WorldWideScience

Sample records for high-acceptance recoil polarimeter

  1. Design and construction of a high-energy photon polarimeter

    Science.gov (United States)

    Dugger, M.; Ritchie, B. G.; Sparks, N.; Moriya, K.; Tucker, R. J.; Lee, R. J.; Thorpe, B. N.; Hodges, T.; Barbosa, F. J.; Sandoval, N.; Jones, R. T.

    2017-09-01

    We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power ΣA for the device using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in ΣA of 1.5%.

  2. Recoil-proton polarization in πp elastic scattering at 547 and 625 MeV/c

    International Nuclear Information System (INIS)

    Seftor, C.J.; Adrian, S.D.; Briscoe, W.J.; Mokhtari, A.; Taragin, M.F.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.

    1989-01-01

    The polarization of the recoil proton in π + p and π - p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses

  3. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for π + p and π - p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P 3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10 7 π - 's/sec and from 3.0 to 10.0 x 10 7 π + 's/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  4. LEP and CEBAF polarimeters

    International Nuclear Information System (INIS)

    Placidi, M.; Burkert, V.; Rossmanith, R.

    1988-01-01

    This paper gives an overview on high energy electron (positron) polarimeters by describing in more detail the plans for the LEP polarimeter and the CEBAF polarimeters. Both LEP and CEBAF will have laser polarimeters. In addition CEBAF will be equipped with a Moller polarimeter (for currents below 1μA). 10 figs

  5. A high-energy Compton polarimeter for the POET SMEX mission

    Science.gov (United States)

    Bloser, Peter F.; McConnell, Mark L.; Legere, Jason S.; Ertley, Camden D.; Hill, Joanne E.; Kippen, Marc; Ryan, James M.

    2014-07-01

    The primary science goal of the Polarimeters for Energetic Transients (POET) mission is to measure the polarization of gamma-ray bursts over a wide energy range, from X rays to soft gamma rays. The higher-energy portion of this band (50 - 500 keV) will be covered by the High Energy Polarimeter (HEP) instrument, a non-imaging, wide field of view Compton polarimeter. Incident high-energy photons will Compton scatter in low-Z, plastic scintillator detector elements and be subsequently absorbed in high-Z, CsI(Tl) scintillator elements; polarization is detected by measuring an asymmetry in the azimuthal scatter angle distribution. The HEP design is based on our considerable experience with the development and flight of the Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. We present the design of the POET HEP instrument, which incorporates lessons learned from the GRAPE balloon design and previous work on Explorer proposal efforts, and its expected performance on a two-year SMEX mission.

  6. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  7. A Compton polarimeter for CEBAF Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, G; Cavata, C; Frois, B; Juillard, M; Kerhoas, S; Languillat, J C; Legoff, J M; Mangeot, P; Martino, J; Platchkov, S; Rebourgeard, P; Vernin, P; Veyssiere, C; CEBAF Hall A Collaboration

    1994-09-01

    The physic program at CEBAF Hall A includes several experiments using 4 GeV polarized electron beam: parity violation in electron elastic scattering from proton and {sup 4}He, electric form factor of the proton by recoil polarization, neutron spin structure function at low Q{sup 2}. Some of these experiments will need beam polarization measurement and monitoring with an accuracy close to 4%, for beam currents ranging from 100 nA to 100 microA. A project of a Compton Polarimeter that will meet these requirements is presented. It will comprise four dipoles and a symmetric cavity consisting of two identical mirrors. 1 fig., 10 refs.

  8. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics and architectural comparison of polarimeter techniques

    Science.gov (United States)

    Yang, Ruonan; Sen, Pratik; O'Connor, B. T.; Kudenov, M. W.

    2017-08-01

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using stain-aligned polymer-based organic photovoltaics (OPVs) which can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. Two wave plates were incorporated into the system to modulate the S3 stokes parameter so as to reduce the condition number of the measurement matrix. The model for the full-Stokes polarimeter was established and validated, demonstrating an average RMS error of 0.84%. The optimization, based on minimizing the condition number of the 4-cell OPV design, showed that a condition number of 2.4 is possible. Performance of this in-line polarimeter concept was compared to other polarimeter architectures, including Division of Time (DoT), Division of Amplitude (DoAm), Division of Focal Plane (DoFP), and Division of Aperture (DoA) from signal-to-noise ratio (SNR) perspective. This in-line polarimeter concept has the potential to enable both high temporal (as compared with a DoT polarimeter) and high spatial resolution (as compared with DoFP and DoA polarimeters). We conclude that the intrinsic design has the same √2 SNR advantage as the DoAm polarimeter, but with greater compactness.

  9. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Science.gov (United States)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  10. Measurement of the proton form factors ratio GE/GM to Q2 = 5.6 GeV2 by recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Gayou, Olivier [College of William and Mary, Williamsburg, VA (United States)

    2002-01-01

    In this thesis, we present the results of the experiment E99-007, which measured the ratio of the electric to magnetic form factors of the proton to the four momentum transfer square Q2 = 5.6 GeV2, by recoil polarimetry. Data were taken in 2000 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 4.6 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The polarization of the recoil proton was measured in the Focal Plane Polarimeter, located after one of the two High Resolution Spectrometers in the hall. The ratio of the transverse to longitudinal components of the recoil proton polarization is proportional to the ratio of the form factors. Elastic events were selected by detecting the scattered electron in a large acceptance lead-glass calorimeter. The main result of this experiment is the linear decrease of the form factor ratio with increasing Q2, corresponding to different spatial distributions of the electric charge and the magnetization. Numerous theoretical calculations show that relativistic effects, such as mixing of spin states due to Lorentz boosts, are important to account for the observed data in this critical intermediate kinematic region.

  11. Electric form factor of the proton through recoil polarization

    International Nuclear Information System (INIS)

    Punjabi, V.

    2000-01-01

    The electromagnetic form factors of the nucleon, G E and G M , describe the charge and current distribution inside the nucleon and thus are quite intimately related to its structure. Jefferson Lab experiment 93-027 measured P l and Pt, the longitudinal and transverse recoil proton polarization, respectively, for the 1 H(e-vector,e'p-vector) reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV 2 , using the Hall A facility with two high resolution spectrometers and a Focal Plane Polarimeter. The ratio G Ep /G Mp is directly proportional to the ratio P t /P l . These data have unprecedented precision, and show for the first time that the Q 2 dependence of G Ep and G Mp is very different. (author)

  12. A p-Carbon CNI Polarimeter for RHIC

    International Nuclear Information System (INIS)

    Huang, H.; Bai, M.; Bunce, G.; Makdisi, Y.; Roser, T.; Imai, K.; Nakamura, M.; Tojo, J.; Yamamoto, K.; Zhu, L.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Lewis, B.; Smith, B.; Thomas, T. L.; Wolfe, D.; Goto, Y.; Hayoshi, N.; Ishihara, M.; Kurita, K.; Okamura, M.; Saito, N.; Taketani, A.; Doskow, J.; Kwiatkowski, K.; Lozowski, B.; Meyer, H.O.; Przewoski, B. V.; Rinckel, T.; Nurushev, S. B.; Strikhanov, M. N.; Runtzo, M. F.; Alekseev, I. G.; Svirida, D. N.; Deshpande, A.; Hughes, V.

    1999-01-01

    The RHIC spin program requires excellent polarimetry so that the knowledge of the beam polarization does not limit the errors on the experimental measurements. However, polarimetry of proton beams with energies higher than about 30 GeV poses a difficult challenge. For polarization monitoring during operation, a fast and reliable polarimeter is required that produces a polarization measurement with a 10% relative error within a few minutes. The p-Carbon elastic scattering in the Coulomb-Nuclear-Scattering (CNI) region has a calculable and large analyzing power, but detecting the recoil carbon needs sophisticated detector system and a very thin target. Experiment has been planned in the AGS. This paper describes the experimental setup in the AGS

  13. High-precision soft x-ray polarimeter at Diamond Light Source.

    Science.gov (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  14. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  15. The G_E/G_M-ratio of the proton by recoil polarization measurement in e+parrow e'+p

    Science.gov (United States)

    Punjabi, Vina; Jones, Mark; Perdrisat, Charles F.; Quemener, Gilles

    1998-10-01

    The recently commissioned Hall A high resolution spectrometers (HRS) and the focal plane polarimeter (FPP) were used to obtain the ratio of the electric and magnetic form factors of the proton, G_E/G_M. This form factor ratio is proportional to the measured ratio of the transverse, P_t, to longitudinal, P_l, components of the recoiling proton polarization. The method takes advantage of the precession of the proton magnetic moment in the hadron HRS, which rotates the longitudinal polarization component into the plane of the FPP analyzer; this allows simultaneous measurement of both components of the polarization. The ratio P_t/P_l is independent of both the electron beam polarization and the polarimeter analyzing power. Most of the data were obtained with polarized beams of 100 μ A with polarization of ~ 0.39 incident on the 15 cm cell of the high power LH2 target. We will report the results for G_E/GM at several values of Q^2 between 0.5 and 3.5 GeV^2.

  16. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  17. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  18. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  19. The Penn Polarimeters

    Directory of Open Access Journals (Sweden)

    Robert H. Koch

    2012-03-01

    Full Text Available This report describes the inception, development and extensive use over 30 years of elliptical polarimeters at the University of Pennsylvania. The initial Mark I polarimeter design utilized oriented retarder plates and a calcite Foster-Clarke prism as the analyzer. The Mark I polarimeter was used on the Kitt Peak 0.9 m in 1969-70 to accomplish a survey of approximately 70 objects before the device was relocated to the 0.72 m reflector at the Flower and Cook Observatory. Successive generations of automation and improvements included the early-80’s optical redesign to utilize a photoelastic modulated wave plate and an Ithaco lock-in amplifier–the photoelastic modulating polarimeter. The final design in 2000 concluded with a fully remote operable device. The legacy of the polarimetric programs includes studies of close binaries, pulsating hot stars, and luminous late-type variables.

  20. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  1. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  2. Metasurface-Based Polarimeters

    Directory of Open Access Journals (Sweden)

    Fei Ding

    2018-04-01

    Full Text Available The state of polarization (SOP is an inherent property of light that can be used to gain crucial information about the composition and structure of materials interrogated with light. However, the SOP is difficult to experimentally determine since it involves phase information between orthogonal polarization states, and is uncorrelated with the light intensity and frequency, which can be easily determined with photodetectors and spectrometers. Rapid progress on optical gradient metasurfaces has resulted in the development of conceptually new approaches to the SOP characterization. In this paper, we review the fundamentals of and recent developments within metasurface-based polarimeters. Starting by introducing the concepts of generalized Snell’s law and Stokes parameters, we explain the Pancharatnam–Berry phase (PB-phase which is instrumental for differentiating between orthogonal circular polarizations. Then we review the recent progress in metasurface-based polarimeters, including polarimeters, spectropolarimeters, orbital angular momentum (OAM spectropolarimeters, and photodetector integrated polarimeters. The review is ended with a short conclusion and perspective for future developments.

  3. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  4. PoET: Polarimeters for Energetic Transients

    Science.gov (United States)

    McConnell, Mark; Barthelmy, Scott; Hill, Joanne

    2008-01-01

    This presentation focuses on PoET (Polarimeters for Energetic Transients): a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The PoET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. PoET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  5. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  6. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  7. Feasibility of a spin light polarimeter at JLab

    International Nuclear Information System (INIS)

    Dutta, Dipangkar

    2011-01-01

    The future 12 GeV program at JLab includes several high precision experiments that aim to use parity violation in electroweak interactions to search for interactions beyond the Standard Model. These experiments require precision electron polarimetry with an uncertainty of ∼ 0.4%. Compton and Moller polarimeters are typically the polarimeters of choice for these experiments. However, a complimentary polarimetry technique based on the spin dependence of synchrotron radiation (SR), referred to as 'spin-light,' is often overlooked. In this article we examine the feasibility of a 'spin-light' polarimeter at Jefferson Lab (JLab) for 12 GeV experiments.

  8. LWIR Snapshot Imaging Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Robert E Sampson

    2009-04-01

    This report describes the results of a phase 1 STTR to design a longwave infrared imaging polarimeter. The system design, expected performance and components needed to construct the imaging polarimeter are described. Expected performance is modeled and sytem specifications are presented.

  9. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  10. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  11. Dynamic spectro-polarimeter based on a modified Michelson interferometric scheme.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Baek, Byung-Joon; Kim, Daesuk

    2016-06-27

    A simple dynamic spectro-polarimeter based on a modified Michelson interferometric scheme is described. The proposed system can extract a spectral Stokes vector of a transmissive anisotropic object. Detail theoretical background is derived and experiments are conducted to verify the feasibility of the proposed novel snapshot spectro-polarimeter. The proposed dynamic spectro-polarimeter enables us to extract highly accurate spectral Stokes vector of any transmissive anisotropic object with a frame rate of more than 20Hz.

  12. Multi-angle polarimeter inter-comparison: the PODEX and ACEPOL field campaigns

    Science.gov (United States)

    Knobelspiesse, K. D.; Tan, Q.; Redemann, J.; Cairns, B.; Diner, D. J.; Ferrare, R. A.; van Harten, G.; Hasekamp, O. P.; Kalashnikova, O. V.; Martins, J. V.; Yorks, J. E.; Seidel, F. C.

    2017-12-01

    A multi-angle polarimeter has been proposed for the NASA Aerosol-Cloud-Ecosystem (ACE) mission, recommended by the National Research Council's Decadal Survey. Such instruments are uncommon in orbit, and there is a great diversity of prototype instrument characteristics. For that reason, NASA funded two field campaigns where airborne polarimeter prototypes were deployed on the high altitude ER-2 aircraft. The first field campaign, POlarimeter DEfinition EXperiment (PODEX), was carried out in southern California in early 2013. Three polarimeters participated: the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). PACS, on its first deployment, suffered detector problems, while AirMSPI and RSP performed within expectations. Initial comparisons of AirMSPI and RSP observations found Degree of Linear Polarization (DoLP) biases. Following corrections to both instrument's calibration and/or geolocation techniques, these issues have improved. We will present the details of this comparison. The recent ACEPOL mission returned to southern California in October-November with a larger compliment of multi-angle polarimeters. This included AirMSPI and RSP, like in PODEX. Additional polarimetric instruments included AirHARP (Airborne HyperAngular Rainbow Polarimeter, a successor to PACS) and SPEX Airborne (SPectropolarimeter for Planetary Exploration). Two Lidars were also deployed: The High Spectral Resolution Lidar -2 (HSRL-2) and the Cloud Physics Lidar (CPL). While data processing is still underway, we will describe the objectives of this campaign and give a preview of what to expect in subsequent analysis.

  13. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.

    Science.gov (United States)

    Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W

    2017-02-20

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.

  14. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    International Nuclear Information System (INIS)

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; Poelker, B.; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-01-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy

  15. Proton polarimeters for spin transfer experiments

    International Nuclear Information System (INIS)

    McNaughton, M.W.

    1985-01-01

    The design and use of proton polarimeters for spin transfer (Wolfenstein parameter) measurements is discussed. Polarimeters are compared with polarized targets for spin dependent experiments. 32 refs., 4 figs

  16. Birefringence Polarimeter Using Dual LiNbO3 Electrooptic Crystal Modulators

    Science.gov (United States)

    Saitou, Takeshi; Nurdin Bin, Muhammad; Kowa, Hiroyuki; Umeda, Norihiro; Takizawa, Kuniharu; Kondoh, Eiichi; Jin, Lianhua

    2012-08-01

    A birefringence polarimeter that uses dual LiNbO3 electrooptic crystal modulators operating at a frequency ratio of 4:1 is described. The significance of this polarimeter is that the birefringent parameters of a sample are obtained only from the modulated polarization status. The measurement, therefore, avoids depolarization effects resulting from the sample itself and the rest of the optical system. The high speed and accuracy of this polarimeter are shown by measurements using a quarter-wave plate, a Babinet-Soleil compensator, and a phase modulator.

  17. Tests of a Coulomb-nuclear polarimeter

    International Nuclear Information System (INIS)

    Pauletta, G.; University of Texas, Austin, TX, 78712)

    1989-01-01

    We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties

  18. A NEW RELATIVE PROTON POLARIMETER FOR RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; ALEKSEEV, I.; BUNCE, G.; BRUNER, N.; DESHPANDE, A.; GOTO, Y.; FIELDS, D.; IMAI, K.

    2001-01-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region has been installed and commissioned in the Blue ring of RHIC during the first RHIC polarized proton commissioning in September, 2000. The polarimeter consists of ultra-thin carbon targets and four silicon detectors. All elements are in a 1.6 meter vacuum chamber. This paper summarizes the polarimeter design issues and recent commissioning results

  19. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Singh, Harinder J; Wereley, Norman M

    2014-01-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  20. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  1. Conceptual design report of a compton polarimeter for CEBAF hall A

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, G.; Cavata, C.; Neyret, D.; Frois, B.; Jorda, J.P.; Legoff, J.M.; Platchkov, S.; Steinmetz, L.; Juillard, M.; Authier, M.; Mangeot, P.; Rebourgeard, P.; Colombel, N.; Girardot, P.; Martinot, J.; Sellier, J.C.; Veyssiere, C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Berthot, J.; Bertin, P.Y.; Breton, V.; Fonvieille, H.; Roblin, Y. [Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), 75 - Paris (France); Chen, J.P. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1996-12-31

    This report describes the design of the Compton polarimeter for the Cebaf electron beam in End Station A. The method of Compton polarimeter is first introduced. It is shown that at CEBAF beam intensities, the use of standard visible LASER light gives too low counting rates. An amplification scheme of the LASER beam based on a high finesse optical cavity is proposed. Expected luminosities with and without such a cavity are given. The polarimeter setup, including a 4 dipole magnet chicane, a photon and an electron detector, is detailed. The various sources of systematic error on the electron beam polarization measurement are discussed. (author). 82 refs.

  2. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  3. Gas powered fluid gun with recoil mitigation

    Science.gov (United States)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  4. The MESA polarimetry chain and the status of its double scattering polarimeter

    International Nuclear Information System (INIS)

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-01-01

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article

  5. Performance of the PRAXyS X-ray polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, W.B., E-mail: wataru.iwakiri@riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Black, J.K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rock Creek Scientific, 1400 East-West Hwy, Silver Spring, MD 20910 (United States); Cole, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Enoto, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hayato, A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hill, J.E.; Jahoda, K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kaaret, P. [University of Iowa, Iowa City, IA 52242 (United States); Kitaguchi, T. [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kubota, M. [Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Marlowe, H.; McCurdy, R. [University of Iowa, Iowa City, IA 52242 (United States); Takeuchi, Y. [Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tamagawa, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan)

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2–10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  6. Performance of the PRAXyS X-ray polarimeter

    Science.gov (United States)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  7. High-resolution elastic recoil detection utilizing Bayesian probability theory

    International Nuclear Information System (INIS)

    Neumaier, P.; Dollinger, G.; Bergmaier, A.; Genchev, I.; Goergens, L.; Fischer, R.; Ronning, C.; Hofsaess, H.

    2001-01-01

    Elastic recoil detection (ERD) analysis is improved in view of depth resolution and the reliability of the measured spectra. Good statistics at even low ion fluences is obtained utilizing a large solid angle of 5 msr at the Munich Q3D magnetic spectrograph and using a 40 MeV 197 Au beam. In this way the elemental depth profiles are not essentially altered during analysis even if distributions with area densities below 1x10 14 atoms/cm 2 are measured. As the energy spread due to the angular acceptance is fully eliminated by ion-optical and numerical corrections, an accurate and reliable apparatus function is derived. It allows to deconvolute the measured spectra using the adaptive kernel method, a maximum entropy concept in the framework of Bayesian probability theory. In addition, the uncertainty of the reconstructed spectra is quantified. The concepts are demonstrated at 13 C depth profiles measured at ultra-thin films of tetrahedral amorphous carbon (ta-C). Depth scales of those profiles are given with an accuracy of 1.4x10 15 atoms/cm 2

  8. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    CERN Document Server

    Reyes Cortes, S.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Joffrin, E.

    2016-01-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  9. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  10. DAQ systems for the high energy and nuclotron internal target polarimeters with network access to polarization calculation results and raw data

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2004-01-01

    On-line data acquisition (DAQ) system for the Nuclotron Internal Target Polarimeter (ITP) at the LHE, JINR, is explained in respect of design and implementation, based on the distributed data acquisition and processing system qdpb. Software modules specific for this implementation (dependent on ITP data contents and hardware layout) are discussed briefly in comparison with those for the High Energy Polarimeter (HEP) at the LHE, JINR. User access methods both to raw data and to results of polarization calculations of the ITP and HEP are discussed

  11. Recoil momenta distributions in the double photoionization

    International Nuclear Information System (INIS)

    Amusia, M Ya; Liverts, E Z; Drukarev, E G; Mikhai, A I

    2014-01-01

    We calculate the distributions in recoil momenta for the high energy double photoionization of helium caused by quasifree mechanism. The distributions obtain local maxima at small values of the recoil momenta. This agrees with earlier predictions and recent experimental data. Angular correlations which reach the largest value for 'back-to-back' configuration of photoelectrons are also obtained.

  12. COMMISSIONING CNI PROTON POLARIMETERS IN RHIC

    International Nuclear Information System (INIS)

    HUANG, H.; BRAVAR, A.; LI, Z.; MACKAY, W.W.; MAKDISI, Y.; RESCIA, S.; ROSER, T.; SURROW, B.; BUNCE, G.; DESHPANDE, A.; GOTO, Y.; ET AL

    2002-01-01

    Two polarimeters based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region have been installed and commissioned in the Blue and Yellow rings of RHIC during the first RHIC polarized proton collider run. Each polarimeter consists of ultra-thin carbon targets and six silicon detectors. With newly developed wave form digitizers, they provide fast and reliable polarization information for both rings

  13. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-01-01

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q ∼> 0.3 with a minimum possible value q min ≅ 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s –1 in the direction within an angle ∼< 40° relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  14. Self-Calibration of CMB Polarimeters

    Science.gov (United States)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  15. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, M.; Bassini, R.; Berg, A.M. van den; Ellinghaus, F.; Frekers, D.; Hannen, V.M.; Haeupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Kruesemann, B.; Rakers, S.; Sohlbach, H.; Woertche, H.J. E-mail: wortche@ikp.uni-muenster.de

    1999-11-21

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0 deg. . For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  16. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  17. Design and performance of the Lamb-shift polarimeter

    International Nuclear Information System (INIS)

    Kremers, H.R.; Beijers, J.P.M.; Kalantar-Nayestanaki, N.

    2005-01-01

    A new compact low-energy polarimeter has been designed, developed and put into operation, based on the principle of Lamb-shift polarimetry. Here, we focus on ion-beam deceleration (14-35 kV to 500 V) and the polarimeter's magnetic field. The determination of the optimal setting of oven temperature and the DC gradient in the spin-filter will be presented and illustrated with some measurements. Further, performance of the polarized ion source will be shown by some typical measurements on proton and deuteron beams with the polarimeter

  18. Optoelectronic polarimeter controlled by a graphical user interface of Matlab

    International Nuclear Information System (INIS)

    Vilardy, J M; Torres, R; Jimenez, C J

    2017-01-01

    We show the design and implementation of an optical polarimeter using electronic control. The polarimeter has a software with a graphical user interface (GUI) that controls the optoelectronic setup and captures the optical intensity measurement, and finally, this software evaluates the Stokes vector of a state of polarization (SOP) by means of the synchronous detection of optical waves. The proposed optoelectronic polarimeter can determine the Stokes vector of a SOP in a rapid and efficient way. Using the polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the SOP when the optical waves pass through to the linear polarizers and retarder waves plates. The polarimeter prototype could be used as a main tool for the students in order to learn the theory and experimental aspects of the SOP for optical waves via the Stokes vector measurement. The proposed polarimeter controlled by a GUI of Matlab is more attractive and suitable to teach and to learn the polarization of optical waves. (paper)

  19. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  20. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Edkins, Erin Elisabeth [Univ. of Hawaii, Honolulu, HI (United States)

    2017-05-01

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $f_{90}$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $f_{90}$ distributio n of nuclear

  1. Moeller polarimeter in the hall a jefferson lab after reconstruction

    International Nuclear Information System (INIS)

    Pomatsalyuk, R.I.

    2016-01-01

    The Moller polarimeter in the Hall A of Jefferson Lab was reconstructed in order to expand of the energy range of the polarimeter to measure the polarization of the electron beam with an energy up to 11.5 GeV. The paper de-scribes the main results of the Moller polarimeter testing after reconstruction. The measurements of the electrons polarization were provided by two data acquisition systems operating in parallel. The testing of the shielding insertion of magnetic dipole has been performed. The way to eliminate detected deviations in the operation of polarimeter during test is shown.

  2. Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M., E-mail: m.horn@imperial.ac.uk [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Belov, V.A.; Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Edwards, B. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Kalmus, G.E. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Kobyakin, A.S.; Kovalenko, A.G. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lebedenko, V.N. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Lindote, A. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Lopes, M.I. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Luescher, R.; Majewski, P. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Murphy, A.StJ. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom)

    2011-11-24

    Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keV{sub nr} (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below {approx}40 keV{sub nr} is found, together with a rising ionisation yield; both are in agreement with the latest independent measurements. The analysis method is applied to the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.

  3. Design study of the PEPSI polarimeter for the LBT

    Science.gov (United States)

    Hofmann, A.; Strassmeier, K. G.; Woche, M.

    2002-07-01

    We present the conceptual design of the two polarimetric channels of the PEPSI spectropolarimeter for the Large Binocular Telescope (LBT). The two direct Gregorian f/15 focii of the LBT will take up two identical but independent full-Stokes IQUV polarimeters that themselves fiberfeed a high-resolution Echelle spectrograph (see the accompanying paper by Zerbi et al.). The polarizing units will be based on super-achromatic Fresnel-rhomb retarders and Foster prisms. A total of four fibers are foreseen to simultaneously direct two ordinary and two extraordinary light beams to the Echelle spectrograph. Both polarimetric units are layed out in a modular design, each one optimized to the polarization state in which it is used. A number of observing modes can be chosen that are optimized to the type of polarization that is expected from the target, e.g. circularly and linearly polarized light simultaneously, or linearly polarized light in both polarimeters, or integral light from one and polarized light from the other telescope, a.s.o.. Calibration would be provided for each polarimeter separately.

  4. Enhancing the sensitivity of recoil-beta tagging

    International Nuclear Information System (INIS)

    Henderson, J; Jenkins, D G; Davies, P J; Henry, T W; Joshi, P; Nichols, A J; Ruotsalainen, P; Scholey, C; Auranen, K; Grahn, T; Greenlees, P T; Herzáň, A; Jakobsson, U; Julin, R; Juutinen, S; Konki, J; Leino, M; Pakarinen, J; Lotay, G; Obertelli, A

    2013-01-01

    Tagging with β-particles at the focal plane of a recoil separator has been shown to be an effective technique for the study of exotic proton-rich nuclei. This article describes three new pieces of apparatus used to greatly improve the sensitivity of the recoil-beta tagging technique. These include a highly-pixelated double-sided silicon strip detector, a plastic phoswich detector for discriminating high-energy β-particles, and a charged-particle veto box. The performance of these new detectors is described and characterised, and the resulting improvements are discussed.

  5. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the Darkside-50 Direct Dark Matter Experiment

    Science.gov (United States)

    Ludert, Erin Edkins

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a joint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, f 90, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the f90 distribution of nuclear recoils from Sc

  6. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  7. Microprocessor Card for Cuban Series polarimeters Laserpol

    International Nuclear Information System (INIS)

    Arista Romeu, E.; Mora Mazorra, W.

    2012-01-01

    We present the design consists of a card based on a micro-processor 8-bit adds new software components and their basic living, which allow to deliver new services and expand the possibilities for use in other applications of the polarimeter LASERPOL series, as the polarimetric detection. Given the limitations of the original card it was necessary to introduce a series of changes that would allow to address new user requirements, and expand the possible applications of the instruments. This was done the expansion of the capacity of the EPROM and RAM memory, the decoder circuit was implemented memory map using a programmable integrated circuit, and introduced a real time clock with nonvolatile RAM, these features are exploited to the introduction of new features such as the realization of the polarimeter calibration by the user from a sample pattern or a calibration pattern used as a reference, and the incorporation of the time and date to the reports of measurements required industry for quality control processes. Card that is achieved along with the rest of the components is compatible with polarimeters LASERPOL 101M Series, 3M and LP4, pin to pin, which facilitates their incorporation into the polarimeters in operation in the industry 'in situ' replacement cards from previous models, allowing to extend the possibilities of statistical processing, precision and accuracy of the instruments. Improved measurements in the industry, resulting in significant savings by elimination of losses in production and raw materials. The improved response speed of reading the polarimeters LASERPOL Use and polarimetric detectors. (Author)

  8. The HARPS Polarimeter

    NARCIS (Netherlands)

    Snik, F.; Kochukhov, O.; Piskunov, N.; Rodenhuis, M.; Jeffers, S.V.; Keller, C.U.; Dolgopolov, A.; Stempels, H. C.; Makaganiuk, V.; Valenti, J.; Johns-Krull, C.

