupled thermo-mechanical-metallurgical simulations of forming processes. The numerical model has been used to carry out a 3D simulation of a forging process of a complex shape part. The model is able to take into account the effects of all the phenomena resulting from the coupling of thermal, mechanical and metallurgical events. As simulation results strongly depend on the accuracy of input data, physical simulation experiments on real-material samples are carried out to characterize material behavior during phase transformation.

  3. European Community research on forging of magnesium alloys (MagForge): state of affairs

    NARCIS (Netherlands)

    Sillekens, W.H.; Chevaleyre, F.; Gantar, G.

    2009-01-01

    While the interest in wrought magnesium applications is growing, forging of magnesium alloys in Europe and beyond is still restricted to a few specialized companies that operate for niche markets. Technical matters that relate to this are underdeveloped mechanical properties of available feedstock m

  4. European Community research on forging of magnesium alloys (MagForge): state of affairs

    NARCIS (Netherlands)

    Sillekens, W.H.; Chevaleyre, F.; Gantar, G.

    2009-01-01

    While the interest in wrought magnesium applications is growing, forging of magnesium alloys in Europe and beyond is still restricted to a few specialized companies that operate for niche markets. Technical matters that relate to this are underdeveloped mechanical properties of available feedstock

  5. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken ...

  6. Kinematics at the Main Mechanism of a Railbound Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2015-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Heavy payload forging manipulators are mainly characterized by large load output and large capacitive load input. The relationship between outputs and inputs will greatly influence the control and the reliability. Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we analyze the general kinematics of the main mechanism from a such manipulator. Kinematic scheme shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the tong and buffering. The lifting mechanism consists of several parts including linkages, hydraulic drives and motion pairs. The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed. An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed. These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators.

  7. Numerical Analysis on Rotary Forging Mechanism of a Flange

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical simulation on the rotary forging process of a flange is conducted by three-dimensional rigid-plastic finite element method. The states of stress and strain rate in the workpiece are analyzed and the forging mechanism of the flange is revealed. Moreover, the influence of the die configuration on the material flow is also analyzed.

  8. Examples on cold forged aluminium components in automotive industry

    DEFF Research Database (Denmark)

    Bay, Niels; Kolsgaard, A.

    2000-01-01

    The present paper describes the possibilites of applying cold forging for manufacturing of light weight components in aluminium. A short description of the basic cold forming processes forms the basis for describing the great variety in design of cold forged components. Examples are mainly taken ...... from automotive industry but in a few cases also from other industrial sectors to show the possibilities....

  9. Weldability investigation steel P 91 by weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2015-07-01

    Full Text Available This paper elaborates results of hardness and impact energy of thermal cycle simulated specimens of high-alloy steel P 91 and their dependence on cooling time from 800 to 500 °C. Results were obtained by measuring hardness HV 1 and by experimental testing of Charpy notched specimens. Metallographic analysis of samples was performed on scanning electronic microscope.

  10. PTA锻焊反应器的制造%Fabrication of Forge Welding PTA Reactor

    Institute of Scientific and Technical Information of China (English)

    李艳

    2014-01-01

    The article introduces several key techniques for fabrication of large Cr-Mo steel forge welding reactor in PTA unit. The chemical composition of material should be controlled to improve the anti-tempered embrittlement ability for Cr-Mo steel; the advanced smelting process and forging technique should be used to assure the large forging quality;the cooling process of normalization for Cr-Mo steel head should be optimized to assure the material property;the reasonable welding process should be used to assure the welding quality of thick wall circumferential seam and reduce the fabrication cost;the overlay welding process should be optimized to assure the overlay welding quality in inner surface of reactor. Finally, it is very important for the Cr-Mo steel pressure vessel to use the proper heat treatment procedure.%本文对PTA装置上的大型铬钼钢锻焊反应器,在制造过程中的几个关键技术进行了介绍:控制材料的化学成分提高铬钼钢材料的抗回火脆化能力;采用先进的冶炼工艺和锻造技术保证大型锻件的质量;优化铬钼钢封头正火热处理中的冷却工艺来保证材料的性能指标;采用合理的焊接工艺,既保证了厚壁环焊缝的焊接质量,又降低了制造成本;优化堆焊工艺,保证了反应器内壁的堆焊质量;正确选择热处理规范,对铬钼钢压力容器至关重要。

  11. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    R K Dayal; N Parvathavarthini

    2003-06-01

    In power plants, several major components such as steam generator tubes, boilers, steam/water pipe lines, water box of condensers and the other auxiliary components like bolts, nuts, screws fasteners and supporting assemblies are commonly fabricated from plain carbon steels, as well as low and high alloy steels. These components often fail catastrophically due to hydrogen embrittlement. A brief overview of our current understanding of the phenomenon of such hydrogen damage in steels is presented in this paper. Case histories of failures of steel components due to hydrogen embrittlement, which are reported in literature, are briefly discussed. A phenomenological assessment of overall process of hydrogen embrittlement and classification of the various damage modes are summarized. Influence of several physical and metallurgical variables on the susceptibility of steels to hydrogen embrittlement, mechanisms of hydrogen embrittlement and current approaches to combat this problem are also presented.

  12. DETERMINATION OF THE OPTIMAL TEMPERING TEMPERATURE IN HARD FACING OF THE FORGING DIES

    Directory of Open Access Journals (Sweden)

    Milan Mutavdžić

    2012-06-01

    Full Text Available Here is analyzed selection of the optimal technology for heat treatment during the reparation of the damaged forging dies. Those tools are manufactured from alloyed tool steels for operation at elevated temperatures. Those steels are prone to self-hardening, so in reparatory hard-facing they must be preheated, additionally heated and tempered. During the tempering, in temperature interval 500-600°C, a secondary increase of hardness and decrease of impact toughness occurs, the so-called reversible tempering brittleness. Here is shown that it can be avoided by application of metallurgical and technological measures. Metallurgical measures assume adequate selection of steels. Since the considered steels are per se prone to tempering brittleness, we conducted experimental investigations to define the technological measures to avoid it. Tests on models were conducted: tempering from different temperatures, slow heating and cooling in still air. Hardness measurements showed that at 520°C, the secondary increase of hardness occurs, with drop of the impact toughness. Additional hard-facing tests included samples tempered at various regimes. Samples were prepared for mechanical and metallographic investigations. Results presented illustrate influence of additional heat treatment on structure, hardness and mechanical properties of the hard-faced layers. This enabled establishing the possibility of avoiding the tempering brittleness through technological measures.

  13. Determination of the optimal tempering temperature in hard facing of the forging dies

    Directory of Open Access Journals (Sweden)

    Milan Mutavdžić

    2012-05-01

    Full Text Available Here is analyzed selection of the optimal technology for heat treatment during the reparation of the damaged forging dies. Those tools are manufactured from alloyed tool steels for operation at elevated temperatures. Those steels are prone to self-hardening, so in reparatory hard-facing they must be preheated, additionally heated and tempered. During the tempering, in temperature interval 500-600°C, a secondary increase of hardness and decrease of impact toughness occurs, the so-called reversible tempering brittleness. Here is shown that it can be avoided by application of metallurgical and technological measures. Metallurgical measures assume adequate selection of steels. Since the considered steels are per se prone to tempering brittleness, we conducted experimental investigations to define the technological measures to avoid it. Tests on models were conducted: tempering from different temperatures, slow heating and cooling in still air. Hardness measurements showed that at 520°C, the secondary increase of hardness occurs, with drop of the impact toughness. Additional hard-facing tests included samples tempered at various regimes. Samples were prepared for mechanical and metallographic investigations. Results presented illustrate influence of additional heat treatment on structure, hardness and mechanical properties of the hard-faced layers. This enabled establishing the possibility of avoiding the tempering brittleness through technological measures. 

  14. Initial billet and forging dies shape optimization: Application on an axisymetrical forging with a hammer

    Science.gov (United States)

    Meng, Fanjuan; Labergere, Carl; Lafon, Pascal

    2011-05-01

    In metal forming process, the forging die design is the most important step for products quality control. Reasonable dies shape can not only reduce raw material cost but also improving material flow and eliminating defects. The main objective of this paper is to obtain some optimal parameters of the initial billet and forging dies shape according to the simulation results of a two-step metal forming process (platting step and forging step). To develop this metal forming process optimization system several numerical tools are required: geometric modelling (CATIA V5™), FEM analysis (ABAQUS®), work-flow control and optimization computation (MODEFRONTIER®). This study is done in three stages: simulating the two-step metal forming process, building surrogate meta-models to relate response and variables and optimizing the process by using advanced optimization algorithms. In this paper, a two-step axisymmetric metal forming project was studied as an example. By using our simulation model, we get 581 correct real simulation results totally. According to all these real values, we build the surrogate meta-models and obtain Pareto points for a two-objective optimization process. The choice of a solution in all Pareto points will be done by the engineer who can choose his best values according to their criterions of project.

  15. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  16. Larson-Miller Constant of Heat-Resistant Steel

    Science.gov (United States)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  17. Development of Next Generation Heating System for Scale Free Steel Reheating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  18. Study and application of advanced crankshaft forging technology%曲轴先进锻造技术的研究与应用

    Institute of Scientific and Technical Information of China (English)

    王云飞; 夏占雪; 胡志高; 白孝俊

    2012-01-01

    通过对曲轴锻件产品的结构特点和锻造工艺分析,提出了今后曲轴的生产将更多的采用大型自动化生产线,模锻锤生产工艺将逐渐被淘汰.随着国家节能改造技术的推广应用,曲轴锻造用钢材将由调质钢向微合金结构钢转化,同时,一些新的技术、新工艺也将更多的应用于曲轴锻件的生产,将极大的促进我国曲轴锻件市场的发展和国际竞争力.%Through the structure characteristic and forging process analysis of the crankshaft products, more full automatic production lines will be adopted in the production of crankshaft in the future, and the forging hammer production technology of the mould will be eliminated. With the popularization and application of country's reducing energy consumption technology, the steel of forged crankshaft transforms from quenched steel to the little structural alloy steel, meanwhile, some new technologies and processes will be applied in production of crankshaft which greatly improve the development and international competitiveness of inland crankshaft market

  19. Critical current densities in Bi-2223 sinter forgings.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Fisher, B. L.; Goretta, K. C.; Harris, N. C.; Murayama, N.

    1999-07-23

    (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) bars, prepared by sinter forging, exhibited good phase purity and strong textures with the c axes of the Bi-2223 grains parallel to the forging direction. The initial zero-field critical current density (J{sub c}) of the bars was 10{sup 3} A/cm{sup 2}, but because the forged bars were uncoated, this value decreased with repeated thermal cycling. J{sub c} as a function of applied magnetic field magnitude and direction roughly followed the dependencies exhibited by Ag-sheathed Bi-2223 tapes, but the forged bars were more strongly dependent on field strength and less strongly dependent on field angle.

  20. Valley Forge National Historical Park Tract and Boundary Data

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an ESRI polygon shapefile of tracts for Valley Forge NHP (VAFO). Tracts shown on inset maps A, B, and C were spatially adjusted (i.e., rubbersheeted) to...

  1. Total quality management of forged products through finite element simulation

    Science.gov (United States)

    Chandra, U.; Rachakonda, S.; Chandrasekharan, S.

    The paper reviews the entire thermo-mechanical history experienced by a complex shaped, high strength forged part during all stages of its manufacturing process, i.e. forging, heat treatment, and machining. It examines the current practice of selecting the process parameters using finite element simulation of forging and quenching operations on an individual basis. Some recent work related to the simulation of aging and machining operations is summarized. The capabilities of several well-known finite element codes for these individual simulations are compared. Then, an integrated simulation approach is presented which will permit the optimization of process parameters for all operations, as opposed to a single operation. This approach will ensure a total quality management of forged products by avoiding costly problems which, under the current practice, are detected only at the end of the manufacturing cycle, i.e. after final machining.

  2. Microstructure optimization design methods of the forging process and applications

    Institute of Scientific and Technical Information of China (English)

    WANG Guangchun; ZHAO Guoqun; GUAN Jing

    2007-01-01

    A microstructure optimization design method of the forging process is proposed. The optimization goal is the fine grain size and homogeneous grain distribution. The optimization object is the forging process parameters and the shape of the preform die. The grain size sub-objective function, the forgings shape sub-objective function and the whole objective function including the shape and the grain size are established, espectively. The detailed optimization steps are given. The microstructure optimization program is developed using the micro-genetic algorithm and the finite element method. Then, the upsetting process of the cylindrical billet is analyzed using a self-developed program. The forging parameters and the shape of preform die of the upsetting process are optimized respectively. The fine size and homogenous distribution of the grain can be achieved by controlling the shape of the preform die and improving the friction condition.

  3. Steel Spans,

    Science.gov (United States)

    1984-01-31

    Trifle, in an instant I will walk ! Moonlight silvered the rails. After the station the route/path went along the dark/nonluminous malodorous swamp... silver . How is it best to approach the fragments of bridge? - ~Hitlerites for sure mined vicinities. Lieutenant K. Shangin broke silence: - yesterday I...secondary branches. From the exploded rails were cut 3-4-meter healthy pieces, so-called logs were cut down. In field forges weee forged skids, the bolts

  4. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  5. 自蔓延反应喷涂锻造温度场和残余应力的数值模拟%Simulation of Temperature Field and Residual Stress of SHS Reactive Spraying Forging

    Institute of Scientific and Technical Information of China (English)

    陈威; 高一翔; 朱磊; 丛洋

    2012-01-01

    Using the ANSYS finite element software, the temperature field and the residual stress field during reactive pre-coating forging and reactive spraying forging of TiCNi coating on the surface of steel were computed and compared. Distribution law of the spraying forging temperature for each coating was obtained. When the temperature of substrate is high, the cool-down rate of the coating can be reduced by spraying forging, so the fatigue can be slowed down. The influence of reactive spraying forging on the residual stress of the coatings was also studied. The results show that the residual stress after forging is far less than that before forging, and the increase of initial forging temperature can decrease the residual stress of the coating.%采用ANSYS有限元软件对钢板表面反应预涂TiCNi涂层以及反应喷涂后锻造两种加工过程的温度场和残余应力场进行了模拟计算和比较,得到了各涂层基体喷涂锻造温度场规律.基体高温时喷涂锻造可以降低涂层试件的冷却速度,从而减缓裂纹的产生;研究了反应喷涂锻造对涂层残余应力的影响.结果表明:锻造后各层中的残余应力远小于锻造前各层中的残余应力,而提高始锻造温度可以减小涂层中残余应力.

  6. RIGID-PLASTIC MECHANICAL MODEL FOR THE FORGING METHOD WITH HORIZONTAL V-SHAPED ANVIL

    Institute of Scientific and Technical Information of China (English)

    LIU Zhubai; NI Liyong; LIU Guohui; ZHANG Yongjun; ZHU Wenbo

    2006-01-01

    In order to decrease the anisotropy of mechanical properties, the rigid-plastic mechanical model for the forging method with horizontal V-shaped anvil is presented. The forging method,through the change of anvils shape, is able to control fibrous tissue direction, to improve the anisotropy of mechanical properties of axial forgings, to realize uniform forging. Therefore, the forging method can overcome the defect that conventional forging methods produce. The mechanism of the forging method with horizontal V-shaped anvil and the process of metal deformation are analyzed. The agreement of theoretical analysis with experimental study verifies the fact that the forging method with horizontal V-shaped anvil can control effectively the mechanical properties of axial forgings.

  7. The World's Largest Steel Casting Poured Successfully

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The world's largest steel casting -- the upper beam (or the top head) for free forging oil hydraulic press with a 18,000-ton force capacity, was poured successfully by CITIC Heavy Machinery Co., Ltd. (CITICHM) on May 22, 2008. This head piece is 11.95 meters long, 3.8 meters wide, 4.59 meters high and about 520 tons in gross weight. Pouring is the most important and critical step during its manufacturing process. The production of this huge casting requires about 830 tons of refined molten steel from 10 smelting furnaces and pouring with six ladles into the mold cavity at one time, which made it currently the world's largest steel casting poured and the most one-time molten steel organized.

  8. Mannes of Forging and Perspectives of Knuckle Joint Presses Modernization

    Directory of Open Access Journals (Sweden)

    A. A. Antsifirov

    2014-01-01

    Full Text Available The article raises an issue to enhance technological forging capabilities on the known knuckle joint presses. It provides an illustrated overview of main design types of presses with crank-knuckle, toggle-knuckle, and knuckle joint mechanisms. The article also shows the advantages of the modernization way and improvement just of the active press equipment in terms of quality-to-price ratio, for example, as compared to the similar new foreign press equipment.It gives an overview of features, which provide forging processes owing to kinetic energy accumulated with the moving parts of the known designs of the knuckle joint presses depending on the drive actuating mechanism. Focused attention is drawn to forging on the knuckle joint presses for a time of contact with a work piece to be comparable with the duration of the work piece deformation process on hydraulic forging hammers. This allows us to forge thin-wall products with process automation compared to the forging hammers.Analysis of accumulating processes of kinetic energy by the moving parts of the knuckle joint presses has shown that presses driven by hydraulic cylinders or two screw hydraulic cylinder are the most optimal for technological operations as evidenced by references to domestic and foreign invention certificates and patents. The article presents disadvantages of forging on presses with hydraulic or pneumatic drive. It is a dependence of the deformation force, caused, mainly, by a force of the drive cylinder. The article gives linear movement rate quantities of press moving members depending on the drives of the actuating mechanism. Based on the above analysis of the features to manufacture work pieces on the knuckle joint presses, the article gives the rationale for the relevance of forging in a short period of time, provided that the moving parts of the press accumulate the required kinetic energy. This can be achieved only through modernization and improvement of forging

  9. Reviving the Ancient Art of Making Persian Crucible Steel for Bladed Weaponry

    Directory of Open Access Journals (Sweden)

    Manouchehr Moshtagh Khorasani

    2012-07-01

    Full Text Available This article is intended to both explain three traditional methods of manufacturing Persian crucible steel and to describe recent attempts by three German bladesmiths to replicate the results of traditional crucible steel making. The article will explain the process of making crucible steel, from the making of crucible steel cakes and forging of crucible cakes into bars, to polishing and etching these bars to reveal the crucible steel pattern. First described are three traditional methods of making crucible steel that are mentioned in Persian manuscripts. Second, elaborations are provided on three different modern processes carried out by three different talented German smiths, Achim Wirtz, Andreas Schweikert, and Cyrus Haghjoo. Finally, illustrations are shown some finished crucible steel blades made by Achim Wirtz and Andreas Schweikert as well as some crucible steel knives, made by the talented Belgian knifemaker Salsi Alessio, made from crucible steel bars provided by Achim Wirtz.

  10. Manufacturing of complex high strength components out of high nitrogen steels at industrial level

    Institute of Scientific and Technical Information of China (English)

    Hannes NONEDER; Marion MERKLEIN

    2012-01-01

    High performance components,e.g.,fasteners,nowadays are usually made out of cold forged and heat treated steels like steel 1.5525 (20MnB4).To overcome the problems of heat treatment,e.g.,low surface quality,new workpiece materials for cold forging should be found to achieve the needlessness of heat treatment after cold forging.One possible material is given by high nitrogen steels like steel 1.3815 (X8CrMnN19-19).Due to the high strain hardening of these materials the process and tool design for an industrial batch process are challenging and should be conducted by FE-simulation.The numerical results show that,high strength tool materials,like PM-steels or cemented carbides,in most cases,are inevitable.Additionally to the selection of suitable tool materials,the tool layout should be developed further to achieve a high loadability of the tools.The FE-models,used for process and tool design,are validated with respect to the materials' flow and occurring forming force to assure a proper design process.Also the comparison of strength of components made out of steel 1.5525 in quenched and tempered conditions and steel 1.3815 in strain hardened condition is done.The results show that the component made of steel 1.3815 has a significantly higher strength than the component made of steel 1.5525.This shows that by the use of high nitrogen steels a high performance component can be manufactured by cold forging.

  11. Forces at the Main Mechanism of a Railbound Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2015-12-01

    Full Text Available Forging manipulators have become more prevalent in the industry today. They are used to manipulate objects to be forged. The most common forging manipulators are moving on a railway to have a greater precision and stability. They have been called the railbound forging manipulators. In this paper we determine the driving forces of the main mechanism from such manipulator. Forces diagram shows a typical forging manipulator, with the basic motions in operation process: walking, motion of the tong and buffering. The lifting mechanism consists of several parts including linkages, hydraulic drives and motion pairs. Hydraulic drives are with the lifting hydraulic cylinder, the buffer hydraulic cylinder and the leaning hydraulic cylinder, which are individually denoted by c1, c2 and c3. In this work considering that the kinematics is being solved it determines the forces of the mechanism. In the first place shall be calculated all external forces from the mechanism (The inertia forces, gravitational forces and the force of the weight of the cast part. Is then calculated all the forces from couplers. 

  12. Defect analysis of complex-shape aluminum alloy forging

    Institute of Scientific and Technical Information of China (English)

    SHAN De-bin; ZHANG Yan-qiu; WANG Yong; XU Fu-chang; XU Wen-chen; L(U) Yan

    2006-01-01

    The isothermal precision forging was applied for the purpose of forming aluminum alloy with complex shape. The complexity of forging is easy to lead to the occurrence of the defects, such as underfilling, folding, metal flow lines disturbance and fibre breaking. The reasons for the defects were analyzed on the basis of experiments and finite element method(FEM). The results show that the size of flash gutter bridge, the lubricating condition and the deformation process are the main factors influencing the filling qualities of complex-shape aluminum alloy forging. The folding defect is mainly caused by different velocities of filling cavities, fast flow of much metal in one direction and confluence of two or multi metal strands. Improper metal distribution in different regions can cause the flow lines disturbance and fast metal flow in one direction is also a cause of the flow lines disturbance According to the reasons, some measures were taken to improve the quality of the forged parts. These studies can contribute to offering some experiences in making process project and optimizing the process parameters for forging complex-shape aviation products.

  13. Analysis of reforming process of large distorted ring in final enlarging forging

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Takeshi; Murai, Etsuo [Kushiro National College of Technology, Dept. of Mechanical Engineering, Kushiro, Hokkaido (Japan)

    2002-10-01

    In the construction of reactors or pressure vessels for oil chemical plants and nuclear power stations, mono block open-die forging rings are often utilized. Generally, a large forged ring is manufactured by means of enlarging forging with reductions of the wall thickness. During the enlarging process the circular ring is often distorted and becomes an ellipse in shape. However the shape control of the ring is a complicated work. This phenomenon makes the matter still worse in forging of larger rings. In order to make precision forging of large rings, we have developed the forging method using a v-shape anvil. The v-shape anvil is geometrically adjusted to fit the distorted ring in the final circle and reform automatically the shape of the ring during enlarging forging. This paper has analyzed the reforming process of distorted ring by computer program based on F.E.M. and examined the effect on the precision of ring forging. (author)

  14. Basic rules for rheologic forging process of semisolid alloy

    Institute of Scientific and Technical Information of China (English)

    Shuming Xing; Lizhong Zhang; Jianbo Tan; Chuanlin Zheng; Hanwu Liu; Peng Zhang; Yunhui Du

    2004-01-01

    Semisolid mold forging is a major type of semisolid processing, which is different from neither traditional mold forging nor traditional permanent casting. However, processing defects are often seen in work pieces because of lacking available rules for the process design and control. Some basic rules for the process design and control, simply named the shortest flowing length, pressure filling and the minimum uplifting mold pressure, are advanced in the paper based on amount of researches and experiments. The equations to determine the major process parameters are given out such as the filling pressure, forming pressure and locking mold pressure for the process design and control. The rules and equations are experimentally proved available and applicable by several actual work pieces produced by the semisolid forging process.

  15. Precision forging technologies for magnesium alloy bracket and wheel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fundamental investigations on precision forging technology of magnesium alloys were studied. As-cast billet prestraining and a new concept of hollow billet were proposed in order to reduce the maximum forming load. A scheme of isothermal forming and the use of combined female dies were adopted, which can improve the die filling capacity and ensure the manufacture of high quality forgings. By means of the developed technique, AZ80 alloy wheel and AZ31 alloy bracket were produced successfully at suitable process parameters and applied in the automotive industries. The results show that the hot compression of AZ80 magnesium alloy has the peak flow stresses of pre-strained alloy with finer grain, which are lower by 20% than those of as-cast alloy under the same deformation conditions. The forming load is related to contact area and average positive stress on interface during forging process.

  16. Isothermal forging of γ-TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    黄朝晖

    2003-01-01

    The true stress-strain curves and processing window of Ti-47Al-2Cr-1Nb were set up through thermal physical simulation.A method for refinement of the as-cast+ HIPped structure was submitted,which included twostep deformation with a short intermediate heat-treatment between double deformations.The break-down operation of the canned ingot was performed by the isothermal forging processing mentioned above.The refining mechanism is characterized as breaking and bending of the as-cast+HIPped lamellae,dynamic recrystallization,and static globularization.Thus,a uniform and refined billet microstructure is obtained for the final component by forging operation.The deformation of a model disc is accomplished by the subsequent single-step isothermal forging at 1 100-1 150℃ using a closed compression die.

  17. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows

  18. Investigation of the influence of hybrid layers on the life time of hot forging dies

    OpenAIRE

    Legutko, S.; Meller, A.; Gajek, M.

    2013-01-01

    The paper deals with the issues related in the process of drop forging with special attention paid to the durability of forging tools. It presents the results of industrial investigation of the influence of hybrid layers on hot forging dies. The effectiveness of hybrid layers type nitrided layer/PVD coating applied for extending the life of forging tools whose working surfaces are exposed to such complex exploitation conditions as, among others, cyclically varying high thermal and mechanical ...

  19. Research on Integrated Casting and Forging Process of Aluminum Automobile Wheel

    OpenAIRE

    Zhang, Qi; Cao, Miao; ZHANG, DAWEI; Zhang, Shuai; Sun, Jue

    2014-01-01

    Integrated casting and forging process (ICFP) is a new manufacturing method combining the advantages of both casting and forging. Aluminum structure parts, such as aluminum alloy automobile wheel, with complex shape and excellent mechanical properties can be produced by this process. The effects of different process parameters on the ICFP of the automobile wheel were simulated by Forge software. Microstructure of forging region and the nonforging region were studied by experiment. The results...

  20. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.;

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... the number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material...

  1. Improving durability of hot forging tools by applying hybrid layers

    Directory of Open Access Journals (Sweden)

    Z. Gronostajski

    2015-10-01

    Full Text Available This paper deals with problems relating to the durability of the dies used for the hot forging of spur gears. The results of industrial tests carried out on dies with a hybrid layer (a nitrided layer (PN + physical vapor deposition (PVD coating applied to improve their durability are presented. Two types of hybrid layers, differing in their PVD coating, were evaluated with regard to their durability improvement effectiveness. The tests have shown that by applying hybrid layers of the nitrided layer/PVD coating type one can effectively increase the durability of hot forging tools.

  2. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K.; Uhlemann, M.; Engelmann, H.J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  3. Numerical modelling of damage evolution in ingot forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf;

    2015-01-01

    The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of fe...

  4. Vienna-Rotterdam: Forging the Future Urban strategies compared

    NARCIS (Netherlands)

    Rosemann, J.; Wigmans, G.

    1996-01-01

    De rol van de publieke planning en de mogelijkheid (en ook de wenselijkheid) om de stedelijke ontwikkeling in het postindustriële tijdperk te sturen zijn de centrale thema's van de conferentie "Vienna - Rotterdam: Forging the Future". De conferentie wordt georganiseerd door de bouwkundefaculteiten v

  5. 76 FR 168 - Heavy Forged Hand Tools From China

    Science.gov (United States)

    2011-01-03

    ... following classes or kinds of heavy forged hand tools from China: (1) Axes and adzes, (2) bars and wedges... four Domestic Like Products: (1) Axes, adzes, and hewing tools, other than machetes, with or without... Industries: (1) Domestic producers of axes, adzes and hewing tools, other than machetes, with or...

  6. Gao Qingmin:Forging a Legend Back to Life

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    SWORD-MAKER Gao Qingmin first dreamt of making swords when standing by his father at the furnace. As a teenager, he was apprenticed to his blacksmith father Gao Xikun, and schooled in stories of master ironsmiths Ou Yezi and Gan Jiang,both famous for forging highquality Tangxi swords.

  7. Parallelisation of seismic algorithms using PVM and FORGE

    NARCIS (Netherlands)

    Wedemeijer, H.; Cox, H.L.H.; Verschuur, D.J.; Ritsema, I.L.

    1996-01-01

    The processing of seismic data, for the imaging of the earth's subsurface, is pushing current computational possibilities to the limit. In this paper results are presented obtained by optimisation and parallelisation of two innovative seismic algorithms with the use of PVM and FORGE. It shows that w

  8. strength and ductility of forged 1200 aluminum alloy reinforced with ...

    African Journals Online (AJOL)

    eobe

    Results show that forged composites with 106μm had a tensile strength .... W. Ag. Sn. Co. % Composition 0.243 0.004 0.005 0.08 0.01. Element. Ni. Cr. Mo. % Composition .... parameters on the porosity content in Al(Mg)-Al2O3 cast particulate ...

  9. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    OpenAIRE

    Opiela M.; Grajcar A.

    2012-01-01

    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and...

