WorldWideScience

Sample records for high temperature pem

  1. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  2. Novel High Temperature Membrane for PEM Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  3. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  4. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  5. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  6. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Schaltz, Erik; Jespersen, Jesper Lebæk; Rasmussen, Peter Omand

    2006-01-01

    reformer design because CO removal is not needed. A fuel like methanol would be a preferable choice for reforming when using HTPEM fuel cells because of its high energy density and low reforming temperatures. The thermal integration and use of HTPEM fuel cells with methanol reformers show promising results......When using pressurized hydrogen to fuel a fuel cell, much space is needed for fuel storage. This is undesirable especially with mobile or portable fuel cell systems, where refuelling also often is inconvenient. Using a reformed liquid carbonhydrate can reduce this fuel volume considerably. Nafion...... based low temperature PEM (LTPEM) fuel cells are very intolerant to reformate gas because of the presence of CO. PBI based high temperature PEM (HTPEM) fuel cells can operate stable at much higher CO concentrations. This makes the HTPEM very suitable for applications using a reformer, and could simplify...

  7. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  8. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  9. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  10. Investigation of low glass transition temperature on COTS PEMs reliability

    Science.gov (United States)

    Sandor, M.; Agarwal, S.

    2002-01-01

    Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.

  11. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  12. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature....... A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  13. Experimental Analysis of the Effects of CO and CO2 on High Temperature PEM Fuel Cell Performance using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Vang, Jakob Rabjerg

    2010-01-01

    The use of high temperature PEM (HTPEM) fuel cells running on reformate gas shows comparable performance to HTPEM fuel cells running on pure hydrogen, even when running at high levels of CO, as long as high operating temperatures are ensured. The increased operating temperatures of these types of...

  14. GenHyPEM: an EC-supported STREP program on high pressure PEM water electrolysis

    International Nuclear Information System (INIS)

    Millet, P.

    2006-01-01

    GenHyPEM (generateur d'hydrogene PEM) is an international research project related to the electrolytic production of hydrogen from water, using proton exchange membrane (PEM) - based electrochemical generators. The specificity of this project is that all basic research efforts are devoted to the optimization of already existing electrolysers of industrial size, in order to facilitate the introduction of this technology in the industry and to propose technological solutions for the industrial and domestic production of electrolytic hydrogen. GenHyPEM is a three years long research program financially supported by the European Commission, gathering partners from academic institutions and from the industry, in order to reach three main technological objectives aimed at improving the performances of current 1000 Nliter/hour H 2 industrial PEM water electrolysers: (i) Development of alternative low-cost membrane electrode assemblies and stack components with electrochemical performances similar to those of state-of-the-art systems. The objectives are the development of nano-scaled electrocatalytic structures for reducing the amount of noble metals; the synthesis and characterization of non-noble metal catalytic compounds provided by molecular chemistry and bio-mimetic approaches; the preparation of new composite membrane materials for high current density, high pressure and high temperature operation; the development and optimization of low-cost porous titanium sheets acting as current collectors in the electrolysis stack; (ii) Development of an optimized stack structure for high current density (1 A.cm-2) and high pressure (50 bars) operation for direct pressurized storage; (iii) Development of an automated and integrated electrolysis unit allowing gas production from intermittent renewable sources of energy such as photovoltaic-solar and wind. Current status of the project as well as perspectives are described in this paper. This project, coordinated by University of

  15. Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Gao, Xin; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    In previous work, a thermoelectric (TE) exhaust heat recovery subsystem for a high temperature polymer electrolyte membrane (HT-PEM) fuel cell stack was developed and modeled. Numerical simulations were conducted and have identified an optimized subsystem configuration and 4 types of compact heat...... modules are now connected into branches. The procedures of designing and optimizing this TE exhaust heat recovery subsystem are drawn out. The contribution of TE exhaust heat recovery to the HT-PEM fuel cell power system is preliminarily concluded. Its feasibility is also discussed....... exchangers with superior performance for further analysis. In this work, the on-design performances of the 4 heat exchangers are more thoroughly assessed on their corresponding optimized subsystem configurations. Afterward, their off-design performances are compared on the whole working range of the fuel...

  16. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160-200 degrees C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power......Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...... decomposition step, i.e. the decomposition of the hexahydride to sodium hydride and aluminium which refers to 1.8 wt% hydrogen is supposed to happen above 110 degrees C. The discharge of the material is thus limited by the level of heat supplied to the hydride storage tank. Therefore, we evaluated...