    2010-01-01

    We recently commissioned the polarimetric upgrade of the HARPS spectrograph at ESO’s 3.6-m telescope at La Silla, Chile. The HARPS polarimeter is capable of full Stokes spectropolarimetry with large sensitivity and accuracy, taking advantage of the large spectral resolution and stability of HARPS.

  9. The scanning Compton polarimeter for the SLD experiment

    International Nuclear Information System (INIS)

    Woods, M.

    1996-10-01

    For the 1994/95 run of the SLD experiment at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be (77.2 ± 0.5)%. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power

  10. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  11. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  12. Lifetime estimation of a time projection chamber x-ray polarimeter

    Science.gov (United States)

    Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; Montt de Garcia, Kristina; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila

    2013-09-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.

  13. DAQ system for high energy polarimeter at the LHE, JINR: implementation based on the qdpb (data processing with branchpoints) system

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2001-01-01

    Online data acquisition (DAQ) system's implementation for the High Energy Polarimeter (HEP) at the LHE, JINR is described. HEP DAQ is based on the qdpb system. Software modules specific for such implementation (HEP data and hardware dependent) are discussed

  14. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    Vilardy, J; Salas, V.; Torres, C.

    2016-01-01

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  15. Cage effect in recoil studies

    International Nuclear Information System (INIS)

    Berei, K.

    1983-09-01

    The role of cage effect is one of the most discussed questions of hot atom chemistry in condensed organic systems. So far no direct evidence is available for assessing the exact contribution of thermal recombinations occurring in the liquid cage to the stabilization processes of recoil atoms. However, some conclusions can be drawn from experimental observations concerning the influence on product yield of hot atom recoil spectra, the effects of density, phase and long range order of the medium as well as from comparisons with systems providing cage walls of different chemical reactivities towards the recoil atom. Recent developments in this field are reviewed based primarily on the investigations of recoil halogen reactions in aliphatic and aromatic hydrocarbons and their haloderivatives. (author)

  16. RECOILING MASSIVE BLACK HOLES IN GAS-RICH GALAXY MERGERS

    International Nuclear Information System (INIS)

    Guedes, Javiera; Madau, Piero; Mayer, Lucio; Callegari, Simone

    2011-01-01

    The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity 'kick' to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤M≤6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s -1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s -1 . (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s -1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

  17. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. The main ring polarimeter at KEK 12 GeV PS

    International Nuclear Information System (INIS)

    Sato, Hikaru; Hiramatsu, Shigenori; Toyama, Takeshi; Arakawa, Dai; Sakamoto, Hiroshi; Imai, Ken-ichi; Tamura, Norio.

    1984-03-01

    An internal polarimeter was constructed to detect the beam polarization from T sub(P) = 500 MeV to 12 GeV. The polarimeter was installed in the main ring of KEK proton synchrotron and successfully used for the measurement of the beam polarization at 500 MeV in order to study depolarizing resonances during acceleration in the booster synchrotron. We report the design and the performance of the polarimeter and the results of the first measurement. (author)

  19. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  20. ZZ RECOIL/B, Heavy Charged Particle Recoil Spectra Library for Radiation Damage Calculation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Amburgey, J.D.; Greene, N.M.

    1983-01-01

    1 - Description of problem or function: Format: GAM-II group structure; Number of groups: 104 neutron and Recoil-energy groups; Nuclides: Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, B-10, Cu, B-11, Zr, N, Nb, Li-6, Mo, Li-7, Ta (Data for Ta-181,Ta-182), O, Origin: ENDF/B-IV cross-section data. A heavy charged-particle recoil data base (primary knock-on atom (PKA) spectra) and an analysis program have been created to assist experimentalists in studying, evaluating, and correlating radiation-damage effects in different neutron environments. Since experimentally obtained controlled thermo-nuclear-reactor-type neutron spectra are not presently available, the data base can be extremely useful in relating currently obtainable radiation damage to that which is anticipated in future fusion devices. However, the usefulness of the data base is not restricted to just CTR needs. Most of the elements of interest to the radiation-damage community and all neutron reactions of any significance for these elements have been processed, using available ENDF/B-IV cross-section data, and are included in the data base. Calculated data such as primary recoil spectra, displacement rates, and gas-production rates, obtained with the data base, for different radiation environments are presented and compared with previous calculations. Primary neutrons with energies up to 20 MeV have been considered. The elements included in the data base are listed in Table I. All neutron reactions of significance for these elements (i.e., elastic, inelastic, (n,2n), (n,3n), (n,p), (n,sigma), (n,gamma), etc.,) which have cross sections available from ENDF/B-IV have been processed and placed in the data base. Table I - Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, 10 B, Cu, 11 B, Zr, N, Nb, 6 Li, Mo, 7 Li, Ta (Data for Ta 181 ,Ta 182 ), O. 2 - Method of solution: The neutron

  1. Challenges in designing a very compact 130 MeV Moeller polarimeter for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bahlo, Thore; Enders, Joachim; Kuerzeder, Thorsten; Pietralla, Norbert; Wissmann, Jan [Institut fuer Kernphysik, TU Darmstadt, Darmstadt (Germany)

    2016-07-01

    The Superconducting Darmstadt Linear Accelerator is capable of accelerating polarized electron beams produced by the S-DALINAC Polarized Injector (SPIN). For electron energies of up to 14 MeV it is possible to measure the absolute polarization of the electrons with two Mott polarimeters that are already mounted in the injector beamline. Until now it is not possible to measure the absolute electron beam polarization after the passage of the main accelerator. Therefore a Moeller polarimeter for energies between 50 MeV and 130 MeV is currently being developed. The rather low incident beam energy, the variability of the incident beam energy, and spatial restrictions necessitate a compact set-up with large acceptance. The very restrictive boundary conditions introduce technical and geometrical challenges. We will present the design of the target chamber, of the separation dipole magnet as well as the beam dump.

  2. Structured decomposition design of partial Mueller matrix polarimeters.

    Science.gov (United States)

    Alenin, Andrey S; Scott Tyo, J

    2015-07-01

    Partial Mueller matrix polarimeters (pMMPs) are active sensing instruments that probe a scattering process with a set of polarization states and analyze the scattered light with a second set of polarization states. Unlike conventional Mueller matrix polarimeters, pMMPs do not attempt to reconstruct the entire Mueller matrix. With proper choice of generator and analyzer states, a subset of the Mueller matrix space can be reconstructed with fewer measurements than that of the full Mueller matrix polarimeter. In this paper we consider the structure of the Mueller matrix and our ability to probe it using a reduced number of measurements. We develop analysis tools that allow us to relate the particular choice of generator and analyzer polarization states to the portion of Mueller matrix space that the instrument measures, as well as develop an optimization method that is based on balancing the signal-to-noise ratio of the resulting instrument with the ability of that instrument to accurately measure a particular set of desired polarization components with as few measurements as possible. In the process, we identify 10 classes of pMMP systems, for which the space coverage is immediately known. We demonstrate the theory with a numerical example that designs partial polarimeters for the task of monitoring the damage state of a material as presented earlier by Hoover and Tyo [Appl. Opt.46, 8364 (2007)10.1364/AO.46.008364APOPAI1559-128X]. We show that we can reduce the polarimeter to making eight measurements while still covering the Mueller matrix subspace spanned by the objects.

  3. D0-brane recoil revisited

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [California Institute of Technology 452-48, Pasadena, CA 91125 (United States); Nakamura, Shin [Physics Department, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2006-12-15

    One-loop string scattering amplitudes computed using the standard D0-brane conformal field theory (CFT) suffer from infrared divergences associated with recoil. A systematic framework to take recoil into account is the worldline formalism, where fixed boundary conditions are replaced by dynamical D0-brane worldlines. We show that, in the worldline formalism, the divergences that plague the CFT are automatically cancelled in a non-trivial way. The amplitudes derived in the worldline formalism can be reproduced by deforming the CFT with a specific 'recoil operator', which is bilocal and different from the ones previously suggested in the literature.

  4. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  5. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  6. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    Energy Technology Data Exchange (ETDEWEB)

    McAleer, Simeon B. [Florida State Univ., Tallahassee, FL (United States)

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  7. Interpreting Recoil for Undergraduate Students

    Science.gov (United States)

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  8. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  9. Silicon photomultipliers as readout elements for a Compton effect polarimeter: the COMPASS project

    CERN Document Server

    Del Monte, E; Brandonisio, A; Muleri, F; Soffitta, P; Costa, E; di Persio, G; Cosimo, S Di; Massaro, E; Morbidini, A; Morelli, E; Pacciani, L; Fabiani, S; Michilli, D; Giarrusso, S; Catalano, O; Impiombato, D; Mineo, T; Sottile, G; Billotta, S

    2016-01-01

    COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency. We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts. In this paper we describe the status of the COMPASS project, we report about the la...

  10. Absolute calibration and beam background of the Squid Polarimeter

    International Nuclear Information System (INIS)

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-01-01

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment

  11. A proton polarimeter for beam energies below 300 keV

    International Nuclear Information System (INIS)

    Buchmann, L.

    1990-10-01

    A nuclear polarimeter based on the low energy analyzing power of the 6 Li(p, 3 He)α reaction has been developed and tested for proton energies below E p =300 keV. The polarimeter uses a 6 LiF target evaporated on a water cooled tantalum backing. The target is observed at backwards angles by four silicon surface barrier detectors. The energy dependence of the analyzing power under 130 o for the 6 Li(p, 3 He)α reaction has been determined down to 200 keV. Spin rotation has been observed via a magnetic field incorporated in a Wien filter demonstrating that the polarimeter is operational. (Author) (7 refs., 7 figs.)

  12. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  13. ISLA: An Isochronous Spectrometer with Large Acceptances

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, D., E-mail: bazin@nscl.msu.edu; Mittig, W.

    2013-12-15

    A novel type of recoil mass spectrometer and separator is proposed for the future secondary radioactive beams of the ReA12 accelerator at NSCL/FRIB, inspired from the TOFI spectrometer developed at the Los Alamos National Laboratory for online mass measurements. The Isochronous Spectrometer with Large Acceptances (ISLA) is able to achieve superior characteristics without the compromises that usually plague the design of large acceptance spectrometers. ISLA can provide mass-to-charge ratio (m/q) measurements to better than 1 part in 1000 by using an optically isochronous time-of-flight independent of the momentum vector of the recoiling ions, despite large acceptances of 20% in momentum and 64 msr in solid angle. The characteristics of this unique design are shown, including requirements for auxiliary detectors around the target and the various types of reactions to be used with the re-accelerated radioactive beams of the future ReA12 accelerator.

  14. Portable Imaging Polarimeter and Imaging Experiments; TOPICAL

    International Nuclear Information System (INIS)

    PHIPPS, GARY S.; KEMME, SHANALYN A.; SWEATT, WILLIAM C.; DESCOUR, M.R.; GARCIA, J.P.; DERENIAK, E.L.

    1999-01-01

    Polarimetry is the method of recording the state of polarization of light. Imaging polarimetry extends this method to recording the spatially resolved state of polarization within a scene. Imaging-polarimetry data have the potential to improve the detection of manmade objects in natural backgrounds. We have constructed a midwave infrared complete imaging polarimeter consisting of a fixed wire-grid polarizer and rotating form-birefringent retarder. The retardance and the orientation angles of the retarder were optimized to minimize the sensitivity of the instrument to noise in the measurements. The optimal retardance was found to be 132(degree) rather than the typical 90(degree). The complete imaging polarimeter utilized a liquid-nitrogen cooled PtSi camera. The fixed wire-grid polarizer was located at the cold stop inside the camera dewar. The complete imaging polarimeter was operated in the 4.42-5(micro)m spectral range. A series of imaging experiments was performed using as targets a surface of water, an automobile, and an aircraft. Further analysis of the polarization measurements revealed that in all three cases the magnitude of circular polarization was comparable to the noise in the calculated Stokes-vector components

  15. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  16. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  17. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  18. Vector magnetic field observations with the Haleakala polarimeter

    Science.gov (United States)

    Mickey, D. L.

    1985-01-01

    Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.

  19. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  20. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  1. Optimizing Higgs factories by modifying the recoil mass

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Ying-Ying [Hong Kong Univ. of Science and Technology, Kowloon (China). Dept. of Physics

    2017-10-15

    It is difficult to measure the WW-fusion Higgs production process (e{sup +}e{sup -}→ν anti νh) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z (e{sup +}e{sup -}→hZ, Z→ν anti ν). We construct a modified recoil mass variable, m{sup p}{sub recoil}, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can better separate the WW-fusion and Higgsstrahlung events than the original recoil mass variable m{sub recoil}. Consequently, the m{sup p}{sub recoil} variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the m{sup p}{sub recoil} variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies.

  2. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M.

    2014-10-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015.

  3. 100 group displacement cross sections from RECOIL data base

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1995-01-01

    Displacement cross sections in 100 neutron energy groups were calculated from the RECOIL data base using the RECOIL program, for use in DPA (Displacement Per Atom) calculations for FBTR and PFBR materials. 100 group displacement cross sections were calculated using RECOIL-Data Base and RECOIL Program. Modifications were made in the data base to reduce space requirement, and in the program for easy handling on a PC. 2 refs

  4. Development of the GEM-TPC X-ray Polarimeter with the Scalable Readout System

    Directory of Open Access Journals (Sweden)

    Kitaguchi Takao

    2018-01-01

    Full Text Available We have developed a gaseous Time Projection Chamber (TPC containing a single-layered foil of a gas electron multiplier (GEM to open up a new window on cosmic X-ray polarimetry in the 2–10 keV band. The micro-pattern TPC polarimeter in combination with the Scalable Readout System produced by the RD51 collaboration has been built as an engineering model to optimize detector parameters and improve polarimeter sensitivity. The polarimeter was characterized with unpolarized X-rays from an X-ray generator in a laboratory and polarized X-rays on the BL32B2 beamline at the SPring-8 synchrotron radiation facility. Preliminary results show that the polarimeter has a comparable modulation factor to a prototype of the flight one.

  5. Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions

    International Nuclear Information System (INIS)

    Ullrich, J.; Doerner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Schmidt-Boecking, H.

    1994-09-01

    In order to investigate many-particle reaction dynamics in atomic collisions a novel high-resolution technique has been developed, which determines the momentum and the charge state of the slowly recoiling target ions. Using a very cold, thin, and localized supersonic gas jet target a momentum resolution of better than 0.05 a.u. is obtained by measuring the recoil-ion time-of-flight and the recoil-ion trajectory. Because of the very high detection efficiency of nearly 100% this technique is well suited for many-particle coincidence measurements in ionizing collisions. First experimental results for fast ion and electron impact on helium targets are presented. Future applications in atomic collision physics and related areas are discussed. (orig.)

  6. A Millimeter Polarimeter for the 45-m Telescope at Nobeyama

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1999-04-01

    We have designed and constructed a tunable polarimeter to cover frequencies from 35 GHz to 250 GHz (8.6 mm and 1.2 mm in wavelength) for the 45-m telescope at Nobeyama Radio Observatory. Both circular and linear polarizations can be measured by the polarimeter. The insertion loss was measured to be 0.14 +/- 0.05 dB in the 100-GHz band. The overall instrumental polarization of the system in the 100 GHz band is as low as VY Canis Majoris. The observation revealed that the J = 2--1 emission in the v = 0 state of the object is highly linear polarized, which suggests that the emission originates through maser action in the circumstellar region. The details of the design, construction, and tests are presented. Nobeyama Radio Observatory is a branch of the National Astronomical Observatory, operated by the Ministry of Education, Science, Sports and Culture.

  7. Recoil 18F-chemistry in fluoroalkanes

    International Nuclear Information System (INIS)

    Linde, K.D. van der.

    1982-01-01

    This thesis describes the study of the chemical reactions of recoil 18 F-atoms in gaseous fluoromethanes and fluoroethanes. A brief survey of the organic hot atom chemistry is given in Chapter I. Chapter II deals with the experimental procedures used in this investigation. The irradiation facilities, the vapour phase radio-chromatography and the identification, including the synthesis of some fluorocarbons, are described in detail. Chapter III consists of a study on the applicability of perfluoropropene, C 3 F 6 , as scavenger for thermal 18 F-atoms and radicals. Chapters IV, V, VI and VII deal with 18 F-recoil chemistry in gaseous fluoroethanes, using H 2 S as scavenger. Chapter VIII is a short discussion on the hot 18 F-atom based production of 18 F-labeled organic compounds via decay of the intermediate 18 Ne. A target system is proposed for production of this isotope in high energy and ultra high flux particle beams, which possibly would become available in fast breeders and fusion reactors. (Auth.)

  8. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  9. Optimizing Higgs factories by modifying the recoil mass

    Science.gov (United States)

    Gu, Jiayin; Li, Ying-Ying

    2018-02-01

    It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)

  10. Calibration method of microgrid polarimeters with image interpolation.

    Science.gov (United States)

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2015-02-10

    Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

  11. Chromospheric LAyer SpectroPolarimeter (CLASP2)

    Science.gov (United States)

    Narukage, Noriyuki; Cirtain, Jonathan W.; Ishikawa, Ryoko; Trujillo-Bueno, Javier; De Pontieu, Bart; Kubo, Masahito; Ishikawa, Shinnosuke; Kano, Ryohei; Suematsu, Yoshinori; Yoshida, Masaki; hide

    2016-01-01

    The sounding rocket Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) was launched on September 3rd, 2015, and successfully detected (with a polarization accuracy of 0.1 %) the linear polarization signals (Stokes Q and U) that scattering processes were predicted to produce in the hydrogen Lyman-alpha line (Ly; 121.567 nm). Via the Hanle effect, this unique data set may provide novel information about the magnetic structure and energetics in the upper solar chromosphere. The CLASP instrument was safely recovered without any damage and we have recently proposed to dedicate its second ight to observe the four Stokes profiles in the spectral region of the Mg II h and k lines around 280 nm; in these lines the polarization signals result from scattering processes and the Hanle and Zeeman effects. Here we describe the modifications needed to develop this new instrument called the "Chromospheric LAyer SpectroPolarimeter" (CLASP2).

  12. A variable energy Moeller polarimeter at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Barday, Roman; Enders, Joachim [Institut fuer Kernphysik, TU Darmstadt (Germany); Mueller, Wolfgang; Steiner, Bastian [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A coincidence Moeller polarimeter is designed for both cw and pulsed beam of the Superconducting Darmstadt Linear Accelerator S-DALINAC where polarized electron beams will become available in 2008. The designed polarimeter covers an energy region between 15 and 130 MeV. The beam polarisation at currents of up to 1 {mu}A is inferred from measurement of the asymmetry in polarized electron-electron scattering from the Fe-Co foil. The influence of the atomic motion of the target electrons on the polarisation, the so-called Levchuk effect was investigated.

  13. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  14. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W B; Johnston, P N; Walker, S R; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J F [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  15. An integrated thermo-structural model to design a polarimeter for the GTC

    Science.gov (United States)

    Di Varano, I.; Strassmeier, K. G.; Woche, M.; Laux, U.

    2016-07-01

    The GTC (Gran Telescopio Canarias), with an equivalent aperture of 10.4 m, effective focal length of 169.9 m, located at the Observatorio del Roque de los Muchachos , in La Palma, Canary Islands, will host on its Cassegrain focus the GRAPE polarimeter (GRAntecan PolarimEter). At such focus the plate scale is 1.21 arcsec/mm and the unvignetted FOV 8 arcmin. The instrument will provide full Stokes polarimetry in the spectral range 380-1500 nm, feeding simultaneously up to two spectrographs. At the moment an interface to HORS (High Optical Resolution Spectrograph) is being defined, located on the Nasmyth platform, it has a FWHM resolving power of about 25,000 (5 pixel) within a spectral range of 400-680 nm. The rotator and instrumental flanges for the Cassegrain focus are currently under definition. Hereafter I present the state of art of the mechanical design of the polarimeter, whose strategy is based on an integrated model of Zemax design into ANSYS FEM static and dynamic analyses with thermal loads applied, in order to retrieve tip-tilt, decentering errors and other significant parameters to be looped back to the Zemax model. In such a way it is possible to compare and refine the results achieved through the tolerance analysis.

  16. A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students

    Science.gov (United States)

    Lisboa, Pedro; Sotomayor, Joo; Ribeiro, Paulo

    2010-01-01

    The construction of a diode laser polarimeter apparatus by undergraduate students is described. The construction of the modular apparatus by undergraduate students gives them an insight into how it works and how the measurement of a physical or chemical property is conducted. The students use the polarimeter to obtain rotation angle values for the…

  17. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  18. A gun recoil system employing a magnetorheological fluid damper

    International Nuclear Information System (INIS)

    Li, Z C; Wang, J

    2012-01-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment. (paper)

  19. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  20. First results from the PETRA-polarimeter

    International Nuclear Information System (INIS)

    Bremer, H.D.; Dehne, H.C.; Lewin, H.C.; Mais, H.; Neumann, R.; Rossmanith, R.; Schmidt, R.

    1980-07-01

    With the PETRA polarimeter electron beam polarization was detected. Up to now the polarization was only detected under certain machine conditions, e.g. without beam-beam interaction. The aim of the future measuring program will be to find out which parameters are decisive for the polarization. (orig.)

  1. RHIC PC CNI POLARIMETER:STATUS AND PERFORMANCE from THE FIRST COLLIDER RUN

    International Nuclear Information System (INIS)

    JINNOUCHI, O.; ALEKSEEV, I.G.; BLAND, L.C.; BRAVAR, A.; BUNCE, G.; CADMAN, R.; DESHPANDE, A.D.; HAWAN, S.; FIELDS, D.E.; HUANG, H.; HUGHES, V.; IGO, G.; IMAI, K.; KANAVETS, V.P.; KIRYLUK, J.; KURITA, K.; LI, Z.; LOZOWSKI, W.; MACKAY, W.W.; MAKDISI, Y.; OGAWA, A.; RESCIA, S.; ROSER, T.; SAITO, N.; SPINKA, H.; SURROW, B.; SVIRIDA, D.N.; TOJO, J.; UNDERWOOD, D.; WOOD, J.

    2002-01-01

    Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear Interference (CNI) region were installed in two RHIC rings. Polarization measurements were successfully carried out with the high energy polarized proton beams for the first polarized pp collision run. The physics principles, performance, and polarization measurements are presented

  2. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  3. A novel comparison of Møller and Compton electron-beam polarimeters

    Directory of Open Access Journals (Sweden)

    J.A. Magee

    2017-03-01

    Full Text Available We have performed a novel comparison between electron-beam polarimeters based on Møller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (<5 μA during the Qweak experiment in Hall-C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 μA operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Møller measurements made at low beam currents to physics experiments performed at higher beam currents. The agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.

  4. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    The self-scattering of alpha-active substances has long been recognized and is attributed to expulsion of aggregates of atoms from the surface of alpha-active materials by alpha emission recoil energy, and perhaps to further propulsion of these aggregates by subsequent alpha recoils. Workers at the University of Lowell recently predicted that this phenomenon might affect the retention of alpha-active particulate matter by HEPA filters, and found support in experiments with 212 Pb. Tests at Oak Ridge National Laboratory have confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter media, such as that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.9 percent quoted for ordinary particulate matter were observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers by subsequent alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow

  5. Production of high specific activity 27Mg by fast neutron irradiation and recoil-aided leaching

    International Nuclear Information System (INIS)

    Wierczinski, B.; Goeij, J.J.M. de; Volkers, K.J.

    2000-01-01

    High specific activity 27 Mg was produced via recoil-aided leaching from alumina in aqueous medium during irradiation with fast neutrons from a nuclear reactor. After irradiation the aqueous medium was passed through an IC-chelate column, the 24 Na formed during irradiation was removed by elution with 0.25 ml . l -1 sodium acetate and subsequently the 27 Mg was eluted with 2 mol . l -1 hydrochloric acid. Irradiation of alumina with a particle size of 3 μm and a specific surface area of 100 m 2 . g -1 in Milli-Q Plus Water yielded 90% of the total 27 Mg activity produced. Under standard conditions activities of about 8 . 10 5 Bq and specific activities of ca. 10 13 Bq . mol -1 were obtained at the end of irradiation. The standard working conditions involved irradiation of 200 mg alumina dispersed in 0.5 ml liquid in a fast neutron flux of 3 . 10 15 m -2 . s -1 for 15 min, a waiting time of 10 min, and a processing time of 15 minutes. Various alumina samples with different particle sizes and specific surfaces were tested, and the 27 Mg yields were fitted to a mathematical function. Since the high leaching yields cannot only be explained by recoil only, other phenomena such as diffusion and leaching aided by the high hydration energy of the Mg 2+ ion are probably involved. (orig.)

  6. X-Ray Spectro-Polarimetry with Photoelectric Polarimeters

    Science.gov (United States)

    Strohmayer, T. E.

    2017-01-01

    We derive a generalization of forward fitting for X-ray spectroscopy to include linear polarization of X-ray sources, appropriate for the anticipated next generation of space-based photoelectric polarimeters. We show that the inclusion of polarization sensitivity requires joint fitting to three observed spectra, one for each of the Stokes parameters, I(E), U(E), and Q(E). The equations for StokesI (E) (the total intensity spectrum) are identical to the familiar case with no polarization sensitivity, and for which the model-predicted spectrum is obtained by a convolution of the source spectrum, F (E), with the familiar energy response function,(E) R(E,E), where (E) and R(E,E) are the effective area and energy redistribution matrix, respectively. In addition to the energy spectrum, the two new relations for U(E) and Q(E) include the source polarization fraction and position angle versus energy, a(E), and 0(E), respectively, and the model-predicted spectra for these relations are obtained by a convolution with the modulated energy response function, (E)(E) R(E,E), where(E) is the energy-dependent modulation fraction that quantifies a polarimeters angular response to 100 polarized radiation. We present results of simulations with response parameters appropriate for the proposed PRAXyS Small Explorer observatory to illustrate the procedures and methods, and we discuss some aspects of photoelectric polarimeters with relevance to understanding their calibration and operation.

  7. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  8. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  9. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Science.gov (United States)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  10. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  11. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  12. The Compton polarimeter at ELSA

    International Nuclear Information System (INIS)

    Doll, D.

    1998-06-01

    In order to measure the degree of transverse polarization of the stored electron beam in the Electron Stretcher Accelerator ELSA a compton polarimeter is built up. The measurement is based on the polarization dependent cross section for the compton scattering of circular polarized photons off polarized electrons. Using a high power laser beam and detecting the scattered photons a measuring time of two minutes with a statistical error of 5% is expected from numerical simulations. The design and the results of a computer controlled feedback system to enhance the laser beam stability at the interaction point in ELSA are presented. The detection of the scattered photons is based on a lead converter and a silicon-microstrip detector. The design and test results of the detector module including readout electronic and computer control are discussed. (orig.)

  13. Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering

    Science.gov (United States)

    Gray, Valerie M.

    2013-10-01

    Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.

  14. Quasi-optical reflective polarimeter for wide millimeter-wave band

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1998-11-01

    We constructed a new reflective-type polarimeter system at 35 - 250 GHz for the 45 m telescope at Nobeyama Radio Observatory (NRO). Using the system, we can measure both linear polarization and circular polarization for our needs. The new system has two key points. First is that we can tune the center frequency of the polarimeter in the available frequency range, second is that insertion loss is low (0.15 plus or minus 0.03 dB at 86 GHz). These characteristics extended achievable scientific aims. In this paper, we present the design and the performance of the system. Using the system, we measured linear polarizations of some astronomical objects at 86 GHz, with SiO (nu) equals 0,1 and 2 at J equals 2 - 1 and 29SiO (nu) equals 0 J equals 2 - 1 simultaneously. As a result, the observation revealed SiO (nu) equals 0 J equals 2 - 1 of VY Canis Majoris is highly linearly polarized, the degree of linear polarization is up to 64%, in spite of SiO J equals 2 - 1 (nu) equals 1 is not highly linearly polarized. The highly linearly polarized feature is a strong evidence that 28SiO J equals 2 - 1 transition at the ground vibrational state originate through maser action. This is the first detection of the cosmic maser emission of SiO (nu) equals 0 J equals 2 - 1 transition.

  15. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  16. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  17. Design of a scattering polarimeter for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Costa, E.; Cinti, M.N.; Feroci, M.; Matt, G.; Rapisarda, M.

    1995-01-01

    The design of a new hard X-ray Compton scattering polarimeter based on scintillating fibre technology is presented and studied in detail by means of Monte Carlo calculations. Several different configurations and materials have been tested in order to optimise the sensitivity in the medium/high energy X-ray band. A high sensitivity over the energy band 20-200 keV is obtained for a two material configuration. The advantages deriving from employing a new scintillating material, the YAP (YAlO 3 ), are also discussed. (orig.)

  18. RHIC pC CNI Polarimeter: Status and Performance from the First Collider Run

    International Nuclear Information System (INIS)

    Jinnouchi, O.; Tojo, J.; Alekseev, I.G.; Kanavets, V.P.; Svirida, D.N.; Bland, L.C.; Bravar, A.; Huang, H.; Li, Z.; MacKay, W.W.; Makdisi, Y.; Ogawa, A.; Rescia, S.; Roser, T.; Surrow, B.; Bunce, G.; Cadman, R.; Spinka, H.; Underwood, D.; Deshpande, A.