  10. Tensile properties of the modified 13Cr martensitic stainless steels

    Science.gov (United States)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  11. Mechanical Property of Low Chromium Semi-Steel Grinding Ball Prepared by Cross Rolling

    Institute of Scientific and Technical Information of China (English)

    CHANG Li-min; MENG De-liang; NIE Pu-lin; LIU Jian-hua

    2004-01-01

    The preparing method, rolling technology and mechanical properties of low chromium semi-steel grinding ball by cross rolling were studied. The results show that when the low chromium semi-steel bar is forged from 55 mm to 50 mm, cross-rolled into grinding ball at 1 000-1 050 ℃, air cooled and tempered at 550 ℃ for 2 h, the best mechanical properties, especially the abrasive resistance under the action of hard abrasive, can be obtained.

  12. Yield improvement and defect reduction in steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Kent Carlson

    2004-03-16

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  13. Bainitic transformation plasticity during continuous cooling process of A508-3 steel used for large nuclear power forgings%A508-3核电大锻件用钢连续冷却贝氏体的相变塑性

    Institute of Scientific and Technical Information of China (English)

    刘飞; 韩利战; 顾剑锋; 潘健生

    2013-01-01

    用Gleeble-3500热模拟试验机研究了A508-3钢在单轴压应力下的连续贝氏体相变诱发的相变塑性.借助于从膨胀曲线分离相变塑性应变的数据处理方法,获得了压应力对贝氏体相变塑性的影响规律.结果表明:基于Greenwood-Johnson模型的贝氏体相变塑性参数K随着外加压应力的增大而增大,并且相变塑性应变占总应变的比重显著增加.相变塑性应变随贝氏体相变进行逐渐增大,增速先快后慢.%Transformation plasticity induced by continuous bainitic transformation in A508-3 steel with different applied compressive loads was investigated using a Gleeble 3500 thermal simulator. The effects of compressive stress on bainite transformation plasticity had been obtained with the aid of data processing method by which the transformation plasticity strain can be extracted from dilatometric curves. The results show that the transformation plasticity parameter K based on Greenwood-Johnson model increases with the increasing of the applied compressive loads, and the percentage of transformation plasticity strain in total strain dramatically rises as well. Transformation plasticity gradually augments during the process of bainitic transformation with a decreasing rate.

  14. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  15. Steel Spring

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Tarnished Hebei Iron and Steel Group regains chance to shine A lthough it is too early to tell whether the steel-making sector has emerged [from its gloom, a big divide is openling between China’s large and small producers. While most of the marginal players are still reeling from a market contagion, steel titans like the Shanghai-based Baosteel

  16. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    Science.gov (United States)

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  17. Prevention of thinning at disc center during rotary forging

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the simulation and analysis of the rotary forging of a disc using a finite element method, which re veals the thinning at the disc center is caused by higher radial and tangential tensile stresses resulting from the local loading of a rotary die and acting at the center of a workpiece, and proposes a new design of rotary die with a hole opened in its center to prevent the continuous occurrence of shortening in the axial direction and elongation in the tan gential and radial directions, and concludes from simulation results that the rotary die with a hole opened in its center is effective for prevention of thinning or cracking at the center of a disc during rotary forging.

  18. Pillars of Power: Silver and Steel of the Ottoman Empire.

    Science.gov (United States)

    Nerantzis, N.

    The Ottoman Empire was forged over disintegrating Byzantium, stretching across Anatolia and the Balkans and ruled for almost five centuries. One crucial parameter that allowed for its quick expansion has been a combination of economic wealth and superiority of armed forces. The Ottomans succeeded in both sectors by promoting innovative technology in the field of silver and steel production for supplying their monetary system and weapons industry. Rich mines and smelting workshops provided increased output in metals, allowing for quick expansion and economic growth. Some of the major centres for silver and steel production are being discussed in this paper in conjunction with analytical data from smelting residues.

  19. Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR): A Logic Model.

    Science.gov (United States)

    Gill, Simone V; Khetani, Mary A; Yinusa-Nyahkoon, Leanne; McManus, Beth; Gardiner, Paula M; Tickle-Degnen, Linda

    2017-07-01

    In a patient-centered care era, rehabilitation can benefit from researcher-clinician collaboration to effectively and efficiently produce the interdisciplinary science that is needed to improve patient-centered outcomes. The authors propose the use of the Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR) logic model to provide guidance to rehabilitation scientists and clinicians who are committed to growing their involvement in interdisciplinary rehabilitation research. We describe the importance and key characteristics of the FAIRR model for conducting interdisciplinary rehabilitation research.

  20. Forging process modeling of cone-shaped posts

    Institute of Scientific and Technical Information of China (English)

    Xuefeng Liu; Lingyun Wang; Li Zhang

    2004-01-01

    Using the rigid visco-plastic Finite Element Method (FEM), the process of forging for long cone-shaped posts made of aluminum alloys was modeled and the corresponding distributions of the field variables were obtained based on considering aberrance of grids, dynamic boundary conditions, non-stable process, coupled thermo-mechanical behavior and other special problems.The difficulties in equipment selection and die analysis caused by the long cone shape of post, as well as by pressure calculation were solved.

  1. Constitutive Equation of Superalloy In718 in Hammer Forging Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A constitutive equation reflecting the flow behavior ofSuperalloy In718 during the counter-blow hammer forging process was developed in terms of the relationship of flow stress and hot-deformation parameters, such as strain, strain rate, and deformation temperature. A new simplified approach for the complex multi-pass stress-strain curves has been attempted. The simulation curves calculated by constitutive equation are consistent with the experimental data.

  2. A Short Study of Large Rotary Forged Cylinders

    Science.gov (United States)

    1979-06-01

    Bottom) 7 Microstructure at mid-wall of reheat treated rotary 25 forged cylinders - Martensite- Bainite 8 Martensitic microstructure of (a) normalized...also was unsatisfactory (Table 2). The microstructure at the mid-wall of both the top and bottom showed evidence of ferrite and bainite (Figs. 1 and...austenitized, and of bainite , showing that the material transformed to austenite had been in- adequately quenched, since martensite is the desired product

  3. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅰ)--Microstructural analyses

    Institute of Scientific and Technical Information of China (English)

    刘咏; 韦伟峰; 黄伯云; 何双珍; 周科朝; 贺跃辉

    2002-01-01

    By using thermal simulation technique, the conventional canned-forging process of TiAl based alloy was studied. The effect of can parameters on the microstruct ures of TiAl alloy was analyzed in this process. The results show that, the defo rmation microstructure of TiAl based alloy without canning is inhomogeneous. In lateral area, crack and shearing lines can be found; while in central area, fine -grained shearing zone can be found. The effect of can is to reduce the seconda ry tensile stress. However, only when the deformation of the steel can is coinci dental with that of TiAl alloy ingot, can this effect be effective. Moreover, a thick can would enhance the microstructural homogeneity in TiAl based alloy. With the H/D ratio of the ingot increasing, the deformation of TiAl alloy would be more unsteady, therefore, a thicker can should be needed.

  4. Ensuring and improving corrosion resistance in high-alloy welds. Final report; Sicherung und Steigerung der Korrosionsbestaendigkeit hochlegierter Schweissverbindungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-22

    The welding process of the two high-alloy austenitic steels X5CrNiMo17 12 2 (1.4404) and X1NiCrMoCuN25 20 5 (1.4539) and the subsequent maintenance of the welds were to be optimized. This comprised detailed investigations into the interdependence between welding technologies and surface treatment. Systematic investigations showed that even with optimized processes, welding involves considerable stress to the materials, leading to structural changes, higher intrinsic stress and tarnish layers. Investigations of surface finishing processes showed that the finishing process and tools have significant effect on corrosion. (orig.) [German] Das Forschungsvorhaben hatte zum Ziel, neben der Optimierung des Schweissprozesses der beiden hochlegierten austenitischen Staehle X5CrNiMo17 12 2 (1.4404) und X1NiCrMoCuN25 20 5 (1.4539), eine auf den Schweissprozess abgestimmte ''Nachsorge'' zu optimieren. Das heisst, dass die Zusammenhaenge zwischen der jeweiligen Schweisstechnologie und der Oberflaechennachbehandlung in ihrer Vielschichtigkeit grundlegend untersucht werden sollen. Es konnte anhand von systematischen schweisstechnischen und werkstofftechnischen Untersuchungen gezeigt werden, dass auch nach einer umfassenden Optimierung des Schweissprozesses das Schweissen fuer den Werkstoff eine erhebliche Beeinflussung darstellt. Es kommt zu Gefuegeveraenderungen, zur Erhoehung der Eigenspannungen und zur Ausbildung von Anlaufschichten. Diese durch das Schweissen bedingten Effekte ueben allesamt einen grossen Einfluss auf das Korrosionsverhalten aus. Weder durch die Optimierung der Schweissparameter (z. B. Streckenenergie) noch durch die Wahl der Art des zu verwendenen Schutz- bzw. Wurzelschutzgases kann die Ausbildung der Anlaufschichten und eine daraus resultierende Veraenderung der Korrosionsbestaendigkeit verhindert werden. Das Korrosionsverhalten laesst sich jedoch positiv z.B. durch die Art des Schutzgases bei Einhaltung der optimierten Schweissparameter

  5. Effect of Homogenization &Quenching Media on the Mechanical Properties of Sintered Hot Forged AISI 9250 P/MSteel Preforms

    Directory of Open Access Journals (Sweden)

    S. Aamani

    2014-10-01

    Full Text Available Present investigation is an attempt to generate experimental data in order to establish the influence of homogenization and cooling media on the mechanical properties of hot forged AISI 9250 sintered P/M steel to square cross-section bars produced using elemental powders. The elemental powders corresponding to final AISI 9250 composition ofFe-0.5%C-0.75%Mn-2.0%Si were taken in an appropriate proportion and blended in a pot mill for a period of 32 hours while maintaining the powder to ball ratio by weight as 1.1:1. Compacts of 28mm diameter and 36mm height were prepared on a 1.0 MN capacity Universal Testing Machine (UTM and using suitable die, punch and bottom insert assembly in the density range of 85±1 percent of theoretical by applying the pressure in the range of 550±10 MPa and by taking pre-weighed powder blend. In all 36 compacts were prepared. These green compacts were coated using the indigenously developed ceramic coating and the same was allowed to dry under the ambient conditions for a period of 14-16 hours. These ceramic coated compacts were re-coated 90° to the previous coating and re-dried under the aforementioned conditions for the same length of time. Ceramic coated compacts were sintered in an electric muffle furnace at 1120±10°C for a period of 120 minutes and subsequently hot forged to square cross-section bars of approximate dimensions of 14mm X 14mm X 95-100mm on a friction screw press of 1.00MN capacity at the sintering temperature itself. Nine forged specimens were oil quenched and remaining 27 forged bars were homogenized at the sintering temperature for a period of 60 minutes followed by quenching nine of them in oil, nine specimens in air and remaining nine were cooled in the furnace itself. Standard tensile specimens were prepared from each set and tested for evaluation of mechanical properties followed by SEM Fractography on the fractured specimen surfaces. Tensile tests results have established that the

  6. Hot-forging Die Cavity Surface Layer Temperature Gradient Distribution and Determinant

    Institute of Scientific and Technical Information of China (English)

    WANG Huachang; WANG Guan; XIAO Han; WANG Hongfu

    2011-01-01

    Based on the car front-wheel-hub forging forming process of numerical simulation,the temperature gradient expression of forging model cavity near the surface layer was got ten,which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity,specific heat and impact speed,and the correlation coefficient is 0.97.Under the different thermal conductivity,heat capacity and forging speed,the temperature gradient was compared with each other.The paper obtained the relevant laws,which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity > impact speed> specific heat capacity.To reduce thermal stress in the near-surface layer of hot forging cavity,the material with greater thermal conductivity coefficient and specific heat capacity should be used.

  7. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    Science.gov (United States)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  8. Numerical simulation on forging process of TC4 alloy mounting parts

    Institute of Scientific and Technical Information of China (English)

    L(U) Cheng; ZHANG Li-wen

    2006-01-01

    In order to eliminate forging defects appearing in production, based on the rigid-viscoplastic FEM principle, the DEFORM3D software package was employed to simulate the forming process of TC4 alloy mounting part and to optimize the process parameters. In this simulation, the temperature dependency of the thermal and mechanical properties of material was considered. Based on the simulation, the metal flow and thermomechanical field variables such as stress and damage are obtained.The simulation results show that the forging defects are caused by improper die dimension and the optimized die dimension was proposed. To verify the validity of simulation results, forging experiments were also carried out in a forging plant. The forging experiments show that the optimized die dimension can ensure the quality of forging part, and it can provide reference to improve and optimize die design process.

  9. Effect of Laser Preheating AISI 4140 Specimens for Micro-Forging

    Directory of Open Access Journals (Sweden)

    Jung C.

    2017-06-01

    Full Text Available Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process.

  10. Research on Integrated Casting and Forging Process of Aluminum Automobile Wheel

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2014-07-01

    Full Text Available Integrated casting and forging process (ICFP is a new manufacturing method combining the advantages of both casting and forging. Aluminum structure parts, such as aluminum alloy automobile wheel, with complex shape and excellent mechanical properties can be produced by this process. The effects of different process parameters on the ICFP of the automobile wheel were simulated by Forge software. Microstructure of forging region and the nonforging region were studied by experiment. The results show that die temperature, static pressure of the injection piston, forging speed, and material flow have significant influences on the process. Compared with nonforging region, the microstructure of forging region becomes finer, more uniform, and denser. Meanwhile, the casting defects can be removed and mechanical properties improved.

  11. The Effect of Corner Radii and Part Orientation on Stress Distribution of Cold Forging Die

    OpenAIRE

    Ahmad B.  Abdullah; Kam S. Ling; Zahurin Samad

    2008-01-01

    One of the most critical problems in cold forging is the huge stresses generated from the deformation of metal leads to die failure. The distribution of stresses mainly depends on geometry of the die. An approach to optimal design in cold forging die geometry and orientation are presented in this paper. The impression cold forging dies of the Universal joint was generated using three-dimensional CAD modeling software, SolidWorks. This CAD modeling software coupled with FEA tools, COSMOSWorks....

  12. Measurement and Analysis on Hardness and Residual Stress of Heavy Forging after Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hardness and residual stress in the forging for cold roller during low temperature tempering, and the relationship of residual stress and cooling temperature of high temperature tempering for heavy forgings were studied. The stress relaxation constant at low temperature tempering and the elasto-plastisity inversion temperature at high temperature tempering were found. The results are of great importance to determine rational tempering cooling process of heavy forgings.

  13. Cross dies forging: A new method to reduce forging force & price up to 80% thanks to FEM method

    Directory of Open Access Journals (Sweden)

    Mansouri Hamid

    2016-01-01

    Full Text Available Purpose of this article was to introduce a new method of forging which is called “Cross Die Forging”. In this method, the required force (load is reduced to the greatest possible degree through elimination of flash channel; however, this would also decrease the positive effect of flash channel, namely filling the gaps and pores within the mold. Cross die forging procedure provides a way for providing a better preform design which ensures that the mold is filled without allowing the material to enter the flash channel. This method has been invented based on the need to decrease the production costs and to use lower tonnage pressing devices for production of heavy parts. This method is an economical method only for parts that: A Has at least one plane of symmetry and the two ends that are perpendicular to the symmetry plane are flat; B Has a weight that makes it impossible to be manufactured by rolling or roll forging processes. Examples of such parts are valve’s body, T-junctions, etc.

  14. Hot Deformation Behavior and Microstructural Evolution of a Medium Carbon Vanadium Microalloyed Steel

    Science.gov (United States)

    Cutrim, Rialberth M.; Rodrigues, Samuel F.; Reis, Gedeon S.; Silva, Eden S.; Aranas, Clodualdo; Balancin, Oscar

    2016-11-01

    Hot forging of steel requires application of large strains, under which conditions, dynamic recrystallization (DRX) is expected to take place. In this study, torsion tests were carried out on a medium carbon vanadium microalloyed steel (38MnSiVS5) to simulate hot forging. Deformations were applied isothermally in the temperature range 900-1200 °C at strain rates of 0.1-10 s-1 in order to observe for the occurrence of DRX and to investigate for the microstructural evolution during straining. The shape of the flow curves indicated that the recrystallization takes place during deformation. This was supported by optical microscopy performed on the quenched samples which displayed considerable amounts of recrystallized grains. It was shown that the grain size depends on straining conditions such as strain rate and temperature. Finally, it was revealed that these process parameters can considerably affect the evolution of microstructure of industrial grade steels by means of DRX.

  15. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

    Science.gov (United States)

    Čapek, Jaroslav; Kubásek, Jiří; Vojtěch, Dalibor; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-01-01

    An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.

  16. Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging

    Science.gov (United States)

    Prasanna Kumar, Undeti Jacob; Gupta, Pallav; Jha, Arun Kant; Kumar, Devendra

    2016-10-01

    The present paper aims to study the closed die deformation behavior of cylindrical Fe-Al2O3 metal matrix composites (MMCs). Closed die was manufactured by machining the high carbon steel block followed by oil quenching and then finishing. Samples sintered at a temperature of 1100 °C for 1 h were characterized with X-ray diffraction and scanning electron microscopy, which showed the formation of Fe, Al2O3 and nano size FeAl2O4 phases respectively. Density and hardness of the composite samples were determined after sintering. Closed die deformation studies of the prepared composite samples were carried under three different interfacial frictional conditions i.e. dry, solid lubricating and liquid lubricating. Hardness, density and metallographic characterizations were also done for the deformed samples. On comparing the micrographs of the samples before and after deformation it was revealed that in deformed specimens recrystallization has taken place due to the difference in the energy between the strained iron matrix and unstrained alumina reinforcement during closed die forging process. Experimental density of the samples was also verified with the theoretical density using the standard equations. It is expected that the results of the present investigations will be helpful in developing quality MMC components for wide industrial applications.

  17. Corrosion behavior of a welded stainless-steel orthopedic implant.

    Science.gov (United States)

    Reclaru, L; Lerf, R; Eschler, P Y; Meyer, J M

    2001-02-01

    The corrosion behavior of combinations of materials used in an orthopedic implant: the spherical part (forged or forged and annealed) constituting the head, the weld (tungsten inert gas (TIG) or electron beam (EB) techniques), and the cylindrical part (annealed) constituting the shaft of a femoral prosthesis - has been investigated. Open-circuit potentials, potentiodynamic curves, Tafel slope, mixed potential theory and susceptibility to intergranular attack are electrochemical and chemical procedures selected for this work. Electrochemical measurements using a microelectrode have been made in the following zones: spherical part, cylindrical part, weld, and weld/sphere, and weld/shaft interfaces. To detect intergranular attack, the Strauss test has been used. At the interfaces, corrosion currents, measured (Icorr) and predicted (Icouple) are low, in the order of the pico- to nanoampere. The electrochemical behavior of the electron beam (EB) weld is better than that of the tungsten inert gas (TIG). Welds at interfaces can behave either anodically or cathodically. It is better if welds, which are sensitive parts of the femoral prosthesis, behave cathodically. In this way, the risk of starting localized corrosion (pitting, crevice or intergranular corrosion) from a galvanic couple, remains low. From this point of view, the sample with the EB weld offers the best behavior. All the other samples containing a TIG type of weld exhibit a less favorable behavior. The mechanical treatments (forged, and forged and annealed) of the steel sphere did not show any difference in the corrosion behavior. No intergranular corrosion has been observed at the weld/steel interface for unsensitized samples. With sensitized samples, however, a TIG sample has exhibited some localized intergranular corrosion at a distance of 500 microm along the weld/stainless steel (sphere) interface.

  18. APT characterization of high nickel RPV steels

    Science.gov (United States)

    Miller, M. K.; Sokolov, M. A.; Nanstad, R. K.; Russell, K. F.

    2006-06-01

    The microstructures of three high nickel content pressure vessel steels have been characterized by atom probe tomography to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels. The high-nickel, low-manganese, low-copper VVER-1000 weld and forging exhibited lower than predicted levels of embrittlement during neutron irradiation. The Palisades weld exhibits a Δ T41 J of 102 °C which was significantly lower than the value of 154 °C predicted by Reg. Guide 1.99 Rev. 2. Atom probe tomography revealed nickel-, manganese-, and silicon-enriched precipitates in both the VVER-1000 base and weld materials after neutron irradiation. A high number density of copper-, nickel-, manganese-, silicon- and phosphorus-enriched precipitates were observed in the Palisades weld after neutron irradiation. Atom probe tomography also revealed high levels of phosphorus segregation to the dislocations in all three materials.

  19. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...

  20. A new Friction and Lubrication Test for Cold Forging

    DEFF Research Database (Denmark)

    Bay, Niels; Wibom, Ole; Aalborg Nielsen, J

    1995-01-01

    This paper presents a new friction and lubrication test for cold forging. The test allows controlled variation of the surface expansion in the range 0-2000%, the tool temperature in the range 20-270°C and the sliding length between 0 and infinite. Friction is decreasing with increasing temperature...... in the range 30-150°C. Above this temperature range friction increases. As regards lubricant performance Lubrication Limit Curves (LLC) are plotted in a sliding length-surface enlargement diagram with the tool temperature as a parameter. Larger tool temperature implies lower acceptable surface expansion...

  1. Environmentally Benign Lubricant Systems For Cold, Warm And Hot Forging

    DEFF Research Database (Denmark)

    Bay, Niels

    2010-01-01

    The growing awareness of environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has initiated ever increasing efforts to develop new, environmentally benign tribological systems for metal forming. The present...... paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging. The paper is an extract of the keynote paper [3] written by the author together with eight co-authors referring to collected papers and other information from more than 30 different...

  2. Manufacturing involving forging of multiple objects in contact

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, W.; Martins, P.A.F.

    Finite element modeling of multi-object manufacturing processes is presented with supporting experiments. The underlying finite element implementation is based on the flow formulation and further coupled with thermal and electrical models to accomplish electro-thermo-mechanical simulation. All...... and dissimilar materials. While being plastically deformed against each other under increasing forging load, the parts dynamically develop their mutual contact interfaces. Comparisons of the final geometry as well as force-displacement curves are evaluated. The potential of simulated applications are discussed...

  3. Modeling Cavitation in ICE Pistons Made with Isothermal Forging

    Directory of Open Access Journals (Sweden)

    V.V. Astanin

    2014-07-01

    Full Text Available Possible causes for cavitations in parts made with an Al-Si eutectic alloy AK12D (AlSi12 were explored with mathematical and physical modeling with involved acoustic emission. Pores were formed from micro-cracks, which appear during the early stages of a deformation process, with the help of micro-stresses appearing at phase boundaries (Al/Si interface due to thermal expansion. At the design stage of isothermal forgings of such products it is recommended to provide a scheme of the deformed shape, which is under uniform compression, to compensate for the inter-phase stresses.

  4. 大锻件 KD 压实锻造工艺模拟研究%Simulation Research of Compaction Forging Process for Large Forgings with KD Method

    Institute of Scientific and Technical Information of China (English)

    徐明昊; 王敬禹; 刘建红

    2013-01-01

      利用数值模拟方法对锻造过程中的锻造温度场、V型砧砧宽和布砧方式等工艺参数对锻件心部质量的影响进行了研究。结果表明,温度梯度、宽大V型砧和交替布砧的方式能够有效地提高锻件心部的压实效果。%The influence of the technological parameters during forging , such as forging temperature field, V shaped anvil width and anvil distribution mode on the quality of forging core is researched by numerical simulation .The result shows that the temperature gradient , V shaped wide anvil and alternating anvil distribution can effectively im-prove the compaction effect of forging core .

  5. Forging; Heat Treating and Testing; Technically Oriented Industrial Materials and Process 1: 5898.05.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…

  6. [Research on the inner wall condition monitoring method of ring forgings based on infrared spectra].

    Science.gov (United States)

    Fu, Xian-bin; Liu, Bin; Wei, Bin; Zhang, Yu-cun; Liu, Zhao-lun

    2015-01-01

    In order to grasp the inner wall condition of ring forgings, an inner wall condition monitoring method based on infrared spectra for ring forgings is proposed in the present paper. Firstly, using infrared spectroscopy the forgings temperature measurement system was built based on the three-level FP-cavity LCTF. The two single radiation spectra from the forgings' surface were got using the three-level FP-cavity LCTF. And the temperature measuring of the surface forgings was achieved according to the infrared double-color temperature measuring principle. The measuring accuracy can be greatly improved by this temperature measurement method. Secondly, on the basis of the Laplace heat conduction differential equation the inner wall condition monitoring model was established by the method of separating variables. The inner wall condition monitoring of ring forgings was realized via combining the temperature data and the forgings own parameter information. Finally, this method is feasible according to the simulation experiment. The inner wall condition monitoring method can provide the theoretical basis for the normal operating of the ring forgings.

  7. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    Science.gov (United States)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  8. MM 99.58 Physical modelling of Hammerhead forging, Vertical and Lateral load history

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Morten; Wanheim, Tarras

    1999-01-01

    The present report presents a laboratory setup with hammerhead forging, where the vertical and lateral force history is obtained under different process conditions......The present report presents a laboratory setup with hammerhead forging, where the vertical and lateral force history is obtained under different process conditions...

  9. Winter Weather at Valley Forge 1777-1778: A Lesson in Climatic Reconstruction.

    Science.gov (United States)

    Ansley, Mary Jane; Pritchard, Sandra F.

    1987-01-01

    Notes that the story of George Washington's encampment at Valley Forge is seldom told without reference to the bitter cold winter Washington and his troops endured. Shows how to use historical reports of weather information to allow students to judge for themselves whether the winter at Valley Forge then was harsher than winters in the same area…

  10. Influence of Partial Replacement of Nickel by Nitrogen on Microstructure and Mechanical Properties of Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    A. Ahmed

    2011-01-01

    Furthermore, the produced forged steels were subjected to solution treatment at different temperatures. The microstructure of produced stainless steels was observed. The X-ray diffractmeter and Mossbauer effect spectroscopy were used to follow the phase change in reference and modified steels after different heat treatment temperatures. The influence of grain-size, soluble, and insoluble nitrogen on tensile strength and hardness was investigated. The major phase in the modified steel has a fcc structure similar to the reference one, but with finer grains and more expanded lattice. The yield strength and hardness of the nitrogen-modified stainless steel are higher than the reference steel. On the other hand, the increase of nitrogen content deteriorates the steel ductility.

  11. Steel Planning

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China releases a new plan for the iron and steel industry centered on industrial upgrades The new 12th Five-Year Plan (2011-15) for China’s iron and steel industry, recently released on the website of the Ministry of Industry and Information

  12. Assessment of long-term creep strength of grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuhiro; Sawada, Kota; Kushima, Hideaki [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    In 2004 and 2005 long-term creep rupture strength of ASME Grade 91 type steels of plate, pipe, forging and tube materials was evaluated in Japan by means of region splitting analysis method in consideration of 50% of 0.2% offset yield stress. According to the evaluated 100,000h creep rupture strength of 94MPa for plate, pipe and forging steels and 92MPa for tube steel at 600 C, allowable tensile stress of the steels regulated in the Interpretation for the Technical Standard for Thermal Power Plant was slightly reduced. New creep rupture data of the steels obtained in the long-term indicate further reduction of long-term creep rupture strength. Not only creep rupture strength, but also creep deformation property of the ASME Grade 91 steel was investigated and need of reevaluation of long-term creep strength of Grade 91 steel was indicated. A refinement of region splitting analysis method for creep rupture like prediction was discussed. (orig.)

  13. RESEARCH ON THE WARM FORGING OF ALUMINUM ALLOYS:DEVELOPMENT OF A FORMULA TO DESCRIBE THE SOFTENING BEHAVIOR OF A2011 IN FORGING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.H. Zhang, K. Osakada; X. Y. Ruan

    2003-01-01

    To understand the forming behaviour of aluminum alloys, the upsetting test of alu-minum alloys at evaluated temperature is conducted. Because in warm forging theflow stress decreases with increasing straining, which is so-called work softening, noappropriate material formulation is available. For the evaluation of flow stress ofaluminum alloys in warm forging processes, in this paper, a formula is derived byanalyzing the stress data measured at various temperatures. It is demonstrated thatthe formula fits the flow stress obtained from experiment.

  14. Simulation and analysis of hot forging process for industrial locking gear elevators

    Science.gov (United States)

    Maarefdoust, M.; Kadkhodayan, M.

    2010-06-01

    In this paper hot forging process for industrial locking gear elevators is simulated and analyzed. An increase in demand of industrial locking gear elevators with better quality and lower price caused the machining process to be replaced by hot forging process. Production of industrial locking gear elevators by means of hot forging process is affected by many parameters such as billet temperature, geometry of die and geometry of pre-formatted billet. In this study the influences of billet temperature on effective plastic strain, radius of die corners on internal stress of billet and thickness of flash on required force of press are investigated by means of computer simulation. Three-dimensional modeling of initial material and die are performed by Solid Edge, while simulation and analysis of forging are performed by Super Forge. Based on the computer simulation the required dies are designed and the workpieces are formed. Comparison of simulation results with experimental data demonstrates great compatibility.

  15. RESEARCH ON INFLUENCE OF TEMPERATURE ON A PRECISION FORGING PROCESS OF BLADE WITH A TENON

    Institute of Scientific and Technical Information of China (English)

    Y.L. Liu; H. Yang; T. Gao; M. Zhan; W. Cai

    2005-01-01

    The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstructure of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalent stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors. The results obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant.

  16. New Development of Acid Regeneration in Steel Pickling Plants

    Institute of Scientific and Technical Information of China (English)

    W F Kladnig

    2008-01-01

    For acid pickling heat treated mild steel and steel products,up to the middle of the last century,sulfuric acid was primarily in use,which has been replaced stepwise by hydrochloric acid since the sixties.During this time,the pickling of high alloyed steel with hydrofluoric acid or mixtures for hydrofluoric acid together with nitric acid has also been applied on industrial scale.The technologies used by several plant contractors hereby show considerable differences in their engineering.The study provides a survey of the progress in the state of art of regeneration technology as well as the use of different pickling media in the form of a review on existing technologies as well as improvements done within the recent years in the area.