  17. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    Science.gov (United States)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  18. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2012-01-01

    Tungsten carbide (WC) nanopowder was tested as a non-platinum cathode electrocatalyst for polymer electrolyte membrane (PEM) water electrolysers, operating at elevated temperatures. It was prepared in thermal plasma reactor with confined plasma jet from WO3 precursor in combination with CH4...

  19. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...... to conventional PEM fuel cells, that use liquid water as a proton conductor and thus operate at temperatures below 100oC. The HTPEM fuel cell membrane in focus in this work is the BASF Celtec-P polybenzimidazole (PBI) membrane that uses phosphoric acid as a proton conductor. The absence of water in the fuel cells...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...

  20. PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120 oC

    International Nuclear Information System (INIS)

    Zhang, Jianlu; Tang, Yanghua; Song, Chaojie; Cheng, Xuan; Zhang, Jiujun; Wang, Haijiang

    2007-01-01

    Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 o C, in particular in a high temperature PEM fuel cell operation range of 80-120 o C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion (registered) 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure

  1. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  2. A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane

    International Nuclear Information System (INIS)

    Sun, Hong; Xie, Chen; Chen, Hao; Almheiri, Saif

    2015-01-01

    Highlights: • A two-dimensional model is developed to study the HT-PEMFC with ab-PBI membrane. • The temperature distribution in the ab-PBI membrane is uneven. • With the increase of temperature, the resistance in ab-PBI membrane decreases. • Porosity has the most significant effect on the performance of HT-PEMFC. - Abstract: A two-dimensional, single-phase model is developed to study high temperature proton exchange membrane (HT-PEM) fuel cell with poly(2,5-benzimidazole) (ab-PBI) membrane. In this model, simulation region not only includes the cathode and anode, but also includes ab-PBI membrane; the continuity boundary condition at the interface between the catalyst layer (CL) and the gas diffusion layer (GDL) at each side of the cell is omitted by including the catalyst layers in the respective unified domains for the cathode and the anode. The flows, species, energy, current density are all coupled in the model. Experiments have been conducted to validate the proposed numerical simulations, and it is found that there is a good agreement between the modeling results and those obtained experimentally. By this simulation, not only the oxygen and water fraction distribution in the cathode, but also the temperature distribution and resistance distribution in the ab-PBI membrane are obtained, and the effects of the cell temperature, the porosity in the diffusion layer and its thickness on the current density are analyzed. The innovative researching results are that the temperature distribution is uneven in the ab-PBI membrane and its resistance is greatly affected by the operating temperature. Other results show that the increase of the cell temperature and the porosity in the diffusion layer, and the decrease of the diffusion layer thickness all improve the performance of HT-PEM fuel cells by promoting its internal mass transfer.

  3. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  4. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    Increasing attention is given to fuel cells for micro combined heat and power systems for local households. Currently, mainly three different types of fuel cells are commercially competitive: SOFC, low- and high-temperature PEM fuel cells. In the present paper the Low Temperature PEM technology i...

  5. PORTABLE PEM FUEL CELL SYSTEM: WATER AND HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    SITI NAJIBAH ABD RAHMAN

    2016-07-01

    Full Text Available Portable polymer electrolyte membrane (PEM fuel cell power generator is a PEM fuel cell application that is used as an external charger to supply the demand for high energy. Different environments at various ambient temperatures and humidity levels affect the performance of PEM fuel cell power generators. Thermal and water management in portable PEM fuel cells are a critical technical barrier for the commercialization of this technology. The size and weight of the portable PEM fuel cells used for thermal and water management systems that determine the performance of portable PEM fuel cells also need to be considered. The main objective of this paper review was to determine the importance of water and thermal management systems in portable PEM fuel cells. Additionally, this review investigated heat transfer and water transport in PEM fuel cells. Given that portable PEM fuel cells with different powers require different thermal and water management systems, this review also discussed and compared management systems for low-, medium-, and high-power portable PEM fuel cells.

  6. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both the an...

  7. Development of Low Temperature Catalysts for an Integrated Ammonia PEM Fuel Cell

    OpenAIRE

    Hill, Alfred

    2014-01-01

    It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticl...