    2003-01-01

    Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear Interference (CNI) region were installed in two RHIC rings. Polarization measurements were successfully carried out with the high energy polarized proton beams for the first polarized pp collision run. The physics principles, performance, and polarization measurements are presented

  19. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  20. The 270 MeV deuteron beam polarimeter at the Nuclotron Internal Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Kurilkin, P.K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Ladygin, V.P., E-mail: vladygin@jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow State Institute of Radio-engineering Electronics and Automation (Technical University), Moscow (Russian Federation); Uesaka, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Suda, K. [RIKEN Nishina Center, Saitama (Japan); Gurchin, Yu.V.; Isupov, A.Yu. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Itoh, K. [Department of Physics, Saitama University, Saitama (Japan); Janek, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Physics Department, University of Zilina, 010 26 Zilina (Slovakia); Karachuk, J.-T. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Advanced Research Institute for Electrical Engineering, Bucharest (Romania); Kawabata, T. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0033 (Japan); Khrenov, A.N.; Kiselev, A.S.; Kizka, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kliman, J. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia); Krasnov, V.A.; Livanov, A.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Nuclear Research, Moscow (Russian Federation); Maeda, Y. [Kyushi University, Hakozaki (Japan); Malakhov, A.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Matousek, V.; Morhach, M. [Institute of Physics of Slovak Academy of Sciences, Bratislava (Slovakia)

    2011-06-21

    A deuteron beam polarimeter has been constructed at the Internal Target Station at the Nuclotron of JINR. The polarimeter is based on spin-asymmetry measurements in the d-p elastic scattering at large angles and the deuteron kinetic energy of 270 MeV. It allows to measure vector and tensor components of the deuteron beam polarization simultaneously.

  1. Recoil effects of neutron-irradiated metal salts

    International Nuclear Information System (INIS)

    Lee, B.H.

    1980-01-01

    The distribution of sup(56)Mn and sup(38)Cl recoil species following radiative neutron capture permanganates, chlorates and perchlorates has been investigated by using ion-exchange chromatography method. The whole of the sup(56)Mn radioactivity in permanganates appeared in two valence states, the sup(38)Cl radioactivity in chlorates in two valence states and also the sup(38)Cl radioactivity in perchlorates in three valence states. Recoil energy was calculated. The internal conversion of sup(38m)Cl isomer transition affects the retention value. The greater the radii of the cation, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaves as a reducing agent. Crystal structures with their greater free space have shown by retention. (Author)

  2. Transportation system of recoil nucleus by helium jet

    International Nuclear Information System (INIS)

    Cabral, S.C.; Borges, A.M.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The transportation system of recoil nucleus by helium jet, is studied. It is used a technique aiming to put in the detection area (region of low background) the recoils, produced by nuclear reactions between target and particle beams, those produced with the help of cyclotron CV-28. (E.G.) [pt

  3. Moving towards first science with the St. George recoil separator

    Science.gov (United States)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  4. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  5. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  6. Shallow doping of gallium arsenide by recoil implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Souza, J.P. de; Rutz, R.F.; Cardone, F.; Norcott, M.H.

    1989-01-01

    Si atoms were recoil-implanted into GaAs by bombarding neutral (As + ) or dopant (Si + ) ions through a thin Si cap. The bombarded samples were subsequently rapid thermally or furnace annealed at 815-1000 degree C in Ar or arsine ambient. The presence of the recoiled Si in GaAs and resulting n + -doping was confirmed by secondary ion mass spectrometry and Hall measurements. It was found that sheet resistance of 19 cm 3 and the annealing temperature was > 850 degree C. The present electrical data show that the recoil implant method is a viable alternative to direct shallow implant for n + doping of GaAs. 7 refs., 3 figs., 1 tab

  7. A study of nuclear recoil backgrounds in dark matter detectors

    Science.gov (United States)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  8. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton Univ., NJ (United States)

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  9. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  10. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Mehdizadeh, Arash; Al-Sarawi, Said; Abbott, Derek; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi

    2013-01-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  11. On the limitations introduced by energy spread in elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2001-01-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV 127 I 23+ ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed

  12. On the limitations introduced by energy spread in elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kfki.hu

    2001-07-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV {sup 127}I{sup 23+} ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed.

  13. Elastic recoil detection (ERD) with extremely heavy ions

    International Nuclear Information System (INIS)

    Forster, J.S.; Davies, J.A.; Siegele, R.; Wallace, S.G.; Zelenitsky, D.

    1996-01-01

    Extremely heavy-ion beams such as 209 Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ≤100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.)

  14. Calibration of a neutron polarimeter in the 0.2-1.1GeV region

    International Nuclear Information System (INIS)

    Semenov, A.Yu.; Zhang, W.M.; Madey, R.; Ahmidouch, A.; Anderson, B.D.; Assamagan, K.; Avery, S.; Baldwin, A.R.; Crowell, A.S.; Eden, T.; Manley, D.M.; Markowitz, P.; Milleret, G.; Prout, D.; Reichelt, T.; Semenova, I.A.; Ulmer, P.E.; Voutier, E.; Watson, J.W.; Wells, S.P.

    2006-01-01

    We measured the analyzing power and the efficiency of a neutron polarimeter at the Saturne National Laboratory in France with central energies of the neutron beam of 261,533,752,922, and 1057MeV. This polarimeter was a prototype designed to measure G E n , the neutron electric form factor, at the Thomas Jefferson National Accelerator Facility

  15. Lifetime measurements using the recoil distance method—achievements and perspectives

    Science.gov (United States)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  16. Lifetime measurements using the recoil distance method - achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2001-01-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of 'magnetic rotation' are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed

  17. A recoil-proton fast-neutron counter telescope

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.; Bressanini, G.

    1981-01-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV. (author)

  18. Development of a digital trigger system to identify recoil protons at COMPASS-II

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Albert-Ludwigs-Universitaet Freiburg (Germany)

    2014-07-01

    The GANDALF framework has been developed to deliver a high precision, high performance detector readout and trigger system for particle physics experiments such as the COMPASS-II experiment at CERN. Combining the high performance pulse digitization and feature extraction capabilities of twelve GANDALF modules, each comprising a Virtex-5 SX95T, with the strong computation power of a Virtex-6 SX315T FGPA operated on the TIGER module, we present a digital trigger system for a recoil proton detector. The trigger system was setup and commissioned successfully during a data taking period in 2012. It was mainly used for the calibration of the recoil proton detector and in tagging mode to identify proton tracks online.

  19. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  20. The test of the layout of polarimeter "UFP" on the telescope AZT-2

    Science.gov (United States)

    Levchenko, T. A.; Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.; Saryboha, H. V.; Zbrutsky, O. V.; Ivakhiv, O. V.

    2016-05-01

    Main Astronomical Observatory of NAS of Ukraine in cooperation with the National Technical University of Ukraine "KPI" and National University "Lviv Polytechnic" for a long time working on the design of an optical polarimeter to study of the stratospheric layer of the Earth using of orbital satellite. During this time, was accumulated a large experience of such work, and was established a layout of compact ultraviolet polarimeter (UFP) on board of satellite

  1. Recoil-ion momentum spectroscopy

    International Nuclear Information System (INIS)

    Ullrich, J.; Moshammer, R.; Doerner, R.; Jagutzki, O.; Mergel, V.; Schmidt-Boecking, H.; Spielberger, L.

    1996-10-01

    High-resolution recoil-ion momentum spectroscopy (RIMS) is a novel technique to determine the charge state and the complete final momentum vector P R of a recoiling target ion emerging from an ionising collision of an atom with any kind of radiation. It offers a unique combination of superior momentum resolution in all three spatial directions of ΔP R = 0.07 a.u. with a large detection solid angle of ΔΩ R /4π≥ 98%. Recently, low-energy electron analysers based on rigorously new concepts and reaching similar specifications were successfully integrated into RIM spectrometers yielding so-called ''reaction microscopes''. Exploiting these techniques, a large variety of atomic reactions for ion, electron, photon and antiproton impact have been explored in unprecedented detail and completeness. Among them first kinematically complete experiments on electron capture, single and double ionisation in ion-atom collisions at projectile energies between 5 keV and 1.4 GeV. Double photoionisation of He has been investigated at energies E γ close to the threshold (E γ = 80 eV) up to E γ = 58 keV. At E γ >8 keV the contributions to double ionisation after photoabsorption and Compton scattering were kinematically separated for the first time. These and many other results will be reviewed in this article. In addition, the experimental technique is described in some detail and emphasis is given to envisage the rich future potential of the method in various fields of atomic collision physics with atoms, molecules and clusters. (orig.)

  2. On the M\\"ossbauer effect and the rigid recoil question

    OpenAIRE

    Davidson, Mark

    2016-01-01

    Various theories for the M\\"ossbauer rigid-recoil effect, which enables a crystal to absorb momentum but not appreciable energy, are compared. These suggest that the recoil may not be instantaneous, and that the recoil time could be used to distinguish between them. An experiment is proposed to measure this time. The idea is to use a small sphere whose outer surface is coated with an electrically charged M\\"ossbauer-active element, and then to measure the amount of energy lost due to Bremmsst...

  3. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  4. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Cohen, D D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P; Walker, S [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H; Hult, M [Lund Univ. (Sweden); Oestling, M; Zaring, C [Royal Inst. of Tech., Stockholm (Sweden)

    1994-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  5. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  6. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  7. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    International Nuclear Information System (INIS)

    Golovanov, L.B.; Borzounov, Yu.T.; Piskunov, N.M.; Tsvinev, A.P.

    1996-01-01

    This article describes the design and working principle of a 3-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid Helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self regulation of Helium flow in the cryostat to stabilize the liquid hydrogen level is presented. (author)

  8. Performance study of the gamma-ray bursts polarimeter POLAR

    Science.gov (United States)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  9. The RIKEN gas-filled recoil separator and a possible new approach to superheavy elements by the (HI, αxn) reaction

    International Nuclear Information System (INIS)

    Nomura, T.

    1990-10-01

    The (HI, αxn) reaction, in which precompound α particle emission takes place, is shown to occur significantly even near the Coulomb barrier. Because the α emission can efficiently cool down a highly excited nucleus both in energy and angular momentum, it is considered to be very effective for production of heavy elements like SHE. However, the angular distributions of residual nuclei produced in this reaction are side-peaked, requiring a recoil-type separator with large angular acceptance when it is applied for collection of the relevant nuclei. A brief description is given about a gas-filled separator recently constructed at RIKEN, which meets the above requirement. (author)

  10. Comparison of the Recoil of Conventional and Electromagnetic Cannon

    Directory of Open Access Journals (Sweden)

    Edward M. Schmidt

    2001-01-01

    Full Text Available The recoil from an electromagnetic (EM railgun is discussed and compared with that from conventional, propellant gas driven cannon. It is shown that, under similar launch conditions, the recoil of the EM gun is less than that of the powder gun; however, use of a muzzle brake on a powder gun can alter this relative behavior.

  11. Self-triggering detectors for recoil nuclei

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.I.; Gasparyan, A.O.

    1975-01-01

    Hybrid α-detectors consisting of wide gap spark chambers and signal α detectors are described. The investigations have been carried out with γ-beams of Yerevan Electron Synchrotron. The possibility of using such detectors in the experiments on particle photoproduction on gas helium with the determination of the interaction point, emission angle of the recoil nucleus and its energy by means of range measurement has been shown. It has been shown that self - triggering wide gap spark chamber allows to detect and measure the range of the recoil nuclei α-particles with energies Esub(α) > or approximately (1 - 2) Mev which correspond to momentum transfers apprxomation (10 -2 - 10 -3 ) (GeV/c) 2

  12. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  13. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  14. The project of installing a ZIMPOL_3 polarimeter at GREGOR in Tenerife

    OpenAIRE

    Michele Bianda; Renzo Ramelli; Jan Olof Stenflo; Svetlana Berdyugina; Daniel Gisler; Ivan Defilippis; Nazaret Bello Gonzáles

    2013-01-01

    A project of collaboration between Kiepenheuer Institut für Sonnenphysik KIS and Istituto Ricerche Solari Locarno IRSOL includes the installation of a ZIMPOL_3 high resolution polarimeter at the 1.5 meter aperture solar telescope GREGOR in Tenerife. Important scientific topics are expected to be investigated in particular in the case of events showing faint amplitude polarization signatures like scattering polarization effects and the Hanle effect. This project has also a technical importance...

  15. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    Science.gov (United States)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  16. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  17. Development of two color laser diagnostics for the ITER poloidal polarimeter

    International Nuclear Information System (INIS)

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-01-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH 3 OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  18. Role of the recoil effect in two-center interference in X-ray photoionization

    International Nuclear Information System (INIS)

    Ueda, K.; Liu, X.-J.; Pruemper, G.; Lischke, T.; Tanaka, T.; Hoshino, M.; Tanaka, H.; Minkov, I.; Kimberg, V.; Gel'mukhanov, F.

    2006-01-01

    X-ray photoelectron spectra of the N 2 molecule are studied both experimentally and theoretically in the extended energy region up to 1 keV. The ratio of the photoionization cross sections for the gerade and ungerade core levels displays a modulation in the high energy region caused by the two-center interference, as predicted by Cohen and Fano (CF) in 1966. The physical background of this CF effect is the same as in Young's double-slit experiment. We have found that the interference pattern deviates significantly from the CF prediction. The origin of such a breakdown of the CF formula is the scattering of the photoelectron inside the molecule and the momentum transfer from the emitted fast photoelectron to the nuclei. Usually the recoil effect is small. We show that the electron recoil strongly affects the two-center interference pattern. Both stationary and dynamical aspects of the recoil effect shed light on the role of the momentum exchange in the two-center interference

  19. Commissioning of a proton-recoil spectrometer

    International Nuclear Information System (INIS)

    Nunes, J.C.; Faught, R.T.

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated 252 Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  20. Next Generation X-ray Polarimeter

    Science.gov (United States)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  1. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  2. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  3. DSA lifetime measurements in 21Ne at high recoil velocity

    International Nuclear Information System (INIS)

    Grawe, H.; Heidinger, F.; Kaendler, K.

    1977-01-01

    States in 21 Ne up to 5 MeV excitation energy have been populated using the inverted reaction 2 H( 20 Ne,pγ). The Doppler shift attenuation (DSA) analysis of the pγ coincidence spectra taken in a Ge(Li) detector at 45 0 and 135 0 and an annular silicon surface barrier detector near 0 0 yielded the lifetimes of 8 states in 21 Ne. Due to the large recoil of vi/c approximately equal to 4% three new lifetimes were determined for the short lived levels at 2.80, 4.68 and 4.73 MeV, namely 10 +- 4 fs, 16 +- 4 fs and 10 +- 4 fs, respectively. The results are compared with rotational and shell model calculations. (orig.) [de

  4. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  5. Tests of a two-color interferometer and polarimeter for ITER density measurements

    Science.gov (United States)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  6. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  7. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Athay, R.G.; Beckers, J.M.; Brandt, J.C.; Bruner, E.C.; Chapman, R.D.; Cheng, C.C.; Burman, J.G.; Henze, W.; Hyder, C.L.; Michalitsianos, A.G.; Shine, R.A.; Schoolman, S.A.; Woodgate, B.E.

    1981-01-01

    We present new observations with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first 3 months of Solar Maximum Mission operations

  8. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  9. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  10. Detector for recoil nuclei stopping in the spark chamber gas

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.L.; Ivanov, V.I.; Mkrtchyan, G.G.; Pikhtelev, R.N.

    1974-01-01

    A detector consisting of the combination of a drift and a wide gap spark chambers and designed to detect recoil nuclei stopping in the spark chamber gas is described. It is shown, that by using an appropriate discrimination the detector allows to detect reliably the recoil nuclei in the presence of intensive electron and γ-quanta beams

  11. Sonic Rarefaction Wave Low Recoil Gun

    National Research Council Canada - National Science Library

    Kathe, E

    2002-01-01

    A principal challenge faced by the U.S. Army TACOM-ARDEC Benet Laboratories in the design of armaments for lightweight future fighting vehicles with lethality overmatch is mitigating the deleterious effects of large caliber cannon recoil...

  12. Optimization of a dual-rotating-retarder polarimeter as applied to a tunable infrared Mueller-matrix scatterometer

    International Nuclear Information System (INIS)

    Vap, J C; Nauyoks, S E; Marciniak, M A

    2013-01-01

    The value of Mueller-matrix (Mm) scatterometers lies in their ability to simultaneously characterize the polarimetric and directional scatter properties of a sample. To extend their utility to characterizing modern optical materials in the infrared (IR), which often have very narrow resonances yet interesting polarization and directional properties, the addition of tunable IR lasers and an achromatic dual-rotating-retarder (DRR) polarimeter is necessary. An optimization method has been developed for use with the tunable IR Mm scatterometer. This method is rooted in the application of random error analysis to three different DRR retardances, λ/5, λ/4 and λ/3, for three different analyzer (A)-to-generator (G) retarder rotation ratios, θ A :θ G = 34:26, 25:5 and 37.5:7.5, and a variable number of intensity measurements. The product of the error analysis is in terms of the level of error that could be expected from a free-space Mm extraction for the various retardances, retarder rotation ratios and number of intensity measurements of the DRR. The optimal DRR specifications identified are a λ/3 retardance and a Fourier rotation ratio, with the number of required collected measurements dependent on the level of error acceptable to the user. Experimental results corroborate this error analysis using an achromatic 110-degree retardance-configured DRR polarimeter at 5 µm wavelength, which resulted in consistent 1% error in its free-space Mm extractions. (paper)

  13. Construction of a γ-polarimeter in search of neutral weak current effects in the nucleus 18F

    International Nuclear Information System (INIS)

    Mogharrab, R.

    1978-07-01

    A possible contribution of neutral weak currents to the nucleon-nucleon potential is to be determined by observation of the circular polarization of the 1081 keV γ-transition in 18 F. A γ-polarimeter with 4 transmission magnets will be used. It is suitable for use in beam. The polarimeter has been built and the analysing power determined by using the 1119 keV γ-radiation in 46 Sc. The instrumental asymmetries are -5 . The 18 F is produced in the reaction 16 O ( 3 He,pγ) 18 F. Observations in beam proved the expected suitability of the polarimeter. The observed spectra allow to estimate the finally required beam times to about 2000 hours. (orig.) [de

  14. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  15. A recoil detector of Koala experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huagen [Forschungszentrum Juelich (Germany)

    2015-07-01

    The concept of the luminosity detector for the PANDA experiment is based on measuring antiproton-proton elastic scattering in the Coulomb-nuclear interference region by 4 planes of HV-MAPS tracking detectors. The absolute precision is limited by the lack of existing data of the physics quantities σ{sub tot}, ρ and b describing the differential cross section as a function of squared 4-momentum transfer t in the relevant beam momentum region. Therefore, the so-called Koala experiment has been proposed to measure antiproton-proton elastic scattering. The goal of Koala experiment is to measure a wide range of t-distribution to determine the parameters σ{sub tot}, ρ and b. The idea is to measure the scattered beam antiprotons at forward angles by tracking detectors and the recoil target protons near 90 {sup circle} by energy detectors. In order to validate this method a recoil detector has been designed and built. Commissioning of the recoil detector by measuring proton-proton elastic scattering has been performed at COSY. Preliminary results of the commissioning are presented.

  16. Managing Systematic Errors in a Polarimeter for the Storage Ring EDM Experiment

    Science.gov (United States)

    Stephenson, Edward J.; Storage Ring EDM Collaboration

    2011-05-01

    The EDDA plastic scintillator detector system at the Cooler Synchrotron (COSY) has been used to demonstrate that it is possible using a thick target at the edge of the circulating beam to meet the requirements for a polarimeter to be used in the search for an electric dipole moment on the proton or deuteron. Emphasizing elastic and low Q-value reactions leads to large analyzing powers and, along with thick targets, to efficiencies near 1%. Using only information obtained comparing count rates for oppositely vector-polarized beam states and a calibration of the sensitivity of the polarimeter to rate and geometric changes, the contribution of systematic errors can be suppressed below the level of one part per million.

  17. Recoil transporter devices

    International Nuclear Information System (INIS)

    Madhavan, N.

    2005-01-01

    The study of sparsely produced nuclear reaction products in the direction of intense primary beam is a challenging task, the pursuit of which has given rise to the advent or several types of selective devices. These range from a simple parallel plate electrostatic deflector to state-of-the-art electromagnetic separators. There is no single device which can satisfy all the requirements of an ideal recoil transporter, simultaneously. An overview of such devices and their building blocks is presented, which may help in the proper choice of the device as per the experimental requirements. (author)

  18. Polarimeters and energy spectrometers for the ILC beam delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, S. [London Univ. (United Kingdom). Royal Holloway; Hildreth, M. [Univ. of Notre Dame (United States); Kaefer, K. [DESY, Hamburg (Germany); DESY, Zeuthen (DE)] (and others)

    2009-02-15

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. (orig.)

  19. Development and application of an emitter for research of an on-board ultraviolet polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Geraimchuk, M. D.; Vidmachenko, A. P.; Ivakhiv, O. V.

    2018-05-01

    In carrying out of the work a layout of on-board small-sized ultraviolet polarimeter (UVP) was created. UVP is the device, which provides an implementation of passive remote studies of stratospheric aerosol from the board of the microsatellite of the Earth by the method of polarimetry. For carrying out of tests and the research of polarimetric equipment, a special stand was created at MAO of NAS of Ukraine. In its composition is an ultraviolet emitter. Emitter is one of the main components of a special stand for the study of on-board ultraviolet polarimeters.

  20. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  1. Investigation of fractional momentum transfer: measurement of forward recoil ranges in 16O + natTm collisions

    International Nuclear Information System (INIS)

    Singh, Pushpendra P.; Unnati; Sharma, Manoj Kumar; Singh, B.P.; Prasad, R.; Rakesh Kumar; Golda, K.S.; Bhardwaj, H.D.

    2006-01-01

    For better understanding of complete fusion and incomplete fusion in heavy ion reactions a programme of precise measurements of excitation functions, recoil range distribution and angular distributions of recoils has been undertaken. In the present contribution the recoil range distribution for the residues have been measured at ≅ 6 MeV/nucleon, using recoil-catcher technique followed by off-line gamma-spectroscopy

  2. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  3. Matrix structure for information-driven polarimeter design

    Science.gov (United States)

    Alenin, Andrey S.

    Estimating the polarization of light has been shown to have merit in a wide variety of applications between UV and LWIR wavelengths. These tasks include target identification, estimation of atmospheric aerosol properties, biomedical and other applications. In all of these applications, polarization sensing has been shown to assist in discrimination ability; however, due to the nature of many phenomena, it is difficult to add polarization sensing everywhere. The goal of this dissertation is to decrease the associated penalties of using polarimetry, and thereby broaden its applicability to other areas. First, the class of channeled polarimeter systems is generalized to relate the Fourier domains of applied modulations to the resulting information channels. The quality of reconstruction is maximized by virtue of using linear system manipulations rather than arithmetic derived by hand, while revealing system properties that allow for immediate performance estimation. Besides identifying optimal systems in terms of equally weighted variance (EWV), a way to redistribute the error between all the information channels is presented. The result of this development often leads to superficial changes that can improve signal-to-noise-ration (SNR) by up to a factor of three compared to existing designs in the literature. Second, the class of partial Mueller maitrx polarimeters (pMMPs) is inspected in regards to their capacity to match the level of discrimination performance achieved by full systems. The concepts of structured decomposition and the reconstructables matrix are developed to provide insight into Mueller subspace coverage of pMMPs, while yielding a pMMP basis that allows the formation of ten classes of pMMP systems. A method for evaluating such systems while considering a multi-objective optimization of noise resilience and space coverage is provided. An example is presented for which the number of measurements was reduced to half. Third, the novel developments

  4. Energy and depth resolution in elastic recoil coincidence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E., E-mail: szilagyi@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2010-06-15

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  5. Energy and depth resolution in elastic recoil coincidence spectrometry

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2010-01-01

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  6. Exclusive ρ0 production measured with the HERMES recoil detector

    International Nuclear Information System (INIS)

    Perez Benito, Roberto Francisco

    2010-12-01

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  7. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M BH = 3.7 x 10 6 M sun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V kick = 80, 120, 200, 300, and 400 km s -1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V kick ∼> 500 km s -1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼M BH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  8. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    International Nuclear Information System (INIS)

    Golubov, S.I.; Singh, B.N.; Trinkaus, H.

    2000-06-01

    Over the years, an enormous amount of experimental results have been reported on damage accumulation (e.g. void swelling) in metals and alloys irradiated under vastly different recoil energy conditions. Unfortunately, however, very little is known either experimentally or theoretically about the effect of recoil energy on damage accumulation. Recently, dedicated irradiation experiments using 2.5 MeV electrons, 3.0 MeV protons and fission neutrons have been carried out to determine the effect of recoil energy on the damage accumulation behaviour in pure copper and the results have been reported in Part I of this paper (Singh, Eldrup, Horsewell, Ehrhart and Dworschak 2000). The present paper attempts to provide a theoretical framework within which the effect of recoil energy on damage accumulation behaviour can be understood. The damage accumulation under Frenkel pair production (e.g. 2.5 MeV electron) has been treated in terms of the standard rate theory (SRT) model whereas the evolution of the defect microstructure under cascade damage conditions (e.g. 3.0 MeV protons and fission neutrons) has been calculated within the framework of the production bias model (PBM). Theoretical results, in agreement with experimental results, show that the damage accumulation behaviour is very sensitive to recoil energy and under cascade damage conditions can be treated only within the framework of the PBM. The intracascade clustering of self-interstitial atoms (SIAs) and the properties of SIA clusters such as one-dimensional diffusional transport and thermal stability are found to be the main reasons for the recoil energy dependent vacancy supersaturation. The vacancy supersaturation is the main driving force for the void nucleation and void swelling. In the case of Frenkel pair production, the experimental results are found to be consistent with the SRT model with a dislocation bias value of 2 %. (au)

  9. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  10. Polarisation at HERA. Reanalysis of the HERA II polarimeter data

    Energy Technology Data Exchange (ETDEWEB)

    Sobloher, B.; Behnke, T.; Olsson, J.; Pitzl, D.; Schmitt, S.; Tomaszewska, J.; Fabbri, R.

    2012-01-15

    In this technical note we briefly present the analysis of the HERA polarimeters (transversal and longitudinal) as of summer 2011. We present the final reanalysis of the TPOL data, and discuss the systematic uncertainties. A procedure to combine and average LPOL and TPOL data is presented. (orig.)

  11. Polarisation at HERA. Reanalysis of the HERA II polarimeter data

    International Nuclear Information System (INIS)

    Sobloher, B.; Behnke, T.; Olsson, J.; Pitzl, D.; Schmitt, S.; Tomaszewska, J.; Fabbri, R.

    2012-01-01

    In this technical note we briefly present the analysis of the HERA polarimeters (transversal and longitudinal) as of summer 2011. We present the final reanalysis of the TPOL data, and discuss the systematic uncertainties. A procedure to combine and average LPOL and TPOL data is presented. (orig.)

  12. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Gross, C.J.; Ginter, T.N.; Shapira, D.; Milner, W.T.; McConnell, J.W.; James, A.N.; Johnson, J.W.; Mas, J.; Mantica, P.F.; Auble, R.L.; Das, J.J.; Blankenship, J.L.; Hamilton, J.H.; Robinson, R.L.; Akovali, Y.A.; Baktash, C.; Batchelder, J.C.; Bingham, C.R.; Brinkman, M.J.; Carter, H.K.; Cunningham, R.A.; Davinson, T.; Fox, J.D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J.F.; MacDonald, B.D.; MacKenzie, J.; Paul, S.D.; Piechaczek, A.; Radford, D.C.; Ramayya, A.V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K.S.; Weintraub, W.; Williams, C.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    2000-01-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of ±10% in energy and ±4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices

  13. Ly-alpha polarimeter design for CLASP rocket experiment

    Science.gov (United States)

    Kubo, M.; Watanabe, H.; Narukage, N.; Ishikawa, R.; Bando, T.; Kano, R.; Tsuneta, S.; Kobayashi, K.; Ichimoto, K.; Trujillo Bueno, J.; Song, D.

    2011-12-01

    A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the Summer of 2014. CLASP will observe the upper solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The CLASP needs a rotating half-waveplate and a polarization analyzer working at the Ly-alpha wavelength to measure the linear polarization signal. We select Magnesium Fluoride (MgF2) as a material of the optical components because of its birefringent property and high transparency at UV wavelength. We have confirmed that the reflection at the Brewster's Angle of MgF2 plate is a good polarization analyzer for the Ly-alpha line by deriving its ordinary refractive index and extinction coefficient along the ordinary and extraordinary axes. These optical parameters are calculated with a least-square fitting in such a way that the reflectance and transmittance satisfy the Kramers-Kronig relation. The reflectance and transmittance against oblique incident angles for the s-polarized and the p-polarized light are measured using the synchrotron beamline at the Ultraviolet Synchrotron Orbital Radiation Facility (UVSOR). We have also measured a retardation of a zeroth-order waveplate made of MgF2. The thickness difference of the waveplate is 14.57 um.This waveplate works as a half-waveplate at 121.74 nm. From this measurement, we estimate that a waveplate with the thickness difference of 15.71 um will work as a half-waveplate at the Ly-alpha wavelength. We have developed a rotating waveplate - polarization analyzer system called a prototype of CLASP polarimeter, and input the perfect Stokes Q and U signals. The modulation patterns that are consistent with the theoretical prediction are successfully obtained in both cases.