  17. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  18. Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    Science.gov (United States)

    2015-04-14

    and ER308LSi consumables . The corresponding welding procedures are provided in Appendix E. Figure 5.8 shows the welding process involved in the...based welding consumable with high alloying content of Cu. Similar behavior would be expected in GMAW with other Ni-based consumables . The source of Ni... CONSUMABLES FOR WELDING STAINLESS STEELS Project Engineer: Kathleen Paulson, NAVFAC Engineering and Expeditionary Warfare Center Contractor: Dr. Boian

  19. Fatigue experience from tests carried out with forged beam and frame structures in the development of the Saab aircraft Viggen

    Science.gov (United States)

    Larsson, S. E.

    1972-01-01

    A part of the lower side of the main wing at the joint of the main spar with the fuselage frame was investigated. This wing beam area was simulated by a test specimen consisting of a spar boom of AZ 74 forging (7075 aluminum alloy modified with 0.3 percent Ag) and a portion of a honeycomb sandwich panel attached to the boom flange with steel bolts. The cross section was reduced to half scale. However, the flange thickness, the panel height, and the bolt size were full scale. Further, left and right portions of the fuselage frame intended to carry over the bending moment of the main wing were tested. Each of these frame halves consisted of a forward and a rear forging (7079 aluminum alloy, overaged) connected by an outer and inner skin (Alclad 7075) creating a box beam. These test specimens were full scale and were constructed principally of ordinary aircraft components. The test load spectrum was common to both types of specimens with regard to percentage levels. It consisted of maneuver and gust loads, touchdown loads, and loads due to ground roughness. A load history of 200 hours of flight with 15,000 load cycles was punched on a tape. The loads were randomized in groups according to the flight-by-flight principle. The highest positive load level was 90 percent of limit load and the largest negative load was -27 percent. A total of 20 load levels were used. Both types of specimens were provided with strain gages and had a nominal stress of about 300 MN/sq m in some local areas. As a result of the tests, steps were taken to reduce the risk of fatigue damage in aircraft. Thus stress levels were lowered, radii were increased, and demands on surface finish were sharpened.

  20. submitter Physical Properties of a High-Strength Austenitic Stainless Steel for the Precompression Structure of the ITER Central Solenoid

    CERN Document Server

    Sgobba, Stefano; Arauzo, Ana; Roussel, Pascal; Libeyre, Paul

    2016-01-01

    The ITER central solenoid (CS) consists of six independent coils kept together by a precompression support structure that must react vertical tensile loads and provide sufficient preload to maintain coil-to-coil contact when the solenoid is energized. The CS precompression system includes tie plates, lower and upper key blocks, load distribution and isolation plates and other attachment, support and insulating hardware. The tie plates operating at 4 K are manufactured starting from forgings in a high-strength austenitic stainless steel (FXM-19) with a stringent specification. Moreover, forged components for the lower and upper key blocks have to be provided in the same FXM-19 grade with comparably strict requirements. FXM-19 is a high-nitrogen austenitic stainless steel, featuring high strength and toughness, ready weldability, and forgeability. It features as well higher integral thermal contraction down to 4 K compared with the very high Mn steel grade selected for the CS coil jackets, hence providing an ad...

  1. Computer Οptimization of Geometric Form of Tool and Preform for Closed-die Forging of Compressor Blade Simulator

    Directory of Open Access Journals (Sweden)

    A. V. Botkin

    2014-07-01

    Full Text Available Using the software package DEFORM 3D when developing technology of isothermal forging workpiece blades it is possible to reduce the pre-production time, to improve the quality of forgings and increase lifetime of forging dies. Computer modeling allows to predict the formation of such defects during forging as notches and wrinkles, underfilling of die impression, to estimate tool loads. Preform shape and angular position of the blade simulator were optimized in order to minimize the lateral forces generated during the forging operation.

  2. Using of material-technological modelling for designing production of closed die forgings

    Science.gov (United States)

    Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.

    2017-02-01

    Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.

  3. Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods

    Science.gov (United States)

    Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.

    2016-09-01

    This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.

  4. Research on Energy-Saving Production Scheduling Based on a Clustering Algorithm for a Forging Enterprise

    Directory of Open Access Journals (Sweden)

    Yifei Tong

    2016-02-01

    Full Text Available Energy efficiency is a buzzword of the 21st century. With the ever growing need for energy efficient and low-carbon production, it is a big challenge for high energy-consumption enterprises to reduce their energy consumption. To this aim, a forging enterprise, DVR (the abbreviation of a forging enterprise, is researched. Firstly, an investigation into the production processes of DVR is given as well as an analysis of forging production. Then, the energy-saving forging scheduling is decomposed into two sub-problems. One is for cutting and machining scheduling, which is similar to traditional machining scheduling. The other one is for forging and heat treatment scheduling. Thirdly, former forging production scheduling is presented and solved based on an improved genetic algorithm. Fourthly, the latter is discussed in detail, followed by proposed dynamic clustering and stacking combination optimization. The proposed stacking optimization requires making the gross weight of forgings as close to the maximum batch capacity as possible. The above research can help reduce the heating times, and increase furnace utilization with high energy efficiency and low carbon emissions.

  5. Identification of Project Risks & Risk Breakdown Structure In Manufacture of Heavy Forgings

    Directory of Open Access Journals (Sweden)

    D.K.Singh

    2014-10-01

    Full Text Available Forging companies, especially in the business of manufacture of heavy forged parts are embedded in the supply chain of critical components of capital goods across various industries. These forged parts form a significant portion of the total raw material requirement of the capital goods equipment and is generally on the critical path of project schedule.Failure to meet delivery schedule poses huge threat to the success of the customer’s project. Delivery of these forged items is delayed in an event of failure to meet customer’s quality requirements.Various other uncertainties during the project lifecyclecan also cause delayed delivery. Accordingly, risk management methodologies when employed by the forging supplier to the manufacturing project can result in successful achievement of delivery timelines. The present study is intended to identify the risks (threats to quality and delivery in manufacture of heavy forged components and create a Risk breakdown structure (RBS as a reference for further risk planning by the forging supplier.

  6. Gear hot forging process robust design based on finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Xuewen, Chen [Henan University of Science and Technology, Luoyang (China); Won, Jung Dong [Jeju National University, Jeju (Korea, Republic of)

    2008-09-15

    During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled

  7. Industrial Process Design for Manufacturing Inconel 718 Extremely Large Forged Rings

    Science.gov (United States)

    Ambielli, John F.

    2011-12-01

    Inconel 718 is a Ni-Fe-based superalloy that has been central to the gas turbine industry since its discovery in 1963. While much more difficult to process than carbon or stainless steels, among its superalloy peers Inconel 718 has relatively high forgeability and has been used to make discs, rings, shells, and structural components. A metal forming process design algorithm is presented to incorporate key criteria relevant to superalloy processing. This algorithm was applied to conceptual forging and heat treating extremely large rings of Inconel 718 of diameter 1956 mm (77in) and weight 3252 kg (7155 lb). A 3-stage standard thermomechanical (TMP) processing was used, where Stage 1 strain varied from 0.1190 to 0.2941, Stage 2 from 0.0208 to 0.0357 and Stage 3 from 0.0440 to 0.0940. This was followed by heat treatment of a solution anneal (954°C/1750°F for 4 hour hold), air cool, then a double aging (718°C/1325°F for 8 hour hold; furnace cool to 621°C/1150°F 56°C/100°F per hr; 18 hour total time for both steps). Preliminary mechanical testing was performed. Average yield strength of 951 MPa/138 ksi (longitudinal) and 979 MPa/142 ksi (axial) was achieved. Tensile strengths were 1276 MPa/185 ksi (longitudinal) and 1255 MPa/182 ksi (axial). Elongations and reduction of areas attained were, respectively, 18 (long) and 25 (axial) and 28 (long) and 27 (axial).

  8. Duplex Stainless Steels-An overview

    Directory of Open Access Journals (Sweden)

    Dr. Sunil D.Kahar

    2017-04-01

    Full Text Available Stainless steel is one of the most important materials in the engineering world. The material‟s wide applications in chemical, petrochemical, off-shore, and power generation plants prove that it is one of the most reliable materials. The Newest fast growing family of stainless steels is duplex alloys. The ferritic-austenitic grades have a ferrite matrix intermix with austenite and in other words island of austenite in a continuous matrix of highly alloyed ferrite commonly called „Duplex‟ stainless steel. Duplex stainless steel covers ferritic/austenitic Fe-Cr-Ni alloy with between 30% to 70 % Ferrite .Due to high level of Cr, Mo, and N steels shows high pitting & stress corrosion cracking resistance in chloride-containing environments. Hence it is frequently used in oilrefinery heat exchangers & typical applications where there is a risk for SCC and localized corrosion as a result of chloride-containing process streams, cooling waters or deposits. Modern duplex stainless steels have generally good Weldability. Due to a balanced composition, where nitrogen plays an important role, austenite formation in the heat affected zone (HAZ and weld metal is rapid. Under normal welding conditions a sufficient amount of austenite is formed to maintain good resistance to localized corrosion where as too rapid cooling may result in excessive amounts of ferrite, reducing the toughness. Therefore, welding with low heat input in thick walled materials should be avoided. Welding methods, such as resistance welding, laser welding and electron beam welding, which cause extremely rapid cooling should also be avoided or used with extreme caution. Too slow cooling can in the higher alloyed duplex grades cause formation of inter-metallic phases detrimental to corrosion resistance and toughness.

  9. Effect of Technical Quality of Thermomechanical Die Forging of AA2099 Alloy

    Directory of Open Access Journals (Sweden)

    Łukaszek-Sołek A.

    2014-10-01

    Full Text Available The paper presents the results of investigations of a multicomponent third-generation aluminium alloy, classified as AA2099. The actual forging conditions were determined basing on the assessment of the quality of side surface of specimens subjected to compression in Gleeble 3800 simulator and on flow curves of the alloy, as well as numerical modelling of forging process performed with application of QForm 3D v.7 software. Compression tests were realized at temperatures 400-500 °C, with a strain rate of 0.001-100 s-1, up to a specified constant true strain value of 0.9. Microstructure examination in as-delivered state was performed with application of Leica DM 4000M optical microscope. The obtained results of isothermal deformation of specimens were correlated with the analysis of a characteristic layered pancake-type microstructure. The simulation of die forging of a complex-shape forging (high-current contact tip used in power engineering at the temperature 500 °C, was performed. The shape of a forging makes it possible to fully analyse the influence of thermomechanical process conditions on technical quality of a product. The simulation of forging process showed full correctness of material flow, with no signs of instability. At the same time, the analysis of investigations allowed to prepare and realize the industrial forging trials for a forging of a very complex shape, in a single step, at the temperature 500 °C, with application of thermomechanical treatment. The forging attained high quality of shape and surface. Directional specimens were taken, in order to be subjected to microstructure examination and hardness testing. The data obtained from industrial tests, combined with the results of testing using Gleeble simulator as well as from numerical modelling, make up the guidelines for mechanical processing of AA2099 alloy at the temperatures 470-500 °C.

  10. Internal Shear Forging Processes for Missile Primary Structures.

    Science.gov (United States)

    1981-07-20

    permissible for (A) 2024-T4 Al, (B) 6061 -T6 Al, (C) annealed copper, and (0) mild steel .. .. .. ... ... .. ... ... ..... 19 17 Maximum reduction in shear...spinnability tests, indicating degree of forward reduction permissible for (A) 2024-T4 Al, (B) 6061 -T𔄀 Al, (C) annealed copper, (D) mild steel. Attempts were...rotationssymmetrisches Hohlkirper aus Aluminium ," Doctoral Dissertation, University of Stuttgart, 1961. J 23. S. Kalpakjian, "An Experimental Study of Plastic

  11. Optimization of Thixoforging Parameters for C70S6 Steel Connecting Rods

    Science.gov (United States)

    Özkara, İsa Metin; Baydoğan, Murat

    2016-11-01

    A microalloyed steel, C70S6, with a solidification interval of 1390-1479 °C, was thixoforged in the semisolid state in a closed die at temperatures in the range 1400-1475 °C to form a 1/7 scaled-down model of a passenger vehicle connecting rod. Die design and an optimized thixoforging temperature eliminated the excessive flash and other problems during forging. Tension test samples from connecting rods thixoforged at the optimum temperature of 1440 °C exhibited nearly the same hardness, yield strength, and ultimate tensile strength as conventional hot forged samples but ductility decreased by about 45% due to grain boundary ferrite network formed during cooling from the thixoforging temperature. Thus, C70S6-grade steel can be thixoforged at 1440 °C to form flash-free connecting rods. This conclusion was also validated using FEA analysis.

  12. Decomposition of forging die for high speed machining

    CERN Document Server

    Tapie, Laurent

    2009-01-01

    Today's forging die manufacturing process must be adapted to several evolutions in machining process generation: CAD/CAM models, CAM software solutions and High Speed Machining (HSM). In this context, the adequacy between die shape and HSM process is in the core of machining preparation and process planning approaches. This paper deals with an original approach of machining preparation integrating this adequacy in the main tasks carried out. In this approach, the design of the machining process is based on two levels of decomposition of the geometrical model of a given die with respect to HSM cutting conditions (cutting speed and feed rate) and technological constrains (tool selection, features accessibility). This decomposition assists machining assistant to generate an HSM process. The result of this decomposition is the identification of machining features.

  13. Numerical optimization of die geometry in open die forging

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2013-01-01

    This paper deals with numerical optimization of open die forging of large metallic ingots made by casting implying risk of defects, e.g. central pores. Different material hardening properties and die geometries are combined in order to investigate, which geometry gives rise to maximum closure...... of a centreline hole in a single compression operation. Friction is also taken into account. The numerical analysis indicates that a lower die angle of approximately 140o results in the largest centreline hole closure for a wide range of material hardening. The value of optimum die angle is not influenced...... by friction, which was found only to change the degree of centreline porosity closure in case of small lower die angle....

  14. Forging of Mg-alloys AZ31 and AZ80

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, B.; Karabet, A.; Duering, M. [Brandenburg University of Technology, Interdisciplinary Research Centre for Lightweight Materials ' ' Panta Rhei' ' , Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany); Schaeffer, L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2005-05-01

    Mg-wrought alloys recently became an engineer material of constantly increasing interest. The mechanical properties of extruded Mg-feedstock of the alloys AZ80 and AZ31 indicate their suitability for automotive applications in form of high-quality forgings. Therefore a detailed knowledge about the forming behaviour is of particular importance. In order to compare mechanical properties of available Mg-feedstock qualities compression tests at room temperature have been carried out by applying batches of AZ31- and AZ80-feedstock. Cylindrical specimens were made out of received continuously casted as well as extruded AZ31- and AZ80 - rods. A quantitative analysis of Mg-feedstock's microstructure has been carried out. The characterization of the deformability of applied Mg-feedstock under hot working conditions could be performed by means of uniaxial plain strain upsetting tests at temperatures between 300 and 450 C as well as logarithmic strain rates of 10{sup -1}, 1 and 10s{sup -1}. It is shown that the chosen parameter range ensures an enhanced deformability of continuously as well as extruded Mg-feedstock. The subsequently carried out determination of microstructural evolution could be related to obtained flow stress curves of applied batches of Mg-feedstock. Furthermore, FVM/FEM-systems have been employed in order to design a simplified geometry of heated forging dies suitable for forging tests. The tests have been carried out by means of a hydraulic press. During the tests their punch velocity has been varied between 1 and 40 mm/s. Hence numerically simulated results could be confirmed by practical tests. Exemplary forgings of a simplified shape were made out of all applied batches of Mg-feedstock. No remarkable failures have been detected. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Das Interesse an Mg-Knetlegierungen als Konstruktionswerkstoff fuer automobile Anwendung ist in juengster Zeit stark gewachsen. Daher ist eine detaillierte

  15. Follow-up of hearing thresholds among forge hammering workers

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, A.A.; Mikael, R.A.; Faris, R. (Ain Shams Univ., Abbasia, Cairo (Egypt))

    1989-01-01

    Hearing threshold was reexamined in a group of forge hammering workers investigated 8 years ago with consideration of the age effect and of auditory symptoms. Workers were exposed to impact noise that ranged from 112 to 139 dB(A)--at an irregular rate of 20 to 50 drop/minute--and a continuous background noise that ranged from 90 to 94 dB(A). Similar to what was observed 8 years ago, the present permanent threshold shift (PTS) showed a maximum notch at the frequency of 6 kHz and considerable elevations at the frequencies of 0.25-1 kHz. The age-corrected PTS and the postexposure hearing threshold were significantly higher than the corresponding previous values at the frequencies 0.25, 0.5, 1, and 8 kHz only. The rise was more evident at the low than at the high frequencies. Temporary threshold shift (TTS) values were significantly less than those 8 years ago. Contrary to the previous TTS, the present TTS were higher at low than at high frequencies. Although progression of PTS at the frequencies 0.25 and 0.5 kHz was continuous throughout the observed durations of exposure, progression at higher frequencies occurred essentially in the first 10 to 15 years of exposure. Thereafter, it followed a much slower rate. Tinnitus was significantly associated with difficulty in hearing the human voice and with elevation of PTS at all the tested frequencies, while acoustic after-image was significantly associated with increment of PTS at the frequencies 0.25-2 kHz. No relation between PTS and smoking was found. PTS at low frequencies may provide an indication of progression of hearing damage when the sensitivity at 6 and 4 kHz diminishes after prolonged years of exposure. Tinnitus and acoustic after-image are related to the auditory effect of forge hammering noise.

  16. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  17. Study of Casting and Solidification of Slab Ingot from Tool Steel Using Numerical Modelling / Modelowanie Numeryczne Odlewania I Krzepnięcia Wlewków Stalowych Ze Stali Narzędziowej

    Directory of Open Access Journals (Sweden)

    Tkadlečková M.

    2015-12-01

    Full Text Available The main problem in the production of forgings from tool steels, especially thick plates, blocks, pulleys and rods which are used for special machine components for demanding applications, it is the inhomogeneous structure with segregations, cracks in segregations or complex type of non-metallic inclusions MnS and TiCN. These forgings are actually produced from conventional forging ingots. Due to the size of forgings, it would be interesting the production of these forgings from slab ingots. It is possible that the production of forgings from slab ingots (which are distinguished by a characteristic aspect ratio A/B, it would reduce the occurrence of segregations. The paper presents the verification of the production process of slab steel ingots in particular by means of numerical modelling using finite element method. The paper describes the pre-processing, processing and post-processing phases of numerical modelling. The attention was focused on the prediction of behavior of hot metal during the mold filling, on the verification of the final porosity, of the final segregation and on the prediction of risk of cracks depending on the actual geometry of the mold.

  18. Laser-dispersing of forging tools using AlN-ceramics

    Science.gov (United States)

    Noelke, C.; Luecke, M.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    2014-02-01

    Forging tools for aluminum work pieces show an increased adhesive wear due to cold welding during the forging process. Laser dispersing offers at this point a great potential to fabricate protective layers or tracks with tailored properties that reduce abrasive or adhesive wear at the surface of highly stressed components. Using different process strategies, four metal ceramic compounds applied on two substrate geometries were investigated regarding their structural and mechanical properties and their performance level. The subsequent forging tests have pointed out a positive effect and less adhesive residuals on the laser dispersed tool surface.

  19. The Effect of Corner Radii and Part Orientation on Stress Distribution of Cold Forging Die

    Directory of Open Access Journals (Sweden)

    Ahmad B.  Abdullah

    2008-01-01

    Full Text Available One of the most critical problems in cold forging is the huge stresses generated from the deformation of metal leads to die failure. The distribution of stresses mainly depends on geometry of the die. An approach to optimal design in cold forging die geometry and orientation are presented in this paper. The impression cold forging dies of the Universal joint was generated using three-dimensional CAD modeling software, SolidWorks. This CAD modeling software coupled with FEA tools, COSMOSWorks. The paper emphasizes on effect of the corner radius and dies orientation on stress distribution.

  20. Forge, Arquillian, Swarm and Spring Boot: All play and no effort makes Simon a productive boy

    CERN Document Server

    CERN. Geneva

    2017-01-01

    During this live coding session, Simon will shine some light on a range productivity tools that make software development a pleasure rather than a chore. Simon will live code 2 applications; a Java EE application, with JBoss Forge which uses JPA, Bean Validation, REST and Angular. We’ll test this application using Arquillian from within JBoss Forge. We’ll also show how a Java EE microservice can be developed in Forge and run using JBoss Swarm. The second application will be developed on Spring Boot and using JRebel we’ll rapidly develop and run a Spring application. Attendees will learn how to write code productively using tools designed for developers.

  1. Microstructural evolution and mechanical properties of hypereutectic Al–Si alloy processed by liquid die forging

    Indian Academy of Sciences (India)

    F F Wu; S T Li; G A Zhang; F Jiang

    2014-08-01

    The microstructural evolution and mechanical properties of a hypereutectic Al–Si alloy processed by liquid die forging were investigated. It is found that the grain size of the primary Si was significantly reduced by liquid die forging with increased pressure. The volume fraction of eutectic silicon was decreased with increased pressure. By liquid die forging with pressure up to 180 MPa, the average size of the primary Si was reduced to about 18 m, which results in the remarkable increase in the fracture strength and hardness of the hypereutectic Al–Si alloy.

  2. Qualitative Research of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Method

    Directory of Open Access Journals (Sweden)

    Dziubińska A.

    2016-06-01

    Full Text Available The paper reports a selection of numerical and experimental results of a new closed-die forging method for producing AZ31 magnesium alloy aircraft brackets with one rib. The numerical modelling of the new forming process was performed by the finite element method.The distributions of stresses, strains, temperature and forces were examined. The numerical results confirmed that the forgings produced by the new forming method are correct. For this reason, the new forming process was verified experimentally. The experimental results showed good agreement with the numerical results. The produced forgings of AZ31 magnesium alloy aircraft brackets with one rib were then subjected to qualitative tests.

  3. Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel

    Science.gov (United States)

    Nikulin, S. A.; Rozhnov, A. B.; Nechaikina, T. A.; Rogachev, S. O.; Zavodchikov, S. Yu.; Khatkevich, V. M.

    2014-10-01

    The quality of three-layer pipes has been studied; they are manufactured by hot pressing of a three-layer assembly of tubular billets followed by forging and cold rolling. The operating core is made from a V-4Ti-4Cr alloy. The protective claddings are made from corrosion-resistant steels of two grades, 08Kh17T and 20Kh13. The results of investigation into the structure and microhardness of the junction zone of steel and the vanadium alloy, which includes a contact zone and a transition diffusion layer, are reported. The 08Kh17T steel is shown to be a preferred cladding material.

  4. Research on forging method of marine long-shaft heaving forging%船用长轴类大锻件锻造工艺方法研究

    Institute of Scientific and Technical Information of China (English)

    夏琴香; 向可; 赵学智; 李一振

    2013-01-01

    船用长轴类大锻件是船舶动力装置的重要组成部分,其质量好坏直接影响船舶的推进特性和正常航行.本文以某船用中间轴为研究对象,对普通平砧锻造法、FM锻造法和上下砧不等宽锻造方法下的压方过程进行了数值模拟,应用数值模拟软件Deform-3D建立了相应的有限元模型,对坯料温度场、应力分布、锻造力和锻造效率进行了分析.结果表明:采用平砧锻造时,锻件的锻造效率最高,所需锻造力小,且表面温度下降最慢;采用FM法锻造时能获得较理想的压应力分布状态.%As the most important components of marine power installation, the quality of the long-axis heavy forgings has a direct influence on the hydrodynamic characteristics and normal voyage of marine. The squaring process of the marine intermediate shaft forged by flat anvil, FM method and the unequal flat anvil was simulated. The finite element model was established based on numerical simulation software Deform-3D, and the temperature field, stress distribution, forging force and forging efficiency were analyzed. The results show that comparing with the FM method and unequal flat anvil forging, when forging by flat anvil, the forming efficiency is the highest, the forging force is the smallest and the deceasing speed of the surface temperature of forging billet is the slowest; when forging by FM method, the ideal compressive stress distribution state can be obtained along the billet cross section.

  5. Corrosion Behaviour of a Highly Alloyed Austenitic Alloy UB6 in Contaminated Phosphoric Acid

    Directory of Open Access Journals (Sweden)

    M. Boudalia

    2013-01-01

    Full Text Available The influence of temperature (20–80°C on the electrochemical behaviour of passive films anodically formed on UB6 stainless steel in phosphoric acid solution (5.5 M H3PO4 has been examined by using potentiodynamic curves, electrochemical impedance spectroscopy, and Mott-Schottky analysis. UB6 stainless steel in contaminated phosphoric acid is characterised by high interfacial impedance, thereby, illustrating its high corrosion resistance. The obtained results show that the films behave as n-type and p-type semiconductors in the potential range above and below the flat band potential, respectively. This behaviour is assumed to be the consequence of the semiconducting properties of the iron oxide and chromium oxide regions which compose the passive film.

  6. Substrate Strengthening of CVD Coated Steels

    Institute of Scientific and Technical Information of China (English)

    O.Kessler; M.Heidkamp; F.Hoffmann; P.Mayr

    2004-01-01

    Properties of components and tools can be improved by the combination of coating and heat treatment processes due to the addition of single process advantages and due to the utilization of process interactions. Several low and high alloyed, structural and tool steels (AISI 4140, 52100, H13, A2, D2, etc.) have been treated by CVD-TiN-coating plus laser beam hardening respectively carburizing plus CVD-TiN-coating. Homogeneous, dense TiN-coatings with high hardness,high compressive residual stresses and good adhesion were supported by high strength substrate surfaces. Especially CVD plus laser beam hardening offers the possibility to reduce distortion due to the small heated surface volume.

  7. Theoretical and experimental research of hammer forging process of RIM from AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Gontarz

    2014-10-01

    Full Text Available The results of theoretical analysis and experimental tests of hammer forging process of rim part from AZ31 magnesium alloy are presented in this paper. On the basis of numerical simulation results, the analysis of limiting phenomena was made. These phenomena include: possibility of overlapping presence, not filling of die impression, overheating of material and cracks. The results of theoretical analysis provided the support for planning of experimental tests in industrial conditions. Forging tests were conducted in one of Polish forming plants, applying steam-air hammer of blow energy 63 kJ. On the basis of experimental verification, it was stated that it is possible to obtain rim forging from AZ31 alloy of assumed quality in the hammer forging process.

  8. Sensitivity Analysis Based Multiple Objective Preform Die Shape Optimal Design in Metal Forging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.

  9. Spatial Vegetation Data for Valley Forge National Historical Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — The vegetation and landcover of Valley Forge National Historical Park (VAFO) were mapped to the association level of the National Vegetation Classification System...

  10. Color Orthorectified Photomosaic for Valley Forge National Historical Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Orthorectified color infrared Imagine image of Valley Forge NHP. Produced from 49 color infrared photos taken September 1999. Orthorectification accomplished with...

  11. Simulation and Analysis of Microstructure Evolution of IN718 in Rotary Forgings by FEM

    Institute of Scientific and Technical Information of China (English)

    YU Zhong-qi; MA Qiu; LIN Zhong-qin

    2008-01-01

    A numerical analysis was performed to study the influence of process parameters on the microstructure evolution of IN718 alloy in rotary forging using the finite element method (FEM).For this purpose,a constitutive equation considering the effects of strain hardening and dynamic softening of IN718 alloy was built.The constitutive equation and microstructure models were implemented into the finite element code to investigate the microstructure evolution during rotary forging subject to large deformations.The simulations were carried out in the ratio of initial height to diameter range 0.2-0.8,the angle of the rocker 3°-7° and the relative feed per revolution range 0.01-0.1 r-1.The research results revealed the deformation mechanism and the correlation of process parameters with the grain size evolution of IN718 alloy during rotary forging.These provide evidence for the selection of rotary forging parameters.

  12. Field Plot Points Modified for Valley Forge National Historical Park Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile includes the locations of vegetation classification sampling plots used to develop an association-level vegetation classification of Valley Forge...

  13. Numerical analysis of rheological and tribological behavior influence on 16MnCr5 forging fibering

    Science.gov (United States)

    Gavrus, A.; Pintilie, D.; Nedelcu, R.

    2016-10-01

    The present research work is focus on the influence of the rheological constitutive equation and friction law formulation on 16MnCr5 forging fibering. Numerical analysis using FE Forge® and Abaqus code show the importance of the rheological softening terms on the metals fibers morphology and position coordinate. Calibration of friction law and sensitivity of softening parameters corresponding to a Hansel-Spittel rheological equation have been studied.