  8. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system

    International Nuclear Information System (INIS)

    Zhang, Caizhi; Yu, Tao; Yi, Jun; Liu, Zhitao; Raj, Kamal Abdul Rasheedj; Xia, Lingchao; Tu, Zhengkai; Chan, Siew Hwa

    2016-01-01

    Highlights: • Heating-up and cooling-down processes of HT-PEMFC are the mainly interested topics. • Dynamic behaviours, power and energy demand of the heating and cooling was studied. • Hybrid system based on LiFeYPO_4 battery for heating and cooling is built and tested. • The concept of combining different heating sources together is recommended. - Abstract: One key issue pertaining to the cold-start of High temperature PEM fuel cell (HT-PEMFC) is the requirement of high amount of thermal energy for heating up the stack to a temperature of 120 °C or above before it can generate electricity. Furthermore, cooling down the stack to a certain temperature (e.g. 50 °C) is necessary before stopping. In this study, the dynamic behaviours, power and energy demand of a 6 kW liquid cooled HT-PEMFC stack during heating-up, operation and cooling-down were investigated experimentally. The dynamic behaviours of fuel cell under heating-up and cooling-down processes are the mainly interested topics. Then a hybridisation of HT-PEMFC with Li-ion battery to demonstrate the synergistic effect on dynamic behaviour was conducted and validated for its feasibility. At last, the concept of combining different heating sources together is analysed to reduce the heating time of the HT-PEMFC as well.

  9. Danish research and development in PEM fuel cell technology. Status for strategy follow up; Dansk forskning og udvikling inden for PEM-braendselscelleteknologi. Status for strategiopfoelgning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    PEM fuel cell technology shows promise as to efficient and environmental friendly production of power and heat. Furthermore, the technology can be used for production of hydrogen through electrolysis of water. In Denmark research and development focus on PEM fuel cells for low temperatures (up to c 80 deg. C) as well as for high temperatures (up to 200 deg. C). This note summarizes the present plane for research and development in PEM in Denmark, including status for development within specific areas i.e. basic research and development, process development, cell and stack development and tests, and system development. (BA)

  10. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  11. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  12. Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells

    International Nuclear Information System (INIS)

    Ferrero, Domenico; Santarelli, Massimo

    2017-01-01

    Highlights: • A 2D model of a PEM water electrolyzer is developed and validated. • A novel system integrating PEM and multi-junction solar cells is proposed. • The model is applied to the simulation of the novel system. • The integration of PEM and MJ cells enhances the hydrogen production efficiency. - Abstract: A 2D finite element model of a high-pressure PEM water electrolyzer is developed and validated over experimental data obtained from a demonstration prototype. The model includes the electrochemical, fluidic and thermal description of the repeating unit of a PEM electrolyzer stack. The model is applied to the simulation of a novel system composed by a high-temperature, high-pressure PEM electrochemical cell coupled with a photovoltaic multi-junction solar cell installed in a solar concentrator. The thermo-electrochemical characterization of the solar-driven PEM electrolysis system is presented and the advantages of the high-temperature operation and of the direct coupling of electrolyzer and solar cell are assessed. The results show that the integration of the multi-junction cell enhances the performance of the electrolyzer and allows to achieve higher system efficiency compared to separated photovoltaic generation and hydrogen production by electrolysis.

  13. An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    In this paper a method for estimating the fuel cell impedance is presented, namely the current pulse injection (CPI) method, which is well suited for online implementation. This method estimates the fuel cell impedance and unlike electrochemical impedance spectroscopy (EIS), it is simple...... to implement at a low cost. This makes it appealing as a characterization method for on-line diagnostic algorithms. In this work a parameter estimation method for estimation of equivalent electrical circuit (EEC) parameters, which is suited for on-line use is proposed. Tests on a 10 cell high temperature PEM...... fuel cell show that the method yields consistent results in estimating EEC parameters for different current pulse at different current loads, with a low variance. A comparison with EIS shows that despite its simplicity the response of CPI can reproduce well the impedance response of the high...

  14. Optimized High Temperature PEM Fuel Cell & High Pressure PEM Electrolyser for Regenerative Fuel Cell Systems in GEO Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Farnes Jarle

    2017-01-01

    Full Text Available Next generation telecommunication satellites will demand increasingly more power. Power levels up to 50 kW are foreseen for the next decades. Battery technology that can sustain up to 50 kW for eclipse lengths of up to 72 minutes will represent a major impact on the total mass of the satellite, even with new Li-ion battery technologies. Regenerative fuel cell systems (RFCS were identified years ago as a possible alternative to rechargeable batteries. CMR Prototech has investigated this technology in a series of projects initiated by ESA focusing on both the essential fuel cell technology, demonstration of cycle performance of a RFCS, corresponding to 15 years in orbit, as well as the very important reactants storage systems. In the last two years the development has been focused towards optimising the key elements of the RFCS; the HTPEM fuel cell and the High Pressure PEM electrolyser. In these ESA activities the main target has been to optimise the design by reducing the mass and at the same time improve the performance, thus increasing the specific energy. This paper will present the latest development, including the main results, showing that significant steps have been taken to increase TRL on these key components.