  14. Passive New UV Polarimeter for Remote Surface and Atmospheric Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our imaging polarimeter concept makes available for the first time, the passive remote imagery of all four Stokes vector components at UV wavelengths shorter than...

  15. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  16. Towards 100Sn with GASP + Si-ball + Recoil Mass Spectrometer: High-spin states of 105Sn and 103In

    International Nuclear Information System (INIS)

    De Angelis, G.; Farnea, E.; Gadea, A.; Sferrazza, M.; Ackermann, D.; Bazzacco, D.; Bednarczyk, P.; Bizzeti, P.G.; Bizzeti Sona, A.M.; Brandolini, F.; Burch, R.; Buscemi, A.; De Acuna, D.; De Poli, M.; Fahlander, C.; Li, Y.; Lipoglavsek, M.; Lunardi, S.; Makishima, A.; Menegazzo, R.; Mueller, L.; Napoli, D.; Ogawa, M.; Pavan, P.; Rossi-Alvarez, C.; Scarlassara, F.; Segato, G.F.; Seweryniak, D.; Soramel, F.; Spolaore, P.; Zanon, R.

    1995-01-01

    Very proton rich nuclei in the A∼100 region have been investigated using the GASP array coupled with the Recoil Mass Spectrometer (RMS) and the GASP Si-ball. High-spin states of 105 Sn and 103 In nuclei formed with the reaction 58 Ni+ 50 Cr at 210MeV have been investigated up to similar 10 and 7MeV of excitation energy respectively. We have confirmed the known excited states for both nuclei and extended to higher spin the level scheme. The experimental level schemes are compared with shell model calculations. ((orig.))

  17. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  18. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  19. First β-ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar35 ions

    Science.gov (United States)

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Glück, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2014-08-01

    We demonstrate a novel method to search for physics beyond the standard model by determining the β-ν angular correlation from the recoil-ion energy distribution after β decay of ions stored in a Penning trap. This recoil-ion energy distribution is measured with a retardation spectrometer. The unique combination of the spectrometer with a Penning trap provides a number of advantages, e.g., a high recoil-ion count rate and low sensitivity to the initial position and velocity distribution of the ions and completely different sources of systematic errors compared to other state-of-the-art experiments. Results of a first measurement with the isotope Ar35 are presented. Although currently at limited precision, we show that a statistical precision of about 0.5% is achievable with this unique method, thereby opening up the possibility of contributing to state-of-the-art searches for exotic currents in weak interactions.

  20. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P.A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; hide

    2016-01-01

    We present the design and the preliminary on-sky performance with respect to beams and pass bands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  1. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Munson, C. D.; Nati, F.; Niemack, M. D.; Page, L.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Schillaci, A.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  2. Recoil 18F chemistry. XI. High pressure investigation of 1,1-difluoroethane

    International Nuclear Information System (INIS)

    Manning, R.G.; Root, J.W.

    1980-01-01

    Nuclear recoil 18 F reactions in CH 3 CHF 2 have been investigated throughout the effective pressure range 0.3--190 atm. The principal reaction channel is F-to-HF abstraction for which the combined yield from quasithermal and energetic processes in the presence of 5 mole% H 2 S additive is 83.4% +- 0.2%. A reaction mechanism is proposed that involves the organic product forming channels F-for-F, F-for-αH, F-for-βH, F-for-CH 3 and F-for-CHF 2 . The results are compared with those reported for the 18 F+CH 3 CF 3 system

  3. Introduction of innovations to Cuban Polarimeters

    International Nuclear Information System (INIS)

    Mora Mazorra, L. W.; Fajer Avila, V.; Arista Romeu, E.; Fernandez Lechuga, H.; Robaina Martinez, B.; Lizaso Menendez, E.

    2012-01-01

    It describes the changes made to the various circuits of electronic card system LASERPOL polarimeters. Modifications made to the hardware of the various circuits allowed to increase the accuracy of the instrument to improve the sensitivity and reproducibility of measurements consisted innovations changes in power, ramp generator circuit, low power and high voltage, redesign the motherboard, changes in the converter circuit, modulator circuit rationalization and ramp generator. This coupled with the addition of a new control board allows the use of the instrument in new applications such as use as polarimetric detector in a chromatographic system with data transmission to a PC for further analysis and processing. There were several changes from the mechanical viewpoint to avoid undesirable reflections that occur on the surface of the plates and introduced a device for, improving the fit of the sheet polarizer of the analyzer. These modifications have been performed on multiple computers satisfactory results for the exploitation of them for a period of several years, allowing an increase in the quality and competitiveness of the instrument. (Author)

  4. The multichannel triple-laser interferometer/polarimeter system at RTP

    NARCIS (Netherlands)

    Rommers, J. H.; Donne, A. J. H.; Karelse, F. A.; Howard, J.

    1997-01-01

    yA 19-channel combined interferometer and polarimeter system has recently become operational at the Rijnhuizen Tokamak Project (a = 0.164 m, R = 0.72 m, B-tor less than or equal to 2.5 T, I-p less than or equal to 150 kA, plasma pulse duration less than or equal to 500 ms), in order to determine the

  5. Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

    Directory of Open Access Journals (Sweden)

    S. Komossa

    2012-01-01

    Full Text Available Supermassive black holes (SMBHs may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN. Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.

  6. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  7. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T R.H.; Whitlow, H J [Lund Univ. (Sweden); Bubb, I F; Short, R; Johnston, P N [Royal Melbourne Inst. of Tech., VIC (Australia)

    1997-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  8. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  9. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Bouanani, M E; Persson, L; Hult, M; Jonsson, P; Johnston, P N [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M; Zaring, C [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P N; Bubb, I F; Walker, B R; Stannard, W B [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  10. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  11. A new recoil filter for {gamma}-detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Heese, J; Lahmer, W; Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Janicki, M; Meczynski, W; Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    A considerable improvement of gamma spectra recorded in heavy ion induced fusion evaporation residues can be achieved when gamma rays are detected in coincidence with the recoiling evaporations residues. This coincidence suppresses gamma rays from fission processes, Coulombic excitation, and reactions with target contaminations, and therefore cleans gamma spectra and improves the peak to background ratio. A sturdy detector for evaporation residues has been designed as an additional detector for the OSIRIS spectrometer. The recoil filter consists of two rings of six and twelve detector elements. In each detector element, nuclei hitting a thin Mylar foil produce secondary electrons, which are electrostatically accelerated and focussed onto a thin plastic scintillator. Recoiling evaporation residues are discriminated from other reaction products and scattered beam by the pulse height of the scintillation signal and time of flight. The detector signal is fast enough to allow the detection of an evaporation residue even if the scattered beam hits the detector first. In-beam experiment were performed with the reactions {sup 40}Ar+{sup 124}Sn, {sup 40}Ar+{sup 152}Sm at 185 MeV beam energy, and {sup 36}Ar+{sup 154,156}Gd at 175 MeV. In the latter two cases, fission amount to 50-75% of the total fusion cross section. 10 refs., 4 figs.

  12. Gravitational recoil from binary black hole mergers: The close-limit approximation

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F.; Yunes, Nicolas; Laguna, Pablo

    2006-01-01

    The coalescence of a binary black hole system is one of the main sources of gravitational waves that present and future detectors will study. Apart from the energy and angular momentum that these waves carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge, an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this paper, we present a computation of the recoil velocity based on the close-limit approximation scheme, which gives excellent results for head-on and grazing collisions of black holes when compared to full numerical relativistic calculations. We obtain a maximum recoil velocity of ∼57 km/s for a symmetric mass ratio η=M 1 M 2 /(M 1 +M 2 ) 2 ∼0.19 and an initial proper separation of 4M, where M is the total Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-limit approximation is expected to provide accurate results. Therefore, it cannot account for the contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian (PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity, with a maximum around 80 km/s. This is a lower bound because it neglects the initial merger phase. We can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the recoil with maxima in the range of 214-240 km/s. We also provide nonlinear fits to these estimated upper and lower bounds. These

  13. Exclusive {rho}{sup 0} production measured with the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Perez Benito, Roberto Francisco

    2010-12-15

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  14. Recoiling D-branes

    International Nuclear Information System (INIS)

    Nakamura, Shin

    2005-01-01

    We propose a new method to describe a recoiling D-brane that is elastically scattered by closed strings in the nonrelativistic region. We utilize the low-energy effective field theory on the worldvolume of the D-brane, and the velocity of the D-brane is described by the time derivative of the expectation values of the massless scalar fields on the worldvolume. The effects of the closed strings are represented by a source term for the massless fields in this method. The momentum conservation condition between the closed strings and the D-brane is derived up to the relative sign of the momentum of the D-brane

  15. Extended depth measurement for a Stokes sample imaging polarimeter

    Science.gov (United States)

    Dixon, Alexander W.; Taberner, Andrew J.; Nash, Martyn P.; Nielsen, Poul M. F.

    2018-02-01

    A non-destructive imaging technique is required for quantifying the anisotropic and heterogeneous structural arrangement of collagen in soft tissue membranes, such as bovine pericardium, which are used in the construction of bioprosthetic heart valves. Previously, our group developed a Stokes imaging polarimeter that measures the linear birefringence of samples in a transmission arrangement. With this device, linear retardance and optic axis orientation; can be estimated over a sample using simple vector algebra on Stokes vectors in the Poincaré sphere. However, this method is limited to a single path retardation of a half-wave, limiting the thickness of samples that can be imaged. The polarimeter has been extended to allow illumination of narrow bandwidth light of controllable wavelength through achromatic lenses and polarization optics. We can now take advantage of the wavelength dependence of relative retardation to remove ambiguities that arise when samples have a single path retardation of a half-wave to full-wave. This effectively doubles the imaging depth of this method. The method has been validated using films of cellulose of varied thickness, and applied to samples of bovine pericardium.

  16. Remote recoil: a new wave mean interaction effect

    Science.gov (United States)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  17. Heavy ion recoil spectrometry of SixGe1-x thin films

    International Nuclear Information System (INIS)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Hult, M.; Whitlow, H.J.; Zaring, C.; Oestling, M.

    1993-01-01

    Mass and energy dispersive recoil spectrometry employing 77 MeV 127 I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si x Ge 1-x grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si x Ge 1-x layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs

  18. Rocket Experiment Demonstration of a Soft X-ray Polarimeter

    Science.gov (United States)

    Marshall, Herman

    This proposal is the lead proposal. Boston University will submit, via NSPIRES, a Co-I proposal, per instructions for Suborbital proposals for multiple-award. Our scientific goal of the Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is to make the first measurement of the linear X-ray polarization of an extragalactic source in the 0.2-0.8 keV band. The first flight of the REDSoX Polarimeter would target Mk 421, which is commonly modeled as a highly relativistic jet aimed nearly along the line of sight. Such sources are likely to be polarized at a level of 30-60%, so the goal is to obtain a significant detection even if it is as low as 10%. Significant revisions to the models of jets emanating from black holes at the cores of active galaxies would be required if the polarization fraction lower than 10%. We employ multilayer-coated mirrors as Bragg reflectors at the Brewster angle. By matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve polarization modulation factors over 90%. Using replicated foil mirrors from MSFC and gratings made at MIT, we construct a spectrometer that disperses to three laterally graded multilayer mirrors (LGMLs). The lateral grading changes the wavelength of the Bragg peak for 45 degree reflections linearly across the mirror, matching the dispersion of the spectrometer. By dividing the entrance aperture into six equal sectors, pairs of blazed gratings from opposite sectors are oriented to disperse to the same LGML. The position angles for the LGMLs are 120 degrees to each other. CCD detectors then measure the intensities of the dispersed spectra after reflection and polarizing by the LGMLs, giving the three Stokes parameters needed to determine the source polarization. We will rely on components whose performance has been verified in the laboratory or in space. The CCD detectors are based on Chandra and Suzaku heritage. The mirror fabrication team

  19. A CO2 laser polarimeter for measurement of plasma current profile in Alcator C-Mod

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Richards, R.K.; Irby, J.; Luke, T.

    1994-01-01

    A multichannel infrared polarimeter system for measurement of the plasma current profile in Alcator C-Mod has been designed, constructed, and tested. The system utilizes a cw CO 2 , laser at a wavelength of 10.6 μm. An electro-optic polarization-modulation technique has been used to achieve the high sensitivity required for the measurement. The recent results of the measurements as well as the feasibility of its application on ITER are presented

  20. A tensor and vector polarimeter for deuterons at fusion energies

    Energy Technology Data Exchange (ETDEWEB)

    Kroell, Leonard; Engels, Ralf; Gregoryev, Kyril; Mikirtychiants, Maxim; Mikirtychiants, Sergey; Rathmann, Frank; Stroeher, Hans [Institut fuer Kernphysik, Juelich Center for Hadron Physics, FZ Juelich (Germany); Kravtsov, Peter; Vasilyev, Alexander [High Energy Physics Department, PNPI (Russian Federation); Paetz, Hans [Institut fuer Kernphysik, Universitaet Koeln (Germany); Hebbeker, Thomas [III. Physikalisches Institut A, RWTH, Aachen (Germany)

    2010-07-01

    Within the framework of an ISTC project the fusion reactions of double-polarized deuterium (vector (d)+vector (d){yields} {sup 3}H+p, vector (d)+vector (d){yields} {sup 3}He+n) will be analysed in order to study the influence of the vector and tensor polarization of the initial projectiles on the total cross sections. These results allow a conclusion on the change of the branching ration between the two fusion channels and, therefore, the neutron reduction for a future generation of fusion reactor. The measurements request the knowledge of the polarization of the deuteron beam and of the (gas)target. With an unpolarized target, the beam polarization can be determined by measuring the angular distributions of the outgoing particles ({sup 3}He, p and {sup 3}H) with use of the known analysing powers. Vice versa, additional data for the analysing powers can be obtained with a beam of known polarization, measured with a Lamb-shift polarimeter. The setup of the charged ejectile polarimeters is described.

  1. Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond

    Science.gov (United States)

    Austermann, J. E.; Beall, J. A.; Bryan, S. A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C. M.; Simon, S. M.; Ullom, J. N.; Vissers, M. R.; Wilson, G. W.

    2018-05-01

    Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ˜ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10^5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

  2. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  3. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  4. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Butler, P.A.; Greenlees, P.T.; Bastin, J.E.; Herzberg, R.D.; Humphreys, R.D.; Jones, G.D.; Jones, P.; Julin, R.; Keenan, A.; Kettunen, H.; Leino, M.; Miettinen, L.; Page, T.; Rahkila, P.; Scholey, C.; Uusitalo, J.

    2004-01-01

    The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described

  5. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    International Nuclear Information System (INIS)

    Lee, H.S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I.S.

    2015-01-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137 Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg⋅year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  6. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S. [Department of Physics, Ewha Womans University,Seoul 120-750 (Korea, Republic of); Adhikari, G.; Adhikari, P. [Department of Physics, Sejong University,Seoul 143-747 (Korea, Republic of); Choi, S. [Department of Physics and Astronomy, Seoul National University,Seoul 151-747 (Korea, Republic of); Hahn, I.S. [Department of Science Education, Ewha Womans University,Seoul 120-750 (Korea, Republic of)

    2015-08-18

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a {sup 137}Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg⋅year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  7. New developments of the recoil distance doppler-shift method

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, Christoph; Blazhev, Andrey; Braunroth, Thomas; Dewald, Alfred; Goldkuhle, Alina; Jolie, Jan; Litzinger, Julia; Mueller-Gatermann, Claus; Woelk, Dorothea; Zell, Karl-Oskar [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    The recoil distance Doppler-shift (RDDS) method is a very valuable technique for measuring lifetimes of excited nuclear states in the picosecond range to deduce absolute transition strengths between nuclear excitations independent on the reaction mechanism. Dedicated plunger devices were built by our group for measurements with this method for a broad range of beam energies ranging from few MeV/u up to relativistic energies of the order of 100 MeV/u. Those were designed to match the constraints defined by state-of-the art γ-ray spectrometers like AGATA, Galileo, Gammasphere. Here we give an overview about recent experiments of our group to determine transition strengths from level lifetimes in exotic nuclei where also recoil separators or mass spectrographs were used for an identification of the recoiling reaction products. The aim is to learn about phenomena like shape phase coexistence in exotic regions and the evolution of the shell structure far from the valley of stability. We also review new plunger devices that are developed by our group for future experimental campaigns with stable and radioactive beams in different energy regimes, e.g., a plunger for HIE-ISOLDE.

  8. Using a polarizing film in the manufacture of panoramic Stokes polarimeters at the Main Astronomical Observatory of NAS of Ukraine

    Science.gov (United States)

    Syniavskyi, I.; Ivanov, Yu.; Vidmachenko, A. P.; Sergeev, A.

    2015-08-01

    The construction of an imaging Stokes-polarimeter in the MAO NAS of Ukraine is proposed. It allows measuring the three components of the Stokes vector simultaneously in large FOV without restrictions on the relative aperture of the system. Moreover, the polarimeter can be converted to a low resolution spectropolarimeter by placement into optical axis of the transparence diffraction grating.

  9. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  10. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A; Green, T H [Macquarie Univ., North Ryde, NSW (Australia)

    1994-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  11. Design and Tests of the Hard X-ray Polarimeter X-Calibur

    Directory of Open Access Journals (Sweden)

    M. Beilicke

    2014-12-01

    Full Text Available X-ray polarimetry promises to give qualitatively new information bout high-energy astrophysical sources, such as binary black hole  systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested ahard X-ray polarimeter, X-Calibur, to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope.X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20−60 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation; in principal, a similar space-borne experiment could be operated in the 5−100 keV regime. X-Calibur achieves a high detection efficiency of order unity.

  12. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  13. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  14. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    Science.gov (United States)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  15. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    Science.gov (United States)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  16. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  17. INS gas-filled recoil isotope separator

    International Nuclear Information System (INIS)

    Miyatake, M.; Nomura, T.; Kawakami, H.

    1986-09-01

    The characteristics and performance of a small sized gas-filled recoil isotope separator recently made at INS are described. The total efficiency and the ΔBρ/Bρ values have been measured using low velocity 16 O, 40 Ar and 68 As ions and found to be 10 and 5 %, respectively. The Z-dependence of the mean charge is discussed. (author)

  18. Computer simulation of high-energy recoils in FCC metals: cascade shapes and sizes

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1981-01-01

    Displacement cascades in copper generated by primary knock-on atoms with energies from 1 keV to 500 keV were produced with the computer code MARLOWE. The sizes and other features of the point defect distributions were measured as a function of energy. In the energy range from 30 keV to 50 keV there is a transition from compact single damage regions to chains of generally closely-spaced, but distinct multiple damage regions. The average spacing between multiple damage regions remains constant with energy. Only a small fraction of the recoils from fusion neutrons is expected to produce widely separated subcascades

  19. Recoil detector test for the day-one experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, 730000 Lanzhou (China); Forschungszentrum Juelich, 52425 Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The proposed day-one experiment at HESR is a dedicated measurement of antiproton-proton elastic scattering. The aim of the day-one experiment is to determine the elastic differential parameters (total cross section σ{sub T}, the ratio of real to imaginary part of the forward scattering amplitude ρ, and the slope parameter B) by measuring a large range of 4-momentum transfer squared t (0.0008-0.1 GeV{sup 2}). The conceptual design of the day-one experiment is to measure the elastic scattered antiproton and recoil proton, by a tracking detector in the small polar angle range and by an energy detector near 90 , respectively. The recoil arm covers a maximum polar angle range from 71 to 90 and consists of two silicon strip detectors (76.8(length) x 50.0(width) x 1.0(thickness) mm{sup 3}) and two germanium detectors (80.4(length) x 50.0(width) x 5.0 (11.0) (thickness) mm{sup 3}). All detectors are single sided structure with 1.2 mm pitch. The silicon detectors will be used to detect recoil protons with energy up to about 12 MeV and the germanium detectors will be used to detect protons with energy from 12 MeV to 60 MeV. At present, one recoil arm is being constructed and the test for the detectors with radioactive sources is on-going. Preliminary test results indicate that all detectors are operational and work properly. The latest test results of these detectors are presented.

  20. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  1. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Nikolayev, V.S.; Beysens, D.; Garrabos, Y.

    2004-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  2. Laterally and longitudinally dispersive recoil mass separators

    International Nuclear Information System (INIS)

    Wollnik, H.

    1987-01-01

    Principles of laterally dispersive and time-of-flight mass separators are outlined. Special emphasis is given to separators for very energetic recoils for which electrostatic fields would be technologically impossible. The principle of energy isochronous time-of-flight mass separators is shown to be applicable to storage rings. (orig.)

  3. Black hole radiation in the brane world and the recoil effect

    International Nuclear Information System (INIS)

    Frolov, Valeri; Stojkovic, Dejan

    2002-01-01

    A black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We study this effect. We consider black holes which have a size much smaller than the characteristic size of extra dimensions. Such a black hole can be effectively described as a massive particle with internal degrees of freedom. We consider an interaction of such particles with a scalar massless field and prove that for a special choice of the coupling constant describing the transition of the particle to a state with smaller mass the probability of massless quanta emission takes the form identical to the probability of the black hole emission. Using this model we calculate the probability for a black hole to leave the brane and study its properties. The discussed recoil effect implies that, for black holes which might be created in the interaction of high energy particles in colliders, the thermal emission of the formed black hole could be terminated and the energy nonconservation can be observed in brane experiments

  4. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  5. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    International Nuclear Information System (INIS)

    Golovanov, L.B.; Chesny, P.; Gheller, J.M.; Guillier, G.; Ladygin, V.P.; Theure, Ph.; Tomasi-Gustafsson, E.

    1996-01-01

    This article describes the design and working principle of a three-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self-regulation of helium flow in the cryostat to stabilize the liquid hydrogen level is presented. The main feature of this target is the simplicity of the design as well as its safeness towards any incident. Results of cooling down, filling up of the target and stabilization regime were processed during one experiment of physics at synchrotron Saturne II. (orig.)

  6. The Bragg Reflection Polarimeter On the Gravity and Extreme Magnetism Small Explorer Mission

    Science.gov (United States)

    Allured, Ryan; Griffiths, S.; Daly, R.; Prieskorn, Z.; Marlowe, H.; Kaaret, P.; GEMS Team

    2011-09-01

    The strong gravity associated with black holes warps the spacetime outside of the event horizon, and it is predicted that this will leave characteristic signatures on the polarization of X-ray emission originating in the accretion disk. The Gravity and Extreme Magnetism Small Explorer (GEMS) mission will be the first observatory with the capability to make polarization measurements with enough sensitivity to quantitatively test this prediction. Students at the University of Iowa are currently working on the development of the Bragg Reflection Polarimeter (BRP), a soft X-ray polarimeter sensitive at 500 eV, that is the student experiment on GEMS. The BRP will complement the main experiment by making a polarization measurement from accreting black holes below the main energy band (2-10 keV). This measurement will constrain the inclination of the accretion disk and tighten measurements of black hole spin.

  7. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  8. A Michelson interferometer/polarimeter on the Tokamak Fusion Test Reactor (TFTR)

    International Nuclear Information System (INIS)

    Park, H.K.; Mansfield, D.K.; Johnson, L.C.; Ma, C.H.

    1987-01-01

    A multichannel interferometer/polarimeter for the Tokamak Fusion Test Reactor (TFTR) has been developed in order to study the time dependent plasma current density (J/sub p/) and electron density (n/sub e/) profile simultaneously. The goal of the TFTR is demonstration of breakeven via dueuterium and tritium (DT) plasma. In order to be operated and maintained during DT operation phase, the system is designed based on the Michelson geometry which possesses intrinsic standing wave problems. So far, there has been no observable signals due to these standing waves. However, a standing wave resulted from the beam path design to achieve a optimum use of the laser power was found. This standing wave has not prevented initial 10 channel interferometer operation. However, a single channel polarimeter test indicated this standing wave was fatal for Faraday notation measurements. Techniques employing 1/2 wave plates and polarizers have been applied to eliminate this standing wave problem. The completion of 10 channel Faraday rotation measurements may be feasible in the near future

  9. Range calculations for spallation recoils in ThF4 by use of the computer code 'Marlowe'

    International Nuclear Information System (INIS)

    Westmeier, W.; Roessler, K.

    1978-12-01

    The determination of cross sections of spallation reactions requires a knowledge of the target thickness since only the products recoiling from the target are measured and their yield depends on the range. The effective target thickness is a function of the projectile's Z, A and spallation recoil energy and, thus, varies for the individual products. The computer code MARLOWE was used to evaluate energy vs. range curves in the binary collisions approximation. The program was extended to the high energy regime taking into account the stripping of electrons from the projectile and the concomitant changes in the interaction potentials especially for the inelastic part of the collisions. A complementary computer program LATTIC was developed for the parameterization of the lattice description. This code enables the application of MARLOWE to target materials with complicated crystallographic structure. Test calculations for a series of projectile/target combinations showed a reasonable agreement with experimental recoil ranges of Pd, Ag, Os and Ir isotopes from proton induced spallation in Ag, In and Pb targets, respectively. MARLOWE was then applied to calculate product ranges of the 232 Th(p,spall)X-reaction in the ployatomic system ThF 4 . The calculated energy vs. range curves enabled the evaluation of the mean spallation recoil ranges for all possible products, e.g. 170.8 μg/cm 2 for 192 Tl, 115.2 μg/cm 2 for 208 At and 37.1 μg/cm 2 for 223 Ac. (orig.)

  10. A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2017-12-01

    Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.

  11. Water droplet spreading and recoiling upon contact with thick-compact maltodextrin agglomerates.

    Science.gov (United States)

    Meraz-Torres, Lesvia Sofía; Quintanilla-Carvajal, María Ximena; Téllez-Medina, Darío I; Hernández-Sánchez, Humberto; Alamilla-Beltrán, Liliana; Gutiérrez-López, Gustavo F

    2011-11-01

    The food and pharmaceutical industries handle a number of compounds in the form of agglomerates which must be put into contact with water for rehydration purposes. In this work, liquid-solid interaction between water and maltodextrin thick-compact agglomerates was studied at different constituent particle sizes for two compression forces (75 and 225 MPa). Rapid droplet spreading was observed which was similar in radius to the expected one for ideal, flat surfaces. Contact angle determinations reported oscillations of this parameter throughout the experiments, being indicative of droplet recoiling on top of the agglomerate. Recoiling was more frequent in samples obtained at 225 MPa for agglomerate formation. Agglomerates obtained at 75 MPa exhibited more penetration of the water. Competition between dissolution of maltodextrin and penetration of the water was, probably, the main mechanism involved in droplet recoiling. Micrographs of the wetting marks were characterized by means of image analysis and the measurements suggested more symmetry of the wetting mark at higher compression force. Differences found in the evaluated parameters for agglomerates were mainly due to compaction force used. No significant effect of particle size in recoiling, penetration of water into the agglomerate, surface texture and symmetry was observed. Copyright © 2011 Society of Chemical Industry.

  12. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    Science.gov (United States)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  13. The Performance of the HRIBF Recoil Mass Spectrometry

    International Nuclear Information System (INIS)

    Ginter, T.N.

    1998-01-01

    The Recoil Mass Spectrometer (RMS) is a mass separator located at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. This paper describes the RMS, its performance, its detector systems, and discusses some experiments to illustrate its capabilities

  14. RITA, a promising Monte Carlo code for recoil implantation

    International Nuclear Information System (INIS)

    Desalvo, A.; Rosa, R.

    1982-01-01

    A computer code previously set up to simulate ion penetration in amorphous solids has been extended to handle with recoil phenomena. Preliminary results are compared with existing experimental data. (author)

  15. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  16. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  17. Concerning the use of multifunctional photometer - polarimeter for studying the invasion of cosmic bodies into the Earth's atmosphere

    Science.gov (United States)

    Geraimchuk, M. D.; Vidmachenko, A. P.; Nevodovskyi, P. V.; Steklov, O. F.

    2018-05-01

    Main astronomical observatory of the National Academy of Sciences of Ukraine together with the National Technical University of Ukraine "KPI" for many years working on the development of photometers-polarimeters for the study of cosmic bodies and Earth's atmosphere. We proposed an option of the development of a multipurpose panoramic photometer-polarimeter, which takes into account the shortcomings of the previous versions of the instrument and also allows for the registration of tracks of bolides, and study of their tails, and weak meteor phenomena.

  18. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  19. Commissioning of the recoil silicon detector for the HERMES experiment

    International Nuclear Information System (INIS)

    Pickert, N.C.

    2008-02-01

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  20. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N C

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  1. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  2. Recoil Considerations for Shoulder-Fired Weapons

    Science.gov (United States)

    2012-05-01

    than would be deduced from the force levels defined by the pressure-time curve of the cartridge. Further and just like a large-caliber weapon mounted...force. If each of the force curves over the time interval were integrated, the result should be the same as that derived from a ballistic pendulum...Kathe, E.; Dillon, R. Sonic Rarefaction Wave Low Recoil Gun; Report ARCCB-TR-2001; U.S. Army Armament Research, Development, and Engineering Center

  3. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  4. Oxygen recoil implant from SiO2 layers into single-crystalline silicon

    International Nuclear Information System (INIS)

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-01-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF 2 implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. [copyright] 2001 American Institute of Physics

  5. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1984-01-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM). γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22 Ne, 1.275 MeV level (2 + -> 0 + ), 5.16 +- 0.13 ps; 26 Mg, 3.588 MeV level (0 + -> 2 + ), 9.29 +- 0.23 ps; 30 Si, 3.788 MeV level (0 + -> 2 + ), 12.00 +- 0.70 ps; 38 Ar, 3.377 MeV level (0 + -> 2 + ), 34.5 +- 1.5 ps. The present measurements are compared to those of previous investigators. For the 22 Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations. (orig.)