  14. Establishment of a Process for Creep Forging Aluminum Alloy Weapon Components

    Science.gov (United States)

    1978-04-01

    the important powder particle character- istics are mean particle size and size distribution, dendritic cell size and pattern, internal voids , and...Geometry Forging No. 26 (Fig. 53) showed excellent die filling except for a slight underfill at the tallest rib. Minor cracking also occurred over a small...Much cracking and underfill In rib detal1. 0.2 750 400 1 Some cracking Trimmed weight, 3.0 lb. 0.1 830 150 - Forged

  15. Development of strategies for saving energy by temperature reduction in warm forging processes

    Science.gov (United States)

    Varela, Sonia; Santos, Maite; Vadillo, Leire; Idoyaga, Zuriñe; Valbuena, Óscar

    2016-10-01

    This paper is associated to the European policy of increasing efficiency in raw material and energy usage. This policy becomes even more important in sectors consuming high amount of resources, like hot forging industry, where material costs sums up to 50% of component price and energy ones are continuously raising. The warm forging shows a clear potential of raw material reduction (near-net-shape components) and also of energy saving (forging temperature under 1000°C). However and due to the increment of the energy costs, new solutions are required by the forging sector in order to reduce the temperature below 900°C. The reported research is based on several approaches to reduce the forging temperature applied to a flanged shaft of the automotive sector as demonstration case. The developed investigations have included several aspects: raw material, process parameters, tools and dies behavior during forging process and also metallographic evaluation of the forged parts. This paper summarizes analysis of the ductility and the admissible forces of the flanged shaft material Ck45 in as-supplied state (as-rolled) and also in two additional heat treated states. Hot compression and tensile tests using a GLEEBLE 3800C Thermo mechanical simulator have been performed pursuing this target. In the same way, a coupled numerical model based on Finite Element Method (FEM) has been developed to predict the material flow, the forging loads and the stresses on the tools at lower temperature with the new heat treatments of the raw material. In order to validate the previous development, experimental trials at 850 °C and 750 °C were carried out in a mechanical press and the results were very promising.

  16. Irradiation behavior of Ti-stabilized 316L type steel

    Science.gov (United States)

    Rodchenkov, B. S.; Kalinin, G. M.; Strebkov, Yu. S.; Shamardin, V. K.; Prokhorov, V. I.; Bulanova, T. M.

    2009-04-01

    Type 316L austenitic steels are widely used for the in-vessel internal structures of fission reactors (core, core support, etc.) and for experimental irradiation facilities. The modifications of 316L Type steel (316L, 316L(N), US 316, J 316, JPCA, etc.) have been considered as structural material for International Thermonuclear Experimental Reactor (ITER). The results of investigation the irradiation behaviour of Ti-stabilized 316 L type steel (0.04 C-15 Cr-11 Ni-2.5 Mo-0.5 Ti) are presented in this work. The specimens cut out from 316L-Ti steel forging were irradiated in the SM-2 reactor up to a dose ˜4 and 10 dpa at 265 ± 15 °C. The tensile properties, fracture toughness and changes in resistance to intergranular stress corrosion cracking (IGSCC) have been investigated after irradiation. The results for Ti-stabilized 316L steel were compared with those for 316L(N)-IG steel irradiated at the same condition.

  17. Irradiation behavior of Ti-stabilized 316L type steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodchenkov, B.S. [Research and Development Institute of Power Engineering (RDIPE), P.O. Box 788, 101000 Moscow (Russian Federation)], E-mail: rodchen@nikiet.ru; Kalinin, G.M.; Strebkov, Yu.S. [Research and Development Institute of Power Engineering (RDIPE), P.O. Box 788, 101000 Moscow (Russian Federation); Shamardin, V.K.; Prokhorov, V.I.; Bulanova, T.M. [State Scientific Center ' Research Institute of Atomic Reactors' , Dimitrovgrad-10, 433510 Ulyanovsk Region (Russian Federation)

    2009-04-30

    Type 316L austenitic steels are widely used for the in-vessel internal structures of fission reactors (core, core support, etc.) and for experimental irradiation facilities. The modifications of 316L Type steel (316L, 316L(N), US 316, J 316, JPCA, etc.) have been considered as structural material for International Thermonuclear Experimental Reactor (ITER). The results of investigation the irradiation behaviour of Ti-stabilized 316 L type steel (0.04 C-15 Cr-11 Ni-2.5 Mo-0.5 Ti) are presented in this work. The specimens cut out from 316L-Ti steel forging were irradiated in the SM-2 reactor up to a dose {approx}4 and 10 dpa at 265 {+-} 15 deg. C. The tensile properties, fracture toughness and changes in resistance to intergranular stress corrosion cracking (IGSCC) have been investigated after irradiation. The results for Ti-stabilized 316L steel were compared with those for 316L(N)-IG steel irradiated at the same condition.

  18. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  19. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    Science.gov (United States)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-10-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  20. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    Science.gov (United States)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  1. Stacking faults and microstrains in strain-hardened surface of nitrogen-alloyed austenitic steel

    Science.gov (United States)

    Narkevich, N.; Syrtanov, M.; Mironov, Yu.; Surikova, N.

    2016-11-01

    X-ray diffractometry has been applied to examine the effect of ultrasonic forging and frictional treatment on structural parameters and oriented microstrains responsible for the generation of residual microstresses in austenitic steel Fe-17Cr-19Mn-0.52N. The maximum stacking fault density α = 0.067 is observed in the steel surface layer of thickness 5 µm after frictional treatment. A decrease in the austenite lattice parameter after deformation treatment is associated with the change in the sign (direction) of residual stresses. Surface deformation treatment induces compression of the austenite lattice along the normal to the surface.

  2. Transformation Behavior and Microstructure in a 40Cr2Ni2MoV Cast Steel

    Institute of Scientific and Technical Information of China (English)

    Cheng Liu; Zhenbo Zhao; Sanjiwan. D. Bhole1; Derek O. Northwood

    2004-01-01

    The transformation behavior of a 40Cr2Ni2MoV cast steel manufactured by electroslag remelting (ESR) has been investigated. Compared to a forged steel, the incubation periods for both the pearlite and bainite transformations are shorter, but the transformation times are longer. The austenite is easier to transform into martensite. Optical microscopy and TEM indicated that there were variations in microstructure during the super-cooled austenite transformation. This is attributed to an inhomogeneous austenite, resulting from the segregation of elements during the ESR solidification.

  3. Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Alar, Vesna; Stojanovic, Ivan; Simunovic, Vinko [Zagreb Univ. (Croatia). Faculty of Mechanical Engineering and Naval Architecture; Novak, Tomislav [NMP Produkt Ltd., Nedelisce (Croatia)

    2014-06-15

    The effects of applied torque on the corrosion behaviour of W.-Nr. 1.4404 and 1.4462 stainless steels and W.-Nr. 2.4605 and 2.4858 nickel alloys with crevices were investigated using the cyclic potentiodynamic polarization method. Crevice corrosion (material-to-polytetrafluoroethylene) was tested in 3.5 % NaCl solution at 22 C. The corroded surface was examined using scanning electron microscopy. The results indicate similar trends in susceptibility to crevice corrosion with increasing torque. Among the four specimens, the W.-Nr. 1.4404 is the most susceptible to crevice corrosion. (orig.)

  4. Analysis and Solution for Ring Forgings Defects%环类锻件缺陷分析与预防措施

    Institute of Scientific and Technical Information of China (English)

    张玉亭

    2013-01-01

      分析低合金高强度环锻用钢锭超声检测不合格的原因。分析表明,导致检测不合格的夹杂物主要为硫化物、氧化铝和部分保护渣成分。适当降低浇注温度、做好夹杂物的变性处理和采取保护浇注可提高钢锭质量。%This paper analyzes the reason for rejection of UT results for high strength low alloy ring forging ingot . The analysis shows that the inclusions caused unacceptable test results are mainly sulfide , alumina and partial protec-ting slag composition.The quality of steel ingot can be improved by properly decreasing pouring temperature , perform-ing modification treatment of inclusions and applying pouring protection .

  5. Movement Synchrony Forges Social Bonds Across Group Divides

    Directory of Open Access Journals (Sweden)

    Bahar eTuncgenc

    2016-05-01

    Full Text Available Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one’s in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs.

  6. Forged seal detection based on the seal overlay metric.

    Science.gov (United States)

    Lee, Joong; Kong, Seong G; Lee, Young-Soo; Moon, Ki-Woong; Jeon, Oc-Yeub; Han, Jong Hyun; Lee, Bong-Woo; Seo, Joong-Suk

    2012-01-10

    This paper describes a method for verifying the authenticity of a seal impression imprinted on a document based on the seal overlay metric, which refers to the ratio of an effective seal impression pattern and the noise in the neighborhood of the reference impression region. A reference seal pattern is obtained by taking the average of a number of high-quality impressions of a genuine seal. A target seal impression to be examined, often on paper with some background texts and lines, is segmented out from the background by an adaptive threshold applied to the histogram of color components. The segmented target seal impression is then spatially aligned with the reference by maximizing the count of matching pixels. Then the seal overlay metric is computed for the reference and the target. If the overlay metric of a target seal is below a predetermined limit for the similarity to the genuine, then the target is classified as a forged seal. To further reduce the misclassification rate, the seal overlay metric is adjusted by the filling rate, which reflects the quality of inked pattern of the target seal. Experiment results demonstrate that the proposed method can detect elaborate seal impressions created by advanced forgery techniques such as lithography and computer-aided manufacturing. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. An Analysis Of The Industrial Forging Process Of Flange In Order To Reduce The Weight Of The Input Material

    Directory of Open Access Journals (Sweden)

    Gronostajski Z.

    2015-06-01

    Full Text Available This paper presents an analysis of the industrial process of hot forging a flange. The authors developed several thermomechanical models of the forging process for which they carried out computer simulations using the MSC.Marc 2013 software. In the Jawor Forge flanges with a neck are manufactured by hot forging in crank presses with a maximum load of 25 MN. The input material, in the form of a square bar, is heated up to a temperature of 1150°C and then formed in three operations: upsetting, preliminary die forging and finishing die forging. The main aim of the studies and the numerical analyses, in which the geometry of the tools would be modified, was to maximally reduce the amount of the input material taking into account the capabilities of the Jawor Forge, and consequently to significantly reduce the production costs. Besides the Forge’s equipment resources, the main constraint for modifications was the flange-with-neck forging standard which explicitely defines the tolerances for this element. The studies, which included numerical modelling, infrared measurements and technological tests, consisted in changing the geometry of the tools and that of the forging preform. As a result, the optimum direction for modifications aimed at reducing the mass of the input material was determined. The best of the solutions, making it possible to produce a correct forging in the Jawor Forge operating conditions, were adopted whereby the weight of the preform was reduced by 6.11%. Currently research is underway aimed at the application of the proposed and verified modifications to other flange forgings.

  8. Irradiation embrittlement of reactor pressure vessel steel outside the astm specification A508 CL2

    Science.gov (United States)

    Pachur, D.; Krawczynski, S. J.; Derz, H.; Pott, G.

    1990-04-01

    Radiation embrittlement of reactor pressure vessel steels is of considerable significance for safety engineering. Steel manufacturers must therefore comply with specifications defined by national design codes. The extent to which a steel deviating from the specification is influenced by irradiation is being examined under the German Research Programme on the Integrity of Reactor Components. Charpy-V specimens were taken from a forged steel block longitudinally and vertically to the direction of main deformation and irradiated in the FRJ-1 research reactor at a temperature of 288 °C corresponding to the operating temperature of power reactors. The neutron fluences obtained ranged between 0.8 × 10 19 and 8 × 10 19n/ cm2. Instrumented pendulum impact tests have been evaluated and the load signals measured were analysed, fitting and calculating transition temperature curves and trend curves.

  9. Preparation and amendment of technical standard “Technical requirements for forgings of high-speed tool steel”%技术标准《高速工具钢锻件技术条件》的编制及解读

    Institute of Scientific and Technical Information of China (English)

    金颖

    2013-01-01

    With the rapid development of domestic forging technology,the quality of forging products is being continuously improved.Especially,the improvement of the quality of high-speed tool steel has made that more and more highperformance tool products should be guaranteed by specifying forging process and inspection standards.In order to meet the development of forging technology,it is necessary to make amendments and supplements to previous technical standards.Now absorbing and learning from the corresponding technical specifications,and considering the situation and development trend of forging technology of high-speed tool steel,the standard “Technical requirements for forgings of high-speed tool steel” was amended in the aspects of technical requirements,test methods,inspection rules,marking and quality certification documents and the standards of forgings carbide uniformity diagrams.%近年来国内锻造技术发展迅猛,锻造产品的质量在不断提高,特别是高速工具钢锻件质量的提升,使得越来越多的高性能刀具产品要求通过规范锻造工艺及检验标准来保证.为适应锻造技术的发展,有必要对以往的技术标准进行相应的修正与补充.现吸收、借鉴国内相应技术规范,并充分考虑高速工具钢锻造技术现状及发展趋势,从技术要求、检验方法、检查规则、标志及质量证明文件、锻件碳化物均匀度评级图标准等相应要素人手,对机械行业标准《高速工具钢锻件技术条件》进行编制修订.

  10. An Analysis Of The Industrial Forging Process Of Flange In Order To Reduce The Weight Of The Input Material

    OpenAIRE

    Gronostajski Z.; Hawryluk M.; Kaszuba M.; Misiun G.; Niechajowicz A.; Polak S.; Pawełczyk M.

    2015-01-01

    This paper presents an analysis of the industrial process of hot forging a flange. The authors developed several thermomechanical models of the forging process for which they carried out computer simulations using the MSC.Marc 2013 software. In the Jawor Forge flanges with a neck are manufactured by hot forging in crank presses with a maximum load of 25 MN. The input material, in the form of a square bar, is heated up to a temperature of 1150°C and then formed in three operations: upsetting, ...

  11. Strain-induced grain growth of cryomilled nanocrystalline Al in trimodal composites during forging

    Energy Technology Data Exchange (ETDEWEB)

    Yao, B. [Advanced Materials Processing and Analysis Center, and Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Simkin, B.; Majumdar, B. [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Smith, C.; Bergh, M. van den [DWA Aluminum Composites, Chatsworth, CA 91311 (United States); Cho, K. [Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Sohn, Y.H., E-mail: Yongho.Sohn@ucf.edu [Advanced Materials Processing and Analysis Center, and Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer Grain growth of cryomilled nanocrystalline aluminum during hot forging. Black-Right-Pointing-Pointer Use of hollow cone dark field imaging technique in TEM for grain size measurement. Black-Right-Pointing-Pointer Grain growth model of strain, strain rate and temperature for forging optimization. - Abstract: Grain growth of nanocrystalline aluminum ({sup nc}Al) in trimodal Al metal-matrix-composites (MMCs) during hot forging was investigated. The {sup nc}Al phase formed through cryomilling of inert gas-atomized powders in liquid nitrogen has an average grain size down to 21 nm, exhibits excellent thermal stability. However, substantial grain growth of {sup nc}Al up to 63 nm was observed when the Al MMCs were thermo-mechanically processed even at relatively low temperatures. Grain growth of the cryomilled {sup nc}Al phase in trimodal Al MMCs after hot forging was documented with respect to temperature ranging from 175 Degree-Sign C to 287 Degree-Sign C, true strain ranging from 0.4 to 1.35 and strain rate ranging from 0.1 to 0.5 s{sup -1}. Hollow cone dark field imaging technique was employed to provide statistically confident measurements of {sup nc}Al grain size that ranged from 21 to 63 nm. An increase in forging temperature and an increase in true strain were correlated with an increase in grain size of {sup nc}Al. Results were correlated to devise a phenomenological grain growth model for forging that takes strain, strain rate and temperature into consideration. Activation energy for the grain growth during thermo-mechanical hot-forging was determined to be 35 kJ/mol, approximately a quarter of activation energy for bulk diffusion of Al and a half of activation energy for static recrystallization.

  12. Optimization and Mechanical Accuracy Reliability of a New Type of Forging Manipulator

    Institute of Scientific and Technical Information of China (English)

    CHEN Kang; MA Chunxiang; ZHENG Maoqi; GAO Feng

    2015-01-01

    Researches on forging manipulator have enormous influence on the development of the forging industry and national economy. Clamp device and lifting mechanism are the core parts of forging manipulator, and have been studied for longer time. However, the optimization and mechanical accuracy reliability of them are less analyzed. Based on General Function(GF) set and parallel mechanism theory, proper configuration of 10t forging manipulator is selected firstly. A new type of forging manipulator driven by cylinders is proposed. After solved mechanical analysis of manipulator’s core mechanisms, expressions of force of cylinders are carried out. In order to achieve smaller force afforded by cylinders and better mechanical characteristics, some particular sizes of core mechanisms are optimized intuitively through the combined use of the genetic algorithms(GA) and GUI interface in MATLAB. Comparing with the original mechanisms, optimized clamp saves at least 8 percent efforts and optimized lifting mechanism 20 percent under maximum working condition. Finally, considering the existed manufacture error of components, mechanical accuracy reliability of optimized clamp, lifting mechanism and whole manipulator are demonstrated respectively based on fuzzy reliability theory. Obtained results show that the accuracy reliability of optimized clamp is bigger than 0.991 and that of optimized lifting mechanism is 0.995. To the whole manipulator under maximum working condition, that value exceeds 0.986 4, which means that optimized manipulator has high motion accuracy and is reliable. A new intuitive method is created to optimize forging manipulator sizes efficiently and more practical theory is utilized to analyze mechanical accuracy reliability of forging manipulator precisely.

  13. Making randomised trials more efficient: report of the first meeting to discuss the Trial Forge platform.

    Science.gov (United States)

    Treweek, Shaun; Altman, Doug G; Bower, Peter; Campbell, Marion; Chalmers, Iain; Cotton, Seonaidh; Craig, Peter; Crosby, David; Davidson, Peter; Devane, Declan; Duley, Lelia; Dunn, Janet; Elbourne, Diana; Farrell, Barbara; Gamble, Carrol; Gillies, Katie; Hood, Kerry; Lang, Trudie; Littleford, Roberta; Loudon, Kirsty; McDonald, Alison; McPherson, Gladys; Nelson, Annmarie; Norrie, John; Ramsay, Craig; Sandercock, Peter; Shanahan, Daniel R; Summerskill, William; Sydes, Matt; Williamson, Paula; Clarke, Mike

    2015-06-05

    Randomised trials are at the heart of evidence-based healthcare, but the methods and infrastructure for conducting these sometimes complex studies are largely evidence free. Trial Forge ( www.trialforge.org ) is an initiative that aims to increase the evidence base for trial decision making and, in doing so, to improve trial efficiency.This paper summarises a one-day workshop held in Edinburgh on 10 July 2014 to discuss Trial Forge and how to advance this initiative. We first outline the problem of inefficiency in randomised trials and go on to describe Trial Forge. We present participants' views on the processes in the life of a randomised trial that should be covered by Trial Forge.General support existed at the workshop for the Trial Forge approach to increase the evidence base for making randomised trial decisions and for improving trial efficiency. Agreed upon key processes included choosing the right research question; logistical planning for delivery, training of staff, recruitment, and retention; data management and dissemination; and close down. The process of linking to existing initiatives where possible was considered crucial. Trial Forge will not be a guideline or a checklist but a 'go to' website for research on randomised trials methods, with a linked programme of applied methodology research, coupled to an effective evidence-dissemination process. Moreover, it will support an informal network of interested trialists who meet virtually (online) and occasionally in person to build capacity and knowledge in the design and conduct of efficient randomised trials.Some of the resources invested in randomised trials are wasted because of limited evidence upon which to base many aspects of design, conduct, analysis, and reporting of clinical trials. Trial Forge will help to address this lack of evidence.

  14. High Nitrogen Stainless Steel

    Science.gov (United States)

    2011-07-19

    Kiev, 1993. 7. High Nitrogen Steels, edited by M. Kikuchi and Y. Mishima , Vol. 36, No. 7, Iron and Steel Institute of Japan Inernational, Tokyo...the Corrosion of Iron and Steels,” High Nitrogen Steels, edited by M. Kikuchi and Y. Mishima , Vol. 36, No. 7, Iron and Steel Institute of Japan

  15. Computer assisted alloy and process design of nuclear structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Joo [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    1997-07-01

    Based on literature research and thermodynamic calculations, it was suggested that toughness of SA508 class 3 steels can be improved by grain refinement using pinning by AIN during forging if alloy contents of Al and N are adjusted. It was also pointed out that the temper embrittlement due to the coarsening of M{sub 2}C carbide may originate from phase transition to the more stable {xi}-carbide. A necessity of experimental works to avoid such a transition by adjustment of alloy composition was claimed. An optimum temperature for the intercirtical heat treatment was derived by thermodynamic= calculation and was found to agree with experimentally derived one. The thermodynamic database and the present calculation scheme can be used as a powerful research tool in further study for design of next generation RPV steels of wide composition range, if combined with the current experimental technology. (Author) 101 refs., 10 tabs., 11 figs.

  16. Creep of A508/533 Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  17. New design of process for cold forging to improve multi-stage gas fitting

    Directory of Open Access Journals (Sweden)

    Han-Sung Huang

    2016-04-01

    Full Text Available This work develops a process that solves the problem of the formation of cracks inside forged gas fittings in the cold forging process that arises from poor forging process design. DEFORM-3D forming software was utilized, and macroscopic experiments with optical microscopy and scanning electron microscopy were conducted to investigate the processed structures and the distribution therein of metal flow lines, and to find the internal micro-cracks to determine whether the cold forging process is reasonable. Analytical results herein demonstrate that the stress and strain inside the gas fitting can be elucidated using metal forming software. Together with experimental results, they demonstrate that a concentration of stress damages the workpiece in the forming process. Moreover, as metal flow lines become narrower, the workpiece becomes more easily damaged. Consequently, the improved cold forging process that is described in this work should be utilized to reduce the occurrence of fine cracks and defects. Planning for proper die design and production, increasing the quality of products, and reducing the number of defective products promote industrial competitiveness.

  18. Non-isothermal FEM analyses of large-strain back extrusion forging

    Energy Technology Data Exchange (ETDEWEB)

    Flower, E.C.; Hallquist, J.O.; Shapiro, A.B.

    1986-06-19

    Back extrusion forging is a complex metal forming operation dominated by large-strain, non-isothermal deformation. NIKE2D, a fully vectorized implicit finite-element program developed at Lawrence Livermore National Laboratory, was applied to a two-stage isothermal back extrusion forging process. Modeling of the forging process required special features in the FEM code such as friction and interactive rezoning that allows for remeshing of the distorted mesh while maintaining a complete history of all the state variables. To model conditions of the non-isothermal forging process required implementing TOPAZ2D, our LLNL-developed two-dimensional implicit finite element code for heat conduction analysis, as a subroutine into NIKE2D. The fully coupled version maintains all the original features of both codes and can account for the contribution of heat generation during plastic deformation. NIKE/TOPAZ-2D was applied to the piercing operation of the back extrusion forging process. The thermal deformation history of the die, punch, and workpiece and the effective plastic strains were calculated.

  19. Manufacturing of Nanostructured Rings from Previously ECAE-Processed AA5083 Alloy by Isothermal Forging

    Directory of Open Access Journals (Sweden)

    C. J. Luis

    2013-01-01

    Full Text Available The manufacturing of a functional hollow mechanical element or ring of the AA5083 alloy previously equal channel angular extrusion (ECAE processed, which presents a submicrometric microstructure, is dealt with. For this purpose, the design of two isothermal forging dies (preform and final shape is carried out using the design of experiments (DOE methodology. Moreover, after manufacturing the dies and carrying out tests so as to achieve real rings, the mechanical properties of these rings are analysed as well as their microstructure. Furthermore, a comparison between the different forged rings is made from ECAE-processed material subjected to different heat treatments, previous to the forging stage. On the other hand, the ring forging process is modelled through the use of finite element simulation in order to improve the die design and to study the force required for the isothermal forging, the damage value, and the strain the material predeformed by ECAE has undergone. With this present research work, it is intended to improve the knowledge about the mechanical properties of nanostructured material and the applicability of this material to industrial processes that allow the manufacturing of functional parts.

  20. Modeling microstructure evolution in the delta process forging of superalloy IN718 turbine discs

    Science.gov (United States)

    Zhang, Haiyan; Zhang, Shihong; Cheng, Ming; Zhao, Zhong

    2013-05-01

    The microstructure development in the Delta Process (DP) forging of Superalloy IN718 turbine discs were predicted using the combined approach of axisymmetric finite element simulation and modeling for the dynamic recrystallization and grain growth. In order to establish the deformation constitutive equation and dynamic recrystallization models for the DP process of Superalloy IN718, the isothermal compression tests were carried out in the temperature range 950 to 1010 °C and strain rates range 0.001 to0.1s-1. Moreover, the isothermal heat treatment tests after hot deformation were conducted in the temperature range 950 to 1040°C to generate the grain growth model. The experimental results indicated the existence of the δ phase could make the activation energy of deformation increase. Furthermore, the existence of the δ phase could stimulate the occurrence of dynamic recrystallization, and the grain growth was restrained due to the pinning effect of δ phase. The predicted grain size and its distribution in the DP forging of Superalloy IN718 turbine discs were compared with the actual microstructures deformed by the hot die forging. It was found that the forging with uniform fine grains could be obtained by the application of DP process to the forging of the turbine disk, in which the alloy was pre-precipitated δ phase after the baiting in the original process.

  1. Forging of Naval Brass (ASTM B16) - Finite Element Analysis using Ls Dyna

    Science.gov (United States)

    Subha Sankari, T.; Sangavi, S.; Paneerselvam, T.; Venkatraman, R.; Venkatesan, M.

    2016-09-01

    Forging is one of the important manufacturing process in which products like connecting rod, transmission shaft, clutch hubs and gears are produced. Finite element analysis (FEA) in forming techniques is of recent interest for the optimal design and determination of right manufacturing forming process. The data from the numerical results can help in providing the information for selecting the ideal process conditions. Thus aside from experimental values, simulation by the finite element analysis software's such as LS DYNA can be used for the analysis of strain distribution in forging processes. In the present work, Finite element simulation of open die forging of naval brass (ASTM B16) is done at an optimal temperature. An advanced multi physics simulation software package by the Livermore software technology cooperation LSTC - LS DYNA is utilized for the simulation of forging process. For the forging validation, experiment is conducted with a cylindrical billet having height 45 mm and diameter of 40mm. The numerical results are compared with that of experimental results carried out at the same temperature and dimensions for validation. The distribution of strain is analyzed. Energy analysis due to impact load is detailed. The simulation results are found to be in good agreement with the experimental results.

  2. Filling Rules of Bevel Gears in the Closed-die Cold Forging

    Institute of Scientific and Technical Information of China (English)

    Huamin LIU; Liangju HUANG; Shenhua YANG; Shihong ZHANG

    2005-01-01

    The closed-died cold forging technology of the bevel gears used in Jada car was investigated. With the analysis of the strain field and velocity field of the plastic deformation and the endured forces of the dies, the filling rules forthe metal were analyzed by the elastic-plastic finite element method (FEM). The results show that there is a great difference among closed-die cold forging, extrusion and forging, as far as the metal flowing is concerned. The outer addendum cannot be filled completely in the closed-die cold forging of the bevel gears, and the round angle will be formed. But it does not influence the application of the bevel gears. At the beginning, the rigid area is formed in the cavity of the lower die. And then it will move upwards to supply the metal for the gear filling. For the closed-die cold forging of the bevel gears, the force acting on the upper die and the lower die is significantly different.

  3. Effect of Forging on Microstructure, Texture, and Uniaxial Properties of Cast AZ31B Alloy

    Science.gov (United States)

    Toscano, D.; Shaha, S. K.; Behravesh, B.; Jahed, H.; Williams, B.

    2017-07-01

    The effect of open-die hot forging on cast AZ31B magnesium alloy was investigated in terms of the evolution of microstructure, texture, and mechanical properties. A refined microstructure with strong basal texture was developed in forged material. A significant increase in tensile yield and ultimate strengths by 143 and 23%, respectively, was determined as well. When tested in compression at room temperature, the forged alloy displayed significant in-plane asymmetry and unchanged yield strength compared to the cast alloy owing to the activation of 10\\bar{1}2} Microstructure and texture analysis of the fracture samples confirmed that the deformation of the forged samples was dominated by slip during tension and twin in compression. In comparison, both slip and twin were observed in the cast samples for similar testing conditions. The increase in strength of forging was attributed to the refinement of grains and the formation of strong basal texture, which activated the non-basal slip on the prismatic and pyramidal slip systems instead of extension twin.

  4. 基于Forge2D/3D的阀体胎模锻模拟分析%Simulation of Die-forging for Valve Based on Forge 2D/3D

    Institute of Scientific and Technical Information of China (English)

    康海鹏

    2012-01-01

    采用Forge 2D/3D有限元分析模拟软件,设计阀体胎模和坯料;经过模拟分析了成型过程中坯料的温度变化、整体的应力、应变、金属的流动趋势和流线分布等;通过生产验证了胎模和坯料设计的合理性和工艺的可行性.%The die and billet of a valve was designed by Forge 2D/3D software. The temperature, stress, strain, and metal flow trend of billet during the simulation was analyzed; the rationality of die, billet design and feasibility of process was validated by production.

  5. 低压转子钢30Cr2Ni4MoV扭转镦粗数值模拟%Numerical Simulation of Torsion Upsetting for Low Pressure Rotor Steel 30 CrNi4 MoV

    Institute of Scientific and Technical Information of China (English)

    季飞; 刘建生; 李婷

    2013-01-01

    Compared with the traditional smooth anvil upsetting , the torsion upsetting is applied torque on the forg-ings, which reduces pushing down load and improves the deformation uniformity within forgings .The simulation test is performed for torsion upsetting of low pressure rotor steel 30CrNi4MoV by DEFORM-3D software and it optimizes process parameters at the same time .It shows that the torsion upsetting forging method is effective to improve the forg-ing quality.%由于扭转镦粗较传统平砧镦粗对锻件施加了扭矩,从而降低了下压载荷,并且使得锻件变形更加均匀。利用DEFORM-3D软件对30Cr2Ni4MoV低压转子钢进行扭转镦粗模拟试验,同时优化工艺参数,证明扭转镦粗锻造法是一种有效改善锻件质量的工艺方法。

  6. Comparison between hobbed and precision forged helical gears for automobile manual transaxle - on the prospect of form, precision, material specification and production cost

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, M.; Kawasaki, Y.; Hoguchi, T.; Tsujimoto, H.; Yamazaki, S.; Yoshinaga, M. [O-oka Co., Toyota (Japan); Moriwaki, I. [Kyoto Inst. of Tech. (Japan); Kagaya, C. [Chubu Univ., Kasugai (Japan)

    2005-07-01

    This paper describes the comparison between hobbed and forged helical gears in terms of precision, deformation of heat-treatment, material specification and production cost. With the results the forged ones are superior to hobbed ones. (orig.)