  6. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  7. Test of a superheated superconducting granule detector with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a Superheated Superconducting Granule (SSG) detector development for neutrinos and dark matter. An aluminum SSG detector was exposed to a 70MeV neutron beam to test the detector sensitivity to nuclear recoils. The neutron scattering angels were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120mK for different SSG intrinsic thresholds. The proved sensitivity of the detector to nuclear recoils above 10keV is encouraging for possible applications of SSG as a dark matter detector. (orig.)

  8. Dynamical Formation of Horizons in Recoiling D Branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2000-01-01

    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  9. Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka

    Science.gov (United States)

    Sakurai, Takashi; Hanaoka, Yoichiro; Arai, Takehiko; Hagino, Masaoki; Kawate, Tomoko; Kitagawa, Naomasa; Kobiki, Toshihiko; Miyashita, Masakuni; Morita, Satoshi; Otsuji, Ken'ichi; Shinoda, Kazuya; Suzuki, Isao; Yaji, Kentaro; Yamasaki, Takayuki; Fukuda, Takeo; Noguchi, Motokazu; Takeyama, Norihide; Kanai, Yoshikazu; Yamamuro, Tomoyasu

    2018-05-01

    An infrared spectro-polarimeter installed on the Solar Flare Telescope at the Mitaka headquarters of the National Astronomical Observatory of Japan is described. The new spectro-polarimeter observes the full Sun via slit scans performed at two wavelength bands, one near 1565 nm for a Zeeman-sensitive spectral line of Fe I and the other near 1083 nm for He I and Si I lines. The full Stokes profiles are recorded; the Fe I and Si I lines give information on photospheric vector magnetic fields, and the helium line is suitable for deriving chromospheric magnetic fields. The infrared detector we are using is an InGaAs camera with 640 × 512 pixels and a read-out speed of 90 frames s-1. The solar disk is covered by two swaths (the northern and southern hemispheres) of 640 pixels each. The final magnetic maps are made of 1200 × 1200 pixels with a pixel size of 1{^''.}8. We have been carrying out regular observations since 2010 April, and have provided full-disk, full-Stokes maps, at the rate of a few maps per day, on the internet.

  10. Testing of polarimeter UVP layout on telescope AZT-2

    Science.gov (United States)

    Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.

    2018-05-01

    Layout of on-board small-sized ultraviolet polarimeter was created. On its basis a ground version of the layout was prepared. It was installed on the AZT-2 telescope for carrying out special tests. With this device we investigated the possibility of determining the degree of polarization of the twilight glow of the Earth's atmosphere, and also worked out the observation methodology required for such work, and the basic principles of the implementation of this method. For this purpose, a special complex of auxiliary equipment was developed.

  11. Modeling the hyperfine state selectivity of a short lamb-shift spin-filter polarimeter

    International Nuclear Information System (INIS)

    Mendez, A.J.; Roper, C.D.; Clegg, T.B.

    1995-01-01

    An rf cavity, previously used as a spin filter in a Lamb-shift polarized ion source, is being adapted for use as a polarimeter in an atomic beam polarized hydrogen and deuterium ion source. Paramount among the design criteria is maintaining the current source performance while providing on-line beam polarization monitoring. This requires minimizing both the polarimeter system length and the coupling with the magnetic fields of the other ion source systems. Detailed computer calculations have modeled the four-level interaction involving the 2S 1/2 -2P 1/2 states of the atomic beam. These indicate that a significantly shorter spin-filter cavity and uniform axial magnetic field than used in the Lamb-shift source do not compromise the spin-state selectivity. The calculations also predict the axial magnetic field uniformity needed as well as the gains achieved from proper shaping of the cavity rf and dc fields. copyright 1995 American Institute of Physics

  12. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    Tests at Oak Ridge National Laboratory confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter medium, identical to that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.97 percent quoted for ordinary particulate matter have been observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers, by the alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow. Dependence on the air flow velocity is slight. It appears that this phenomenon has not been observed in previous experiments with alpha-active aerosols because the tests did not continue for a sufficiently long time. A theoretical model of the process has been developed, amenable to computer handling, that should allow calculation of the rate constants associated with the transfer through and release of radioactive material from a filter system by this process

  13. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N. E-mail: onj@jet.uk; Sherwood, A.C

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET.

  14. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    International Nuclear Information System (INIS)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N.; Sherwood, A.C.

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET

  15. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A; Tollander, B

    1963-08-15

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied.

  16. A CAMAC-resident microprocessor for the monitoring of polarimeter spin states

    International Nuclear Information System (INIS)

    Reid, D.; DuPlantis, D.; Yoder, N.; Dale, D.

    1992-01-01

    A CAMAC module for the reporting of polarimeter spin states is being developed using a resident microcontroller. The module will allow experimenters at the Indiana University Cyclotron Facility to monitor spin states and correlate spin information with other experimental data. The use of a microprocessor allows for adaptation of the module as new requirements ensue without change to the printed circuit board layout. (author)

  17. Superheated superconducting granule detector tested with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Brandt, B. van den; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a superheated superconducting granule (SSG) detector development for neutrino and dark matter. The aim of the experiment was to measure the sensitivity of the detector to nuclear recoil energies when exposed to a 70 MeV neutron beam. The detector consists of a small readout coil (diameter 5 mm, length 10 mm) filled with aluminum granules of average diameter 23 μm embedded in an Al 2 O 3 granulate with a 6% volume filling factor. The neutron scattering angles were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120 mK for different SSG intrinsic thresholds. The results prove the sensitivity of the detector to nuclear recoils around 10 keV. (orig.)

  18. Dama annual modulation from electron recoils

    OpenAIRE

    Foot, R.

    2018-01-01

    Plasma dark matter, which arises in dissipative dark matter models, can give rise to large annual modulation signals from keV electron recoils. Previous work has argued that the DAMA annual modulation signal might be explained in such a scenario. Detailed predictions are difficult due to the inherent complexities involved in modelling the halo plasma interactions with Earth bound dark matter. Here, we consider a simplified phenomenological model for the dark matter density and temperature nea...

  19. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    Science.gov (United States)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  20. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    Science.gov (United States)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  1. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    Science.gov (United States)

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  2. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    International Nuclear Information System (INIS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-01-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  3. Measurement of recoil photon polarisation in the electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Buon, Jean

    1965-02-01

    This research thesis reports and discusses an experiment which aimed at checking the validity of the Born approximation at the first order in the elastic scattering of high energy electrons on protons. In this experiment, the recoil proton polarisation is measured in an elastic scattering of electrons with energy of 950 MeV and scattering at about 90 degrees in the mass centre system. The author describes the experimental installation, its operation and data collection, reports the analysis of photos and polarisation calculations and errors [fr

  4. The HERA polarimeter and the first observation of electron spin polarization at HERA

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Boege, M.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, H.; Klanner, R.; Lewin, H.C.; Meyners, N.; Vogel, W.; Brueckner, W.; Buescher, C.; Dueren, M.; Gaul, H.G.; Muecklich, A.; Neunreither, F.; Rith, K.; Scholz, C.; Steffens, E.; Veltri, M.; Wander, W.; Zapfe, K.; Zetsche, F.; Chapman, M.; Milner, R.; Coulter, K.; Delheij, P.P.J.; Haeusser, O.; Henderson, R.; Levy, P.; Vetterli, M.; Gressmann, H.; Janke, T.; Micheel, B.; Westphal, D.; Kaiser, R.; Losev, L.; Nowak, W.D.

    1992-10-01

    Electron spin polarizations of about 8% were observed at HERA in November 1991. In runs during 1992 utilizing special orbit corrections, polarization values close to 60% have been achieved. In this paper the polarimeter, the machine conditions, the data analysis, the first results and plans for future measurements are described. (orig.)

  5. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  6. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Directory of Open Access Journals (Sweden)

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  7. Thin film analysis by instrumental heavy ion activation analysis using distributed recoil ranges of isotopic products

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Guin, R.; Saha, S.K.; Sudersanan, M.

    2006-01-01

    Thin foils (0.1 to 10 μm), metallic or polymeric, are frequently used in nuclear physics and chemistry experiments using ion beams from an accelerator. Very often it is important to know the major, minor and trace element composition of the foil. Several nuclear analytical techniques, namely RBS, ERDA, etc. are available for the near surface analysis. We have applied heavy ion activation analysis (HIAA) to explore the bulk composition of thin films. One of the difficulties in this method of thin film analysis is that the product nuclides from nuclear reaction come out of the sample surface due to high recoil energy. In thick sample, the recoiled nuclides are absorbed in the sample itself. This effect has been used to employ heavy ion activation for the analysis of thin films

  8. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    Science.gov (United States)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  9. Performance of neutron polarimeter SMART-NPOL

    International Nuclear Information System (INIS)

    Noji, S.; Miki, K.; Yako, K.; Kawabata, T.; Kuboki, H.; Sakai, H.; Sekiguchi, K.; Suda, K.

    2007-01-01

    The neutron polarimeter SMART-NPOL has been constructed at the RIKEN Accelerator Research Facility for measuring polarization correlations of proton-neutron systems. The SMART-NPOL system consists of 12 parallel neutron counter planes of two dimensionally position-sensitive plastic scintillators with a size of 60x60x3.0cm 3 . Polarimetry measurements were made using the analyzing power of the H1(n-vector,n)H1 reaction occurring in the plastic scintillators. The effective analyzing power of SMART-NPOL was measured with polarized neutrons from the zero-degree Li6(d-vector,n-vector) reaction with an incident deuteron energy of 135MeV/A. The effective analyzing power thus obtained was 0.26±0.01 stat ±0.03 syst and the double scattering efficiency was 1.1x10 -3

  10. Some aspects of the use of proton recoil proportional counters for fast neutron personnel dosimeters

    International Nuclear Information System (INIS)

    Yule, T.J.; Bennett, E.F.

    1984-01-01

    Gas-filled proton recoil proportional counters have been used extensively for the measurement of neutron spectra in degraded fission-spectrum environments. Some considerations relating to the use of these counters for personnel dosimetry are here described. High sensitivity and good accuracy in the determination of dose-equivalent can be obtained if relatively high pressure hydrogen-filled proportional counters are used as the active element in a dosimeter system

  11. Three-dimensional recoil-ion momentum analyses in 8.7 MeV O7+-He collisions

    International Nuclear Information System (INIS)

    Kambara, T.; Tang, J.Z.; Awaya, Y.

    1995-01-01

    Using high-resolution recoil-ion momentum spectroscopy we have measured the differential cross sections of single-electron capture and target single-ionization processes for 8.7 MeV O 7+ -He collisions as functions of scattering angle. A transverse momentum resolution of ±0.2 au, which corresponds to an angular resolution of about ±1.5x10 -6 rad for the projectile scattering angle, was obtained by intersecting a well collimated O 7+ beam with a target of a supersonic He jet from a pre-cooled gas and by measuring the recoil-ion transverse momentum. For the single capture reaction, information on the n-value of the electron final state in O 6+ (1snl) is obtained from the longitudinal momentum of the recoil ions. In pure single-electron capture, the dominant contributions to capture were found to be those from the n=4 and higher states, whereas single capture accompanied by the ionization of the second target electron mainly populates n=2 to n=4 states. Furthermore, the measured transverse momentum distribution differs significantly between pure single capture and capture with simultaneous ionization. The measured data for the pure capture process compare favourably with theoretical results based on a molecular-state expansion method. Other experimental data are discussed in terms of the classical overbarrier model. (author)

  12. Gravitational-recoil effects on fermion propagation in space-time foam

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.; Volkov, G.

    2000-01-01

    Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \\gsim 10^{27} GeV.

  13. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    Science.gov (United States)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  14. Acceptance test procedure for High Pressure Water Jet System

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1995-01-01

    The overall objective of the acceptance test is to demonstrate a combined system. This includes associated tools and equipment necessary to perform cleaning in the 105 K East Basin (KE) for achieving optimum reduction in the level of contamination/dose rate on canisters prior to removal from the KE Basin and subsequent packaging for disposal. Acceptance tests shall include necessary hardware to achieve acceptance of the cleaning phase of canisters. This acceptance test procedure will define the acceptance testing criteria of the high pressure water jet cleaning fixture. The focus of this procedure will be to provide guidelines and instructions to control, evaluate and document the acceptance testing for cleaning effectiveness and method(s) of removing the contaminated surface layer from the canister presently identified in KE Basin. Additionally, the desired result of the acceptance test will be to deliver to K Basins a thoroughly tested and proven system for underwater decontamination and dose reduction. This report discusses the acceptance test procedure for the High Pressure Water Jet

  15. Optimisation and calibration of the polarimeter Polder at Saturne. Experiment t20 at the Jefferson Laboratory: Measurement of the deuteron form factors

    International Nuclear Information System (INIS)

    Eyraud, Laurent

    1998-01-01

    The topic of this thesis is the made for the upgrade of the deuteron tensor polarimeter Polder, and its use in the so-called t 20 experiment at the Jefferson Laboratory (USA). The Polder polarimeter is based on the analysing reaction H(d → ,2p)n which makes possible the measurement of the tensor polarization of deuterons in the kinetic energy range 160 MeV - 520 MeV. The first part of this thesis describes the polarimeter and its performances as obtained during the calibration experiment at Saturne (Saclay, France). Specific developments of this polarimeter for the t 20 experiment (Wire Chambers with 3 detections planes, target, hodoscopes) are described. An acquisition system based on Fastbus-VME standard was developed and used during the calibration runs. The second part of the thesis is devoted to the t 20 experiment. The experimental devices, the CEBAF accelerator and the data analysis are presented. Finally the preliminary results for the polarization t 20 and the extraction of the electromagnetic form factors of the deuteron (G c , G q and G m ) for six values of the transferred momentum Q in the range of 4.11 - 6.8 fm -1 are presented and discussed along various theoretical models predictions. (author) [fr

  16. CLASP2: The Chromospheric LAyer Spectro-Polarimeter

    Science.gov (United States)

    Rachmeler, Laurel; E McKenzie, David; Ishikawa, Ryohko; Trujillo Bueno, Javier; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; Bethge, Christian; Kano, Ryouhei; Kubo, Masahito; Song, Donguk; Narukage, Noriyuki; Ishikawa, Shin-nosuke; De Pontieu, Bart; Carlsson, Mats; Yoshida, Masaki; Belluzzi, Luca; Stepan, Jiri; del Pino Alemná, Tanausú; Ballester, Ernest Alsina; Asensio Ramos, Andres

    2017-08-01

    We present the instrument, science case, and timeline of the CLASP2 sounding rocket mission. The successful CLASP (Chromospheric Lyman-Alpha Spectro-Polarimeter) sounding rocket flight in 2015 resulted in the first-ever linear polarization measurements of solar hydrogen Lyman-alpha line, which is sensitive to the Hanle effect and can be used to constrain the magnetic field and geometric complexity of the upper chromosphere. Ly-alpha is one of several upper chromospheric lines that contain magnetic information. In the spring of 2019, we will re-fly the modified CLASP telescope to measure the full Stokes profile of Mg II h & k near 280 nm. This set of lines is sensitive to the upper chromospheric magnetic field via both the Hanle and the Zeeman effects.

  17. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  18. A spin filter polarimeter and an α-particle D-state study

    International Nuclear Information System (INIS)

    Lemieux, S.K.

    1993-01-01

    A Spin Filter Polarimeter (SFP) which reveals populations of individual hyperfine states of nuclear spin-polarized H ± (or D ± ) beams has been tested. the SFP is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of the hydrogen (or deuterium) atoms, created when the polarized ion beams pick up electrons in cesium vapor. The SFP has potential for an absolute accuracy of better than 1.5%, thus it could be used for calibrating polarimeters absolutely for low energy experiments for which no nuclear polarization standard exists. Test results show that the SFP provides a quick and elegant measure of the relative hyperfine state populations in the beam. This α-particle study is a small part of a larger project studying the deuteron-deuteron configuration of the α-particle wave function. The differential cross section and tensor analyzing powers (TAP) were measured for the 50 Ti(bar d,α) 48 Sc reaction to the J π = 7 + state in 48 Sc at E x = 1.097 MeV and compared with exact finite-range distorted-wave Born approximation (DWBA) calculations. The DWBA calculations use realistic α-particle wave functions generated from variational Monte-Carlo calculations

  19. Experiments with recoil ions and other considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cocke, C.L.

    1987-01-01

    Some opportunities in collisions physics with slow, multiply charged ions are addressed. A distinction between inner and outer shell collisions is drawn. The applicability of recoil ion sources to outer shell collision systems is discussed, with emphasis on the quality of the beam desired. An example of an inner shell collision is discussed, and the usefulness of not pushing the collision energy too low is pointed out. 13 refs., 14 figs.

  20. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M.; Whitlow, H.J. [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C.; Oestling, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1993-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  1. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S R; Johnston, P N; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M; Whitlow, H J [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C; Oestling, M [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1994-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  2. A video-polarimeter and its applications in physics and astronometric observations

    Science.gov (United States)

    Dollfus, Audouin; Fauconnier, Thierry; Dreux, Michel; Boumier, Patrick; Pouchol, Thierry

    1989-01-01

    A video-polarimeter system is described which can image a field in nonpolarized, circularly polarized, or linearly polarized light. Images are formed using a Peltier-effect cooled CCD detector array and a quick look video system, and are stored in a 6-Mo random access memory. The system is demonstrated with a two-dimensional measurement of a plexiglass rod, an open-air inspection of a car park, and a telescopic observation of the moon.

  3. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    Science.gov (United States)

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  4. Determination of the analyzing power of the A4 Compton-backscattering polarimeter for the measurement of the longitudinal spin polarization of the MAMI electron beam

    International Nuclear Information System (INIS)

    Diefenbacher, Juergen

    2010-01-01

    The A4 experiment determines the strange quark contribution to the electromagnetic from factors of the nucleon by measuring the parity violation in elastic electron nucleon scattering. These measurements are carried out using the spin polarized electron beam of the Mainzer Mikrotron (MAMI) with beam energies in the range from 315 to 1508 MeV. For the data analysis it is essential to determine the degree of polarization of the electron beam in order to extract the physics asymmetry from the measured parity violating asymmetry. For this reason the A4 collaboration has developed a novel type of Compton laser backscattering polarimeter that allows for a non-destructive measurement of the beam polarization in parallel to the running parity experiment. In the scope of this work the polarimeter was refined in order to enable reliable continuous operation of the polarimeter. The data acquisition system for the photon and electron detector was re-designed and optimized to cope with high count rates. A novel detector (LYSO) for the backscattered photons was commissioned. Furthermore, GEANT4 simulations of the detectors have been performed and an analysis environment for the extraction of Compton asymmetries from the backscattered photon data has been developed. The analysis makes use of the possibility to detect backscattered photons in coincidence with the scattered electrons, thus tagging the photons. The tagging introduces a differential energy scale which enables the precise determination of the analyzing power. In this work the analyzing power of the polarimeter has been determined. Therefore, at a beam current of 20 μA the product of electron and laser polarization can be determined, while the parity experiment is running, with a statistical accuracy of 1 % in 24 hours at 855 MeV or 2 =0.6 (GeV/c) 2 the analysis yields a raw asymmetry of A Roh PV =(-20.0±0.9 stat ) x 10 -6 at the moment. For a beam polarization of 80 % the total error would be 1,68 x 10 -6 with ΔP e

  5. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  6. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    International Nuclear Information System (INIS)

    Liu, Chuyu

    2012-01-01

    difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation

  7. Low energy recoil detection with a spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  8. POLARIMETER: A Soft X-Ray 8-Axis UHV-Diffractometer at BESSY II

    Directory of Open Access Journals (Sweden)

    Andrey Sokolov

    2016-11-01

    Full Text Available A versatile UHV-polarimeter for the EUV XUV spectral range is described which incorporates two optical elements: a phase retarder and a reflection analyzer. Both optics are azimuthally rotatable around the incident synchrotron radiation beam and the incidence angle is freely selectable. This allows for a variety of reflectometry, polarimetry and ellipsometry applications on magnetic or non-magnetic samples and multilayer optical elements.

  9. Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Tempez, A.; Bensaoula, A.; Schultz, A.

    2002-01-01

    The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 deg. C under an 18 O 2 pressure of 10 -6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO 2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O 2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO 2 but from 600 deg. C

  10. Automatic detection of recoil-proton tracks and background rejection criteria in liquid scintillator-micro-capillary-array fast neutron spectrometer

    Science.gov (United States)

    Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal

    2018-06-01

    We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.

  11. Photoproduction of pions on nuclear in chiral bag model with account of motion effects of recoil nucleon

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kanokov, Z.; Musakhanov, M.M.; Rakhimov, A.M.

    1989-01-01

    Pion production on a nucleon is studied in the chiral bag model (CBM). A CBM version is investigated in which the pions get into the bag and interact with quarks in a pseudovector way in the entire volume. Charged pion photoproduction amplitudes are found taking into account the recoil nucleon motion effects. Angular and energy distributions of charged pions, polarization of the recoil nucleon, multipoles are calculated. The recoil effects are shon to give an additional contribution to the static approximation of order of 10-20%. At bag radius value R=1 in the calculations are consistent with the experimental data

  12. Hydrogen depth profiling using elastic recoil detection

    International Nuclear Information System (INIS)

    Doyle, B.L.; Peercy, P.S.

    1979-01-01

    The elastic recoil detection (ERD) analysis technique for H profiling in the near surface regions of solids is described. ERD is shown to have the capability of detecting H and its isotopes down to concentrations of approx. 0.01 at. % with a depth resolution of a few hundred angstroms. Is is demonstrated that 2.4-MeV He ions can be used successfully to profile 1 H and 2 D using this technique. 12 figures

  13. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  14. Single image super-resolution via regularized extreme learning regression for imagery from microgrid polarimeters

    Science.gov (United States)

    Sargent, Garrett C.; Ratliff, Bradley M.; Asari, Vijayan K.

    2017-08-01

    The advantage of division of focal plane imaging polarimeters is their ability to obtain temporally synchronized intensity measurements across a scene; however, they sacrifice spatial resolution in doing so due to their spatially modulated arrangement of the pixel-to-pixel polarizers and often result in aliased imagery. Here, we propose a super-resolution method based upon two previously trained extreme learning machines (ELM) that attempt to recover missing high frequency and low frequency content beyond the spatial resolution of the sensor. This method yields a computationally fast and simple way of recovering lost high and low frequency content from demosaicing raw microgrid polarimetric imagery. The proposed method outperforms other state-of-the-art single-image super-resolution algorithms in terms of structural similarity and peak signal-to-noise ratio.

  15. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  16. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  17. Fractional momentum transfer in incomplete fusion reaction: measurement of recoil range distributions in 20Ne + 159Tb system

    International Nuclear Information System (INIS)

    Ali, R.; Singh, D.; Pachouri, Dipti; Afzal Ansari, M.; Rashid, M.H.

    2007-01-01

    The recoil range distribution (RRD) of several residues have been measured for the system 20 Ne + 159 Tb at 165 MeV beam energy by collecting the recoiling residues in the Al-catcher foils of varying thickness

  18. Optimizing recoil-isomer tagging with the Argonne fragment mass analyzer

    International Nuclear Information System (INIS)

    Garnsworthy, A.B.; Lister, C.J.; Regan, P.H.; Blank, B.B.; Cullen, I.J.; Gros, S.; Henderson, D.J.; Jones, G.A.; Liu, Z.; Seweryniak, D.; Shumard, B.R.; Thompson, N.J.; Williams, S.J.; Zhu, S.

    2008-01-01

    A new focal plane detector arrangement for the Fragment Mass Analyzer (FMA) has been built and tested at Argonne National Laboratory. This set-up is particularly sensitive for performing Recoil-Isomer Tagging on nuclei with isomeric states with lifetimes in the microsecond range. Recoiling nuclei from fusion-evaporation reactions at the target position are dispersed by their ratio of mass to charge (A/q) by the FMA and stopped in low pressure gas (air) at the focal plane. Subsequent gamma decays from isomeric states in the reaction products are observed using Ge detectors. A constant gas flow through the focal plane chamber efficiently removes longer-lived beta-decaying species from sight of the detectors. This set-up has been commissioned successfully with the microsecond isomer in 80 Rb, populated via the 52 Cr( 32 S, 3pn) reaction at 135 MeV

  19. Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-07-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-α and to detect the Hanle effect in the line core. Due to the nature of Lyman-α polarizationin the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with ≤ 10 e-/pixel/second dark current, ≤ 25 e- read noise, a gain of 2.0 +- 0.5 and ≤ 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  20. Observation of target electron momentum effects in single-arm Moeller polarimetry

    International Nuclear Information System (INIS)

    Swartz, M.; Band, H.R.; Decker, F.J.; Emma, P.; Fero, M.J.; Frey, R.; King, R.; Lath, A.; Limberg, T.; Prepost, R.; Rowson, P.C.; Schumm, B.A.; Woods, M.; Zolotorev, M.

    1995-01-01

    In 1992, L.G. Levchuk noted that the asymmetries measured in Moeller scattering polarimeters could be significantly affected by the intrinsic momenta of the target electrons. This effect is largest in devices with very small acceptance or very high resolution in laboratory scattering angle. We use a high resolution polarimeter in the linac of the polarized SLAC Linear Collider to study this effect. We observe that the inclusion of the effect alters the measured beam polarization by -14% of itself and produces a result that is consistent with measurements from a Compton polarimeter. Additionally, the inclusion of the effect is necessary to correctly simulate the observed shape of the two-body elastic scattering peak. (orig.)

  1. Detection of nuclear recoils in prototype dark matter detectors, made from Al, Sn and Zn superheated superconducting granules

    International Nuclear Information System (INIS)

    Abplanalp, M.; Van den Brandt, B.; Konter, J.A.; Mango, S.

    1995-01-01

    This work is part of an ongoing project to develop a superheated superconducting granule (SSG) detector for cold dark matter and neutrinos. The response of SSG devices to nuclear recoils has been explored irradiating SSG detectors with a 70 MeV neutron beam. The aim of the experiment was to test the sensitivity of Sn, Al and Zn SSG detectors to nuclear recoil energies down to a few keV. The detector consisted of a hollow teflon cylinder (0.1 cm 3 inner volume) filled with tiny superconducting metastable granules embedded in a dielectric medium. The nuclear recoil energies deposited in the SSG were determined measuring the neutron scattering angles with a neutron hodoscope. Coincidences in time between the SSG and the hodoscope signals have been clearly established. In this paper the results of the neutron irradiation experiments at different SSG intrinsic thresholds are discussed and compared to Monte Carlo simulations. The results show that SSG are sensitive to recoil energies down to similar 1 keV. The limited angular resolution of the neutron hodoscope prevented us from measuring the SSG sensitivity to even lower recoil energies. (orig.)

  2. Recoil range distribution measurement in 20Ne + 181Ta reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Guin, R.; Reddy, A.V.R.

    2005-01-01

    In order to investigate linear momentum transfer in various transfer channels in 20 Ne + 181 Ta, recoil range distribution measurements have been carried out at E lab = 180 MeV, populating significant number of l-waves above l crit

  3. Mass and energy dispersive recoil spectrometry of GaAs structures

    International Nuclear Information System (INIS)

    Hult, M.

    1994-01-01

    Mass and energy dispersive Recoil Spectrometry (RS) using heavy ions at energies of about 0.2Α-0.8Α MeV has attracted much interest recently due to its potential for separately and unambiguously generating information on isotopic depth distributions. The principal advantages of mass and energy dispersive RS are that both light and heavy elements can be separately studied simultaneously and problems caused by chemical matrix effects are avoided since the technique is based on high energy nucleus-nucleus scattering. In order to elucidate reactions taking place in various GaAs structures, Time of flight-Energy (ToF-E) RS was developed to allow Ga and As to be studied separately down to depths of about 500-800 nm with a depth resolution of about 16 nm at the surface. This was shown in a study of an Al x Ga 1-x As quantum-well structure. The benefits of using ToF-E RS on GaAs structures were further demonstrated in studies of Co/GaAs and CoSi 2 /GaAs reactions, as well as in a study of the composition of MOCVD grown Al x Ga 1-x As. Most recoil measurements employed 127 I at energies of about 50-90 MeV as projectiles. The recoil detector telescope consisted of a silicon energy detector and two carbon foil time pick-off detectors separated by a variable flight length of 213.5-961 mm. The reactions taking place between various thin films and GaAs were also studied using complementary techniques such as XRD, XPS and SEM. Co was found to react extensively with GaAs, already at about 300 degrees C, making it unsuitable as a contact material. Thin films of Co and Si were found to react extensively with each other and to form CoSi 2 at 500 degrees C and above. CoSi 2 , a low resistivity silicide, turned out to be stable on GaAs, at least up to 700 degrees C. Considerable grain growth could cause problems, however, in the use of CoSi 2 -contacts. 112 refs, figs, tabs

  4. Implantation of 111In in NTDSi by heavy ion recoil technique

    International Nuclear Information System (INIS)

    Thakare, S.V.; Tomar, B.S.

    1998-01-01

    Heavy ion recoil implantation technique has been used to implant 111 In in n-type silicon using medium energy heavy ion accelerator Pelletron, at TIFR, Colaba, Mumbai. The nuclear reaction used for this purpose was 109 Ag( 7 Li,p4n) 111 In. The beam energy was optimised to be 50 MeV for maximum concentration of the implanted probe atoms. The gamma-ray spectrum of the implanted sample after 24 hours was found to contain only 171 and 245 keV gamma rays of 111 In. The penetration depth of ion is increased to 1.6 μm by heavy ion recoil implantation technique as compared to 0.16 μm with the conventional ion implantation technique. (author)

  5. Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Kenneth K. [Univ. of Maryland, College Park, MD (United States)

    2000-01-01

    Nuclear physics traces it roots back to the very beginning of the last century. The concept of the nuclear atom was introduced by Rutherford around 1910. The discovery of the neutron Chadwick in 1932 gave us the concept of two nucleons: the proton and the neutron. The Jlab electron accelerator with its intermediate energy high current continuous wave beam combined with the Hall C high resolution electron spectrometer and a deutron recoil polarimeter provided experiment E94018 with the opportunity to study the deuteron electomagnetic structure, in particular to measure the tensor polarization observable t20, at high four momentum transfers than ever before. This dissertation presents results of JLab experiment E94018.

  6. Binary black holes: Spin dynamics and gravitational recoil

    International Nuclear Information System (INIS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius

  7. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  8. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    International Nuclear Information System (INIS)

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-01-01

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10 14 W/cm 2 laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model

  9. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  10. Irradiation of Methane by Recoiling Fission-Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. R.; Galley, M. R. [Imperial College of Science and Technology, London (United Kingdom)

    1963-11-15

    Pure methane gas (containing <0.003% oxygen and <5 mg H{sub 2}O per m{sup 3}) has been irradiated at pressures ranging from 5 to 50 atmospheres pressure and at 30{sup o}C with recoiling fission - fragments. The gas is contained in a silica ampoule of volume about 9 cm{sup 3} and which also contains a platinum cylinder coated on the inside with 0.5 mg/cm{sup 2} highly enriched uranium oxide. When the ampoule is irradiated in a nuclear reactor with thermal neutrons, about half the fission-fragments recoil from the uranium and dissipate their energy in the methane. In a typical irradiation, methane at 10 atm pressure receives a dose of 5 x 10{sup 21} eV at an integrated reactor flux of 5 x 10{sup 15} neutrons/cm{sup 2}. Neutron flux i s measured by means of a gold-foil flux monitor. The activity of the Au{sup 198} is counted in a 4 {pi} proportional counter. The irradiation products have been detected by using beta-ionization detectors for gas-phase chromatography with suitable columns. The following products have been found: hydrogen, ethane, propane, n-butane, isobutane, n-pentane, iso-pentane, neo-pentane, the seven hexanes. Traces of higher hydrocarbons are undoubtedly present but the analysis of these has not been attempted. Hydrogen is present in greatest yield and the yields of the hydrocarbons decrease in the order given above. Despite previously reported yields of ethylene (G-value-0.1) from gamma and fast - electron irradiations, no ethylene or other unsaturated products have been detected in this work. It would have been possible to detect 10 ppm in the products. This is to be expected as any double bonds which may be produced would almost immediately be hydrogenated by the hydrogen present. Yields for hydrogen, ethane and propane lie within the range of values that have been reported by other workers for gamma and fast electron irradiations. (author)

  11. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  12. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.J.

    2008-02-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  13. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    International Nuclear Information System (INIS)

    Murray, M.J.

    2008-02-01

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  14. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  15. Use of nuclear recoil for separating 228Ra, 224Ra, and 233Pa from colloidal thorium

    International Nuclear Information System (INIS)

    Beydon, J.; Gratot, I.

    1968-01-01

    By using α-recoil it is possible to separate by dialysis the α disintegration products (224 Ra; 228 Ra) of thorium from colloidal thorium hydroxide.The use of n, γ recoil allows the separation of 233 Pa produced by the neutron irradiation of thorium, on condition that the colloidal thorium hydroxide is irradiated in the presence of a dispersing. (author) [fr

  16. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Sohrabi, M.; Morgan, K.Z.

    1975-11-01

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  17. Using a polarizing film in the manufacture of panoramic Stokes polarimeters at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine

    Science.gov (United States)

    Sinyavskiy, I. I.; Ivanov, Yu. S.; Vidmachenko, A. P.; Sergeev, A. V.

    2013-09-01

    MAO of NASU proposed and implemented the concept [1] of imaging Stokes polarimeter, which allows to measure four components of the Stokes vector at the same time, in a wide field, and without restrictions on the relative aperture of the system. And polarimeter can be converted into low-resolution spectropolarimeter by rotation of the wheel with replaceable elements. To full utilization of the CCD area in the device installed four film's polarizer with positional angles 0°, 45°, 90°, 135°. In each channel of this device installed the system of special deflecting prisms, which achromatize for the spectral range 420-850 nm [2]. Distortion is less than 0.65%. Also have the opportunity the use of the diffraction grating with a frequency up to 100 lines / mm, working on the transmission. References. 1. Sinyavskii I.I., Ivanov Yu.S., Vidmachenko A.P., Karpov N.V. Panoramic Stokes polarimeter // Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, ISSN: 1729-5459. - 2013 - V. 3, No 4. - P. 123-127. 2. Sinyavskii, I. I.; Ivanov, Yu. S.; Vil'machenko, A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548.

  18. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  19. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    International Nuclear Information System (INIS)

    Racine, Etienne; Buonanno, Alessandra; Kidder, Larry

    2009-01-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  20. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Xiaohui [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2010-01-01

    Experiment E08-007 measured the proton elastic form factor ratio μpGE/GM in the range of Q2 = 0.3-0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The recoil proton was detected in the left HRS in coincidence with the elasticly scattered electrons tagged by the BigBite spectrometer. The proton polarization was measured by the focal plane polarimeter (FPP). In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX) along with various fits and calculations indicate substantial deviations of the ratio from unity. For this new measurement, the proposed statistical uncertainty (< 1%) was achieved. These new results are a few percent lower than expected from previous world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the new results also have implications in determining the proton Zemach radius and the strangeness form factors from parity violation experiments.

  1. Evaluation of different photodetector types for an ILC polarimeter

    International Nuclear Information System (INIS)

    Helebrant, Christian

    2009-01-01

    At the International Linear Collider (ILC) (ILC Reference Design Report, 2007 ) the polarization of the electron and positron beams needs to be measured with as yet unequaled precision of ΔP/P∼0.25%. The key element of the polarimeter will be the precise detection of Cherenkov light from Compton scattered electrons. The poster ) deals with the choice of a suitable photodetector (PD). In a recently assembled test facility various types of PDs have been checked. Results are presented with a special focus on the linearity of the device, since this is expected to be the limiting factor on the precision of the polarization measurement at the ILC.

  2. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  3. Precision measurement of positron polarization in 68Ga decay based on the use of a new positron polarimeter

    International Nuclear Information System (INIS)

    Gerber, G.; Newman, D.; Rich, A.; Sweetman, E.

    1977-01-01

    We report a new measurement of positron polarization (P) in 68 Ga decay. Using a new polarimeter the asymmetry (A) in the decay of positronium in a magnetic field was measured to 5%. When combined with a calculation of the positron depolarization on stopping in MgO powder the overall uncertainty in P is 11%. The most precise prior determination of P was to 12% accuracy. An eventual precision of 1% in A and 0.1% in comparisons of asymmetries from different sources is anticipated. In addition to the 68 Ga work we point out the possible use of the polarimeter in a number of new measurements including a determination of e + polarization in μ + and nuclear decay and in a g - 2 experiment

  4. Simulation Study of Using High-Z EMA to Suppress Recoil Protons Crosstalk in Scintillating Fiber Array for 14.1 MeV Neutron Imaging

    Science.gov (United States)

    Jia, Qinggang; Hu, Huasi; Zhang, Fengna; Zhang, Tiankui; Lv, Wei; Zhan, Yuanpin; Liu, Zhihua

    2013-12-01

    This paper studies the effect of a high-Z extra mural absorber (EMA) to improve the spatial resolution of a plastic (polystyrene) scintillating fiber array for 14.1 MeV fusion neutron imaging. Crosstalk induced by recoil protons was studied, and platinum (Pt) was selected as EMA material, because of its excellent ability to suppress the recoil protons penetrating the fibers. Three common fiber arrays (cylindrical scintillating fibers in square and hexagonal packing arrangements and square scintillating fibers) were simulated using the Monte Carlo method for evaluating the effect of Pt-EMA in improving spatial resolution. It is found that the resolution of the 100 μm square fiber array can be improved from 1.7 to 3.4 lp/mm by using 10- μm-thick Pt-EMA; comparatively, using an array with thinner square fibers (50 μm) only obtains a resolution of 2.1 lp/mm. The packing fraction decreases with the increase of EMA thickness. Our results recommend the use of 10 μm Pt-EMA for the square and the cylindrical (hexagonal packing) scintillating fiber arrays with fibers of 50-200 μm in the cross-sectional dimension. Besides, the dead-zone material should be replaced by high-Z material for the hexagonal packing cylindrical fiber array with fibers of 50-200 μm in diameter. Tungsten (W) and gold (Au) are also used as EMA in the three fiber arrays as a comparison. The simulation results show that W can be used at a lower cost, and Au does not have any advantages in cost and resolution improvement.

  5. The Differential Cross Section and Λ Recoil Polarization from γδ -> Κ0(ρ)

    Energy Technology Data Exchange (ETDEWEB)

    Compton, Nicholas [Ohio Univ., Athens, OH (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-04-30

    Presented is the analysis of the differential cross section and Λ recoil polarization from the reaction γδ -> Κ0(ρ). This work measured these observables over beam energies from 0.90 GeV to 3.0 GeV. These measurements are the first in this channel to cover such a wide range of energies. The data were taken using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory (JLAB) along with a tagged photon beam. This analysis was completed by identifying events of interest that decayed into the final state topology of π-π+,π-&rho'(ρ). Through conservation of energy and momentum, the Κ0, Λ and missing mass of the spectator proton were reconstructed. Utilizing the same analysis techniques, the observables were measured on two different experiments with good agreement. Photoproduction of strange mesons from the neutron are difficult to measure, consequently there are only a few measurements of this kind. Despite that, these reactions supply essential complementary data to those on the proton. The differential cross sections and the recoil polarization extracted, span the region where new nucleon resonances have been found from studies of the reaction γρ -> Κ+Λ. Comparisons between the Κ+Λ and Κ0Λ cross section demonstrate that possible interference terms near 1900 MeV are less pronounced in the latter. This unexpected result inspired a partial wave analyses (PWA) to be fitted to the data. The fit solution shows that this measurement fostered an improvement on the knowledge of observed resonance parameters, necessary to understanding these excited states. The study of nucleon resonances is a key motivating factor since the resonance masses can be calculated from the theory of the strong nuclear force, called quantum chromodynamics, or QCD.

  6. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    Science.gov (United States)

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  7. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, Charlotte van

    2011-03-15

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  8. Nuclear structure studies at intermediate energies: Interim progress report, August 1987 through August 1988

    International Nuclear Information System (INIS)

    Hintz, N.M.

    1988-08-01

    This report contains papers on nuclear structure studies. The topics of some of the papers discussed in this report are: recoil free Δ production; low lying magnetic states; Coulomb-nuclear polarimeter; comparison of Dirac and non relativistic IA; measurements of A/sub LL/ in /rvec p//rvec p/ elastic; π + 208 Pb; /sup 206,207,208/Pb density differences; search for dibaryon resonances; and effective mass corrections to p + X

  9. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    Science.gov (United States)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  10. No-recoil approximation to the knock-on exchange potential in the double folding model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Hagino, K.; Takehi, T.; Takigawa, N.

    2006-01-01

    We propose the no-recoil approximation, which is valid for heavy systems, for a double folding nucleus-nucleus potential. With this approximation, the nonlocal knock-on exchange contribution becomes a local form. We discuss the applicability of this approximation for elastic scattering of the 6 Li + 40 Ca system. We find that, for this and heavier systems , the no-recoil approximation works as good as another widely used local approximation that employs a local plane wave for the relative motion between the colliding nuclei. We also compare the results of the no-recoil calculations with those of the zero-range approximation often used to handle the knock-on exchange effect

  11. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  12. Automation of experiments at Dubna Gas-Filled Recoil Separator

    Science.gov (United States)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  13. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A rapid system has been developed for computing charged-particle distributions generated in tissue by any neutron spectra less than 4 MeV. Oxygen and carbon recoils were derived from R-matrix theory, and hydrogen recoils were obtained from cross-section evaluation. Application to two quite different fission-neutron spectra demonstrates the flexibility of this method for providing spectral details of the different types of charged-particle recoils. Comparisons have been made between calculations and measurements of event-size distributions for a sphere of tissue 1 μm in diameter irradiated by these two neutron spectra. LET distributions have been calculated from computed charged-particle recoils and also derived from measurements using the conventional approximation that all charged particles traverse the chamber. The limitations of the approximation for these neutron spectra are discussed. (author)

  14. Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.

    1981-01-01

    The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed

  15. High resolution polarimeter-interferometer system for fast equilibrium dynamics and MHD instability studies on Joint-TEXT tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Li, Q.; Liu, Y.; Gao, L.; Zhou, Y. N.; Jian, X.; Xiong, C. Y.; Wang, Z. J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    A high-performance Faraday-effect polarimeter-interferometer system has been developed for the J-TEXT tokamak. This system has time response up to 1 μs, phase resolution < 0.1° and minimum spatial resolution ∼15 mm. High resolution permits investigation of fast equilibrium dynamics as well as magnetic and density perturbations associated with intrinsic Magneto-Hydro-Dynamic (MHD) instabilities and external coil-induced Resonant Magnetic Perturbations (RMP). The 3-wave technique, in which the line-integrated Faraday angle and electron density are measured simultaneously by three laser beams with specific polarizations and frequency offsets, is used. In order to achieve optimum resolution, three frequency-stabilized HCOOH lasers (694 GHz, >35 mW per cavity) and sensitive Planar Schottky Diode mixers are used, providing stable intermediate-frequency signals (0.5–3 MHz) with S/N > 50. The collinear R- and L-wave probe beams, which propagate through the plasma poloidal cross section (a = 0.25–0.27 m) vertically, are expanded using parabolic mirrors to cover the entire plasma column. Sources of systematic errors, e.g., stemming from mechanical vibration, beam non-collinearity, and beam polarization distortion are individually examined and minimized to ensure measurement accuracy. Simultaneous density and Faraday measurements have been successfully achieved for 14 chords. Based on measurements, temporal evolution of safety factor profile, current density profile, and electron density profile are resolved. Core magnetic and density perturbations associated with MHD tearing instabilities are clearly detected. Effects of non-axisymmetric 3D RMP in ohmically heated plasmas are directly observed by polarimetry for the first time.

  16. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  17. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  18. Development of a Polarimeter for Magnetic Field Measurements in the Ultraviolet

    Science.gov (United States)

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.

  19. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  20. LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils

    International Nuclear Information System (INIS)

    Sesana, A; Volonteri, M; Haardt, F

    2009-01-01

    All the physical processes involved in the formation, merging and accretion history of massive black holes along the hierarchical build-up of cosmic structures are likely to leave an imprint on the gravitational waves detectable by future space-borne missions, such as LISA. We report here the results of recent studies, carried out by means of dedicated simulations of black hole build-up, aiming at understanding the impact on LISA observations of two ingredients that are crucial in every massive black hole formation scenario, namely: (i) the nature and abundance of the first black hole seeds and (ii) the large gravitational recoils following the merger of highly spinning black holes. We predict LISA detection rates spanning two orders of magnitude, in the range 3-300 events per year, depending on the detail of the assumed massive black hole seed model. On the other hand, large recoil velocities do not dramatically compromise the efficiency of LISA observations. The number of detections may drop substantially (by ∼60%), in scenarios characterized by abundant light seeds, but if seeds are already massive and/or relatively rare, the detection rate is basically unaffected.

  1. Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory-the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an 'effective-one-body' description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a 'linear' memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.

  2. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  3. The Electric Form Factor of the Neutron at Q2 = 1.17 and 1.47(GeV/c)2 from the 2H (e, en)' H reaction.

    Energy Technology Data Exchange (ETDEWEB)

    Tireman, William [Kent State Univ., Kent, OH (United States)

    2003-12-01

    The Jefferson Laboratory E93-038 collaboration measured the ratio of the electric form factor to the magnetic form factor of the neutron, g = Gne/Gnm, via recoil polarimetry from the quasielastic 2H(e,en)1 H reaction at q2 = 0.45, 1.17 and 1.47 (GeV/c)2 in Hall C of the Thomas Jefferson National Accelerator Facility. A polarimeter designed specifically for E93-038 was used to measure the up-down scattering asymmetry from the transverse component of the recoil neutron's polarization vector, and a dipole magnet located in front of the polarimeter was used to precess the polarization vector in the scattering plane through an angle of x. Sequential measurements of the scattering asymmetry with the polarization vector precessed through angles χ = 0° and χ = ±90° for Q2 = 1.47 (GeV/c)2 were made during January 2001 and through angles χ = ±40° for Q2 = 1.17 (GeV/c)2 during April 2001 and will be reported on in this dissertation. This ratio method removes the need to know the analyzing power

  4. The morphology of collision cascades as a function of recoil energy

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1989-09-01

    An analytical method based on defect densities has been devised to determine the threshold energies for subcascade formation in computer simulated collision cascades. Cascades generated with the binary collision code MARLOWE in Al, Cu, Ag, Au, Fe, Mo and W were analyzed to determine the threshold energy for subcascade formation, the number of subcascades per recoil per unit energy and the average spacing of subcascades. Compared on the basis of reduced damage energy, metals of the same crystal structure have subcascade thresholds at the same reduced energy. The number of subcascades per unit reduced damage energy is about the same for metals of the same crystal structure, and the average spacing of subcascades is about the same in units of lattice parameters. Comparisons between subcascade threshold energies and average recoil energies in fission and fusion neutron environments show the spectral sensitivity of the formation of subcascades

  5. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  6. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter. [for Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.

    1981-01-01

    New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.

  7. Origin of open recoil curves in L1_0-A1 FePt exchange coupled nanocomposite thin film

    International Nuclear Information System (INIS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-01-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1_0–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1_0-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1_0) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  8. The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.

  9. The ultraviolet spectrometer and polarimeter on the solar maximum mission

    International Nuclear Information System (INIS)

    Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)

  10. Hadron physics at TJNAF

    International Nuclear Information System (INIS)

    Eyraud, L; Furget, C.; Goy, J.; Kox, S.; Merchez, F.; Pastor, A.; Real, J.S.; Russew, T.; Tieulent, R.; Voutier, E.

    1997-01-01

    Over these two years, our group has been worked in hadronic physics at Saturn and CEBAF using the polarimeter POLDER. Tensor polarization observables have been measured in the reaction H(p bar, d bar)π + between 580 and 1300 MeV proton energy. The group has also been leader in an experiment, performed in 1997 at CEBAF. By measuring the t 20 polarization of the recoil deuteron produced in the elastic electron-deuteron scattering at large Q 2 , the separation of the charge and quadrupole form-factors of the deuteron will be performed for Q=4.1-6.8 fm -1 . Finally, we were involved in the construction and test of the neutron polarimeter HARP and in the definition of the physics program of the ELFE project. (authors)

  11. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, Serkan; Yildiz, Nihat

    2012-01-01

    The gamma-ray tracking technique is a highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being tested. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. In this paper, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1–5 MeV neutrons were first obtained by simulation experiments. Secondly, as a novel approach, for these highly nonlinear detector responses of recoiling germanium nuclei, consistent empirical physical formulas (EPFs) were constructed by appropriate feedforward neural networks (LFNNs). The LFNN-EPFs are of explicit mathematical functional form. Therefore, the LFNN-EPFs can be used to derive further physical functions which could be potentially relevant for the determination of neutron interactions in gamma-ray tracking process.

  12. Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator.

    Science.gov (United States)

    Povel, H P; Keller, C U; Yadigaroglu, I A

    1994-07-01

    We present the first measurements and scientific observations of the solar photosphere obtained with a new two-dimensional polarimeter based on piezoelastic modulators and synchronous demodulation in a CCD imager. This instrument, which is developed for precision solar-vector polarimetry, contains a specially masked CCD that has every second row covered with an opaque mask. During exposure the charges are shifted back and forth between covered and light-sensitive rows synchronized with the modulation. In this way Stokes I and one of the other Stokes parameters can be recorded. Since the charge shifting is performed at frequencies well above the seeing frequencies and both polarization states are measured with the same pixel, highly sensitive and accurate polarimetry is achieved. We have tested the instrument in laboratory conditions as well as at three solar telescopes.

  13. IBFA description of high-spin positive-parity states in Rh isotopes

    International Nuclear Information System (INIS)

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Constantinescu, G.; Ivascu, M.; Zamfir, N.V.

    1985-01-01

    Properties of the odd-mass Rh isotopes are investigated in the framework of the interacting boson-fermion approximation (IBFA) model in which the odd proton moves in the 1gsub(9/2) and 2dsub(5/2) orbitals. Lifetimes of some high-spin positive-parity states in 99 Rh obtained by the recoil-distance method with the 88 Sr( 14 N,3n) reaction are also reported. Calculated excitation energies and electromagnetic properties of the high-spin positive-parity states are compared with experiment and an acceptable agreement is obtained. (orig.)

  14. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    Science.gov (United States)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  15. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  16. Adsorption of Hydrogen and Potassium on GaAs(110) Studied by Time-of-Flight Scattering and Recoiling Spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.

    2000-01-01

    function of the exposure indicate that the initial strong decrease in the rate of unrelaxation is mainly a /consequence of the variation of the sticking coefficient. Below 100 L, most of the H atoms participate in the unrelaxation process. However, above 500 L, it is necessary to increase strongly the H coverage to produce small changes in the atomic structure of the surface. The measurements of the As and Ga direct recoils intensities change with the incident direction of the projectile in accordance with the crystallographic structure of the surface. On the other hand, the H recoil intensity is almost independent of the crystallographic sample orientation, indicating that an important fraction of the H atoms are not adsorbed in well ordered sites.Measurements as a function of the sample temperature show a continuous decrease of the H DR intensity for both low and high exposures. The combined results of forward recoiled atom and scattered projectile intensities suggest that an important fraction of the adsorbed H atoms is not bonded in a well ordered layer and may be forming molecules since the beginning of the adsorption process. The adsorption of K on GaAs(110) is mainly studied by DRS. The analysis of K direct recoil intensity indicates that at room temperature, the adsorption of K saturates at 0.5 ML, which corresponds to an atom density of ∼ 4.4x10 1 4 at/cm 2 . The adsorption process proceeds in two stages, which depend on the K coverage (Θ (K)). At low coverages, Θ (K)<0.1 ML, the K atoms are adsorbed exclusively on the [001] Ga rows and close to the sites of a new As layer, with a local crystallographic order. At high coverages the K atoms start to adsorb also along the As rows, although with a lower probability than on the Ga rows. At saturation, the K layer does not form an ordered structure. The dependence of the direct-recoil ion fractions on the K coverage is consistent with the structural information obtained from the analysis of the total recoiled

  17. Study of Nuclear Collisions of 86 MeV/a.m.u. $^{12}$C with Heavy Targets by Collection of the Heavy Recoil Nuclei

    CERN Multimedia

    2002-01-01

    The aim of this experiment is twofold:\\\\ \\\\ Firstly to test the possibilities of collection of the heavy recoil nuclei with the device presented schematically on the figure. The recoil nuclei escaping from the irradiated target are first thermalised in a gas (N^2). One then takes advantage of their remaining charge to collect them with an electric field on the surface of a solid state detector. Tests already performed with other beams give absolute efficiency around 5\\%. The best conditions of collections with very energetic |1|2C have first to be tested. Secondly to get some insight into nuclear reaction mechanisms induced by 86~MeV/a.m.u. |1|2C using the possibilities of this recoil chamber. Two kinds of mechanisms should occur in these interactions. If the incident energy is damped (deep inelastic reaction, fusion), the heavy nucleus will be highly excited and the residual nuclei will lie along the @G^n/@G^p~=~1~line. For heavy nuclei this line is located at about 25~mass units from the stability line. If ...

  18. Recoil halogen reactions in liquid and frozen aqueous solutions of biomolecules

    International Nuclear Information System (INIS)

    Arsenault, L.J.; Blotcky, A.J.; Firouzbakht, M.L.; Rack, E.P.; Nebraska Univ., Omaha

    1982-01-01

    Reactions of recoil 38 Cl, 80 Br and 128 I have been studied in crystalline systems of 5-halouracil, 5-halo-2'-deoxyuridine and 5-halouridine as well as liquid and frozen aqueous solutions of these halogenated biomolecules. In all systems expect crystalline 5-iuodouracil the major product was the radio-labelled halide ion. There was no evidence for other halogen inorganic species. The major labelled organic product was the parent molecule. A recoil atom tracer technique was developed to acquire site information of the biomolecule solutes in the liquid and frozen aqueous systems. For all liquid and frozen aqueous systems, the halogenated biomolecules tended to aggregate. For liquid systems, the tendency for aggregation diminished as the solute concentration approached zero, where the probable state of the solute approached a monomolecular dispersion. Unlike the liquid state, the frozen ice lattice demonstated a ''caging effect'' for the solute aggregates which resulted in constant product yields over the whole concentration range. (orig.)

  19. A study of etching model of alpha-recoil tracks in biotite

    International Nuclear Information System (INIS)

    Dong Jinquan; Yuan Wanming; Wang Shicheng; Fan Qicheng

    2005-01-01

    Like fission-track dating, alpha-recoil track (ART) dating is based on the accumulation of nuclear particles that the released from natural radioactivity and produce etchable tracks in solids. ARTs are formed during the alpha-decay of uranium and thorium as well as of their daughter nuclei. When emitting an alpha-particle, the heavy remaining nucleus recoils 30-40 nm, leaving behind a trail of radiation damage. Through etching the ART tracks become visible with the aid of an interference phase-contrast microscope. Under the presupposition that all tracks are preserved since the formation of a sample their total number is a measure of the sample's age. The research for etching model is to accurately determine ART volume density, i.e., the number of ARTs per unit volume. The volume density of many dots in many layers may be determined on a sample using this etching model, and as decreasing the error and increasing the accuracy. (authors)

  20. Neutron electric form factor via recoil polarimetry

    International Nuclear Information System (INIS)

    Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The ratio of the electric to the magnetic form factor of the neutron, G En /G Mn , was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q 2 [viz., 0.45, 1.15 and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G En follows the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and appears to rise above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2

  1. Multivariate analysis method for energy calibration and improved mass assignment in recoil spectrometry

    International Nuclear Information System (INIS)

    El Bouanani, Mohamed; Hult, Mikael; Persson, Leif; Swietlicki, Erik; Andersson, Margaretha; Oestling, Mikael; Lundberg, Nils; Zaring, Carina; Cohen, D.D.; Dytlewski, Nick; Johnston, P.N.; Walker, S.R.; Bubb, I.F.; Whitlow, H.J.

    1994-01-01

    Heavy ion recoil spectrometry is rapidly becoming a well established analysis method, but the associated data analysis processing is still not well developed. The pronounced nonlinear response of silicon detectors for heavy ions leads to serious limitation and complication in mass gating, which is the principal factor in obtaining energy spectra with minimal cross talk between elements. To overcome the above limitation, a simple empirical formula with an associated multiple regression method is proposed for the absolute energy calibration of the time of flight-energy dispersive detector telescope used in recoil spectrometry. A radical improvement in mass assignment was realized, which allows a more accurate and improved depth profiling with the important feature of making the data processing much easier. ((orig.))

  2. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  3. Mixing of phosphorus and antimony ions in silicon by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.; Lam, Y.W.; Wong, S.P.; Poon, M.C.

    1986-01-01

    The effects of mixing phosphorus and antimony ions in silicon by recoil implantation were examined. The electrical properties after ion mixing were investigated, and the results were compared with those obtained using other techniques. Different degrees of activation were also studied, by investigating the annealing behaviour. (U.K.)

  4. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at COSY/Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2016-07-01

    The Cooler Synchrotron (COSY) is a facility for cooled polarized beams at the Forschungszentrum in Juelich. The Low Energy Polarimeter (LEP) is the polarimeter in the injection beam line of COSY. The beam polarization is measured using scattering off carbon and polyethylene (CH2) targets. The outgoing particles are detected using twelve plastic scintillators installed in groups of three to the left, to the right, above, and below the beam. The LEP is the routine tool for beam set-up, but its performance was limited by the old read-out electronics consisting of analog NIM modules. A new system using analog pulse sampling and an FPGA chip for signal processing was installed and tested. The ejectile particles were identified by relative time of flight measurement using a signal from the RF amplifier of the cyclotron used for acceleration as a reference. The new system is able to measure the time at which a particle arrives to an accuracy in the order of 50 ps. The presentation includes a review of available systems and a report about measurements in May and December 2015.