  7. Modelling the void deformation and closure by hot forging of ingot castings

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Kotas, Petr;

    2012-01-01

    After solidification and cooling cast ingots contain voids due to improper feeding and volume shrinkage. Such voids are normally unwanted, so besides of forming the ingot to the desired shape, one of the purposes of the post processing of the ingot by hot forging is to close such voids by mechani......After solidification and cooling cast ingots contain voids due to improper feeding and volume shrinkage. Such voids are normally unwanted, so besides of forming the ingot to the desired shape, one of the purposes of the post processing of the ingot by hot forging is to close such voids...... and focuses on how the voids deform depending on their size and distribution in the ingot as well ashow the forging forces are applied....

  8. Application of geometric midline yield criterion to analysis of three-dimensional forging

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; WANG Gen-ji; LIU Xiang-hua; WANG Guo-dong

    2008-01-01

    A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging. The linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane, called GM yield criterion for short, was firstly applied to analysis of the velocity field for the forging. The analytical solution of the forging force with the effects of external zone and bulging parameter is obtained by strain rate inner product. Compression tests of pure lead are performed to compare the calculated results with the measured ones. The results show that the calculated total pressures are higher than the measured ones whilst the relative error is no more than 9.5%. It is implied that the velocity field is reasonable and the geometric midline yield criterion is available. The solution is still an upper-bound one.

  9. Design of relief-cavity in closed-precision forging of gears

    Institute of Scientific and Technical Information of China (English)

    左斌; 王宝雨; 李智; 郑明男; 朱小星

    2015-01-01

    To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine (VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.

  10. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  11. 论最小锻比%Statement of the Minimum Forging Ratio

    Institute of Scientific and Technical Information of China (English)

    任猛; 钱莉丽; 杜锦; 江盛龙

    2015-01-01

    The forging ratio is just a macro indicator and only shows the shape change of the forging cross section. The determinant parameters such as the anvil width ratio and reduction which influence on the inner deformation will be controlled and the acceptable products will be obtained with minimum forging ratio.%锻比作为一个宏观指标,只代表锻件所经历的截面形状变化。合理控制砧宽比、压下量等对内部变形起决定性作用的参数,可以在小锻比条件下生产合格产品。

  12. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  13. The effects of thermomechanical history on the microstructure of a nickel-base superalloy during forging

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S., E-mail: 485354@swansea.ac.uk [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom); Li, W. [Rolls-Royce plc, PO Box 31, Derby DE24 8BJ (United Kingdom); Coleman, M. [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom); Johnston, R., E-mail: r.johnston@swansea.ac.uk [College of Engineering, Bay Campus, Swansea University, Swansea SA1 8EN (United Kingdom)

    2016-06-21

    The effect of thermo-mechanical history on hot compression behaviour and resulting microstructures of a nickel base superalloy is presented. Hot compression tests were carried out on HAYNES® 282® specimens to varying strains from 0.1 to 0.8. Both single pass and multi-pass tests were completed. 60 min inter-pass times were utilized to accurately replicate industrial forging practices. The effect of dynamic, metadynamic and static recrystallization during inter-pass times on flow stress was investigated. The resulting microstructures were analysed using scanning electron, optical microscopy and EBSD to relate grain size and homogeneity with flow stress data. The study showed a negligible difference between multi-pass and single pass tests for strain increments above 0.2. Therefore, when modelling similar low strain and strain rate forging processes in HAYNES® 282®, previous forging steps can be ignored.

  14. Finite element simulation of stretch forging using a mesh condensation method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to reduce the computation time of finite element simulations of stretch forging process,a mesh condensation method is presented and applied to a three-dimensional rigid-viscoplastic finite element program.In this method,a conventional mesh for the whole zone of a workpiece is condensed to a computational mesh for the active deformation zone.Two vital problems are solved,which are automatic construction of the computational mesh and treatment of interfaces between the deformation zone and the rigid zone.The mesh condensation method is compared with conventional finite element method by simulations of a six-bite stretch forging process.Some simulation results including forging load,temperature distribution and effective strain distribution are illustrated.The efficiency and accuracy of this method are verified.

  15. Heuristic algorithm for planning and scheduling of forged pieces heat treatment

    Directory of Open Access Journals (Sweden)

    R. Lenort

    2012-04-01

    Full Text Available The paper presents a heuristic algorithm for planning and scheduling of forged pieces heat treatment which allows maximizing the capacity exploitation of the heat treatment process and the entire forging process. Five Focusing Steps continuous improvement process was selected as a methodological basis for the algorithm design. Its application was supported by simulation experiments performed on a dynamic computer model of the researched process. The experimental work has made it possible to elicit the general rules for planning and scheduling of the heat treatment process of forged pieces which reduce losses caused by equipment conversion and setup times, and which increase the throughput of this process. The HIPO diagram was used to design the algorithm.

  16. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    is undergoing vibration. In the experiments, die surface orientation, frequency and amplitude of vibration, vibrating wave form and the direction of vibration has been taken into account as the parameters which influence friction behaviour in forging process. The results reveal that friction could be reduced up......The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... on die surface vibration in forging process. After a general introduction to friction mechanisms and friction test techniques in metal forming, the application of ultrasonic vibration in metal forming, the influence of sliding velocity on friction is described. Some earlier investigations...

  17. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  18. Development of a 3D Finite Element code for Forging - An overview of the Brite/Euram project EFFORTS

    DEFF Research Database (Denmark)

    Bay, Niels; Andreasen, Jan Lasson; Olsson, David Dam

    2001-01-01

    equations for flow stress in cold as well as hot forging, determination of interface conditions, i.e. friction and heat transfer in cold and hot forging. The developments are validated by physical and numerical modeling and finally verified by analysis of some complex industrial examples....

  19. Multi-objective optimization of gear forging process based on adaptive surrogate meta-models

    Science.gov (United States)

    Meng, Fanjuan; Labergere, Carl; Lafon, Pascal; Daniel, Laurent

    2013-05-01

    In forging industry, net shape or near net shape forging of gears has been the subject of considerable research effort in the last few decades. So in this paper, a multi-objective optimization methodology of net shape gear forging process design has been discussed. The study is mainly done in four parts: building parametric CAD geometry model, simulating the forging process, fitting surrogate meta-models and optimizing the process by using an advanced algorithm. In order to maximally appropriate meta-models of the real response, an adaptive meta-model based design strategy has been applied. This is a continuous process: first, bui Id a preliminary version of the meta-models after the initial simulated calculations; second, improve the accuracy and update the meta-models by adding some new representative samplings. By using this iterative strategy, the number of the initial sample points for real numerical simulations is greatly decreased and the time for the forged gear design is significantly shortened. Finally, an optimal design for an industrial application of a 27-teeth gear forging process was introduced, which includes three optimization variables and two objective functions. A 3D FE nu merical simulation model is used to realize the process and an advanced thermo-elasto-visco-plastic constitutive equation is considered to represent the material behavior. The meta-model applied for this example is kriging and the optimization algorithm is NSGA-II. At last, a relatively better Pareto optimal front (POF) is gotten with gradually improving the obtained surrogate meta-models.

  20. The Development of a Ceramic Mold for Hot-Forging of Micro-Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Todd; Garino, Terry

    1999-06-25

    A new mold material has been developed for use in making rare-earth permanent magnet components with precise dimensions in the 10 to 1000 µm range by hot-forging. These molds are made from molds poly(methyl)methacrylate (PMMA) made by deep x-ray lithography (DXRL). An alumina bonded with colloidal silica has been developed for use in these molds. This material can be heated to 950°C without changing dimensions where it develops the strength needed to withstand the hot-fmging conditions (750°C, 100 MPa). In addition, it disintegrates in HF so that parts can be easily removed after forging.

  1. An upper bound solution for closed die sinter forging of hexagonal shapes

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-06-01

    The paper reports on an investigation into the various aspects of closed die cold forging of hexagonal powder preforms, which have been compacted and sintered from atomized powder. It is found that for certain dimensional ratios of the preform, the die pressure is minimum. An attempt has been made determine the die pressures developed during the closed die forging of the hexagonal powder preform by using an upper bound approach. The results so obtained are discussed critically to illustrate the interaction of various process parameters involved and are presented graphically.

  2. Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability

    Directory of Open Access Journals (Sweden)

    Gaikwad Ajitkumar

    2016-01-01

    Full Text Available Cold Workability limits strength enhancement of austenitic materials through cold deformation. The intrinsic workability is the material characteristic whereas state-of-stress workability is governed by nature of applied stress, strain rate and geometry of deformation zone. For Cold Open Die Forging (CODF, multipass workability is essential. In this work, FEM tool FORGE-3 is used to optimize CODF on hydraulic press by analysis of stress-strain profiles and use of Latham-Cockroft damage criterion. Study recommends optimized process parameters, die combinations and pass-schedules.

  3. Trial Production of Drum Forgings%鼓轮锻件的生产试制

    Institute of Scientific and Technical Information of China (English)

    张广森; 张成霞; 陈国红; 黄冬凤; 刘垒; 丁宝平

    2013-01-01

    The abnormity cylinder forgings with big taper and small height is produced successfully by blanking with top flat anvil and bottom V shaped anvil , which lays the foundation to manufacture nuclear power tapered cylinder forgings.%采用上平、下V型砧制坯,成功生产了锥度大、高度小的异形筒体锻件,为公司在核电锥形筒体锻件生产方面打下了基础。

  4. THE FORMING OF MAGNESIUM ALLOY FORGINGS FOR AIRCRAFT AND AUTOMOTIVE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Anna Dziubińska

    2016-09-01

    Full Text Available The paper presents the theoretical and technological aspects of forming magnesium alloy parts for aircraft and automotive applications. The main applications of magnesium alloys in the aircraft and automotive industries are discussed. In addition, the forging technology for magnesium alloys is generally described, with a particular emphasis on wrought alloys. A brief outline of the state of the art in the forging of magnesium alloys is given based on a survey of the specialist literature and the results of previous research by the authors.

  5. High speed forging of solid powder discs of large slenderness ratio

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-10-01

    The paper reports an investigation into the forging of a solid powder circular disc with large slenderness ratio (L/D) between two flat dies at high speed. The deformation pattern during the operation is influenced by many factors, which interact with one another in a complex manner. The decisive factors are the interfacial conditions, initial relative density of the preform and the geometry of the preform. An attempt has been made to determine the die pressures developed during such forging, using an upper bound approach. The results so obtained are presented graphically and discussed critically to illustrate the interaction of various process parameters involved.

  6. 超大筒节锻造工艺的优化%Optimization of Forging Process for Large Shell Ring

    Institute of Scientific and Technical Information of China (English)

    施熔刚; 张强升; 姜述杰; 张丽丹

    2013-01-01

    通过设计辅助工具方法及简化锻造工序对原有超大筒节锻件工艺进行改进,将原来锻造6火次出成品的锻造工艺改为4火次出成品,在确保产品质量的同时,有效的降低锻造生产成本,提高锻造生产效率.%The original forging process for large shell ring forging was improved through the methods of designing aid tools and simplifying forging process,that is,the original forging process of 6 fire times was instead of that of 4 fire times.The improved forging process can ensure product quality,reduce production costs and improve production efficiency.

  7. A new nanoscale metastable iron phase in carbon steels

    Science.gov (United States)

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-10-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels.

  8. A new nanoscale metastable iron phase in carbon steels

    Science.gov (United States)

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  9. Rolling contact fatigue of low hardness steel for slewing ring application

    Science.gov (United States)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  10. Prediction of solidification and phase transformation in weld metals for welding of high performance stainless steels; Kotaishoku kotainetsu stainless koyo yosetsu kinzoku no gyoko hentai no yosoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, T.; Inoue, H.; Morimoto, H.; Okita, S. [Nippon Steel Corp., Tokyo (Japan)

    1995-02-28

    Prediction technology is introduced on the solidification and transformation of weld metals used for high performance stainless steel. A model has been developed which uses Thermo Calc, a multiple balanced calculation program, as a means to analyze the solidification of multi-component alloys including the polyphase solidification such as eutectic and peritectic. Verification has been in progress concerning the adequacy of this model and the adaptability as a practical steel. The following are the prediction technologies for solidification and transformation which have been derived from experiments and applied to welding techniques: the effects of nitrogen on the solidification mode and residual {gamma}quantity of a welding metal that is required for controlling the welding/solidification of high nitrogen content {gamma}system stainless steel; the structural control of weld metal for high corrosion resistance high Mo stainless steel, in which high Ni and high Mo contents are indispensable for attaining the optimum structure; the structural control of weld metal for two-phase stainless steel containing Mo and N, in which it is essential to secure a high nitrogen content and a {delta}/{gamma}phase balance in a weld metal; and the precipitation prediction of intermetallic compound in a high alloy weld metal for a high alloy stainless steel, for which an explanation is there by Cieslak et al. based on the phase stability theory. 22 refs., 16 figs.

  11. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    Science.gov (United States)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  12. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  13. The Ties That Bind: How Social Capital Is Forged and Forfeited in Teacher Communities

    Science.gov (United States)

    Bridwell-Mitchell, E. N.; Cooc, North

    2016-01-01

    The effects of social capital on school improvement make it important to understand how teachers forge, maintain, or forfeit collegial relationships. Two common explanations focused on formal organizational features and individual characteristics do not address how social capital accrues from informal dynamics of teachers' interactions in…

  14. Fabrication Improvement of Cold Forging Hexagonal Nuts by Computational Analysis and Experiment Verification

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-01-01

    Full Text Available Cold forging has played a critical role in fasteners and has been applied to the automobile industry, construction industry, aerospace industry, and living products so that cold forging presents the opportunities for manufacturing more products. By using computer simulation, this study attempts to analyze the process of creating machine parts, such as hexagonal nuts. The DEFORM-3D forming software is applied to analyze the process at various stages in the computer simulation, and the compression test is also used for the flow stress equation in order to compare the differences between the experimental results and the equation that is built into the computer simulation software. At the same time, the metallography and hardness of experiments are utilized to understand the cold forging characteristics of hexagonal nuts. The research results would benefit machinery businesses to realize the forging load and forming conditions at various stages before the fastener formation. In addition to planning proper die design and production, the quality of the produced hexagonal nuts would be more stable to promote industrial competitiveness.

  15. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes...

  16. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  17. Effect of key factors on cold orbital forging of a spur bevel gear

    Institute of Scientific and Technical Information of China (English)

    庄武豪; 董丽颖

    2016-01-01

    Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the great importance of the final step to gear forming and its complication with interactive factors, this work aims at examining the influence of key factors on the final step in cold orbital forging of a spur bevel gear. Using the finite element (FE) method and control variate method, the influence rules of four key factors, rotation velocity of the upper tool,n, feeding velocity of the lower tool,v, tilted angle of the upper tool,γ, friction factor between the tools and the billet,m, on the geometry and the deformation inhomogeneity of the cold orbital forged gear are thoroughly clarified. The research results show that the flash becomes more homogeneous with increasingv, increasingm, decreasing n or decreasingγ. And the deformation of the gear becomes more homogeneous with increasingv, decreasingn or decreasingγ. Finally, a corresponding experiment is conducted, which verifies the accuracy of FE simulation conclusions.

  18. Jernberg Industries, Inc: Forging Facility Uses Plant-Wide Assessment to Aid Conversion to Lean Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-10-01

    Jernberg Industries conducted a plant-wide assessment while converting to lean manufacturing at a forging plant. Seven projects were identified that could yield annual savings of $791,000, 64,000 MMBtu in fuel and 6 million kWh.

  19. Influence of the hydrostatic stress component on critical surface expansion in forging compound products

    DEFF Research Database (Denmark)

    Vorm, T; Bay, Niels; Wanheim, Tarras

    1974-01-01

    of a superimposed hydrostatic pressure on the critical surface expansion during a forging process. The critical surface expansion appears to decrease with increasing hydrostatic pressure. This may be due to the fact that the close contact between the materials necessary to obtain bonding is created by a micro...

  20. Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education

    Science.gov (United States)

    Gilbert, Dorie J.

    2014-01-01

    Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…

  1. HaploForge: A Comprehensive Pedigree Drawing and Haplotype Visualisation Web Application.

    Science.gov (United States)

    Tekman, Mehmet; Medlar, Alan; Mozere, Monika; Kleta, Robert; Stanescu, Horia

    2017-08-14

    Haplotype reconstruction is an important tool for understanding the aetiology of human disease. Haplotyping infers the most likely phase of observed genotypes conditional on constraints imposed by the genotypes of other pedigree members. The results of haplotype reconstruction, when visualised appropriately, show which alleles are identical by descent despite the presence of untyped individuals. When used in concert with linkage analysis, haplotyping can help delineate a locus of interest and provide a succinct explanation for the transmission of the trait locus. Unfortunately, the design choices made by existing haplotype visualisation programs do not scale to large numbers of markers. Indeed, following haplotypes from generation to generation requires excessive scrolling back and forth. In addition, the most widely-used program for haplotype visualisation produces inconsistent recombination artefacts for the X chromosome. To resolve these issues, we developed HaploForge, a novel web application for haplotype visualisation and pedigree drawing. HaploForge takes advantage of HTML5 to be fast, portable and avoid the need for local installation. It can accurately visualise autosomal and X-linked haplotypes from both outbred and consanguineous pedigrees. Haplotypes are coloured based on identity by descent using a novel A* search algorithm and we provide a flexible viewing mode to aid visual inspection. HaploForge can currently process haplotype reconstruction output from Allegro, GeneHunter, Merlin and Simwalk. HaploForge is licensed under GPLv3 and is hosted and maintained via GitHub. Supplementary data is available from Bioinformatics online.

  2. eFORGE : A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data

    NARCIS (Netherlands)

    Breeze, Charles E.; Paul, Dirk S.; van Dongen, Jenny; Butcher, Lee M.; Ambrose, John C.; Barrett, James E.; Lowe, Robert; Rakyan, Vardhman K.; Iotchkova, Valentina; Frontini, Mattia; Downes, Kate; Ouwehand, Willem H.; Laperle, Jonathan; Jacques, Pierre-ETienne; Bourque, Guillaume; Bergmann, Anke K.; Siebert, Reiner; Vellenga, Edo; Saeed, Sadia; Matarese, Filomena; Martens, Joost H. A.; Stunnenberg, Hendrik G.; Teschendorff, Andrew E.; Herrero, Javier; Birney, Ewan; Dunham, Ian; Beck, Stephan

    2016-01-01

    Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new stand-alone and

  3. Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy

    Directory of Open Access Journals (Sweden)

    Zhichao Sun

    2016-10-01

    Full Text Available TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology.

  4. Physical modeling and numerical simulation of V-die forging ingot with central void

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2014-01-01

    Numerical simulation and physical modeling performed on small-scale ingots made from pure lead, having a hole drilled through their centerline to mimic porosity, are utilized to characterize the deformation mechanics of a single open die forging compression stage and to identify the influence...

  5. Preform design optimization for forging process based on the topological approach

    Science.gov (United States)

    Shao, Yong; Lu, Bin; Ou, Hengan; Cui, Zhenshan

    2013-05-01

    Preform design plays an important role in forging design especially for parts with complex shapes. In this paper, an attempt was made to develop a topological approach in the preform design of bulk metal forming processes based on the Bi-direction evolutionary structural optimization (BESO) strategy. In this approach, a new element addition and removal criteria based on the equivalent strain have been proposed for evaluating and optimizing the material flow in the forging process. To obtain a smooth preform boundary, a closed B-spline curve based on the least square approximation algorithm is employed to approximate the uneven surface of updated preform. An inhouse developed C♯ program has been employed to integrate the FE simluation, shape optimsation and surface approximation process. A 2D blade forging perform design problem are evaluate using the developed method. The results suggest that the optimized preform has shown better performance in improving the material flow and deformation uniformity during the forging. The results also demonstrate the robustness and efficiency of the developed preform design optimization method.

  6. Influence of forming velocity on the uniformity of microstructure of semisolid die forging 7075 alloy

    Directory of Open Access Journals (Sweden)

    Jianbo TAN

    2016-12-01

    Full Text Available Liquid phase segregation frequently occurs in the process of semi solid die forging, which makes the parts appear "weak point" or "weak region", and usually, the "weak point" or "weak area" is the reason of crack and service condition failure. In order to analyze the influence factors of the liquid phase segregation of the semi solid die forging, DEFORM-3D is used for the numerical simulation of semi-solid die forging forming process of 7075 aluminum alloy, to study the influence rule of forming velocity on the forming process of cup part. Based on the simulation results, the rheological die forging forming of 7075 aluminum alloythe part is conducted to research the influence of forming velocity on the uniformity of microstructure by means of press machine and cup mould. The simulation and experimental results show that as the filling velocity is faster, the forming process is more unstable; under the condition of head temperature of 400 ℃, the forming pressure of 50 MPa, and the alloy temperature 628 ℃, as the forming velocity increases, the liquid phase segregation degree of cup part increases, and the microstructure is far from uniformity. The segregation degree is up to 18.2% as the forming velocity is 5 mm/s.

  7. A Casting Yield Optimization Case Study: Forging Ram

    DEFF Research Database (Denmark)

    Kotas, Petr; Tutum, Cem Celal; Hattel, Jesper Henri;

    2010-01-01

    This work summarizes the findings of multi-objective optimization of a gravity sand-cast steel part for which an increase of the casting yield via riser optimization was considered. This was accomplished by coupling a casting simulation software package with an optimization module. The benefits...... of this approach, recently adopted in foundry industry world wide and based on fully automated computer optimization, were demonstrated. First, analyses of filling and solidification of the original casting design were conducted in the standard simulation environment to determine potential flaws and inadequacies....... Based on the initial assessment, the gating system was redesigned and the chills rearranged to improve the solidification pattern. After these two cases were evaluated, the adequate optimization targets and constraints were defined. One multi-objective optimization case with conflicting objectives...

  8. A Casting Yield Optimization Case Study: Forging Ram

    DEFF Research Database (Denmark)

    Kotas, Petr; Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    This work summarizes the findings of multi-objective optimization of a gravity sand-cast steel part for which an increase of the casting yield via riser optimization was considered. This was accomplished by coupling a casting simulation software package with an optimization module. The benefits...... of this approach, recently adopted in foundry industry world wide and based on fully automated computer optimization, were demonstrated. First, analyses of filling and solidification of the original casting design were conducted in the standard simulation environment to determine potential flaws and inadequacies....... Based on the initial assessment, the gating system was redesigned and the chills rearranged to improve the solidification pattern. After these two cases were evaluated, the adequate optimization targets and constraints were defined. One multi-objective optimization case with conflicting objectives...

  9. Influence of Austenitizing Heat Treatment on the Properties of the Tempered Type 410-1Mo Stainless Steel

    Science.gov (United States)

    Mabruri, E.; Syahlan, Z. A.; Sahlan; Prifiharni, S.; Anwar, M. S.; Chandra, S. A.; Romijarso, T. B.; Adjiantoro, B.

    2017-05-01

    The modified 410-1Mo stainless steel has been developed with higher tensile strength and elongation compared to the standard 410 stainless steel. This paper reports the influence of austenitizing temperature on the microstructure, hardness, impact resistance and corrosion resistance of the modified 410-1Mo steel. The steel samples were prepared by a process sequence of induction melting, hot forging, annealing, hardening, and tempering. The microstructure of the tempered steels revealed additional phase of delta ferrite at pre-austenitizing temperatures of 950 to 1050 °C and disappeared at a temperature of 1100 °C. The steels which underwent pre-austenitizing at 1100 °C showed the largest sized lath martensite and the largest amount of retained austenite. The tempered steels maintained hardness at austenitizing temperatures of 950 °C to 1000 °C and showed an increasing hardness at austenitizing temperatures from 1000 to 1100 °C. At a range of austenitizing temperatures, it was investigated that the steels exhibited higher impact resistance at 1050 °C. The tempered steels that were pre-austenitized at 950 °C and 1100 °C showed the lowest pitting potential due to the existence of carbides and coarse-high carbon martensite, respectively.

  10. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  11. Hot deformation behavior and flow stress model of F40MnV steel

    Institute of Scientific and Technical Information of China (English)

    WANG Jin; CHEN Jun; ZHAO Zhen; RUAN Xue-yu

    2007-01-01

    Single hit compression tests were performed at 1 223-1 473 K and strain rate of 0.1-10 s-1 to study hot deformation behavior and flow stress model of F40MnV steel. The dependence of the peak stress, initial stress, saturation stress, steady state stress and peak stain on Zener-Hollomon parameter were obtained. The mathematical models of dynamic recrystallization fraction and grain size were also obtained. Based on the tested data.the flow stress model of F40MnV steel was established in dynamic recovery region and dynamic recrystallization region, respectively. The results show that the activation energy for dynamic recrystallization is 278.6 kJ/mol by regression analysis. The flow stress model of F40MnV steel is proved to approximate the tested data and suitable for numerical simulation of hot forging.

  12. Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-04-01

    Full Text Available The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

  13. Nanosized MX Precipitates in Ultra-Low-Carbon Ferritic/Martensitic Heat-Resistant Steels

    Science.gov (United States)

    Yin, Feng-Shi; Jung, Woo-Sang

    2009-02-01

    Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant 9Cr-W-Mo-VNbTiN steels were characterized by transmission electron microscope (TEM) using carbon film replicas. The steels were prepared by vacuum induction melting followed by hot forging and rolling into plates. The plates were normalized at 1100 °C for 1 hour, cooled in air, and tempered at 700 °C for 1 hour. The results show that bimodal nanosized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. The larger nanosized MX precipitates with the size of 30 to 50 nm are rich in Nb, while the smaller ones with the size of about 10 nm contain less Nb but more V. Small addition of Ti causes an increase in the number of the larger nanosized MX precipitates. The total number density of the nanosized MX precipitates in the ultra-low-carbon ferritic/martensitic steels is measured to be over 300/ μm2, much higher than that in conventional ferritic/martensitic steels. Short-term creep test results show that the ultra-low-carbon ferritic/martensitic steels with high dense nanosized MX precipitates have much higher creep rupture strength than conventional ASME-P92 steel. The strength degradation of the ultra-low-carbon ferritic/martensitic heat-resistant steels during creep is also discussed in this article.

  14. Microstructure and Abrasive Wear Resistance of 18Cr-4Ni-2.5Mo Cast Steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2012-12-01

    Full Text Available An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratoryconditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing at 1060C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel.The Cr content decrease, in ferritic-austenitic cast steels (duplex, from 24-26%Cr to 18% leads to the changes of the castingsmicrostructure and eliminating of a brittle  phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.

  15. Forming of Hollow Shaft Forging From Titanium Alloy Ti6Al4V by Means of Rotary Compression

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-04-01

    Full Text Available This paper presents chosen results of theoretical-experimental works concerning forming of hollow shafts forgings from titanium alloys, which are applied in aviation industry. At the first stage of conducted analysis, the forging forming process was modeled by means of finite element method. Calculations were made using software Simufact Forming. On the basis of performed simulations optimal parameters of rotary compression process were determined. Next, experimental tests of forging forming in laboratory conditions were made. For the research needs, a forging aggregate, designed by the Authors, was used. Conducted research works confirmed the possibility of metal forming (by means of rotary compression of hollow shafts from hard workable titanium alloys. Numerous advantages of rotary compression process, make it attractive both for low series production (aircraft industry and for mass production (automotive industry.

  16. Effects of Cryogenic Forging and Anodization on the Mechanical Properties of AA 7075-T73 Aluminum Alloys

    Science.gov (United States)

    Shih, Teng-Shih; Liao, Tien-Wei; Hsu, Wen-Nong

    2016-03-01

    In this study, high-strength AA7075 alloy samples were cryogenically forged after annealing and then subjected to solution and aging treatments. The cryogenically forged 7075-T73 alloy samples displayed equiaxed fine grains associated with abundant fine precipitates in their matrix. Compared with conventional 7075-T73 alloy samples, the cryogenically forged samples exhibited an 8-12% reduction in tensile strength and an increased fatigue strength and higher corrosion resistance. The fatigue strength measured at 107 cycles was 225 MPa in the bare samples; the strength was increased to 250 MPa in the cryogenically forged samples. The effect of anodization on the corrosion resistance of the bare samples was improved from (E corr) -0.80 to -0.61 V.

  17. Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process

    Institute of Scientific and Technical Information of China (English)

    Mohammadmehdi Shabani; Mohammad Hossein Paydar; Mohammad Mohsen Moshksar

    2014-01-01

    The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, tempera-ture, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently com-pared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.

  18. High Speed Turning of H-13 Tool Steel Using Ceramics and PCBN

    Science.gov (United States)

    Umer, Usama

    2012-09-01

    H-13 is the toughest tool steel used in machined die casting and forging dies. Due to its extreme hardness and poor thermal conductivity high speed cutting results in high temperature and stresses. This gives rise to surface damage of the workpiece and accelerated tool wear. This study evaluates the performance of different tools including ceramics and PCBN using practical finite element simulations and high speed orthogonal cutting tests. The machinability of H-13 was evaluated by tool wear, surface roughness, and cutting force measurements. From the 2D finite element model for orthogonal cutting, stresses and temperature distributions were predicted and compared for the different tool materials.