  5. Origin of open recoil curves in L1{sub 0}-A1 FePt exchange coupled nanocomposite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajan [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kapoor, Akanksha [M. Tech Nanoscience and Nanotechnology, University of Delhi, Delhi 110007 (India); Lamba, S. [School of Sciences, Indira Gandhi National Open University, New Delhi 110068 (India); Annapoorni, S., E-mail: annapoornis@yahoo.co.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-11-15

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1{sub 0}–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1{sub 0}-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1{sub 0}) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  6. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    International Nuclear Information System (INIS)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.; Okunishi, M.; Shimada, K.; Motomura, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Yao, M.; Rudenko, A.; Ullrich, J.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.; Doerner, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.

    2009-01-01

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  7. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    Science.gov (United States)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  8. HPV vaccine acceptability in high-risk Greek men.

    Science.gov (United States)

    Hoefer, Lea; Tsikis, Savas; Bethimoutis, George; Nicolaidou, Electra; Paparizos, Vassilios; Antoniou, Christina; Kanelleas, Antonios; Chardalias, Leonidas; Stavropoulos, Georgios-Emmanouil; Schneider, John; Charnot-Katsikas, Angella

    2018-01-02

    HPV is associated with malignancy in men, yet there is a lack of data on HPV knowledge, vaccine acceptability, and factors affecting vaccine acceptability in Greek men. This study aims to identify determinants of knowledge and willingness to vaccinate against HPV among high-risk Greek men. Men (n = 298) between the ages of 18 and 55 were enrolled from the STI and HIV clinics at "Andreas Syggros" Hospital in Athens, Greece from July-October 2015. Participants completed a survey on demographics, economic factors, sexual history, HPV knowledge, and vaccine acceptability. The majority of participants were younger than 40 (76.6%) and unmarried (84.6%). Our sample was 31.2% MSM (men who have sex with men), and 20.1% were HIV-positive. Most participants (>90%) were aware that HPV is highly prevalent in both men and women; however, fewer identified that HPV causes cancers in both sexes (68%) and that vaccination protects men and women (67%). Amongst participants, 76.7% were willing to vaccinate themselves against HPV, 71.4% an adolescent son, and 69.3% an adolescent daughter. HIV-positive men were more likely to be willing to vaccinate themselves (OR 2.83, p = .015), a son (OR 3.3, p = .015) or a daughter (3.01, p = .020). Higher income levels were associated with increased willingness to vaccinate oneself (OR 1.32, p = .027), a son (1.33, p = .032) or daughter (1.34, p = .027). Although there is a HPV knowledge gap, HPV vaccine acceptability is high despite lack of vaccine promotion to Greek men. Future studies should include lower-risk men to adequately inform public health efforts.

  9. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    Energy Technology Data Exchange (ETDEWEB)

    Lanzuisi, G.; Civano, F.; Marchesi, S.; Hickox, R. [Department of Physics and Astronomy, Dartmouth College, Wilder Laboratory, Hanover, NH 03855 (United States); Comastri, A.; Cappelluti, N. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Costantini, E. [SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, 3584 CA Utrecht (Netherlands); Elvis, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Jahnke, K. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Vignali, C.; Brusa, M. [Dipartimento di Astronomia, Universitá degli Studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-11-20

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  10. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  11. Detection of low momentum protons with the new HERMES recoil detector

    International Nuclear Information System (INIS)

    Vilardi, Ignazio

    2008-10-01

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the Δ + background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  12. Reactions of recoil tritium generated by the 3He(n,p)3H reaction with aromatic compounds -intramolecular tritium distribution and radiochemical yield

    International Nuclear Information System (INIS)

    Nogawa, N.; Morikawa, Naotake; Oohashi, Kunio; Matuoka, H.; Moki, T.; Moriya, T.

    1986-01-01

    Reactions of recoil tritium with benzoic acid, acetanilide and β-phenethyl alcohol were studied using the 3 He(=n,p) 3 H reaction. The tritium distribution in the aromatic ring is approximately uniform in all the irradiated compounds and the tritium activity per C-H bond in the methyl and ethylene groups is 7 to 8 relative to that of the corresponding ring as standard. These findings are substantially the same as those obtained previously by the 6 Li(n,α) 3 H reactions, suggesting the same mechanism of tritiation for both recoil reactions. The tritiated parent compounds were obtained in high radiochemical yields: 45% for benzoic acid, 30% for acetanilide, 12% for β-phenethyl alcohol. (author)

  13. Recoil corrected bag model calculations for semileptonic weak decays

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oe.; Hoegaasen, H.

    1987-02-01

    Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large

  14. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  15. Use of proportional tubes in a muon polarimeter

    International Nuclear Information System (INIS)

    Kenney, C.J.; Eckhause, M.; Ginkel, J.F.

    1988-01-01

    A prototype muon polarimeter was built to study the feasibility of measuring the positive muon polarization in the decay K/sub L/ → μ + μ/sup /minus//. The system consisted of alternating layers of extruded aluminum gas proportional tubes and polarization-retaining absorber plates of either aluminum or marble. Longitudinally polarized positive muons from the Stopped Muon Channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) were stopped in the absorber plates where they precessed in a field of 60 gauss. Decay times were recorded in 100 ns first-in-first-out memories for all wires hit during a 12.8 μs period centered about the muon stop trigger. The performance of the system was studied for different beam rates and absorber thicknesses. The value of imposing time and spacial cuts on track data to enhance the precession signal was also investigated. 7 refs., 4 figs., 1 tab

  16. Chemical reactions of recoil atoms and thermal atoms of tritium with haloid benzenes

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1978-01-01

    Radiochemical yields have been determined for the products of substitution of hydrogen atoms and halides in Cl-, Br-, and I-benzenes with tritium atoms obtained during thermal dissociation of T 2 and with recoil atoms T arising in nuclear reaction 6 Li(n, P)T. It is shown that in the series of Cl-, Br-, and I-benzenes yields of the products of substitution of halides atoms with tritium grow, whereas those of hydrogen atom substitution change only little. The correlation nature of the yields of substitution products of halide atoms with tritium remains constant in a wide range of the initial kinetic energies of T atoms for the recoil atoms with E 0 =2.7 MeV and for the completely thermolized atoms during thermal dissociation of T 2

  17. Recoil and conversion electron considerations of the {sup 166}Dy/{sup 166}Ho in vivo generator

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.R. [North-West Univ., Mmabatho (South Africa). CARST; Szuecs, Z. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry; Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Takacs, S.; Jarvis, N. [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Jansen, D. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry

    2012-07-01

    The use of radionuclides as potential therapeutic radiopharmaceuticals is increasingly investigated. An important aspect is the delivery of the radionuclide to the target, i.e. the radionuclide is not lost from the chelating agent. For in vivo generators, it is not only the log K of complexation between the metal ion and the chelator that is important, but also whether the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. In our previous work, we showed that the classical recoil effect is only applicable for decays with a Q value higher than 0.6 MeV (in the atomic mass range around 100). However, Zhernosekov et al. published a result for {sup 140}Nd/{sup 140}Pr (Q = 0.222 MeV) which indicated that > 95% of the daughter ({sup 140}Pr) was lost by a DOTA chelator upon decay of {sup 140}Nd. The authors ascribed this to the ''post-effect''. Their experiment was repeated with the {sup 166}Dy/{sup 166}Ho generator to ascertain whether our calculations were correct. It was found that 72% of the daughter ({sup 166}Ho) was liberated from the DOTA chelator, indicating that the 'post effect' does exist in contrast to our recoil calculations. Upon further investigation, we determined that one should not only consider recoil energy levels but also the mode of decay which was able to explain the partial recoil found for {sup 166}Dy/{sup 166}Ho. It is concluded for the {sup 166}Dy/{sup 166}Ho system that the low recoil energy of the daughter nucleus {sup 166}Ho is not a sufficient reason to rule out release of the nuclide from chelators. On the other hand, we found that the ratio of the {sup 166}Ho that gets released corresponds to the ratio of relaxation of Ho atoms via the Auger process. (orig.)

  18. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  19. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  20. Astronomy in Denver: Probing Interstellar Circular Polarization with Polvis, a Full Stokes Single Shot Polarimeter

    Science.gov (United States)

    Wolfe, Tristan; Stencel, Robert E.

    2018-06-01

    Measurements of optical circular polarization (Stokes V) introduced by dust grains in the ISM are important for two main reasons. First of all, the polarization itself contains information about the metallic versus dielectric composition of the dust grains themselves (H. C. van de Hulst 1957, textbook). Additionally, circular polarization can help constrain the interstellar component of the polarization of any source that may have intrinsic polarization, which needs to be calibrated for astrophysical study. Though interstellar circular polarization has been observed (P. G. Martin 1972, MNRAS 159), most broadband measurements of ISM polarization include linear polarization only (Stokes Q and U), due to the relatively low circular polarization signal and the added instrumentation complexity of including V-measurement capability. Prior circular polarization measurements have also received very little follow-up in the past several decades, even as polarimeters have become more accurate due to advances in technology. The University of Denver is pursuing these studies with POLVIS, a prototype polarimeter that utilizes a stress-engineered optic ("SEO", A. K. Spilman and T. G. Brown 2007, Applied Optics IP 46) to produce polarization-dependent PSFs (A. M. Beckley and T. G. Brown 2010, Proc SPIE 7570). These PSFs are analyzed to provide simultaneous Stokes I, Q, U, and V measurements, in a single beam and single image, along the line-of-sight to point source-like objects. Polvis is the first polarimeter to apply these optics and measurement techniques for astronomical observations. We present the first results of this instrument in B, V, and R wavebands, providing a fresh look at full Stokes interstellar polarization. Importantly, this set of efforts will constrain the ISM contribution to the polarization with respect to intrinsic stellar components. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver

  1. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  2. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Scott, E. R., E-mail: evrscott@ucdavis.edu [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Barchfeld, R. [Department of Applied Science, University of California, Davis, California 95616 (United States); Riemenschneider, P.; Domier, C. W.; Sohrabi, M.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Muscatello, C. M. [General Atomics, San Diego, California 92121 (United States); Kaita, R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment—Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

  3. Energy Reduction Multipath Routing Protocol for MANET Using Recoil Technique

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Sahu

    2018-04-01

    Full Text Available In Mobile Ad-hoc networks (MANET, power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation and utilization should be done judiciously for the effective functioning of the network. In this paper, a novel protocol namely Energy Reduction Multipath Routing Protocol for MANET using Recoil Technique (AOMDV-ER is proposed, which conserves the energy along with optimal network lifetime, routing overhead, packet delivery ratio and throughput. It performs better than any other AODV based algorithms, as in AOMDV-ER the nodes transmit packets to their destination smartly by using a varying recoil off time technique based on their geographical location. This concept reduces the number of transmissions, which results in the improvement of network lifetime. In addition, the local level route maintenance reduces the additional routing overhead. Lastly, the prediction based link lifetime of each node is estimated which helps in reducing the packet loss in the network. This protocol has three subparts: an optimal route discovery algorithm amalgamation with the residual energy and distance mechanism; a coordinated recoiled nodes algorithm which eliminates the number of transmissions in order to reduces the data redundancy, traffic redundant, routing overhead, end to end delay and enhance the network lifetime; and a last link reckoning and route maintenance algorithm to improve the packet delivery ratio and link stability in the network. The experimental results show that the AOMDV-ER protocol save at least 16% energy consumption, 12% reduction in routing overhead, significant achievement in network lifetime and packet delivery ratio than Ad hoc on demand multipath distance vector routing protocol (AOMDV, Ad hoc on demand multipath distance vector routing protocol life

  4. Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Moller Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Valerie M. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    The Qweak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (QpW). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer (Q^2) from the electron to the proton. The extraction of QpW from the measured asymmetry requires a precise Q^2 determination. The Qweak experiment had a Q^2 = 24.8 ± 0.1 m(GeV^2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and Q^2, QpW was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Qweak experiment. Future parity-violating electron scattering experiments similar to the Qweak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.

  5. Instrumentations in x-ray plasma polarization spectroscopy. Crystal spectrometer, polarimeter and detectors for astronomical observations

    Energy Technology Data Exchange (ETDEWEB)

    Baronova, Elena O.; Stepanenko, Mikhail M. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland); Tsunemi, Hiroshi [Osaka Univ., Graduate School of Science, Osaka (Japan)

    2002-08-01

    This report discusses the various problems which are encountered when a crystal spectrometer is used for the purpose of observing polarized x-ray lines. A polarimeter is proposed based on the novel idea of using two series of equivalent atomic planes in a single crystal. The present status of the astronomical x-ray detection techniques are described with emphasis on two dimensional detectors which are polarization sensitive. (author)

  6. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  7. The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennet, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakula, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D.; Miller, Nathan; Moseley, Samuel H.; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  8. D-Brane Recoil Mislays Information

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1998-01-01

    We discuss the scattering of a light closed-string state off a $D$ brane, taking into account quantum recoil effects on the latter, which are described by a pair of logarithmic operators. The light-particle and $D$-brane subsystems may each be described by a world-sheet with an external source due to the interaction between them. This perturbs each subsystem away from criticality, which is compensated by dressing with a Liouville field whose zero mode we interpret as time. The resulting evolution equations for the $D$ brane and the closed string are of Fokker-Planck and modified quantum Liouville type, respectively. The apparent entropy of each subsystem increases as a result of the interaction between them, which we interpret as the loss of information resulting from non-observation of the other entangled subsystem. We speculate on the possible implications of these results for the propagation of closed strings through a dilute gas of virtual $D$ branes.

  9. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Matsuoka, Y.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K. [Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Kurosawa, S. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Miuchi, K. [Department of Physics, Kobe University, Kobe, Hyogo, 658-8501 (Japan); Sawano, T., E-mail: komura@cr.scphys.kyoto-u.ac.jp [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa, 920-1192 (Japan)

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.

  10. Polarization of recoil deuteron in ed elastic scattering at medium energies

    International Nuclear Information System (INIS)

    Bhalerao, R. S.

    1981-12-01

    Vector and tensor polarizations of the recoil deuteron in ed elastic scattering are calculated for THETA=0deg-180deg and q 2 2 . A longitudinally polarized electron beam is assumed to scatter off an unpolarized deuteron target. Calculations are made in the relativistic impulse approximation using a recently described approach based on the Bethe-Salpeter equation. Results are different, at high q 2 even qualitatively so, from those of a non-relativistic calculation, and a relativistic calculation which takes the spectator nucleon on-mass-shell. In the light of these results a recent suggestion that the polarization measurements would throw new light on the off-shell behavior and tensor force strength of the NN interaction are reexamined. Results are also presented for the three deuteron form factors Gsub(C), Gsub(Q), and Gsub(M), and the often-needed related quantities Ssub(S), Ssub(Q), and Ssub(M). The latter results may have an important implication in high-momentum transfer reactions involving deuteron. (author)

  11. Recoil effect on β-decaying in vivo generators, interpreted for 103Pd/103mRh

    International Nuclear Information System (INIS)

    Szucs, Zoltan; Rooyen, Johann van; Zeevaart, Jan Rijn

    2009-01-01

    The use of Auger emitters as potential radiopharmaceuticals is being increasingly investigated. One of the radionuclides of interest is 103m Rh, which can be produced from 103 Ru or 103 Pd in an in vivo generator. A potential problem, however, is the recoil of the 103m Rh out of the carrier molecule and even out of the target cell. In order to determine the likelihood of this happening in the 103 Pd/ 103m Rh, case calculations were made to prove that this does not happen. The equations were generalised for all radionuclides with an atomic mass of 10-240 as a tool for determining the recoil threshold of any β-emitting radionuclide.

  12. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV-1 MeV

    Science.gov (United States)

    Sareen, R. A.; Urban, W.; Barnett, A. R.; Varley, B. J.

    1995-06-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168Er(α,2n)170Yb reaction at Eα=25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV.

  13. Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters.

    Science.gov (United States)

    Tyo, J Scott; LaCasse, Charles F; Ratliff, Bradley M

    2009-10-15

    Microgrid polarimeters operate by integrating a focal plane array with an array of micropolarizers. The Stokes parameters are estimated by comparing polarization measurements from pixels in a neighborhood around the point of interest. The main drawback is that the measurements used to estimate the Stokes vector are made at different locations, leading to a false polarization signature owing to instantaneous field-of-view (IFOV) errors. We demonstrate for the first time, to our knowledge, that spatially band limited polarization images can be ideally reconstructed with no IFOV error by using a linear system framework.

  14. Precision lifetime measurements using the recoil distance method

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed

  15. Precision Lifetime Measurements Using the Recoil Distance Method

    Science.gov (United States)

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  16. Recoil generated radiotracers in studies of molecular dynamics

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1981-01-01

    This chapter summarizes many of the contributions that the recoil technique of generating excited radiotracer atoms in the presence of a thermal environment is making to the field of chemical dynamics. Specific topics discussed critically include characterization of the generation and behavior of excited molecules including fragmentation kinetics and energy transfer, measurement of thermal and hot kinetic parameters, and studies of reaction mechanisms and stereochemistry as a function of reaction energy. Distinctive features that provide unique approaches to dynamical problems are evaluated in detail and the complementarity with more conventional techniques is addressed. Prospects for future applications are also presented

  17. Production and measurement of dispersion aerosols; application to the transport of deuteron-induced and 84Kr-induced reaction recoils

    International Nuclear Information System (INIS)

    Schmidt-Ott, W.-D.; Dincklage, R.-D. von

    1977-01-01

    Dispersion aerosols were produced from various fluids and mixed with helium, nitrogen, and air. The diameter of the aerosols was estimated from their deflection in a low density micro-jet. These two-phase flows were tested for their transport performance for recoils of deuteron-induced reactions at the Goettingen cyclotron. Transport yields of 70%, 90% and 86% were measured when using n-decane with helium, nitrogen, and air, respectively. In comparison to the earlier use of ethylene the amount of disturbing activity induced on the gases was much smaller. The effect of aerosol formation by condensation is discussed. The system was applied in electron- and γ-ray spectroscopy of deuteron-induced reaction recoils. The mixture of n-decane and helium was used for the transport of 84 Kr-induced reaction recoils at the Darmstadt UNILAC. (Auth.)

  18. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 mandated that all high-level waste (HLW) be sent to a federal geologic repository for permanent disposal. DOE published the Environmental Assessment in 1982 which identified borosilicate glass as the chosen HLW form. 1 In 1985 the Department of Energy instituted a Waste Acceptance Process to assure that DWPF glass waste forms would be acceptable to such a repository. This assurance was important since production of waste forms will precede repository construction and licensing. As part of this Waste Acceptance Process, the DOE Office of Civilian Radioactive Waste Management (RW) formed the Waste Acceptance Committee (WAC). The WAC included representatives from the candidate repository sites, the waste producing sites and DOE. The WAC was responsible for developing the Waste Acceptance Preliminary Specifications (WAPS) which defined the requirements the waste forms must meet to be compatible with the candidate repository geologies

  19. An examination of the sensitivity and systematic error of the NASA GEMS Bragg Reflection Polarimeter using Monte-Carlo simulations

    Science.gov (United States)

    Allured, Ryan; Okajima, Takashi; Soufli, Regina; Fernández-Perea, Mónica; Daly, Ryan O.; Marlowe, Hannah; Griffiths, Scott T.; Pivovaroff, Michael J.; Kaaret, Philip

    2012-10-01

    The Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission is designed to measure the linear polarization of astrophysical sources in a narrow band centered at about 500 eV. X-rays are focused by Wolter I mirrors through a 4.5 m focal length to a time projection chamber (TPC) polarimeter, sensitive between 2{10 keV. In this optical path lies the BRP multilayer reflector at a nominal 45 degree incidence angle. The reflector reflects soft X-rays to the BRP detector and transmits hard X-rays to the TPC. As the spacecraft rotates about the optical axis, the reflected count rate will vary depending on the polarization of the incident beam. However, false polarization signals may be produced due to misalignments and spacecraft pointing wobble. Monte-Carlo simulations have been carried out, showing that the false modulation is below the statistical uncertainties for the expected focal plane offsets of < 2 mm.

  20. Development and manufacturing of panoramic Stokes polarimeter using the polarization films in the Main Astronomical Observatory of NAS of Ukraine

    Science.gov (United States)

    Vidmachenko, A. P.; Ivanov, Yu. S.; Syniavskyi, I. I.; Sergeev, A. V.

    2015-08-01

    In the Main Astronomical Observatory of NAS of Ukraine is proposed and implemented the concept of the imaging Stokes polarimeter [1-5]. This device allows carrying out measurements of the four Stokes vector components at the same time, in a wide field, and without any restrictions on the relative aperture of the optical system. Its scheme is developed so that only by turning wheel with replaceable elements, photopolarimeter could be transformed into a low resolution spectropolarimeter. The device has four film's polarizers with positional angles 0°, 45°, 90°, 135°. The device uses a system of special deflecting prisms in each channel. These prisms were achromatizing in the spectral range of 420-850 nm [2], the distortion of the polarimeter optical system is less than 0.65%. In manufacturing version of spectropolarimeter provided for the possibility of using working on passing the diffraction grating with a frequency up to 100 lines/mm. Has begun the laboratory testing of instrument. References. 1. Sinyavskii I.I., Ivanov Yu. S., Vidmachenko Anatoliy P., Karpov N.V. Panoramic Stokes-polarimeter // Ecological bulettin of research centers of the Black Sea Economic Cooperation. - 2013. - V. 3, No 4. - P. 123-127. 2. Sinyavskii I. I., Ivanov Yu. S., Vil'machenko A. P. Concept of the construction, of the optical setup of a panoramic Stokes polarimeter for small telescopes // Journal of Optical Technology. - 2013. - V. 80, Issue 9. - P. 545-548. 3. Vidmachenko A. P., Ivanov Yu. S., Morozhenko A. V., Nevodovsky E. P., Syniavskyi I. I., Sosonkin M. G. Spectropolarimeter of ground-based accompanying for the space experiment "Planetary Monitoring" // Kosmichna Nauka i Tekhnologiya. - 2007. - V. 13, No. 1, p. 63 - 70. 4. Yatskiv Ya. S., Vidmachenko A. P., Morozhenko A. V., Sosonkin M. G., Ivanov Yu. S., Syniavskyi I. I. Spectropolarimetric device for overatmospheric investigations of Solar System bodies // Kosmichna Nauka i Tekhnologiya. - 2008. - V. 14, No. 2. - P. 56

  1. Effects of recoil-implanted oxygen on depth profiles of defects and annealing processes in P{sup +}-implanted Si studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kitano, Tomohisa; Watanabe, Masahito; Kawano, Takao; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa

    1996-04-01

    Effects of oxygen atoms recoiled from SiO{sub 2} films on depth profiles of defects and annealing processes in P{sup +}-implanted Si were studied using monoenergetic positron beams. For an epitaxial Si specimen, the depth profile of defects was found to be shifted toward the surface by recoil implantation of oxygen atoms. This was attributed to the formation of vacancy-oxygen complexes and a resultant decrease in the diffusion length of vacancy-type defects. The recoiled oxygen atoms stabilized amorphous regions introduced by P{sup +}-implantation, and the annealing of these regions was observed after rapid thermal annealing (RTA) at 700degC. For a Czochralski-grown Si specimen fabricated by through-oxide implantation, the recoiled oxygen atoms introduced interstitial-type defects upon RTA below the SiO{sub 2}/Si interface, and such defects were dissociated by annealing at 1000degC. (author)

  2. Polarimeter Arrays for Cosmic Microwave Background Measurements

    Science.gov (United States)

    Stevenson, Thomas; Cao, Nga; Chuss, David; Fixsen, Dale; Hsieh, Wen-Ting; Kogut, Alan; Limon, Michele; Moseley, S. Harvey; Phillips, Nicholas; Schneider, Gideon

    2006-01-01

    We discuss general system architectures and specific work towards precision measurements of Cosmic Microwave Background (CMB) polarization. The CMB and its polarization carry fundamental information on the origin, structure, and evolution of the universe. Detecting the imprint of primordial gravitational radiation on the faint polarization of the CMB will be difficult. The two primary challenges will be achieving both the required sensitivity and precise control over systematic errors. At anisotropy levels possibly as small as a few nanokelvin, the gravity-wave signal is faint compared to the fundamental sensitivity limit imposed by photon arrival statistics, and one must make simultaneous measurements with large numbers, hundreds to thousands, of independent background-limited direct detectors. Highly integrated focal plane architectures, and multiplexing of detector outputs, will be essential. Because the detectors, optics, and even the CMB itself are brighter than the faint gravity-wave signal by six to nine orders of magnitude, even a tiny leakage of polarized light reflected or diffracted from warm objects could overwhelm the primordial signal. Advanced methods of modulating only the polarized component of the incident radiation will play an essential role in measurements of CMB polarization. One promising general polarimeter concept that is under investigation by a number of institutions is to first use planar antennas to separate millimeter-wave radiation collected by a lens or horn into two polarization channels. Then the signals can be fed to a pair of direct detectors through a planar circuit consisting of superconducting niobium microstrip transmission lines, hybrid couplers, band-pass filters, and phase modulators to measure the Stokes parameters of the incoming radiation.

  3. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements

    International Nuclear Information System (INIS)

    Kolbe, Michaela

    2011-01-01

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S 2 I/I 0 , with the asymmetry function S and the ratio between scattered and primary intensity I/I 0 . State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM ≅10 -4 . On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10 4 data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a μ-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k parallel -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of ≅3 eV. This leads to a two-dimensional figure of merit of FoM 2D =1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to investigate strongly reactive samples in a short time. This

  4. Determination of the extraction efficiency for {sup 233}U source α-recoil ions from the MLL buffer-gas stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany)

    2015-03-01

    Following the α decay of {sup 233}U, {sup 229}Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for {sup 229}Th{sup 3+} is determined via MCP-based measurements and via the direct detection of the {sup 229}Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of {sup 229}Th{sup 3+} is obtained at a mass resolution of about 1u/e. In addition to {sup 229}Th, also other α-recoil ions of the {sup 233,} {sup 232}U decay chains are addressed. (orig.)

  5. On the possibility of space objects invasion observations into the Earth's atmosphere with the help of a multifunctional polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.

  6. Experiments with a magnetic separator for heavy recoil ions

    International Nuclear Information System (INIS)

    Mosler, E.

    1981-01-01

    Using a triple-focusing (position and momentum), crescent-shaped separator for heavy recoil-ions different experiments were performed. The improvement consists in the enhancement of the transmission from 8% to 25% for 500 keV recoil ions from the reaction 238 U(α, 3n)sup(239m)Pu. For sup(237m)Pu the electromagnetic decay of the 1.1 μs shape isomer into the 82 ns shape isomer was searched for. The upper limit for gamma decay is 1.25 +- 1.25% for Esub(γ) = 200 keV and for electron decay 0.29 +- 0.29% in comparison to isomeric fission. The upper limit for interband transitions is 2.5% (2 delta), from which the upper limit of the partial half-life for the electromagnetic decay of the 1.1 μs isomer is calculated to 44 μs. Due to the performed interpretation the spin difference between both isomers extends at least to ΔI = 3. For sup(238m)U the back-decay into the 1. minimum by the EO-transition and the converted 2 + → 0 + transition in the first decay and the decay by alpha articles was looked for both in single measurements as in a coincidence measurement to L-X-ray quanta. The upper limits are GAMMAsub(EO) = 2.0, GAMMAsub(α)/GAMMAsub(F) = 0.4 and GAMMA(back-decay)/GAMMAsub(F) approx. equal to 100. (orig./HSI) [de

  7. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  8. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  9. Faraday rotation calculations for a FIR polarimeter on ITER

    International Nuclear Information System (INIS)

    Nieswand, C.

    1997-01-01

    The measurement of the safety factor profile has been considered as an essential diagnostics for ITER. Without the presence of a neutral beam, the only reliable diagnostics which can fulfill the requirements for the q-profile determination is at present the polarimetry. This paper presents the results of calculations of the Faraday rotation and the Cotton-Mouton effect for various plasma configurations (considered as typical) and various beam geometries which can eventually be realized in spite of the restricted access. The calculations should help to find a decision for the wavelength and the number and the position of the observation chords of a possible polarimeter system on ITER. The paper does not deal with technical questions concerning the implementation of such a system on ITER. The potential use of internal retro-reflectors or waveguides for the beams is not discussed. (author) 4 figs., 3 refs

  10. Selection and acquisition of data for the measurement of the spin rotation parameters in pion-proton scattering at high energies

    International Nuclear Information System (INIS)

    Raoul, Jean-Claude

    1971-01-01

    The experiment consists in measuring the polarisation of the recoil protons from elastic scattering of positive or negative pions on a polarised proton target (L. M. N.). The polarimeter consists in carbon plates alternated with wire spark chambers, The associated electronics has the following main functions: selective triggering of the spark chambers, acquisition and transcription on magnetic tape of all relevant information, continuous check of the various parts of the equipment. About one hundred scintillation counters provide information on the geometry of the pion-proton scattering. A fast logic treats these information. This logic, made of integrated circuits MECL, generates the selective trigger with a transit time of less than 150 ns, it reduces the triggering rate on background events by almost one order of magnitude. A small computer is used for acquisition and transcription of the data, and for the control of the experiment. (author) [fr

  11. Effect of γ-exposure on retention of recoil 56Mn in permanganates

    International Nuclear Information System (INIS)

    Mishra, S.P.; Vijaya

    2002-01-01

    Full text: γ-exposure effect on recombination of recoil 56 Mn atom in La, Sr and Ba permanganates were studied with a special emphasis to pre-and post-activation γ-ray irradiation treatment using 60 Co source. Permanganates were inactivated by ionizing radiation as a function of γ-dose without neutron irradiation, however, pronounced effects were seen after neutron activation. Pre-irradiation increase the initial retention and promotes the annealing phenomenon as the introduction of defect into the lattice though on the other hand radiolytic phenomenon may also appear. Pre-activated sample gave higher retention value for lanthanum and barium permanganates in comparison to strontium permanganate at different γ-doses for desired period of gamma annealing than those obtained at corresponding γ-doses for similar length of time in case of post-activated targets. Kinetics of annealing by γ-radiolytic effects follow first order rate law. The observed results are discussed in the light of existing ideas for understanding the recoil stabilization phenomenon of parent reformation and the nature of precursors in permanganates

  12. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at the cooler synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The Cooler Synchrotron (COSY) is a storage ring used for experiments with polarized proton and deuteron beams. The low energy polarimeter is used to determine the vector and tensor polarization of the beam before injection at kinetic energies up to 45 MeV for protons and 75 MeV for deuterons. The polarimeter uses scintillators to measure the energy of both outgoing particles of a scattering reaction and the time between their detection. The present read-out electronics consists of analog NIM modules and is limited in terms of time resolution and the capability for online data analysis. The read-out electronics will be replaced with a a new system based on analog pulse sampling and an FPGA chip for logic operations. The new system will be able to measure the time at which particles arrive to a precision better than 50 ps, facilitating better background reduction using coincidence measurement. In addition to measuring the beam polarization, the system will be used to precisely determine the vector and tensor analyzing powers for deuteron scattering off carbon at a kinetic energy of 75 MeV.

  13. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  14. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; hide

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  15. Algorithm Validation of the Current Profile Reconstruction of EAST Based on Polarimeter/Interferometer

    International Nuclear Information System (INIS)

    Qian Jinping; Ren Qilong; Wan Baonian; Liu Haiqin; Zeng Long; Luo Zhengping; Chen Dalong; Shi Tonghui; Sun Youwen; Shen Biao; Xiao Bingjia; Lao, L. L.; Hanada, K.

    2015-01-01

    The method of plasma current profile reconstruction using the polarimeter/interferometer (POINT) data from a simulated equilibrium is explored and validated. It is shown that the safety factor (q) profile can be generally reconstructed from the external magnetic and POINT data. The reconstructed q profile is found to reasonably agree with the initial equilibriums. Comparisons of reconstructed q and density profiles using the magnetic data and the POINT data with 3%, 5% and 10% random errors are investigated. The result shows that the POINT data could be used to a reasonably accurate determination of the q profile. (fusion engineering)

  16. Proton-recoil proportional-counter array for neutron-image construction

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; DeVolpi, A.

    1984-01-01

    The fuel-motion measurement capability of the fast-neutron hodoscope has been upgraded by the addition of a 360-detector proton-recoil proportional-counter array, which detects high-energy fission neutrons. The current sensitive amplifier/discriminator module for each detector fits into a 12.7 by 12.7 by 102 mm package and cost less than $100 per module. It has a 50 ns rise time, a noise level of 100 nA, and a deadtime per event of 200 ns. Provision has been provided for the independent adjustment of the input current versus discriminator voltage for each module. The new proportional-counters cost approximately $400 each. Each detector has been tested to have the same gain versus voltage response. A space-charge model relating count-rate changes to space-charge effects has also been developed. The new detector array has been operational for approximately two years and has become the main detector system in fuel-motion analysis. It has significantly improved the linearity, stability, count-rate capability, and setup ease of the hodoscope

  17. Opto-Mechanical systems design for polarimeter-interferometer on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Z.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, H.Q., E-mail: hqliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ding, W.X.; Brower, D.L. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Li, W.M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Lan, T. [University of Science and Technology of China, Hefei, Anhui 230026 (China); Zeng, L.; Yao, Y.; Yang, Y.; Jie, Y.X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-15

    Highlights: • The POINT system has been designed double-pass horizontal 11-channel, and the probe beams are reflected by corner cube retro reflectors in the vacuum vessel for the first time. • ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system. • The massy, vibration isolation performance of optical table and optical tower are designed and vibration tested. - Abstract: An 11-channel Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system has been successfully operated in 2015 EAST experimental campaign. For high accuracy measurement of POINT system, optimized optical system to reduce the stray light and crosstalk is very important. Optical design is done and improved by using ZEMAX software, in which spot size and energy distribution can be calculated in any position. The crosstalk and stray light can be reduced by optimized design of optical components and putting high extinction ratio materials in some key positions. Vibration isolation coefficient of optical platform is set to 90%. The optical platform and vibration isolation system are about 5 and 20 tons in weight respectively. To reduce vibration caused by the EAST hall, a more than 30 tons in weight stainless steel tower, filled with sand and mounted independent of the EAST machine, is constructed to ensure the stability of optics. Based on the optimized opto-mechanical design, the POINT system resolutions for Faraday rotation and line integral electron density measurements are 0.1° and 1 × 10{sup 16} m{sup −2}, respectively.

  18. Chromospheric Lyman-alpha spectro-polarimeter (CLASP)

    Science.gov (United States)

    Kano, Ryouhei; Bando, Takamasa; Narukage, Noriyuki; Ishikawa, Ryoko; Tsuneta, Saku; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Hara, Hirohisa; Shimizu, Toshifumi; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Sakao, Taro; Goto, Motoshi; Kato, Yoshiaki; Imada, Shinsuke; Kobayashi, Ken; Holloway, Todd; Winebarger, Amy; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Trujillo Bueno, Javier; Štepán, Jiří; Manso Sainz, Rafael; Belluzzi, Luca; Asensio Ramos, Andres; Auchère, Frédéric; Carlsson, Mats

    2012-09-01

    One of the biggest challenges in heliophysics is to decipher the magnetic structure of the solar chromosphere. The importance of measuring the chromospheric magnetic field is due to both the key role the chromosphere plays in energizing and structuring the outer solar atmosphere and the inability of extrapolation of photospheric fields to adequately describe this key boundary region. Over the last few years, significant progress has been made in the spectral line formation of UV lines as well as the MHD modeling of the solar atmosphere. It is found that the Hanle effect in the Lyman-alpha line (121.567 nm) is a most promising diagnostic tool for weaker magnetic fields in the chromosphere and transition region. Based on this groundbreaking research, we propose the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) to NASA as a sounding rocket experiment, for making the first measurement of the linear polarization produced by scattering processes and the Hanle effect in the Lyman-alpha line (121.567 nm), and making the first exploration of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP instrument consists of a Cassegrain telescope, a rotating 1/2-wave plate, a dual-beam spectrograph assembly with a grating working as a beam splitter, and an identical pair of reflective polarization analyzers each equipped with a CCD camera. We propose to launch CLASP in December 2014.

  19. Use of the on-line Moessbauer effect as a contribution to the study of recoil defects in solids

    International Nuclear Information System (INIS)

    Jeandey, Christian

    1974-01-01

    This research thesis addresses the study of effects of nuclear reactions, also known as 'after-effects' such as atomic disorders resulted from atom recoil, but also possible chemical modifications. The author more particularly focuses of recoil defects. He reports a critical review of studies of structure defects (in pure metals, ordered alloys, ionic crystals) performed by using conventional resonance absorption, and then presents an analysis of results of the defect creation dynamics as it had been proposed by other authors. He also proposes an overview of the evolution and disappearance of defects during thermal treatments. After a review of experiments based on the on-line Moessbauer effect, the author reports the study of recoil effects in pure metals (iron, hafnium), in alloys (Fe 1-x Al x , FeGe 2 , cubic, monoclinic and hexagonal FeGe), and in organic complexes (ferrous oxalate, different types of hafnium chelate, hafnium oxide). He finally discusses the electronic properties of different types of iron and hafnium chelate in solid phase [fr

  20. Monte-Carlo estimation of the inflight performance of the GEMS satellite x-ray polarimeter

    Science.gov (United States)

    Kitaguchi, Takao; Tamagawa, Toru; Hayato, Asami; Enoto, Teruaki; Yoshikawa, Akifumi; Kaneko, Kenta; Takeuchi, Yoko; Black, Kevin; Hill, Joanne; Jahoda, Keith; Krizmanic, John; Sturner, Steven; Griffiths, Scott; Kaaret, Philip; Marlowe, Hannah

    2014-07-01

    We report a Monte-Carlo estimation of the in-orbit performance of a cosmic X-ray polarimeter designed to be installed on the focal plane of a small satellite. The simulation uses GEANT for the transport of photons and energetic particles and results from Magboltz for the transport of secondary electrons in the detector gas. We validated the simulation by comparing spectra and modulation curves with actual data taken with radioactive sources and an X-ray generator. We also estimated the in-orbit background induced by cosmic radiation in low Earth orbit.

  1. High-resolution integrated germanium Compton polarimeter for the γ-ray energy range 80 keV--1 MeV

    International Nuclear Information System (INIS)

    Sareen, R.A.; Urban, W.; Barnett, A.R.; Varley, B.J.

    1995-01-01

    Parameters which govern the choice of a detection system to measure the linear polarization of γ rays at low energies are discussed. An integrated polarimeter is described which is constructed from a single crystal of germanium. It is a compact planar device with the sectors defined electrically, and which gives an energy resolution in the add-back mode of 1 keV at 300 keV. Its performance is demonstrated in a series of calibration measurements using both unpolarized radiation from radioactive sources and polarized γ rays from the 168 Er(α,2n) 170 Yb reaction at E α =25 MeV. Polarization measurements at energies as low as 84 keV have been achieved, where the sensitivity was 0.32±0.09. The sensitivity, efficiency, and energy resolution are reported. Our results indicate that energy resolution should be included in the definition of the figure of merit and we relate the new definition to earlier work. The comparisons show the advantages of the present design in the energy range below 300 keV and its competitiveness up to 1500 keV. copyright 1995 American Institute of Physics

  2. Semileptonic weak and electromagnetic interactions in nuclei: recoil polarization in muon capture

    International Nuclear Information System (INIS)

    Rosenfelder, R.

    1979-01-01

    An analysis of the polarization of the recoiling nucleus following the capture of polarized muons by nuclei is performed. New general expressions for arbitrary nuclear spin are obtained in terms of the same reduced matrix elements which govern inelastic electron scattering and β-decay. As an application the A = 12 system is considered and uncertainties in the nuclear structure are studied by using different sets of one-body density matrices. With the canonical values of the weak form factors (i.e. absence of second-class currents) a fairly good agreement with the experimental data is achieved including the inelastic form factor at high momentum transfers and the recently measured average 12 B polarization. Implications of the new corrected value of the average polarization on weak form factors and nuclear structure are discussed. (Auth.)

  3. Probing the structure of unstable nuclei through the recoiled proton tagged knockout reaction

    International Nuclear Information System (INIS)

    Ye, Y.; Cao, Z.; Jiang, D.

    2010-01-01

    Recoiled proton tagged knockout reaction experiments were carried-out for 8 He at 82,5 MeV/u in RIKEN and for 6 He at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation. (authors)

  4. Acceptability and Difficulty of the STEM Track Implementation in Senior High School

    Directory of Open Access Journals (Sweden)

    Aldrin John Jao Estonanto

    2017-05-01

    Full Text Available The Department of Education in the Philippines implemented the Enhanced Basic Education Curriculum in 2013 which led to the creation of Senior High School Program. Studies showed the importance of the support of stakeholders to the success of an educational reform. Thus, it is significant to consider the acceptance of the new curriculum. This descriptive- correlational study sought to determine the acceptability of the Senior High School STEM program and correlate it to the difficulty level of problems along its implementation. Findings showed that there was low acceptability of the new curriculum among stakeholders. It also revealed that the major problems along the implementation of the curriculum were on the areas of Facility and Instructional Materials, and that the difficulty level of the problems was high. Finally, it was found out that there was significant inverse correlation between the curriculum’s acceptability level and the problems’ difficulty level. Thus, the study concludes that the acceptability level of curriculum is significantly related to the difficulty level of the problems encountered by the school along its implementation. The researcher recommends that a series of informationdissemination programs be conducted to raise awareness on the significance of the STEM Curriculum among the stakeholders of the school. Interventions were also proposed to address the problems

  5. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics

    International Nuclear Information System (INIS)

    Saubamea, B.

    1998-12-01

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  6. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.

    Science.gov (United States)

    Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott

    2009-05-25

    Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.

  7. Analysis of hard exclusive scattering processes of the HERMES recoil experiment

    International Nuclear Information System (INIS)

    Brodski, Irina

    2014-11-01

    Deeply virtual Compton Scattering (DVCS), ep → epγ is the simplest reaction giving indication of generalized parton distributions (GPD) of the nucleon. The DVCS process has the same final state as the Bethe-Heitler process (BH). For this reason the access is taken not through the cross-sections directly but through asymmetries between DVCS events depending on charge and polarization of the 27.6 GeV beam. For the first time the azimuthal asymmetry amplitudes according the charge of the lepton beam are extracted using a kinematically complete reconstruction method at the HERMES experiment. The recoil detector installed in 2006 allows the reconstruction of recoiling protons that completes the measurements of the forward detector to cover almost the complete angle range around the vertex. This approach allows suppressing the background processes by almost a complete magnitude compared to the traditional method using only the information of the forward spectrometer. The analysis of the asymmetries was carried out at different values of the kinematic variables t c' x B and Q 2 to investigate the dependence of these variables. This work pushes the limits of the readability of data and shows which periods have been found to be unstable in the data acquisition. It points out the impact of this finding to previous HERMES publications.

  8. Scandiatransplant acceptable mismatch program (STAMP) a bridge to transplanting highly immunized patients

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, Pernille; Weinreich, I; Bengtsson, M

    2017-01-01

    BACKGROUND: Highly immunized patients are a challenge for organ transplantation programs. One way of increasing the likelihood of transplantation in this group of patients is to expand the possible donations by defining acceptable HLA mismatches. In the Scandiatransplant Acceptable Mismatch Program...

  9. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    Science.gov (United States)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  10. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  11. Chemical effects of /sup 32/P recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, N [Tokyo Univ. (Japan). Coll. of General Education

    1975-06-01

    Szilard-Chalmers' effect of /sup 32/P were reviewed. The concentration method using Szilard-Chalmers' effect in production of radioisotope, circumstances such as exposure time in an atomic pile, states of target substances and the yields by them were discussed. Many kinds of chemical effects, such as chemical effects of /sup 32/P recoil atom in phosphorated glass, studies of the effect of adducts, the threshold of ..gamma..-ray effect, the oxidation number of /sup 32/P in phosphorated glass by exposure time in the pile and the labelling position of /sup 32/P, are associated with caryotransformation (nuclear transformation) by environmental factors. The abovementioned articles were explained concerning /sup 32/P.

  12. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  13. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  14. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  15. Integration of a thermo-structural analysis with an optical model for PEPSI polarimeter

    Science.gov (United States)

    Di Varano, Igor; Strassmeier, Klaus G.; Ilyin, Ilya; Woche, Manfred; Kaercher, Hans J.

    2011-09-01

    The two spectropolarimeters for PEPSI (Potsdam Echelle Polarimetric and Spectroscopic Instrument) have been de¬signed in order to reconstruct the full Stokes vector measuring linear and circular polarization simultaneously with a re¬solving power of 120,000. The polarimeters will be attached to the Gregorian focus of the so far largest LBT 2x8.4m telescope and will feed together with permanent focus stations the spectrograph via 44m long fibers connection. The spectrograph will be located in a pressure-temperature controlled chamber within the telescope pier. We present hereafter the last results from combined structural and CFD analyses in order to fulfill the optical requirements.

  16. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    International Nuclear Information System (INIS)

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1991-01-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, δE rr = (α(Ζα)/π 2 )(m/M)E F (6ζ(3) + 3π 2 In 2 + π 2 /2 + 17/8), are also presented

  17. Commissioning and performance studies of a proton recoil detector at the COMPASS-II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Philipp; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    The COMPASS-II experiment is a fixed target experiment situated at CERN. A tertiary myon beam from the SPS scattered of protons from a liquid hydrogen target is used to measure Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP). These processes offer a unique way to determine Generalized Parton Distributions, which are related to the total angular momentum of quarks, antiquarks and gluons in the nucleon by Ji's Sum Rule. One of the major parts of the COMPASS-II upgrade is the CAMERA detector. CAMERA is a proton recoil detector surrounding the COMPASS-II liquid hydrogen target. Its purpose is to measure the recoiled target proton in DVCS and HEMP reactions and viz to act as a veto to ensure the exclusivity of the measurement. The talk gives an outline of the detector and its readout electronics. It is focused on the commissioning and performance of the CAMERA detector and gives a brief insight into the ongoing DVCS analysis.

  18. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  19. Polarization measurements in the pp → pnπ+ and pp → ppπ0 reactions at 517 and 580 MeV

    International Nuclear Information System (INIS)

    Bach, P.; Cantale, G.; Degli-Agosti, S.; Demierre, P.; Favier, B.; Heer, E.; Hess, R.; Lechanoine-Leluc, C.; Leo, W.; Onel, Y.; and others.

    1989-01-01

    The transverse polarization of the outgoing proton in the pp → pnπ + and pp → ppπ 0 reactions was investigated for the first time. The measurements were performed at SIN (now PSI) at 517 and 580 MeV on the pM1 polarized proton beam line with an average beam polarization higher than 82%, using a liquid hydrogen target. A carbon polarimeter spin-analyzed the scattered proton, 3 MWPC's tracked the recoil charged particle and a 3.84 m 2 neutron detector identified the neutral particle and measured TOF's

  20. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-01-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions

  1. Szilard-Chalmers cation recoil studies in zeolites X and Y. Pt. 3. Recoils from locked to open sites

    Energy Technology Data Exchange (ETDEWEB)

    Lai, P P; Rees, L V.C. [Imperial Coll. of Science and Technology, London (UK)

    1976-01-01

    The Szilard-Chalmers recoil of the cations Rb/sup +/, Cs/sup +/, Ba/sup 2 +/, La/sup 3 +/, Co/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/ and Na/sup +/ from the sodalite cage and hexagonal prism sites into the supercage sites of zeolites X and Y has been studied. This study is complementary to that described in Lai et al, JCS Faraday I; 72:181 (1976). It has been found that these cations recoil from the sodalite cage sites into the supercage sites with a probability of approximately 90% whereas the corresponding probability for these cations in the hexagonal prism sites (site I) is between 40 and 50% depending on the cation. It is thus possible to determine the preferences shown by these cations for these 'locked-in' sites as a function of temperature of calcination, Tsub(c), concentration and type of other cations contained in these sites. In these studies the cations present in the supercage sites before irradiation were usually NH/sub 4//sup +/ but Ba/sup 2 +/, Ca/sup 2 +/ and Na/sup +/ have also been used. When Tsub(c) > 400/sup 0/C, Rb/sup +/ and Cs/sup +/ began to populate site I. These ions populated this site in zeolite X at lower calcination temperatures than required for zeolite Y. When Tsub(c) was increased from 110 to 220/sup 0/C the occupancy of site I by Ba/sup 2 +/ was greatly enhanced and when Tsub(c) > 440/sup 0/C Ba/sup 2 +/ ions now occupied this site in preference to all other 'locked-in' sites. Barium exhibited a higher affinity for site I in zeolite X than in zeolite Y when Tsub(c) = 110/sup 0/C. If dehydrated La-Y was assumed to have 5 La/sup 3 +/ ions per u.c. in site I, the hydration of this material did not change the concentration of La/sup 3 +/ in site I. Co/sup 2 +/, Zn/sup 2 +/ and Cu/sup 2 +/ ions all exhibited similar affinities for the 'locked-in' sites of zeolites X and Y.

  2. Table of solar activity associated with coronal mass ejections observed by the SMM coronagraph/polarimeter in 1980. Technical note

    International Nuclear Information System (INIS)

    Webb, D.F.

    1987-10-01

    This report is the description and presentation of a table of solar activity considered to be associated with coronal mass ejections (CMEs) as observed during 1980 with the High Altitude Observatory's Coronagraph/Polarimeter (C/P) on the SMM spacecraft. The list has formed the basic data set for several studies, most prominently a study of CME associations published by Webb and Hundhausen (1987). An attendant source of CME data is the unpublished C/P Event List for 1980, which co-evolved with the association list under the guidance of Art Hundhausen. Discussions of the details of the selection and verification of the list of SMM CMEs are contained in the above paper as well as in this papers of Hundhausen et al. (1984) and Hundhausen (1987)

  3. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  4. Neutron scattering facility for the calibration of the response to nuclear recoils

    International Nuclear Information System (INIS)

    Jochum, J.; Feilitzsch, F. von; Huber, M.; Jagemann, T.; Lachenmaier, T.; Lanfranchi, J.-C.; Potzel, W.; Ruedig, A.; Schnagl, J.; Stark, M.; Wulandari, H.; Chambon, B.; Drain, D.; Gascon, J.; Jesus, M. de; Martineau, O.; Simon, E.; Stern, M.

    2002-01-01

    A possibility to search for elementary particles as dark matter candidates is to detect elastic scattering with cryogenic detectors. For the interpretation of the data one has to determine the detector response to nuclear recoils, the so-called quenching factors. They can differ for the heat-, for the scintillation- and for the ionization-signal and can be measured by scattering of neutrons. The CRESST- and the EDELWEISS-collaborations have set up a neutron scattering facility for cryogenic detectors at the tandem-accelerator of the Munich 'Maier-Leibniz-Labor.' The scattering angle and the time-of-flight of the neutrons are measured by an array of liquid scintillator cells. The pulsed high energy (11 MeV) neutron beam is created by nuclear reaction of a 11 B on a H 2 -gas target. The set-up and the results of first tests are presented

  5. Complete analytic results for radiative-recoil corrections to ground-state muonium hyperfine splitting

    International Nuclear Information System (INIS)

    Karshenboim, S.G.; Shelyuto, V.A.; Eides, M.E.

    1988-01-01

    Analytic expressions are obtained for radiative corrections to the hyperfine splitting related to the muon line. The corresponding contribution amounts to (Z 2 a) (Za) (m/M) (9/2 ζ(3) - 3π 2 ln 2 + 39/8) in units of the Fermi hyperfine splitting energy. A complete analytic result for all radiative-recoil corrections is also presented

  6. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  7. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  8. A note on the random walk theory of recoil movement in prolonged ion bombardment

    International Nuclear Information System (INIS)

    Koponen, Ismo

    1994-01-01

    A characteristic function is derived for the probability distribution of final positions of recoil atoms in prolonged ion bombardment of dense matter. The derivation is done within the framework of Poissonian random walk theory using a jump distribution, which is somewhat more general than those studied previously. ((orig.))

  9. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    Science.gov (United States)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  10. The B → D*lv form factor at zero recoil

    International Nuclear Information System (INIS)

    Simone, J.N.; Hashimoto, S.; El-Khadra, A.X.; Kronfeld, A.S.; Mackenzie, P.B.; Ryan, S.M.

    2000-01-01

    We describe a model independent lattice QCD method for determining the deviation from unity for h A1 (1), the B → D*lv form factor at zero recoil. We extend the double ratio method previously used to determine the B → Dlv form factor. The bulk of statistical and systematic errors cancel in the double ratios we consider, yielding form factors which promise to reduce present theoretical uncertainties in the determination of parallel V cb parallel. We present results from a prototype calculation at a single lattice spacing corresponding to β = 5.7

  11. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  12. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  13. Upgraded photon calorimeter with integrating readout for the Hall A Compton polarimeter at Jefferson Lab

    International Nuclear Information System (INIS)

    Friend, M.; Parno, D.; Benmokhtar, F.; Camsonne, A.; Dalton, M.M.; Franklin, G.B.; Mamyan, V.; Michaels, R.; Nanda, S.; Nelyubin, V.; Paschke, K.; Quinn, B.; Rakhman, A.; Souder, P.; Tobias, A.

    2012-01-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition (DAQ) system now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped Gd 2 SiO 5 crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  14. Managing Problems of Acceptability Through High Rise-Fall Repetitions

    NARCIS (Netherlands)

    Benjamin, Trevor; Walker, Traci

    2013-01-01

    This article examines one of the ways in which matters of truth, appropriateness, and acceptability are raised and managed within the course of everyday conversation. Using the methodology of conversation analysis, we show that by repeating what another participant has said and doing so with a high

  15. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  16. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.jp; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for {sup 72}Ge, {sup 75}As, {sup 89}Y, and {sup 109}Ag in the ENDF/B-VII.1 library, and for {sup 90}Zr and {sup 55}Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  17. B → Kl{sup +}l{sup -} decay at large hadronic recoil

    Energy Technology Data Exchange (ETDEWEB)

    Khodjamirian, Alexander; Mannel, Thomas [Siegen University (Germany); Wang, Yuming [TUM (Germany)

    2013-07-01

    We predict the amplitude of the B → Kl{sup +}l{sup -} decay in the region of the dilepton invariant mass squared 0 < q{sup 2}≤ m{sup 2}{sub J/ψ}, that is, at large hadronic recoil. The B → K form factors entering the factorizable part of the decay amplitude are obtained from QCD light-cone sum rules. The nonlocal effects, generated by the four-quark and penguin operators combined with the electromagnetic interaction, are calculated at q{sup 2}<0, far below the hadronic thresholds. For hard-gluon contributions we employ the QCD factorization approach. The soft-gluon nonfactorizable contributions are estimated from QCD light-cone sum rules. The result of the calculation is matched to the hadronic dispersion relation in the variable q{sup 2}, which is then continued to the kinematical region of the decay. The overall effect of nonlocal contributions in B → Kl{sup +}l{sup -} at large hadronic recoil is moderate. The main uncertainty of the predicted B → Kl{sup +}l{sup -} partial width is caused by the B → K form factors. Furthermore, the isospin asymmetry in this decay is expected to be very small. We investigate the deviation of the observables from the Standard Model predictions by introducing a generic new physics contribution to the effective Hamiltonian.

  18. Effect of pressure on the radiation annealing of recoil atoms in chromates

    International Nuclear Information System (INIS)

    Stamouli, M.I.

    1986-01-01

    The effect of pressure on the annealing of recoil atoms by gamma radiation in neutron irradiated potassium chromate, ammonium chromate and ammonium dichromate was studied. In potassium chromate the pressure applied before the gamma-irradiation was found to retard the radiation annealing process. In ammonium chromate and ammonium dichromate the radiation annealing was found to be enhanced in the compressed samples in comparison to the noncompressed ones. (author)

  19. High Accuracy, High Energy He-Erd Analysis of H,C, and T

    International Nuclear Information System (INIS)

    Browning, James F.; Langley, Robert A.; Doyle, Barney L.; Banks, James C.; Wampler, William R.

    1999-01-01

    A new analysis technique using high-energy helium ions for the simultaneous elastic recoil detection of all three hydrogen isotopes in metal hydride systems extending to depths of several microm's is presented. Analysis shows that it is possible to separate each hydrogen isotope in a heavy matrix such as erbium to depths of 5 microm using incident 11.48MeV 4 He 2 ions with a detection system composed of a range foil and ΔE-E telescope detector. Newly measured cross sections for the elastic recoil scattering of 4 He 2 ions from protons and deuterons are presented in the energy range 10 to 11.75 MeV for the laboratory recoil angle of 30degree

  20. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    . This two-pulse technique has a number of disadvantages for a precision measurement of ωq, such as a complicated functional dependence on T21 (due to the nature of Kapitza-Dirac diffraction, the level structure of the atom, and spontaneous emission). However, many of these difficulties can be avoided by using a three-pulse "perturbative" echo technique, where a third standing-wave pulse is applied at t = T21 + δT , with δT 1) to ħq. In this manner, interference between high-order momentum states contributes more significantly to the three-pulse echo than to the two-pulse echo. By fixing T21 and varying δT between the second standing-wave pulse and the echo time, the signal exhibits a simple shape with narrow fringes that revive periodically at the recoil period, τq. Using this technique, I have achieved a single measurement of ωq with a relative statistical uncertainty of ˜ 180 parts per 109 (ppb) on a time scale of 2T21 ˜ 72 ms in ˜ 15 minutes of data acquisition. Further improvements are anticipated by extending the experimental time scale and narrowing the signal fringe width. To demonstrate the final statistical uncertainty using the current configuration of the experiment, I acquired 82 individual measurements of ω q under the same experimental conditions. This resulted in a final measurement with a statistical precision of 37 ppb. However, this measurement is currently overwhelmed by systematic errors at the level of ˜ 5.7 parts per 106 (ppm). The first survey of systematic effects on the measurement of ωq with this technique has also been carried out, where individual measurements had relative statistical uncertainties of ≲ 1 ppm. These experimental studies, along with theoretical calculations, can be used to reduce and eliminate such effects in future rounds of experimentation. (Abstract shortened by UMI.).