  19. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel

    Science.gov (United States)

    Kim, Jae-Hwan; Wang, Jei-Pil; Kang, Chang-Yong

    2011-12-01

    In order to investigate the effect of aluminization on the oxidation properties of 12Cr martensitic heat resisting steel, a specimen was prepared by forging after centrifugal casting. After aluminizing treatment under various conditions, scanning electron microscopy observation, and hardness, line profile and x-ray diffraction analysis of the alloy layer were performed. The results confirmed that the thickness of the layer of Al13Fe4, with a Vickers hardness of over 880, increased with increasing aluminizing temperature and time. Moreover, it was concluded from the results of the oxidation experiment that the oxidation properties of the aluminized specimen were improved by up to approximately 30 %.

  20. Crack Growth of D6 Steel in Air and High Pressure Oxygen

    Science.gov (United States)

    Bixler, W. D.; Engstrom, W. L.

    1971-01-01

    Fracture and subcritical flaw growth characteristics were experimentally deter­mined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.

  1. Reinforcing the Steel Sector

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By pushing forward mergers between steel-makers, China gears up to consolidate the large but fragmented industryIn a government effort to consolidate the crowded steel industry and position it for fierce global competition, the state-

  2. Effects of Process Parameters on Deformation and Temperature Uniformity of Forged Ti-6Al-4V Turbine Blade

    Science.gov (United States)

    Luo, Shiyuan; Zhu, Dahu; Hua, Lin; Qian, Dongsheng; Yan, Sijie; Yu, Fengping

    2016-11-01

    This work is motivated by the frequent occurrence of macro- and microdefects within forged Ti-6Al-4V turbine blades due to the severely nonuniform strain and temperature distributions. To overcome the problem of nonuniformity during the blade forging operation, firstly, a 2D coupled thermo-mechanical finite element approach using the strain-compensated Arrhenius-type constitutive model is employed to simulate the real movements and processing conditions, and its reliability is verified experimentally. Secondly, two evaluation indexes, standard deviation of equivalent plastic strain and standard deviation of temperature, are proposed to evaluate the uniformity characteristics within the forged blade, and the effects of four process parameters including the forging velocity, friction factor, initial workpiece temperature and dwell time on the uniformity of strain and temperature distributions are carefully studied. Finally, the numerically optimized combination of process parameters is validated by the application in a practical process. The parametric study reveals that a reasonable combination of process parameters considering the flow resistance, flow localization and the effects of deformation and friction heating is crucial for the titanium alloy blade forging with uniformity. This work can provide a significant guidance for the design and optimization of blade forging processes.

  3. Application of multi-grid method on the simulation of incremental forging processes

    Science.gov (United States)

    Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel

    2016-10-01

    Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.

  4. Volume calculation of the spur gear billet for cold precision forging with average circle method

    Institute of Scientific and Technical Information of China (English)

    Wangjun Cheng; Chengzhong Chi; Yongzhen Wang; Peng Lin; Wei Liang; Chen Li

    2014-01-01

    Forging spur gears are widely used in the driving system of mining machinery and equipment due to their higher strength and dimensional accuracy. For the purpose of precisely calculating the volume of cylindrical spur gear billet in cold precision forging, a new theoretical method named average circle method was put forward. With this method, a series of gear billet volumes were calculated. Comparing with the accurate three-dimensional modeling method, the accuracy of average circle method by theoretical calculation was estimated and the maximum relative error of average circle method was less than 1.5%, which was in good agreement with the experimental results. Relative errors of the calculated and the experimental for obtaining the gear billet volumes with reference circle method are larger than those of the average circle method. It shows that average circle method possesses a higher calculation accuracy than reference circle method (traditional method), which should be worth popularizing widely in calculation of spur gear billet volume.

  5. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts

    Science.gov (United States)

    Herrmann, J.; Rauert, T.; Dalhoff, P.; Sander, M.

    2016-09-01

    To reduce uncertainties associated with the fatigue life of the highly safety relevant rotor shaft and also to review today's design practice, the fatigue behaviour will be tested on a full scale test rig. Until now tests on full scale wind turbine parts are not common. Therefore, a general lack of experience on how to perform accelerated life time tests for those components exists. To clarify how to transfer real conditions to the test environment, the arrangements and deviations for the upcoming experimental test are discussed in detail. In order to complete investigations of weight saving potentials, next to getting a better comprehension of the fatigue behaviour by executing a full scale test, a further outcome are suggestions for the usage of cast and forged materials regarding the fatigue and the remaining life of the rotor shaft. It is shown, that it is worthwhile to think about a material exchange for the forged rotor shaft.

  6. Study of Dynamic Characteristics for Hydraulic System on 300MN Die-forging Press

    Science.gov (United States)

    Chen, Guoqiang; Tan, Jianping

    2017-06-01

    The faults such as seal breakdown and pressure sensor damage occur in 300MN Die-forging press frequently. First, the fault phenomenon and harm of the hydraulic system was compiled statistics, the theoretical analysis of the hydraulic impact of hydraulic system are carried out based on the momentum theorem; Then, the co-simulation model of hydraulic system was established by AMESim and Simulink software and the correctness was verified. Finally, the dynamic characteristics of hydraulic system for the key working condition “forging stroke changing to mold collision” was analyzed, the influences rules of system parameters such as the leak gap of valve, diameter of water way pipeline, emulsion temperature and air contain act on hydraulic system are obtained. This conclusions have a theoretical guiding significance to the improvement and maintains of high pressure and large flow hydraulic system.

  7. Effect of multiaxial forging on microstructure and mechanical properties of Mg-o.8Ca alloy

    Science.gov (United States)

    Yurchenko, N. Yu; Stepanov, N. D.; Salishchev, G. A.; Rokhlin, L. L.; Dobatkin, S. V.

    2014-08-01

    It was shown that multiaxial forging with continuous decrease of temperature from 450°C to 250°C turns coarse structure of the Mg-0.8Ca alloy in homogenized state with grain size of several hundreeds gm into fine structure with average grain size of about 2.1 gm. Refinement of structure is accompanied by drastic increase of mechanical properties: tensile yield strength increases from 50 MPa to 193 MPa, ultimate tensile strength increases from 78 to 308 MPa and elongation to fracture increases from 3.0% to 7.2%. The microstructural evolution during multiaxial forging is studied using optical microscopy, scanning electron microscopy and EBSD analysis. The mechanisms responsible for refinement of microstructure are discussed

  8. Effect of interfacial friction during forging of solid powder discs of large slenderness ratio

    Indian Academy of Sciences (India)

    R K Ranjan; S Kumar

    2004-10-01

    The paper reports an investigation into the effect of interfacial friction law during the forging of a powder circular disc with large slenderness ratio (L/D) between two flat dies. The deformation pattern during the operation is influenced by many factors, which interact with each other in a complex manner. The relative velocity between the work piece material and the die surface, together with high interfacial pressure and/or deformation modes, creates the conditions essential for adhesion in addition to sliding. The decisive factors are the interfacial conditions, initial relative density of the preform and geometry of the preform. An attempt has been made to determine the most realistic interfacial friction law and die pressures developed during such forging using an upper bound approach. The results so obtained are presented graphically and discussed critically to illustrate the interaction of various interfacial friction laws involved.

  9. Tribological investigations of TiC+a-C:H Coatings Manufactured on X38CrMoV5-1 Steel Using PVD Technology

    OpenAIRE

    GOLABCZAK, Marcin; Jacquet, Philippe; Nouveau, Corinne; FLITI, Romain

    2013-01-01

    International audience; X38CrMoV5-1 steel is a typical tool steel commonly used in forging and plastic moulding industry for production of ejectors, slides, dies, etc. In plastics moulding a lot of these parts sustain relative movement. Because of this, some seizing or micro-welding may appear, especially when lubrication is not used. For many years, the different types of protective coatings were developed to avoid such problems. Most of the obtained solutions relate to the manufacturing of ...

  10. Smelting Process of SA-508-3-1 Steel for Nuclear Plant Reactor Pressure Vessel%核电压力容器用 SA-508-3-1钢的冶炼

    Institute of Scientific and Technical Information of China (English)

    薛永栋; 晋帅勇; 汪勇; 郭彪

    2012-01-01

      The SA-508-3-1 ingot steel smelting process of EBT smelting-LF refining-VD-VC has been put forward by analyzing the difficulties of smelting process based on the characteristics of steel structure and property requirement for nuclear plant reactor pressure vessel .The nuclear power SA-508-3-1 ingot steel has been produced successfully ac-cording to this steel smelting process .The property of the forgings has reached the requirement of NRPV forgings after forging and heat treatment processes which helped CITIC HEAVY INDUSTRIES to be certified by National Nuclear Safety Administration.%  针对核电压力容器用SA-508-3-1钢的组织与性能特点,分析出冶炼的难点,通过对冶炼工艺的深入研究,提出了采用EBT初炼—LF精炼—真空脱气—真空浇注的冶炼工艺方案,按该工艺方案成功冶炼浇注了核电SA-508-3-1钢锭。经过锻造及热处理等工序后,锻件性能达到核电压力容器锻件要求,并获得国家核安全局认证。

  11. DYNAMIC SIMULATION OF MICROSTRUCTURE EVOLUTION DURING HOT FORGING FOR ENGINE STIGMATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Incorporated with constitutive relationship established by artificial neural networks (ANN), a coupled theroviscoplastic finite element procedure is developed for predicting the microstructure evolution in the hot forging process, considering the factors such as dynamic recrystallization, static recrystallization and grain growth etc. This software system is applied to predict the distributions of the grain size over the crosssection of stigmata, which is found to be in good agreement with the experimental results. The software can provide a fundament for optimizing technological parameters.

  12. Die Motions of New Forging Process Using IntermediateDie Assembly

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The die motions of a new forging process for automation with an intermediate die assembly called hamburger were analyzed through high-speed video pictures. The results showed that the upper die that is assembled in the hamburger and retained over the lower die collides few times with the ram and workpiece, but sound products can be obtained with less sticking in spite of the lowered impacts of hit.

  13. Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts.

    Science.gov (United States)

    Hsia, Shao-Yi; Shih, Po-Yueh

    2015-09-25

    Cold forging has played a critical role in fasteners and has been widely used in automotive production, manufacturing, aviation and 3C (Computer, Communication, and Consumer electronics). Despite its extensive use in fastener forming and die design, operator experience and trial and error make it subjective and unreliable owing to the difficulty of controlling the development schedule. This study used finite element analysis to establish and simulate wear in automotive repair fastener manufacturing dies based on actual process conditions. The places on a die that wore most quickly were forecast, with the stress levels obtained being substituted into the Archard equation to calculate die wear. A 19.87% improvement in wear optimization occurred by applying the Taguchi quality method to the new design. Additionally, a comparison of actual manufacturing data to simulations revealed a nut forging size error within 2%, thereby demonstrating the accuracy of this theoretical analysis. Finally, SEM micrographs of the worn surfaces on the upper punch indicate that the primary wear mechanism on the cold forging die for long hex flange nuts was adhesive wear. The results can simplify the development schedule, reduce the number of trials and further enhance production quality and die life.

  14. Non-destructive Testing of Forged Metallic Materials by Active Infrared Thermography

    Science.gov (United States)

    Maillard, S.; Cadith, J.; Bouteille, P.; Legros, G.; Bodnar, J. L.; Detalle, V.

    2012-11-01

    Nowadays, infrared thermography is considered as the reference method in many applications such as safety, the inspection of electric installations, or the inspection of buildings' heat insulation. In recent years, the evolution of both material and data-processing tools also allows the development of thermography as a real non-destructive testing method. Thus, by subjecting the element to be inspected to an external excitation and by analyzing the propagation of heat in the examined zone, it is possible to highlight surface or subsurface defects such as cracks, delaminations, or corrosion. One speaks then about active infrared thermography. In this study, some results obtained during the collective studies carried out by CETIM and the University of Reims for the forging industry are presented. Various experimental possibilities offered by active thermography are presented and the interest in this method in comparison with the traditional non-destructive testing methods (penetrant testing and magnetic particle inspection) is discussed. For example, comparative results on a forged cracked hub, a steering joint, and a threaded rod are presented. They highlight the interest of infrared thermography stimulated by induction for forged parts.

  15. Wear Improvement of Tools in the Cold Forging Process for Long Hex Flange Nuts

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-09-01

    Full Text Available Cold forging has played a critical role in fasteners and has been widely used in automotive production, manufacturing, aviation and 3C (Computer, Communication, and Consumer electronics. Despite its extensive use in fastener forming and die design, operator experience and trial and error make it subjective and unreliable owing to the difficulty of controlling the development schedule. This study used finite element analysis to establish and simulate wear in automotive repair fastener manufacturing dies based on actual process conditions. The places on a die that wore most quickly were forecast, with the stress levels obtained being substituted into the Archard equation to calculate die wear. A 19.87% improvement in wear optimization occurred by applying the Taguchi quality method to the new design. Additionally, a comparison of actual manufacturing data to simulations revealed a nut forging size error within 2%, thereby demonstrating the accuracy of this theoretical analysis. Finally, SEM micrographs of the worn surfaces on the upper punch indicate that the primary wear mechanism on the cold forging die for long hex flange nuts was adhesive wear. The results can simplify the development schedule, reduce the number of trials and further enhance production quality and die life.

  16. Multipass forging of Inconel 718 in the delta-Supersolvus domain: assessing and modeling microstructure evolution

    Directory of Open Access Journals (Sweden)

    Zouari Meriem

    2014-01-01

    Full Text Available This work is focused on the evolution of the microstructure of Inconel 718 during multi-pass forging processes. During the forming process, the material is subjected to several physical phenomena such as work-hardening, recovery, recrystallization and grain growth. In this work, transformation kinetics are modeled in the δ-Supersolvus domain (T>Tsolvus where the alloy is single-phase, all the alloying elements being dissolved into the FCC matrix. Torsion tests were used to simulate the forging process and recrystallization kinetics was modeled using a discontinuous dynamic recrystallization (DDRX two-site mean field model. The microstructure evolution under hot forging conditions is predicted in both dynamic and post-dynamic regimes based on the initial distribution of grain size and the evolution of dislocation density distribution during each step of the process. The model predicts recrystallization kinetics, recrystallized grain size distribution and stress–strain curve for different thermo-mechanical conditions and makes the connection between dynamic and post-dynamic regimes.

  17. Forming limit prediction of powder forging process by the energy-based elastoplastic damage model

    Science.gov (United States)

    Yeh, Hung-Yang; Cheng, Jung-Ho; Huang, Cheng-Chao

    2004-06-01

    An energy-based elastoplastic damage model is developed and then applied to predict the deformation and fracture initiation in powder forging processes. The fracture mechanism is investigated by the newly proposed damage model, which is based on the plastic energy dissipation. The developed formulations are implemented into finite element program ABAQUS in order to simulate the complex loading conditions. The forming limits of sintered porous metals under various operational conditions are explored by comparing the relevant experiments with the finite element analyses. The sintered iron-powder preforms of various initial relative densities (RDs) and aspect ratios are compressed until crack initiates. The deformation level of the bulged billets at fracture stroke obtained from compressive fracture tests is utilized to validate the finite element model and then the forming limit diagrams are constructed with the validated model. This model is further verified by the gear blank forging. The fracture site and corresponding deformation level are predicted by the finite element simulations. Meanwhile, the gear forging experiment is performed on the sintered preforms. The predicted results agree well with the experimental observations.

  18. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    Science.gov (United States)

    Kim, H. H.; Kang, C. G.

    2010-06-01

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  19. Numerical simulation for die forging of high-speed railway brake disc hub%高速列车制动盘盘毂锻造工艺数值模拟

    Institute of Scientific and Technical Information of China (English)

    张龙; 孙明月; 李殿中

    2012-01-01

    基于实测的40CrA钢高温应力-应变曲线和热物性参数,建立了高速列车制动盘盘毂毛坯在模锻过程的有限元模型.运用DEFORM-3D软件,对该盘毂的多步骤锻造过程进行热力耦合模拟,得到了应力、应变和温度随时间的变化规律;研究盘毂成形过程的金属流动机制,模拟了产生折叠缺陷的位置;预测了盘毂完全成形所需的锻锤打击次数;对终锻模具的最大主应力进行分析,预测了模具在实际生产中可能产生的塌陷、开裂缺陷及其位置.根据模拟结果进行了生产试制,验证了工艺的可行性和模拟的准确性.%Based on the measured stress-strain curves at different strain rates and the thermal-physical parameters of 40CrA steel, the finite element model for the forging process of a high-speed railway brake disc hub was established. The thermal-mechanical coupling process was simulated by using DEFORM-3D code. From the simulation results, the strain, stress and temperature field in the forging process were obtained. In order to simulate the folding defect position, the mechanism of metal flow of the disc hub was investigated. Furthermore, the number of combating for forging hammer was predicted. By analyzing the maximum principal stress on the final-forging mold, the collapse and crack that might arise in the actual production were predicted. The experimental results verified the feasibility of the process and the accuracy of the simulation.

  20. Influence of retained austenite on the grain size of austenite after reaustenitization of steels for heavy forgings

    Energy Technology Data Exchange (ETDEWEB)

    Peters, H.J.; Tacke, G.; Hougardy, H.P.

    1989-01-01

    In this investigation the grain size of austenite reaustenitization of different microstructures containing different volume fractions of retained austenite was determined. The austenite grain size after austenitization of martensite and lower bainite was coarse for heating rates lower than a minimum value, which is dependent on the chemical composition. In this case, the austenite forms by rapid growth of retained austenite in the initial microstructure. At heating rates higher than the critical value, formation of austenite starts at the ferrite-carbide phase boundaries giving a fine austenite grain. The formation of austenite from microstructures free of retained austenite, such as pearlite, always occurred by nucleation on the ferrite-carbide interphase resulting in fine austenite grains. (orig.).

  1. Design and Improve Forging Mould of Squareness Bol%方头螺栓的锻造模具的设计与改进

    Institute of Scientific and Technical Information of China (English)

    连厚富; 齐永丰

    2014-01-01

    通过对方头螺栓胎模锻与自由锻优点的比较,介绍了通过充分利用胎模来生产锻件,可达到不断降低锻件毛坯重量,减少加工工时目的。设计合理的锻膜结构和不断改进锻模结构,是该工艺的关键。%By comparing the advantages between loose tooling forging with the free forging on forging square-head bolt , it is introduced that by utilizing membranes to produce forging can achieve forging blank to decrease weight and reduce the processing time . Reasonable design of forging die structure , mem-brane structure and the continuous improvement is the key to this process .

  2. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  3. Influence on the quality of forgings long-axis heavy forgings in squaring process%压方圆角对长轴类大锻件质量影响研究

    Institute of Scientific and Technical Information of China (English)

    李光喜; 吴玉忠; 郭扬

    2015-01-01

    According to the characteristics of long-axis heavy forgings.The whole forging process of longaxis heavy forging was divided into three steps,including squaring,stretching and chamfering rounding.Researches of forging process are now focused on the optimization of stretching,but hardly on forging process optimization.By means of DEFORM-3D software,edge radius of V-shaped anvil were simulated and optimized from aspects of internal stress state,stress and the damage factor in squaring process.Results of Simulation show that appropriate edge radius of V-shaped anvil can prevent forging cracks and improve the quality of forgings.%长轴类大锻件的锻造过程一般分为压方、拔长和倒棱滚圆三大步骤,目前对锻造工艺研究较多的是拔长和倒棱滚圆的优化,很少有对压方工艺优化的研究。本文从V型砧边缘的圆角半径的大小来对长轴类大锻件的压方过程进行模拟优化,从锻件内部应力、应变及破坏因子三个方面进行对比分析。结果表明,适当增大V型砧边缘的圆角半径可以有效防止锻件裂纹的产生,为锻件的质量提高和结构设计提供一种有效、可靠的分析方法。

  4. Aspects of the tribological behaviour of powders recycled from rapid steel treated sub-zero

    Science.gov (United States)

    Radu, S.; Ciobanu, M.

    2017-02-01

    The recycling of high-alloyed steels represents a significant opportunity in Powder Metallurgy as it permits the use of raw materials with relatively low prices compared to the conventional methods. Recycling can be achieved by two methods: from spraying debris resulted from worn cutting tools and processes obtained from processing chip drilling and re-sharpening of tools. The research aims to confirm that wastes from rapid steels can become, by the successive processing, metal powders that can thereafter be used for cutting tools of lathe type removable plate. After pressing and sintering the recycling powder, cylindrical samples were obtained that were subsequently applied a subcritical annealing. Wear tests conducted on a tribometer type TRB-01-02541 confirmed that their wear resistance is superior to the same samples that were sintered, hardened and tempered in oil. This paper was accepted for publication in Proceedings after double peer reviewing process but was not presented at the Conference ROTRIB’16.

  5. The Portevin-Le Châtelier Effect in a Metastable Austenitic Stainless Steel

    Science.gov (United States)

    Müller, Alexandra; Segel, Christian; Linderov, Mikhail; Vinogradov, Alexei; Weidner, Anja; Biermann, Horst

    2016-01-01

    The Portevin-Le Châtelier (PLC) effect was investigated in a high-alloy metastable CrMnNi cast steel during tensile tests for the range of deformation temperatures between 293 K and 413 K (20 °C and 140 °C) and for nominal strain rates ranging between 10-4 and 10-1 s-1. Analysis of the stress-strain curves was complemented by in situ measurements of thermal and acoustic emissions as well as by digital image correlation, enabling determination of various local characteristics of plastic flow and clarification of individual contributions of different microscopic mechanisms involved in plastic deformation. It was shown that the PLC effect in the investigated CrMnNi steel was caused by the diffusion of interstitial atoms in the bcc phases.

  6. Effects of heat input on the microstructure and toughness of the 8 MnMoNi 5 5 shape-welded nuclear steel

    Science.gov (United States)

    Million, Karl; Datta, Ratan; Zimmermann, Horst

    2005-04-01

    A weld metal well proven in the German nuclear industry served as the basis for the certification of a shape-welded steel to be used as base material for manufacture of nuclear primary components. The outstanding properties of this steel are attributed to the extremely fine-grained and stable primary microstructure. Subsequent reheating cycles caused by neighbouring weld beads do neither lead to coarsened brittle structures in the heat-affected zone nor to increase in hardness and decrease in toughness, as is the case with wrought steel materials. One of the largest new reactor vessel design amongst today's advanced reactor projects is considered to be particularly suitable for the use of shape-welded parts in place of forgings. In addition the need for design and development of new shape-welded steel grades for other new generation reactor projects is emphasized, in which the experience gained with this research could make a contribution.

  7. Effect of Al on Microstructures and Mechanical Properties of the Ultrahigh Carbon Steels

    Institute of Scientific and Technical Information of China (English)

    Huifen PENG; Baoqi WANG; Jianjun ZHANG; Xiaoyan SONG; Xiaoli MA; Nanju GU

    2004-01-01

    In this research, we tried to find a simple processing method to break up the network carbides in ultrahigh carbon steels (UHCS). Our results revealed that Al addition was favorable to the decrease in the proeutectoid carbides, the pearlite-colony size and the pearlitic interlamellar spacing of the forged microstructures, and that a fully-pearlitic structure was obtained in the UHCS containing 1.6 wt pct Al. The quenching-and-tempering process resulted in fine microstructure in those steels. On the other hand, the strength of the UHCSs increased with the increase of the Al content, and the highest strength was obtained at the UHCS with 1.6 wt pct Al. The UHCSs with Al contents higher than 1.3 wt pct showed a high tensile strength of more than σb=1000 MPa and good ductility of higher than δ5=10% at ambient temperature.

  8. Hot-Deformation Behavior and Hot-Processing Maps of AISI 410 Martensitic Stainless Steel

    Science.gov (United States)

    Qi, Rong-Sheng; Jin, Miao; Guo, Bao-Feng; Liu, Xin-Gang; Chen, Lei

    2016-10-01

    The compressive deformation behaviors of 410 martensitic stainless steel were investigated on a Gleeble-1500 thermomechanical simulator, and the experimental stress-strain data were obtained. The measured flow stress was corrected for friction and temperature. A constitutive equation that accounts for the influence of strain was established, and the hot-processing maps at different strain were plotted. The microstructure evolution of the hot-deformation process was studied on the basis of microstructural observations at high temperatures. Phase-transformation experiments on 410 steel were conducted at high temperatures to elucidate the effects of temperature on the delta-ferrite content. The initial forging temperature and optimum process parameters were obtained on the basis of the processing map and the changes in the delta-ferrite content at high temperatures.

  9. Microstructure and Properties of Selective Laser Melted High Hardness Tool Steel

    Science.gov (United States)

    Feuerhahn, F.; Schulz, A.; Seefeld, T.; Vollertsen, F.

    A secondary hardening tool steel material X110CrMoVAl 8-2 was successfully processed by selective laser melting (SLM), producing defect free samples of high density. The microstructure appeared irregular after SLM, which was attributed to locally different temper states in consequence of the SLM process pattern. By a subsequent heat treatment, a homogeneous microstructure with ultrafine carbide precipitations and a very high resulting hardness of 765 HV were achieved. The hardness came very close to that of the same material processed by spray forming and forging, whilst the SLM microstructure was significantly finer. Therefore this tool steel material was considered as highly promising for SLM manufacturing of tools, e.g. for micro tooling applications.

  10. The Z-Phase in 9Cr Ferritic/martensitic Heat Resistant Steel

    Science.gov (United States)

    Yin, Fengshi; Chen, Fuxia; Jiang, Xuebo; Xue, Bing; Zhou, Li; Jung, Woosang

    The precipitation behavior of Z-phase was investigated during long-term aging at 650°C in an ultra low carbon 9Cr ferritic/martensitic heat resistant steel. The steel was prepared by vacuum induction melting followed by hot forging and rolling into a plate. The plate was normalized at 1100°C for 1h, cooled in air and tempered at 700°C for 1h. Bimodal nano-sized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. After aging at 650°C for 1200h, the Z-phase was found to nucleate on the larger nano-sized MX. The Z-phase and MX have the following orientation relationship: Z-phase//MX and (1bar 10){Z-phase}//(200){MX} .

  11. 平锻机锻件缺陷分析及对策%Failure analysis and solution of forging parts manufactured by horizontal forging machine

    Institute of Scientific and Technical Information of China (English)

    张国杰

    2013-01-01

    Taking the 1250T horizontal forging machine as an example, the process characteristics of this machine have been introduced in the text. The failures like poor straightness of rod, pad injury, folding and mismatch of tool in the daily production have been analyzed and the solution has been put forward.%结合公司1250t平锻机,介绍此种设备生产锻件工艺特点,并对日常生产中遇到的杆部直线度超差、垫伤、折叠及错模等锻件缺陷进行分析并提出解决办法.

  12. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  13. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  14. Influence of die geometry and material selection on the behavior of protective die covers in closed-die forging

    Science.gov (United States)

    Yu, Yingyan; Rosenstock, Dirk; Wolfgarten, Martin; Hirt, Gerhard

    2016-10-01

    Due to the fact that tooling costs make up to 30% of total costs of the final forged part, the tool life is always one main research topic in closed-die forging [1]. To improve the wear resistance of forging dies, many methods like nitriding and deposition of ceramic layers have been used. However, all these methods will lose its effect after a certain time, then tool repair or exchange is needed, which requires additional time and costs. A new method, which applies an inexpensive and changeable sheet metal on the forging die to protect it from abrasive wear, was firstly proposed in [2]. According to the first investigation, the die cover is effective for decreasing thermal and mechanical loads, but there are still several challenges to overcome in this concept, like wrinkling and thinning of the die cover. Therefore, an experimental study using different geometries and die cover materials is presented within this work. The results indicate the existence of feasible application cases of this concept, since conditions are found under which a die cover made of 22MnB5 still keeps its original shape even after 7 forging cycles.

  15. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Directory of Open Access Journals (Sweden)

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  16. Ultrahigh Carbon Steel.

    Science.gov (United States)

    1984-10-01

    Steels have been utilized to prepare compacted powders of white cast iron (2 to 3%C) which exhibit superplastic be- havior at 650 0C and which are ductile ...strength and ductility than many of these commercially-avail- able steels. In particular, austempered fine-grained UHC steels exhibit good co7,binations of... Ductility of Rapidly Solidified White Cast Irons ", Powd. Metall., 26 (1983), pp. 155-160. (29) L. E. Eiselstein, 0. A. Ruano, J. Wadsworth, and 0. D

  17. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  18. Ultrahigh Carbon Steels

    Science.gov (United States)

    Sherby, O. D.; Oyama, T.; Kum, D. W.; Walser, B.; Wadsworth, J.

    1985-06-01

    Recent studies and results on ultrahigh carbon (UHC) steels suggest that major development efforts on these steels are timely and that programs to evaluate prototype structural components should be initiated. These recent results include: the development of economical processing techniques incorporating a divorced eutectoid transformation, the improvement of room temperature strength and ductility by heat treatment, the enhancement of superplastic properties through dilute alloying with silicon, and the attainment of exceptional notch impact strength in laminated UHC steel composites manufactured through solid state bonding. The unique mechanical properties achieved in UHC steels are due to the presence of micron-size fer-rite grains and ultrafine spheroidized carbides.

  19. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Shin-ichi, E-mail: yamaura@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Nakajima, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Satoh, Takenobu; Ebata, Takashi [Tohoku Steel, Co., Ltd., 23 Nishigaoka, Murata, Murata-machi, Shibata 989-1393 (Japan); Furuya, Yasubumi [North Japan Research Institute for Sustainable Energy, Hirosaki University, 2-1-3 Matsubara, Aomori 030-0813 (Japan)

    2015-03-15

    Highlights: • The as-forged Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 108 ppm. • The as-cold rolled Fe{sub 25}Co{sub 75} alloy shows the magnetostriction of 140 ppm. • Magnetostriction of Fe–Co alloy reached the maximum in a single bcc state. • Fcc phase is harmful to the increase in magnetostriction of Fe–Co alloy. • Fcc phase precipitation in Fe–Co alloy can be suppressed by cold rolling. - Abstract: Magnetostriction of Fe{sub 1−x}Co{sub x} (x = 50–90 at%) alloys prepared by forging and subsequent cold-rolling was studied as functions of alloy compositions and thermomechanical treatments. Magnetostriction of the as-forged Fe{sub 25}Co{sub 75} alloy was 108 ppm and that of the as-cold rolled Fe{sub 25}Co{sub 75} alloy measured parallel to the rolling direction (RD) was 128 ppm. The cold-rolled Fe{sub 25}Co{sub 75} alloy possessed a nearly {1 0 0}<0 1 1> texture, leading to the maximum magnetostriction of 140 ppm when measured at an angle of 45° to RD. Moreover, the fully annealed Fe{sub 25}Co{sub 75} and Fe{sub 20}Co{sub 80} alloys were gradually cold rolled and magnetostriction were measured. Results showed that the magnetostriction of those cold-rolled alloys drastically increased with increasing reduction rate. According to the XRD and TEM observations, intensity of the fcc peak gradually decreased with increasing reduction rate and that the alloys became to be in a bcc single state at a reduction rate higher than 90%, leading to a drastic increase in magnetostriction.

  20. Derivation of uranium residual radioactive material guidelines for the Aliquippa Forge site

    Energy Technology Data Exchange (ETDEWEB)

    Monette, F.; Jones, L.; Yu, C.

    1992-09-01

    Residual radioactive material guidelines for uranium were derived for the Aliquippa Forge site in Aliquippa, Pennsylvania. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Aliquippa Forge site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Four potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium within 1,000 years, provided that the soil concentration of combined uranium (uranium-234, uranium-235, and uranium-238) at the Aliquippa Forge site does not exceed the following levels: 1,700 pCi/g for Scenario A (industrial worker: the expected scenario); 3,900 pCi/g for Scenario B (recreationist: a plausible scenario); 20 pCi/g for Scenario C (resident farmer using well water as the only water source: a possible but unlikely scenario), and 530 pCi/g for Scenario D (resident farmer using a distant water source not affected by site conditions as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234, uranium-235, and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr.

  1. Energy-efficiency in inductive heating of forging ingots; Energieeffizienz bei der induktiven Erwaermung von Schmiedebloecken

    Energy Technology Data Exchange (ETDEWEB)

    Padberg, Michael; Doetsch, Erwin [ABP Induction Systems, Dortmund (Germany)

    2012-03-15

    The continuously increasing importance of the CO{sub 2} balance and of conservation of resources is resulting in ever greater demands for high energy-efficiency in the process used for heating of forging ingots. Plant and process engineering play roles of parallel significance in the fulfillment of these requirements, and this article focuses on both in equal degree. The shares of the individual components in the overall energy consumption of an induction heating installation are therefore firstly determined, and their respective potentials for optimization then discussed. The quality of the heating process itself, and its optimum design for reduction of energy consumption, are then examined. (orig.)

  2. Influence of the milling strategy on the durability of forging tools

    OpenAIRE

    Ficko, Mirko; Balič, Jože; Gotlih, Karl; Pahole, Ivo; Studenčnik, Dejan

    2015-01-01

    The quality of a tool's surface has a direct influence on the number of well-produced parts. For the machining of an active tool surface, two technological processes are used: electrical discharge machining and high-speed milling. These two processes are used when machining new tools and for the repairing of used forging tools. In both cases, the material has already been thermally treated, so it has to be used for hard milling. Practical experience shows that the milling strategy has a big i...

  3. Forging partnerships between rural women with chronic conditions and their health care providers.

    Science.gov (United States)

    Cudney, Shirley; Weinert, Clarann; Kinion, Elizabeth

    2011-03-01

    Successful adaptation to chronic illness is enhanced by active client-health care provider partnerships. The purposes of this article are to (a) examine the health care partnership needs of western rural women with chronic illness who participated in a computer-based support and education project, (b) describe how the role of the women in the partnership can be maximized by the use of a personal health record and improving health literacy, and (c) discuss ways health care providers can enhance their role in the partnership by careful listening and creating environments conducive to forging productive client-provider partnerships.

  4. The Development Of Heating Curves For Open Die Forging Of Heavy Parts

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-09-01

    Full Text Available The study presents the findings of research on developing heating curves of heavy parts for the open die forging process. Hot ingots are heated in a chamber furnace. The heating process of 10, 30, 50 Mg ingots was analyzed. In addition, bearing in mind their high susceptibility to fracture, the ingots were sorted into 3 heating groups, for which the initial furnace temperature was specified. The calculations were performed with self developed software Wlewek utilizing the finite element method for the temperature, stress and strain field computations.

  5. New lubricant systems for cold and warm forging – advantages and limitations

    DEFF Research Database (Denmark)

    Bay, Niels

    2011-01-01

    The increasing focus on environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has strongly motivated the efforts to develop new, environmentally friendly tribological systems for metal forming production....... The present paper gives an overview of these efforts substituting environmentally hazardous lubricants in cold, warm and hot forging by new, more harmless lubricants. Introduction of these new lubricants, however, has some drawbacks due to lower limits of lubrication leading to risk of pick-up, poor product...

  6. Consolidation of nanostructured metal powders by rapid forging: Processing, modeling, and subsequent mechanical behavior

    Science.gov (United States)

    Shaik, G. R.; Milligan, W. W.

    1997-03-01

    Fe-10Cu powders containing 20-nm grains were produced by attritor milling of elemental powders in argon. A rapid powder forging technique was developed to consolidate the powders into fully dense compacts while maintaining nanoscale grain sizes. Grain growth during the consolidation was controlled by reducing the time of exposure at elevated temperature to a few minutes or less, a technique which is applicable to all materials and does not necessitate the addition of dispersoids. This was achieved by heating green compacts quickly using an induction heater, and then forging and rapidly cooling them back to room temperature. Forging was conducted in a protective argon atmosphere to limit contamination. Fully dense compacts were produced at relatively low temperatures, mainly due to the accelerated creep rates exhibited by the nanostructures. Transmission electron microscopy and X-ray diffraction analysis found an average grain size of 45 nm in the fully dense samples forged at 530°C. Indications are that finer grain sizes should be attainable by using slightly lower temperatures and higher pressures. The success of the technique (compared to hot-isostatic pressing (“hipping”)) is due to both reducing time at elevated temperatures and applying relatively high pressures. Microhardness tests revealed a significant strengthening effect due to grain size refinement, following a Hall-Petch relation. Compression testing at room temperature showed no strain hardening during plastic deformation, which occurred by shear banding. High strengths, up to 1800 MPa, were obtained at room temperature. Compression testing at 575°C revealed a significant strain rate dependence of mechanical behavior and also the possibility of superplastic behavior. Power-law creep was observed at 575°C, with very high steady-state creep rates on the order of 50 pct/s at 230 MPa. The consolidation process was successfully modeled by slightly modifying and applying the Arzt, Ashby, and

  7. Open die forging of large shafts with porosity defects – physical and numerical modelling

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels

    2013-01-01

    The aim and scope of this paper is centered to analyze the influence of the geometry of V-shaped dies on the closure of internal centerline porosity defects in ingots during multistep open-die forging. The investigation is performed with small scale physical models made from lead using V-shaped d...... conditions. The presentation is supported by finite element modelling using an in-house developed computer program and the overall investigation shows that better results in closure of centerline defects are obtained with a V-shaped die with 120º die angle....

  8. Semi-quantitative model of the microstructure development in the high-alloyed iron based alloy during atomization

    Directory of Open Access Journals (Sweden)

    Peter Grgač

    2012-10-01

    Full Text Available The paper deals with the analysis of microstructure formation in the tool steel of ledeburite type Ch12MF4 with the chemical composition of 2.37% C, 12.06% Cr, 1.2% Mo and 4.0 % V [wt. (%] in the process of nitrogen gas atomization. Three main types of solidification microstructures were observed in rapidly solidified powder particles: dendritic, compound and cellular. Based on the morphological features of microstructures observed in rapidly solidified particles and mathematical modeling of the thermal history of solidifying spherical droplets, the semi-quantitative model of the microstructure development in the Ch12MF4 steel during atomization was suggested. According to this model, it is supposed that the transition from dendritic to partially dendritic (compound and nondendritic microstructures results from the thermally induced fragmentation of dendrites by the mechanism of their remelting, morphological changes of dendrite fragments and following spheroidization. The intensity of dendrite fragmentation in solidifying particles of different diameters is controlled mainly by the recalescence temperature and duration of quasi-isothermal period of solidification.

  9. Investigations into Deformation Characteristics during Open-Die Forging of SiCp Reinforced Aluminium Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Deep Verma

    2013-01-01

    Full Text Available The deformation characteristics during open-die forging of silicon carbide particulate reinforced aluminium metal matrix composites (SiCp AMC at cold conditions are investigated. The material was fabricated by liquid stir casting method in which preheated SiC particles were mixed with molten LM6 aluminium casting alloy and casted in the silicon mould. Finally, preforms obtained were machined in required dimensions. Two separate cases of deformation, that is, open-die forging of solid disc and solid rectangular preforms, were considered. Both upper bound theoretical analysis and experimental investigations were performed followed by finite element simulation using DEFORM, considering composite interfacial friction law, barreling of preform vertical sides, and inertia effects, that is, effect of die velocity on various deformation characteristics like effective stress, strain, strain rate, forging load, energy dissipations, and height reduction. Results have been presented graphically and critically investigated to evaluate the concurrence among theoretical, experimental, and finite element based computational findings.

  10. FEM Simulation of Effect of Process Parameters on Static Recrystallization in 60SiMnA Spring Steel

    Institute of Scientific and Technical Information of China (English)

    Jiahe AI; Tongchun ZHAO; Huiju GAO; Xishan XIE

    2004-01-01

    Two-dimensional rigid-plastic finite element method (FEM) was used for simulation of the effect of process parameters on the static recrystallization of 60SiMnA spring steel using MARC/AutoForge 3.1 software. A thermo-mechanical coupled analysis was conducted considering the heat transfer between the workpiece, the roll and the environment, and the heat generation due to plastic work. The static recrystallization laws under different processing conditions and the predicted distribution of the static recrystallization volume fraction on the deformation cross section are presented.

  11. Investigation of crack propagation in X38CrMoV5 (AISI H11) tool steel at elevated temperatures

    OpenAIRE

    Shah, Masood; Mabru, Catherine; Rezaï-Aria, Farhad

    2010-01-01

    A method is developed to evaluate the surface fatigue damage of hot forming tools (forging, HPDC) that undergo thermo mechanical loading and environmental attack. Crack propagation under fatigue loading in a hot work tool steel X38CrMoV5-47HRC is investigated using SENT (single edge notched tension) specimens of 2.5*8 mm*mm section. The effect of different testing conditions has been investigated: effect of thickness (ranging from 2.5mm – 0.10mm), effect of R value and effect of temperature a...

  12. Naphthenic corrosion resistance, mechanical properties and microstructure evolution of experimental Cr-Mo steels with high Mo content

    Directory of Open Access Journals (Sweden)

    Lorena Braga Moura

    2012-04-01

    Full Text Available One method to face the effects of naphthenic acid corrosion in petroleun refining plants is to use alloys with good resistance to this kind of corrosion. For this purpose, molybdenum additions to chromium containing steels are specially recommended. In this work, experimental Fe-9Cr-xMo (x = 5, 7 and 9 wt. (% ingots were cast, forged and hot rolled before being tested in a naphthenic acid environment. Evolution of the mechanical properties with composition is presented. The precipitation and dissolution of phases were investigated with the help of Thermocalc and electron backscattered diffraction (EBSD.

  13. Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luan, J.H.; Jiao, Z.B. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China); Chen, G. [Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong (China)

    2015-03-05

    Highlights: • Proper boron additions and heat-treatments improve the ductility of Ti64 alloys. • Coarse TiB precipitates embrittle the Ti64 alloys causing ductility loss. • Modified Ti64 forged alloys with high strength and high ductility are developed. - Abstract: The effects of boron additions on the microstructure and mechanical properties of forged Ti–6Al–4V alloys in different heat-treatment conditions have been characterized by both experimental studies and thermodynamic calculations. The results indicate a combination of proper post-forging treatments and B additions are helpful for control of the prior-β grain size and the volume fraction of α phase, thereby tuning the ductility of the forged Ti–6Al–4V alloys. However, the B-containing alloys exhibit a significant drop in ductility if the solutionizing temperature is too high, and this embrittlement is mainly due to the coarsening of brittle TiB borides. The mechanism in this case is due to the cleavage fracture of TiB rather than its debonding with the matrix, as indicated by the observation of the aligned TiB borides on the matching areas of both halves of the fracture surfaces. Thus, the TiB size and orientation, the prior-β grain size, and the volume fraction of the α phase all play important roles in controlling the mechanical properties of the forged Ti–6Al–4V alloys. The current findings shed light on the composition–microstructure–ductility relationship in the forged Ti–6Al–4V alloys.

  14. Modern Steel Framed Schools.

    Science.gov (United States)

    American Inst. of Steel Construction, Inc., New York, NY.

    In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…

  15. Selection of the optimal hard facing (HF technology of damaged forging dies based on cooling time t8/5

    Directory of Open Access Journals (Sweden)

    D. Arsić

    2016-01-01

    Full Text Available In exploitation, the forging dies are exposed to heating up to very high temperatures, variable loads: compressive, impact and shear. In this paper, the reparatory hard facing of the damaged forging dies is considered. The objective was to establish the optimal reparatory technology based on cooling time t8/5 . The verification of the adopted technology was done by investigation of the hard faced layers microstructure and measurements of hardness within the welded layers’ characteristic zones. Cooling time was determined theoretically, numerically and experimentally.

  16. Experimental Research on the SizeMeasurement of the High Temperature ForgingBased on Multicolor CCD Technology

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In order to determine the size measurement accuracy of the high temperature forging's multicolor CCD image by using computerprograms, this paper obtained the high temperature forging's CCD image by multicolor CCD camera and its fact size by thevernier caliper on the forging field, and then measured the size of the high temperature forging from its CCD image, compared thesize from the CCD image and the size from the vernier caliper, the result shows that the measurement accuracy satisfied theindustrial production.

  17. Effect of composition, heat treatment and processing technologies on the microstructure and properties of HP and IP rotors of large steam turbines from 1CrMoV steels

    Energy Technology Data Exchange (ETDEWEB)

    Tchizhik, A.A. [The Polzunov Central Boiler and Turbine Institute, Department the Fatigue Life of Materials for Power Plant Equipment, St. Petersburg (Russian Federation)

    1998-12-31

    In the presentation the evolution of the technology manufacturing of the large forging from the 1CrMoV steels and the results complex of the long time investigations rotors on virgin state and after different operation times is analyzed. Among the information there are the criterion of the optimization of the composition steel service properties, especially super long - term creep resistance, creep fracture and long time cracks resistance. Two safety coefficients: stress (SSC) and time safety coefficient (TSC) must be used for calculations of the possibility prolongation service life of HP and IP rotors for large steam turbines. (orig.) 11 refs.

  18. Forging tool shape optimization using pseudo inverse approach and adaptive incremental approach

    Science.gov (United States)

    Halouani, A.; Meng, F. J.; Li, Y. M.; Labergère, C.; Abbès, B.; Lafon, P.; Guo, Y. Q.

    2013-05-01

    This paper presents a simplified finite element method called "Pseudo Inverse Approach" (PIA) for tool shape design and optimization in multi-step cold forging processes. The approach is based on the knowledge of the final part shape. Some intermediate configurations are introduced and corrected by using a free surface method to consider the deformation paths without contact treatment. A robust direct algorithm of plasticity is implemented by using the equivalent stress notion and tensile curve. Numerical tests have shown that the PIA is very fast compared to the incremental approach. The PIA is used in an optimization procedure to automatically design the shapes of the preform tools. Our objective is to find the optimal preforms which minimize the equivalent plastic strain and punch force. The preform shapes are defined by B-Spline curves. A simulated annealing algorithm is adopted for the optimization procedure. The forging results obtained by the PIA are compared to those obtained by the incremental approach to show the efficiency and accuracy of the PIA.

  19. A Study On The Fabrication Of Iron Powder From Forging Scale Using Hydrogen

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was conducted to investigate the effect of hydrogen content, temperature, reaction time for the reduction of forging scale which is mainly composed of hematite (Fe2O3. All reductive reactions were performed over the temperature range of 700 to 1200°C as well as 0.1 to 1 atm of hydrogen partial pressures. The results showed that the mechanism for the reduction of iron oxides using hydrogen gas was not a simple process, but proceeded in multiple reduction stages thermodynamically. The iron oxide was almost completely reduced to metallic iron powder with 91 wt.% of iron content in the forging scale at 0.1 atm of hydrogen partial pressure. The content of iron was however found to be increased with increasing hydrogen partial pressure from 0.1 to 1 atm with regardless of temperatures. The metallic iron powder was obtained with the mean size of 100 μm and more porous structure was observed.

  20. A Method For Producing Hollow Shafts By Rotary Compression Using A Specially Designed Forging Machine

    Directory of Open Access Journals (Sweden)

    Tomczak J.

    2015-09-01

    Full Text Available The paper presents a new method for manufacturing hollow shafts, where tubes are used as billet. First, the design of a specially designed forging machine for rotary compression is described. The machine is then numerically tested with regard to its strength, and the effect of elastic strains of the roll system on the quality of produced parts is determined. The machine’s strength is calculated by the finite element method using the NX Nastran program. Technological capabilities of the machine are determined, too. Next, the results of the modeling of the rotary compression process for a hollow stepped shafts by the finite element method are given. The process for manufacturing hollow shafts was modeled using the Simufact.Forming simulation program. The FEM results are then verified experimentally in the designed forging machine for rotary compression. The experimental results confirm that axisymmetric hollow shafts can be produced by the rotary compression method. It is also confirmed that numerical methods are suitable for investigating both machine design and metal forming processes.

  1. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.

    Science.gov (United States)

    Beaulieu, Chandree L; Majewski, Jacek; Schwartzentruber, Jeremy; Samuels, Mark E; Fernandez, Bridget A; Bernier, Francois P; Brudno, Michael; Knoppers, Bartha; Marcadier, Janet; Dyment, David; Adam, Shelin; Bulman, Dennis E; Jones, Steve J M; Avard, Denise; Nguyen, Minh Thu; Rousseau, Francois; Marshall, Christian; Wintle, Richard F; Shen, Yaoqing; Scherer, Stephen W; Friedman, Jan M; Michaud, Jacques L; Boycott, Kym M

    2014-06-01

    Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.

  2. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  3. Thermophysical Properties of Five Industrial Steels in the Solid and Liquid Phase

    Science.gov (United States)

    Wilthan, B.; Schützenhöfer, W.; Pottlacher, G.

    2017-07-01

    The need for characterization of thermophysical properties of steel was addressed in the FFG-Bridge Project 810999 in cooperation with our partner from industry, Böhler Edelstahl GmbH & Co KG. To optimize numerical simulations of production processes such as plastic deformation or remelting, additional and more accurate thermophysical property data were necessary for the group of steels under investigation. With the fast ohmic pulse heating circuit system and a commercial high-temperature Differential Scanning Calorimeter at Graz University of Technology, we were able to measure the temperature-dependent specific electrical resistivity and specific enthalpy for a set of five high alloyed steels: E105, M314, M315, P800, and V320 from room temperature up into the liquid phase. The mechanical properties of those steels make sample preparation an additional challenge. The described experimental approach typically uses electrically conducting wire-shaped specimen with a melting point high enough for the implemented pyrometric temperature measurement. The samples investigated here are too brittle to be drawn as wires and could only be cut into rectangular specimen by Electrical Discharge Machining. Even for those samples all electrical signals and the temperature signal can be recorded with proper alignment of the pyrometer. For each material under investigation, a set of data including chemical composition, solidus and liquidus temperature, enthalpy, electrical resistivity, and thermal diffusivity as a function of temperature will be reported.

  4. Clean Production of Steel and Refractories in China's Steel Industry

    Institute of Scientific and Technical Information of China (English)

    SU Tiansen

    2002-01-01

    The paper describes the importance of clean production of steel and the relationships amongst sustaining development of steel industry, environment protection and the role of refractories in the clean production of steel. The main achievements and main shortcomings in the clean production of China' s steel industry have been reviewed together with the introduction of the policy supporting system and the future development of clean production in China' s steel industry.

  5. Steel: Price and Policy Issues

    Science.gov (United States)

    2006-08-31

    Inland Steel. He had also acquired a major Mexican producer, the integrated steel works on the Pacific coast at Lazaro Cardenas . But his major coup...Steel-Producing Countries Launch Talks on Banning Subsidies at OECD Meeting” (Dec. 20, 2002). 76 Nancy E. Kelly, “Steel Talks to Kick Off in Paris, Six

  6. Forging Ahead

    Science.gov (United States)

    Finkel, Ed

    2017-01-01

    Community colleges always have played an integral role in training workers for infrastructure- and transportation-related fields like truck driving, construction, welding and electrical work. If the $1 trillion infrastructure package proposed by President Donald Trump comes to pass, these fields will grow significantly, at least for a while, which…

  7. The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Marcos, E-mail: marcosperezrd@gmail.com; Belzunce, Francisco Javier

    2015-01-29

    Cryogenic treatments are considered a good way to reduce the retained austenite content and improve the performance of tool steels. Four different heat treatments, two of which included a deep cryogenic stage, were applied in this study to an H13 tool steel, subsequently determining its mechanical properties by means of tensile, hardness and fracture toughness tests. Furthermore, scanning electron microscopy and X-ray diffraction analysis were performed to gain an insight into the microstructural evolution of these heat treatments during all the stages. It was concluded that the application of a deep cryogenic treatment to H13 steel induces higher thermal stresses and structural defects, producing a dispersed network of fine carbides after the subsequent tempering stages, which were responsible for a significant improvement in the fracture toughness of this steel without modifying other mechanical properties. Although the application of a deep cryogenic treatment reduces the retained austenite content, there is a minimum innate content which cannot be transformed by heat treatment. Nevertheless, this austenite is hence believed to be stable enough and should not transform during the normal service life of forging dies.

  8. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  9. Optimization of Forging Process of Intermediate Shaft%中间轴锻造工艺优化

    Institute of Scientific and Technical Information of China (English)

    胡晓琦; 李晓峰; 曹志远

    2013-01-01

    When producing the large asymmetrical flange etc hollow shaft parts with the conventional open die forging process, the flange side of hollow shaft part is very likely irregular offset and concave in center hole, which may affect the size of final forging and reduces the utilization rate of ingot. In this paper, a new forging process of intermediate shaft based on existing auxiliary tools is described and the confining of flange side center, end face deflection and offset irregularity of flange side were effectively improved and forging part with good size was obtained finally.%针对传统自由锻造工艺生产中间轴等非对称大法兰空心轴类件时,容易在法兰侧出现较为严重的偏摆和内孔凹心现象,影响最终锻件尺寸,坯料利用率低的缺点。介绍一种改进锻造工艺,在利用现有附具基础上,可有效克服中间轴锻件两端面内孔凹心、法兰长短面及其端面偏摆等技术难点,最终得到满足尺寸要求的锻件。

  10. Automated Determination of the Power Required and Selection of Electric Motors for Forging Fly-Press Mechanisms

    Directory of Open Access Journals (Sweden)

    K. Karakoulidis

    2015-06-01

    Full Text Available The current work deals with appropriate selection of electric motors for forging fly-press machines. To solve the equation of motion of the electric drive of these mechanisms characterized by impact (pulsating load and presence of flywheel, numerical methods (calculus have been used.

  11. Dynamic strain aging precipitation of Mg17Al12 in AZ80 magnesium alloy during multi-directional forging process

    Science.gov (United States)

    Zhu, Q. F.; Wang, G. S.; Wang, X. J.; Liu, F. Z.; Ban, C. Y.; Cui, J. Z.

    2017-05-01

    Dynamic aging precipitation of Mg17Al12 phases in AZ80 magnesium alloy was studied by multi-directional forging (MDF) with decreasing temperatures from 410 to 300 °C. The results show that the morphology of the dynamically precipitated β-Mg17Al12 phases (formed during forging process) exhibited granular shape. During the multi-directional forging process, the inhomogeneous dynamic precipitation of the β-Mg17Al12 phases result in the coexistence of the fine grains (with many granular Mg17Al12 phases) and coarse grains (without Mg17Al12 phases) in the samples. The fine grains (with many granular Mg17Al12 phases) area expands with the decreasing of final forging temperature. The inhomogenous Al content distribution in the Mg matrix leads to the non-uniform dynamic precipitation of the Mg17Al12 phase. These Mg17Al12 phase retards the growth of the DRX grains, which in turns results in the formation fine grains area during the during the MDF process with temperature decreasing.

  12. Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety

    Science.gov (United States)

    Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...

  13. 31 CFR 370.40 - Can I be held accountable if my negligence contributes to a forged signature?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Can I be held accountable if my negligence contributes to a forged signature? 370.40 Section 370.40 Money and Finance: Treasury Regulations... Submission of Transaction Requests Through the Bureau of the Public Debt § 370.40 Can I be held...

  14. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  15. Forging Operation for Super-Large Main Shaft of Water Turbines%超大型轮机主轴锻造

    Institute of Scientific and Technical Information of China (English)

    胡晓琦; 张建国; 季雪; 牛广斌

    2014-01-01

    某大型轮机主轴法兰直径φ2.65 m,总长近10 m,锻件重达150 t,其规格超出水压机车间现有附具的工作范围,很难用传统锻造方法进行整体锻造生产。为此设计出一种新的锻造方法并对现有附具进行改造,最终成功锻造出形状和尺寸合格的大型轮机主轴锻件。%The main shaft of a large water turbine has a flange diameter ofφ2.65 m and is 10 m long. The weight of the main shaft forging is 150 t. Such large forging can not be made with the operational tools of the forging workshop and the monobloc forging is difficult to make with conventional forging operation. For this reason, a new forging process is designed and the operational tools are modified. With this effort, the large main shaft forging that has acceptable shape and dimensions is made successfully.

  16. Investigating the effect of variable gutter technique as a novel method on vertical flow of material in closed die forging processes

    Energy Technology Data Exchange (ETDEWEB)

    Pourbashiri, M.; Sedighi, M. [Iran University, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Recently, Variable gutter technique has been introduced as a novel method in order to reduce waste materials in closed-die forging processes. In this paper, the capability of this method is investigated for a family of forged parts that the vertical flow of material is the last stage of forming process. As a case study, using the variable gutter technique, the amount of waste material is decreased about 50% for a sample forged part with a local rising. The results of FVM simulations and experiments confirmed the effectiveness of the variable gutter technique in such forging processes. The vertical flow of material in the die cavity (h parameter), as a criterion, for different gutter width and thickness dimensions was examined by FVM simulations. The results shown that the gutter thickness has more effect on vertical flow of material than the gutter width. By decreasing the gutter thickness and increasing the gutter width, the amount of vertical flow of material is increased about 120% and 29%, respectively. Finally, A/H ratio (A = Max width of sectional area of a forged part, H = Max height of a forged part) is proposed as shape complexity factor of a forged part. The results of FVM simulations are indicated that for the ratio of A/H > 2, the variable gutter thickness technique is more effective and can be successfully used to reduce the amount of waste materials.

  17. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  18. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  19. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    alloys , foundry, muzzle brake, supply center, tooling, sources Notice Distribution Statement A Format Information Report created in Microsoft Word...Development of Sand Properties 103 Advanced Modeling Dataset.. 105 High Strength Low Alloy (HSLA) Steels 107 Steel Casting and Engineering Support...University, University of Northern Iowa, Non- Ferrous Founders’ Society, QuesTek, buyCASTINGS.com, Spokane Industries, Nova Precision Casting, Waukesha

  20. Investigation of influencing factors on friction during ring test in hot forging using FEM simulation

    Science.gov (United States)

    Sethy, Ritanjali; Galdos, Lander; Mendiguren, Joseba; Sáenz de Argandoña, Eneko

    2016-10-01

    Few studies have been undertaken to understand the friction in hot forming, especially when addressing the issue of varying input parameters. Better understanding of their role is therefore needed in order to obtain accurate results in numerical simulations. This paper numerically investigates the high temperature ring compression test to evaluate how frictional behaviour is affected by variations of input parameters (i.e. press velocity, Heat Transfer Coefficient (HTC), processing time, mesh size, material and tool temperature). The high temperature ring-compression process was simulated by means of Finite Element Modelling (FEM) using FORGE-3D software with the ring made of AISI 304L having ratio of outer diameter, inner diameter and height of 30:15:10. According to the results, the HTC and the press velocity have most significant effects on frictional behavior and the calibration curves needed to calculate the friction coefficients after experimental testing.

  1. A Simplified Inverse Approach for the Simulation of Axi-Symmetrical Cold Forging Process

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbès, B.; Guo, Y. Q.

    2011-01-01

    This paper presents the formulation of an axi-symmetric element based on an efficient method called "Inverse Approach" (I.A.) for the numerical modeling of cold forging process. In contrast to the classical incremental methods, the Inverse Approach exploits the known shape of the final part and executes the calculation from the final part to the initial billet. The assumptions of the proportional loading and the simplified tool actions make the I.A. calculation very fast. The metal's incompressibility is ensured by the penalty method. The comparison with ABAQUS® and FORGE® shows the efficiency and limitations of the I.A. This simplified method will be a good tool for the preliminary preform design.

  2. Inner-product of strain rate vector through direction cosine in coordinates for disk forging

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-wen; JIN Wen-zhong; WANG Lei; LIU Xiang-hua

    2006-01-01

    A new linear integration for plastic power was proposed. The effective strain rate for disk forging with bulge was expressed in terms of two-dimensional strain rate vector, and then its direction cosines were determined by the ratio of coordinate increments. Furthermore, inner-product of the vector for plastic power was term integrated by term and summed. Thereafter, through a formula for determination of bulge an analytical solution of stress effective factor was obtained. Finally, through compression tests, the calculated results of above formula were compared with those of Avitzur's approximate solution and total indicator readings of the testing machine. It is indicated that the calculated compression forces are basically in agreement with the measured ones if the pass reduction is less than 13.35%.However, when the reduction gets up to 25.34% and 33.12%, the corresponding errors between the calculated and measured results also get up to 6% and 13.5%, respectively.

  3. Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Grain size and texture changes of magnesium alloy AZ31 were studied in multidirectional forging(MDF) under decreasing temperature conditions. MDF was carried out up to large cumulative strains of 4.8 with changing the loading direction during decrease in temperature from pass to pass. MDF can accelerate the uniform development of fine-grained structures and increase the plastic workability at low temperatures. As a result, the MDFed alloy shows excellent higher strength as well as moderate ductility at room temperature even at the grain size below 1 μm. Superplastic flow takes place at 423 K and depends on the anisotropy of MDFed samples. The mechanisms of strain-induced free-grained structure development and of the plastic deformation were discussed in detail.

  4. Development of Iron-based Closed-Cell Foams by Powder Forging and Rolling

    Science.gov (United States)

    Paswan, Dayanand; Mistry, Dhananjay; Sahoo, K. L.; Srivastava, V. C.

    2013-08-01

    In the present investigation, an attempt has been made to develop in situ sandwich Fe-based foams using powder forging and rolling. Several metal carbonates are first studied by thermo gravimetric analysis to find out their suitability to be used as foaming agent for iron-based foams. Barium carbonate is found to be the most promising foaming agent among other suitable options studied such as SrCO3, CaCO3, MgCO3, etc. The effects of process parameters such as precursor composition, sintering temperature, foaming temperature and time, and content of foaming agent have been studied. The microstructural characteristics of the sintered precursor have been studied by means of optical and scanning electron microscopy. It was found that a good pore structure can be obtained using 2-3% C in Fe and 3% BaCO3 as foaming agent and by foaming at around 1350 °C for 3-6 min.

  5. Microstructural evolution of Mg-7Al-2Sn Mg alloy during multi-directional impact forging

    Directory of Open Access Journals (Sweden)

    M.G. Jiang

    2015-09-01

    Full Text Available Multi-directional impact forging (MDIF was applied to a Mg-7Al-2Sn (wt.% Mg alloy to investigate its effect on the microstructural evolution. MDIF process exhibited high grain refinement efficiency. After MDIF 200 passes, the grain size drastically decreased to 20 µm from the initial coarse grains of ~500 µm due to dynamic recrystallization (DRX. Meanwhile, original grain boundaries remained during MDIF and large numbers of fine spherical β-Mg17Al12 particles dynamically precipitated along the original grain boundaries with high Al concentration, acting as effective pinning obstacles for the suppression of DRXed grain growth. Besides, micro-cracks nucleated during MDIF and propagated along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.

  6. Friction and Adhesion in Dry Warm Forging of Magnesium Alloy with Coated Tools

    Science.gov (United States)

    Matsumoto, Ryo; Kawashima, Hiroaki; Osakada, Kozo

    In order to develop forging process of magnesium alloys without lubrication, frictional behavior of magnesium alloy AZ31B (Mg-3%Al-1%Zn) is evaluated by a tapered plug penetration test under dry condition. The cemented tungsten carbide (WC) plugs polished to be a mirror-like surface are coated with diamond-like carbon (DLC) and TiAlN by physical vapor deposition (PVD). The cylindrical hollow billets of AZ31B are penetrated by the tapered plugs at a temperature of 200°C. The surface roughness of the hole of the billet, the adhesion length of AZ31B on the plug surface and the penetration load are measured. Compared with WC and TiAlN coating, it is found that DLC coating is effective in preventing AZ31B from adhering to the tool surface and reducing the penetration load.

  7. Olivier Caïra, Jeux de rôle. Les forges de la fiction

    Directory of Open Access Journals (Sweden)

    Antoine Dauphragne

    2010-06-01

    Full Text Available Les forges de la fiction, d’Olivier Caïra, est à ranger parmi les rares ouvrages francophones en sciences humaines s’attachant au jeu de rôles. L’ouvrage en propose une analyse fine et dynamique centrée sur la pratique des joueurs. La démarche annoncée, qui entend proposer un texte accessible aussi bien aux rôlistes qu’aux universitaires, semble renvoyer autant à un souci de clarté qu’au profil de l’auteur. Olivier Caïra est sociologue ; ses travaux portent sur l’industrie du divertissement e...

  8. Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kerry Barnett

    2003-03-01

    Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience with a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process

  9. Finite element simulation on press forging of magnesium alloy AZ31 sheets

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Press forging of rectangular box of magnesium alloy AZ31 sheets was investigated at elevated temperatures.The characteristics of metal flow were analyzed on the basis of finite element method(FEM)and experiments.Effects of friction factor and sidewall thickness on metal flow and boss forming were investigated by FEM.The results indicate that the bosses and the sidewall of the rectangular box are formed unevenly due to the uneven flow of the metal.The increase in friction factor at die/sheet interface improves the metal flow pattem and the efficiency of boss forming,but reduces the sidewall uniformity.Decrease in sidewall thickness enhances boss forming efficiency,whereas the punch load increases in this case.The present work can provide rcasonable parameters and design guideline for the practical press foxing process of magnesium alloy sheets.

  10. Essaying the mechanical hypothesis: Descartes, La Forge, and Malebranche on the formation of birthmarks.

    Science.gov (United States)

    Wilkin, Rebecca M

    2008-01-01

    This essay examines the determination by Cartesians to explain the maternal imagination's alleged role in the formation of birthmarks and the changing notion of monstrosity. Cartesians saw the formation of birthmarks as a challenge through which to demonstrate the heuristic capacity of mechanism. Descartes claimed to be able to explain the transmission of a perception from the mother's imagination to the fetus' skin without having recourse to the little pictures postulated by his contemporaries. La Forge offered a detailed account stating that the failure to explain the maternal imagination's impressions would cast doubt on mechanism. Whereas both characterized the birthmark as a deformation or monstrosity in miniature, Malebranche attributed a role to the maternal imagination in fashioning family likenesses. However, he also charged the mother's imagination with the transmission of original sin.

  11. Forging New, Non-traditional Partnerships Among Physicists, Teachers and Students

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie [Fermilab; Adams, Mark [Illinois U., Chicago; Wayne, Mitchell [Notre Dame U.; Karmgard, Dan [Notre Dame U.; Goussiou, Anna [Washington U., Seattle

    2017-05-02

    The QuarkNet collaboration has forged new, nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet provides professional development for teachers and creates opportunities for teachers and students to engage in particle physics data investigations and join research teams. Embedded in the U.S. particle research community, QuarkNet leverages the nature of particle physics research—the long duration of the experiments with extensive lead times, construction periods, and data collection and analysis periods. QuarkNet is patterned after the large collaborations with a central management infrastructure and a distributed workload across university- and lab-based research groups. We describe the important benefits of the QuarkNet outreach program that flow to university faculty and present successful strategies that others can adapt for use in their countries.

  12. Sinter-forged YBa sub 2 Cu sub 3 O sub 7-. delta

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Q.; Georgopoulos, P.; Johnson, D.L.; Marcy, H.O.; Kannewurf, C.R.; Hwu, S.J.; Marks, T.J.; Poeppelmeir, K.R.; Song, S.N.; Ketterson, J.B. (Northwestern Univ., Evanston, IL (USA))

    1987-07-01

    High T{sub c} ceramic superconductors, as exemplified by YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, have recently gained widespread interest in the scientific community. To date, the preparation of this and related materials in powder form has involved, with few exceptions, solid state reaction techniques. The resulting equilibrated powders, which are rather unsinterable, have typically been formed into pellets and fired for subsequent physical measurements. The densities of such pellets are considerably below the theoretical prediction, and the development of more effective sintering processes would clearly be of great importance. In this communication the authors report a technique (sinter-forging) whereby nearly theoretically dense (>95% TD) samples of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} can be produced. Physical measurements revealed strong texturing and preferred crystallite orientation as well as significant anisotropy in the charge transport.

  13. Manufacturing of aluminum alloy ultra-thick plates by multidirectional forging and subsequent rolling

    Institute of Scientific and Technical Information of China (English)

    张辉; 林高用; 彭大暑; 杨立斌; 林启权

    2002-01-01

    A combinatory large deformation model of multidirectional forging and subsequent rolling was proposed for producing high performance aluminum alloy ultra-thick plates.The results show that fine-grain (2~3 μm) structures were obtained when total deformation coefficient λ =32 at 250~350 ℃ under a strain rate of about 0.1 s-1.The development of fine-grained structure can be characterized by the formation of strain-induced high energy dislocation and then transforms into new grain under large deformation at moderate temperature.The very fine secondary particles formed during large deformation play important role in retain the stability of the fine-grained structures.

  14. Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel

    Institute of Scientific and Technical Information of China (English)

    Mingru Zhang; Haicheng Gu

    2008-01-01

    The suitability of carbide-free bainite steel as railway wheel materials was investigated. The low-medium carbon Si-Mn-Mo-V steel was designed to make railway wheels by forging and rolling. The slack quenching with water was conducted on the tread of rim section by programmed control to simulate isothermal heat treatment after being austenitized. Microstructures and mechanical properties have been studied. The results indicate that the microstructure of the rim is mainly carbide-free bainite, and the mixed mi- crostructure of bainitic ferrite and granular bainite is observed in web and hub. The mechanical properties are superior to both the standard requirements and the commercial production, such as CL60 plain carbon. The Charpy impact energy is relatively high at room and/or subzero temperatures. The force-displacement curves and fractographies reveal the excellent ability of resistance to crack initiation and propagation.

  15. COMPETITION BEETWEN DYNAMIC RECUPERATION AND RECRYSTALLIZATION OF ASTM F 138 AUSTENITIC STAINLESS STEEL UTILIZED IN MEDICAL DEVICES

    Directory of Open Access Journals (Sweden)

    Fabio Henrique Casarini Geronimo

    2013-06-01

    Full Text Available ASTM F 138 austenitic stainless steel has being used in the manufacture of orthopedical devices by hot forging. In this work, the flow stress curves are determined by hot torsion tests in a wide range of temperatures and strain rates. With the observed microestrutural evolution by optical microscopy in different hot forming conditions in addiction with EBSD (Electron Backscatter Diffraction techniques it is possible to obtained the recrystallized volume fraction and the misorientation angles of the samples. Due to the intermediate level of stacking fault energy of this material, during the dynamic softening occurs a competition between recrystallization and recovery. The aim of this work is to identify the softening mechanisms in this stainless steel, as well as in which hot work conditions they become more active.

  16. A Forging Hardness Dispersion Effect on the Energy Consumption of Machining

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The aim of the work is to evaluate a hardness dispersion of forgings to be further machined, and analyse the impact of this dispersion on the resulting power consumption when cutting.The paper studies the hardness values of three kinds of parts for automotive manufacturing. Sample of each part was n = 100 pieces. Analysis of measurements showed that 46% - 93% of parts meet requirements for a range defined by the work-piece working drawing. It was found that hardness of one batch of forgings is under dispersion, which distribution is governed by the normal law.The work provides calculations for machining the external cylindrical surfaces of the considered parts. In the context of calculating are adopted parameters of the enterprise-processing rate. It is found that power consumption of machining because of the dispersion values of the work-piece hardness is a function of the random BH variable and it itself is a random variable. Two types of samples are considered, namely: the full sample and that of the values that meet requirements for hardness. The coefficient of variation for samples that meet the technical requirements for hardness is lower than for the full samples, so their average value is more reliable characteristic of a set. It was also found that to ensure a reliable prediction of power consumption in designing the manufacturing processes it is necessary to reduce a tolerance range of workpiece hardness to the limit.The work gives a comparative evaluation of electric power consumption per unit cylindrical surface of the parts under consideration. A relative change in the electric power consumed at the minimum and maximum levels of the hardness value was introduced as an evaluation criterion. It is found that with changing hardness of machined work-pieces within the tolerance, the change in power consumption in machining the unit surface reaches 16% while in the case its being out of the specified range it does 47%.

  17. Research of upsetting ratio in forming processes on a three – slides forging press

    Directory of Open Access Journals (Sweden)

    W.S. Weroński

    2006-04-01

    Full Text Available Purpose: The purpose of the presented in this work research was determining the limiting conditions of upsetting in three-slide forging press (TSFP. The free upsetting process and upsetting process in cylindrical impression were analyzed.Design/methodology/approach: The assumed purpose was confirmed in experimental research. For the case of upsetting in cylindrical impression, the research of limiting upsetting coefficients were made for different diameters and impression lengths. Findings: The obtained results showed large variety of limiting upsetting ratio depending on the analyzed impression geometrical parameters. It was stated, that there are 3 phenomena limiting the upsetting process in the die. The main phenomenon is the bar upsetting outside the impression. The upsetting processes in the impression are limited also by bar buckling outside the impression and overlapping inside the impressionResearch limitations/implications: The results of research allowed for stating that, besides the process geometrical parameters, friction conditions and type of the formed material influenced the limiting upsetting coefficients in the cylindrical impression. It is purposeful to make the further research determining quantitative and qualitative dependencies between these factors. Practical implications: The obtained results are the basis for designing of forming processes in TSFP in which the upsetting dominates. Especially it considers the elongated forgings and elongated preforms with thickeningsOriginality/value: The influence of the impression geometrical parameters on the limiting upsetting coefficients for the case of upsetting in cylindrical impression in TSFP has been analyzed in details. The dependencies, which should be used during designing of upsetting processes in TSFP were determined.

  18. Occupational noise exposure in small scale hand tools manufacturing (forging) industry (SSI) in Northern India.

    Science.gov (United States)

    Singh, Lakhwinder Pal; Bhardwaj, Arvind; Deepak, K K; Bedi, Raman

    2009-08-01

    Occupational noise has been recognized as hazardous for the human beings. A high noise level in forging shops is considered to lower the labour productivity and cause illness however occupational noise is being accepted as an integral part of the job. The present study has been carried out in 5 small scale hand tool forging units (SSI) of different sizes in Northern India in Punjab. Noise levels at various sections were measured. OSHA norms for hearing conservation has been incorporated which includes an exchange rate of 5 dB (A), criterion level at 90 dB (A), criterion time of 8 h, threshold level=80 dB (A), upper limit=140 dB (A) and with F/S response rate. Equivalent sound pressure level (L(eq)) has been measured in various sections of these plants. Noise at various sections like hammer section, cutting presses, punching, grinding and barrelling process was found to be >90 dB (A), which is greater than OSHA norms. A cross-sectional study on the basis of questionnaire has been carried out. The results of which revealed that 68% of the workers are not wearing ear protective equipments out of these 50% were not provided with PPE by the company. About 95% of the workers were suffering speech interference though high noise annoyance was reported by only 20%. It has been established that the maximum noise exposure is being taken by the workers as they are working more than 8h a day for six days per week. More than 90% workers are working 12 to 24 h over time per week which lead to very high noise exposure i.e. 50 to 80% per week higher than exposure time/week in USA or European countries(15, 16)).

  19. FEM simulation for cold press forging forming of the round-fin heat sink

    Science.gov (United States)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  20. Articles comprising ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  1. 自由锻造液压机的技术现状及设计分析%Technique status and design analysis of free forging hydraulic press

    Institute of Scientific and Technical Information of China (English)

    谢广玉; 李秀珠; 胡海燕

    2013-01-01

    阐述了自由锻造液压机的发展过程和我国锻造压机的技术现状,对自由锻造液压机的几种结构型式和传动方式进行了比较,说明了锻造油压机的技术特点.%The developing process of free forging hydraulic press and technique status in China has been described in the text. Several structural modes and transmission modes of free forging hydraulic press have been compared, and the technical characteristics of forging hydraulic press have been introduced.

  2. Frictional behaviors of some nitrogen ceramics in conformal contact with tin coated Al-Si alloy, steel and MMC

    Science.gov (United States)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-07-01

    The frictional behavior of certain nitrogen-containing ceramics, such as silicon nitride, alpha sialons, and beta sialons as journal materials were studied in conformal contact with a tin-coated Al-Si alloy (Al-Si/Sn), forged 1141 steel and a cast aluminum matrix composite with silicon carbide reinforcement (cast metal matrix composites (MMC)) as bearing materials while lubricated with SAE 10W30. A case-hardened 1016 steel was also tested with the Al-Si/Sn and cast MMC bearings under the same conditions. The friction values of the ceramic and the steel journal wear pairs were compared and their frictional behaviors were evaluated. Silicon nitride and one of the beta sialons exhibited higher load-supporting capacities than the others when they were in contact with the 1141 steel bearings. The journal surface roughness was found to be very important when the journals were in contact with the Al-Si/Sn bearings. The frictional behavior of the ceramics and cast MMC pairs and the steel and cast MMC pairs were controlled by different wear machanisms, namely for the former, hard particle pull-out and matrix plowing, and for the latter, iron transfer from the journal to the cast MMC bearing surface.

  3. Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Yang

    2016-08-01

    Full Text Available Cold forging is often applied in the fastener industry. Wires in coil form are used as semi-finished products for the production of billets. This process usually requires preliminarily drawing wire coil in order to reduce the diameter of products. The wire usually has to be annealed to improve its cold formability. The quality of spheroidizing annealed wire affects the forming quality of screws. In the fastener industry, most companies use a subcritical process for spheroidized annealing. Various parameters affect the spheroidized annealing quality of steel wire, such as the spheroidized annealing temperature, prolonged heating time, furnace cooling time and flow rate of nitrogen (protective atmosphere. The effects of the spheroidized annealing parameters affect the quality characteristics of steel wire, such as the tensile strength and hardness. A series of experimental tests on AISI 1022 low carbon steel wire are carried out and the Taguchi method is used to obtain optimum spheroidized annealing conditions to improve the mechanical properties of steel wires for cold forming. The results show that the spheroidized annealing temperature and prolonged heating time have the greatest effect on the mechanical properties of steel wires. A comparison between the results obtained using the optimum spheroidizing conditions and the measures using the original settings shows the new spheroidizing parameter settings effectively improve the performance measures over their value at the original settings. The results presented in this paper could be used as a reference for wire manufacturers.

  4. Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealing Conditions.

    Science.gov (United States)

    Yang, Chih-Cheng; Liu, Chang-Lun

    2016-08-12

    Cold forging is often applied in the fastener industry. Wires in coil form are used as semi-finished products for the production of billets. This process usually requires preliminarily drawing wire coil in order to reduce the diameter of products. The wire usually has to be annealed to improve its cold formability. The quality of spheroidizing annealed wire affects the forming quality of screws. In the fastener industry, most companies use a subcritical process for spheroidized annealing. Various parameters affect the spheroidized annealing quality of steel wire, such as the spheroidized annealing temperature, prolonged heating time, furnace cooling time and flow rate of nitrogen (protective atmosphere). The effects of the spheroidized annealing parameters affect the quality characteristics of steel wire, such as the tensile strength and hardness. A series of experimental tests on AISI 1022 low carbon steel wire are carried out and the Taguchi method is used to obtain optimum spheroidized annealing conditions to improve the mechanical properties of steel wires for cold forming. The results show that the spheroidized annealing temperature and prolonged heating time have the greatest effect on the mechanical properties of steel wires. A comparison between the results obtained using the optimum spheroidizing conditions and the measures using the original settings shows the new spheroidizing parameter settings effectively improve the performance measures over their value at the original settings. The results presented in this paper could be used as a reference for wire manufacturers.

  5. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    Science.gov (United States)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  6. Optimal Design of Fuel Injector Bodies Forging Die%喷油器体锻模优化设计

    Institute of Scientific and Technical Information of China (English)

    李志广; 刘碧芬; 宋伟民

    2014-01-01

    Objective This study used the fuel injector bodies die forging forming as the research object,analyzed and optimized the design of the forging die structure and size. Methods The original disadvantages of forging die design were a-voided by optimal design of forging die (especially the design optimization of the structure and size of lock, finishing im-pression, flash cave, gate and edge rolling impression, and optimization of the raw materials blanking specification accord-ing to the height of the edge rolling impression). Results The fuel injector body die forging forming process was improved, the metal difficult deformation area and deformation force were reduced, the consumption was reduced by 0. 15 kg/ piece, the rate of qualified products and the forging efficiency (the hammer speed was reduced by 3 ~ 5 times/ piece) were in-creased, the service life of die forging was at least doubled and the cost was reduced. Conclusion The fuel injector bodies forging die finally obtained had compact structure, enough strength and superior performance, which provide powerful refer-ence for the design and actual production of similar forging dies.%目的:以喷油器体模锻成形为研究对象,对锻模结构与尺寸进行分析和优化设计。方法通过优化锻模设计(尤其是优化锁扣、终锻模膛、飞边槽、钳口、滚挤模膛等结构与尺寸设计以及根据滚挤模膛高度尺寸优选原材料下料规格),克服原锻模设计的缺点。结果有效改善了喷油器体的模锻工艺性,减小了难变形区,减小了变形力,减少了原材料消耗0.15 kg /件,提高了合格品率,提高了锻造效率(减少打击次数3~5锤次/件),提高了锻模使用寿命至少1倍,以及降低了锻模与锻件成本等。结论最终获得的喷油器体锻模,结构高紧凑又强度足够,使用性能优越,可为类似锻模设计和实际生产提供了有力的参考依据。

  7. Clean steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  8. A apropriação de imagens de arquivo na obra de Harun Farocki e Péter Forgács

    National Research Council Canada - National Science Library

    Jamer Guterres de Mello

    2012-01-01

    .... For this purpose, someaspects of the filmography of Harun Farocki and Péter Forgács will be analyzed. These twoartists have been adopting this gesture of appropriation, causing the re-signification of theoriginal meanings...

  9. Analysis of a joint of steel and high-density polyethylene

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2006-10-01

    Full Text Available Purpose: The paper deals with a new design of a joint between a steel pipe and a PE-HD pipe, which is called a transition piece and is intended for transmission of liquid and gas media. As a pipe fitting it connects a PE-HD pipeline, which is usually laid underground, outside a building, and a steel pipeline, which is mounted in a building.Design/methodology/approach: Paper gives some theoretical considerations on welding steel with PE-HD and other joining processes suitable for dissimilar materials such as metals and plastics. A production technology, stress calculations for the joint and an analysis of testing of the transition piece are described. An experimental research of a new “joint” between steel and PE-HD pipes is given.Findings: The most important part in formation of a joint between steel and PE-HD pipes is played by an internal sleeve of high-alloy stainless steel, which expends the PE-HD pipe mounted in the interior of the expanded part of the steel pipe by elastic mechanical force. Theoretical stress calculations indicating the force required to tear the PE-HD pipe from the transition piece constitute an important part. An analysis of pressure and strength tests under different conditions, i.e. with different temperatures, moisture conditions, inner overpressures and underpressures, is given.Research limitations/implications: The possibility of application of this research work for study an other of the transition piece, which are consisted of an other dissimilar materials.Practical implications: Such joints, called transmission pieces, are possible applied to residential premises where the steel part makes the beginning of a steel fitting in the house and the PE-HD pipe the end of the outside pipeline network.Originality/value: The paper presents a completely new design of the transition piece, which does not consist of any screw elements or seals made of materials susceptible to quick aging.

  10. Thermal fatigue behavior of niobium microalloyed H13 steel%铌微合金化H13钢的热疲劳行为

    Institute of Scientific and Technical Information of China (English)

    胡心彬

    2006-01-01

    @@ AISI H13 hot work tool steel is widely used for hot forging, hot-extrusion and die-casting because of its high temperature strength, impact toughness, heat checking resistance and wear resistance, etc. The thermally induced surface damage, i. e., thermal fatigue, is believed to be controlled by the magnitude of the imposed cyclic strain. The thermal fatigue on the surface of hot working die, which is responsible to the initiation of the cracks, is reported to result in more than 80 % of the failure of dies.

  11. High Ductility and Toughness of a Micro-duplex Medium-Mn Steel in a Large Temperature Range from -196 °C to 200 °C

    DEFF Research Database (Denmark)

    Chen, Si-lian; Hu, Jun; Zhang, Xiaodan;

    2015-01-01

    A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 degrees C and 650 degrees C). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite laths was developed by austenite reverse transformation (ART) during...... intercritical annealing after forging and hot rolling. Ultrahigh ductility with a total elongation higher than 30% was achieved in the temperature range from - 196 degrees C to 200 degrees C and high impact toughness no less than 200 J at - 40 degrees C was obtained. Based on the analysis of microstructure...

  12. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  13. Continuous steel production and apparatus

    Science.gov (United States)

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  14. In-situ tensile test of high strength nanocrystalline bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Mike, E-mail: mike.haddad@uni-ulm.de [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany); Ivanisenko, Yulia; Courtois-Manara, Eglantine [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fecht, Hans-Jörg [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany)

    2015-01-03

    Because of its great importance in modern engineering and technology applications, steel continues to be highly relevant in the modern research field of nanocrystalline materials. Innovative processing methods and procedures are required for the production of such materials, which possess superior properties compared to their conventional counter parts. In this research, the original microstructure of a commercial C45 steel (Fe, 0.42–0.5 wt% C, 0.5–0.8 wt% Mn) was modified from ferritic–pearlitic to bainitic. Warm high pressure torsion for 5 rotations at 6 GPa and 350 °C was used to process the bainitic sample leading to an ultrafine/nano-scale grain size. A unique nano-crystalline microstructure consisting of equiaxed and elongated ferrite grains with a mean size smaller than 150 nm appeared in images taken by Transmission Electron Microscopy. Results of in-situ tensile testing in a scanning electron microscope showed very high tensile strength, on the order of 2100 MPa with a total elongation of 4.5% in comparison with 800 MPa and around 16% in the original state. Fracture occurred abruptly, without any sign of necking, and was typically caused by the stress concentration at a surface flaw. Also, stress concentrations near all surface defects were observed on the sample, visualized by the formation of shear bands. The fracture surface was covered with dimples, indicating ductile fracture. These properties are fully comparable with high strength, high alloyed steels.

  15. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  16. A-3 steel work completed

    Science.gov (United States)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  17. Joints in steel buildings

    Directory of Open Access Journals (Sweden)

    Gabriel F. Valencia Clement

    2010-04-01

    Full Text Available Masonry and steel components used in constructing buildings are in a constant state of motion. Volumetric changes are produced by temperature variation and deformation resulting from static or dynamic loading and in some materials, such as masonry, due to moisture content. This article addresses means of determining when expansion and seismic joints are required and how to proportion and design appropriate joints, specifically in steel buildings. It does not cover the study of expansion joints in concrete structures, in masonry construction or in non-structural (architectural elements.

  18. 轴承锻件整径工装改进%Improvement of repair diameter tooling for bearing forging

    Institute of Scientific and Technical Information of China (English)

    单晓伟; 常玉滨

    2016-01-01

    The repair diameter process for bearing forging outer ring and inner ring generally performed on different machines. For saving machines, one maching was used to repair diameter of bearing forging inner ring and outer ring, but wasting time and strength when replacement products. In view of the existing problems, the repair diameter tooling was improved to enhance production efifciency and machine utilization.%轴承锻件外圈和内圈整径工序一般在不同机床上进行。为节省机床,准备用一台机床对内、外圈整径,但换活时费时费力。针对存在的问题,改进了整径工装,提高了生产效率和机床利用率。

  19. Influence of Hot forging on Tribological behavior of Al6061-TiB2 In-situ composites

    Science.gov (United States)

    Pradeep kumar, G. S.; Keshavamurthy, R.; kuppahalli, Prabhakar; kumari, Prachi

    2016-09-01

    Al6061-TiB2 metal matrix composite was fabricated by stir casting technique via in-situ reaction, using mixture of Al6061 alloy, Potassium tetraflouroborate salt (KBF4) and tetraflourotitanate (K2TiF6). The cast composites were processed to hot forging, SEM studies; X- ray Diffraction studies (XRD), Microhardness and Dry friction and wear tests. Pin on disc type machine was used to perform tribological tests over a load range of 20-100N and sliding velocities of 0.314-1.57m/s. SEM and XRD studies confirms formation of fine in-situ TiB2 particles. Composites exhibit higher Microhardness, improved wear resistance and Lower COF with formation of TiB2 particles when compared with the unreinforced alloy. Compared to cast alloy and its Composites, forged alloy and its composites show superior Tribological behavior under similar test conditions.

  20. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.