  15. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Harnevie, H; Sarkoezi, L; Trenkle, S

    1996-08-01

    An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices

  16. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Laboratory; Luhan, Roger W [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  17. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  18. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  19. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  20. GenHyPEM: A research program on PEM water electrolysis supported by the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    Millet, Pierre; Dragoe, Diana [Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR CNRS no 8182, Universite Paris-Sud 11, 15 rue Georges Clemenceau, 91405 Orsay Cedex (France); Grigoriev, Serguey; Fateev, Vladimir [Hydrogen Energy and Plasma Technology, Institute of Russian Research Center, Kurchatov Institute, 1, Kurchatov sq., 123182 Moscow (Russian Federation); Etievant, Claude [Compagnie Europeenne des Technologies de l' Hydrogene (CETH), Innov' Valley Entreprise, Batiment D0, Route de Nozay, 91461 Marcoussis Cedex (France)

    2009-06-15

    GenHyPEM (Generateur d'Hydrogene par electrolyse de l'eau PEM <>) is an STREP programme (no 019802) supported by the European Commission in the course of the 6th framework research programme. This R and D project which started in October 2005, is a 2.6 MEUR research effort over three years. It gathers partners from Belgium, Germany, Romania, Federation of Russia, Armenia and France. The main goal of the project is to develop low-cost and high pressure (50 bar) PEM water electrolysers for the production of up to several Nm{sup 3} H{sub 2}/h. The purpose of this communication is to present the current status of GenHyPEM. Major results and technological achievements obtained so far in the fields of academic (electrocatalysis, polymer electrolyte) and applied (stack development and performances) research are presented. Non-noble electrocatalysts have been identified to replace platinum for the HER and stable performances have been obtained during operation at high (1 A cm{sup -2}) current density, paving the way to substantial cost reductions. Prototype electrolysers producing from 0.1 to 5 Nm{sup 3} H{sub 2}/h have been successfully developed. (author)

  1. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  2. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  3. H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes

    Science.gov (United States)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Chen, Haiyan; Li, Qinghua; Ma, Chunqing; Jin, Suyue; Liu, Zhichao

    2014-03-01

    Proton exchange membrane (PEM), transferring protons from anode to cathode, is a key component in a PEM fuel cell. In the current work, a new class of PEMs are synthesized benefiting from the imbibition behavior of three-dimensional (3D) polyacrylamide-graft-chitosan (PAAm-graft-chitosan) frameworks to H3PO4 aqueous solution. Interconnected 3D framework of PAAm-graft-chitosan provides tremendous space for holding proton-conducting H3PO4. The highest anhydrous proton conductivity of 0.13 S cm-1 at 165 °C is obtained. A fuel cell using a thick membrane as a PEM showed a peak power density of 405 mW cm-2 with O2 and H2 as the oxidant and fuel, respectively. Results indicate that the interconnected 3D framework provides superhighway for proton conduction. The valued merits on anhydrous proton conductivity, huge H3PO4 loading, and easy synthesis promise the new membranes to be good alternatives as high-temperature PEMs.

  4. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  5. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  6. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  7. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst

    DEFF Research Database (Denmark)

    Polonský, J.; Mazúr, P.; Paidar, M.

    2014-01-01

    by dispersing the precious metal compound onto a catalyst support. Electrocatalysts with 50, 70 and 90 wt.% of IrO2 on a TaC support were tested in a laboratory PEM water electrolyser and compared with pure IrO2. The temperature was set at 90, 110, 120 and 130 °C respectively and the cell voltage was varied......Polymer electrolyte membrane (PEM) water electrolysis is an attractive way of producing carbon-free hydrogen. One of the drawbacks of this method is the need for precious metal-based electrocatalysts. This calls for a highly efficient utilization of the precious metal, which can be obtained...

  8. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  9. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Rømer, Carsten; Kær, Søren Knudsen

    2016-01-01

    In this work, the use of a circular-planar, interdigitated flow field for the anode of a high pressure proton exchange membrane (PEM) water electrolysis cell is investigated in a numerical study. While PEM fuel cells have separated flow fields for reactant transport and coolant, it is possible...... causes maldistribution, if land areas of equal width are applied. Moreover, below a water stoichiometry of 350, and at a current density of 1 A/cm2, flow and temperature maldistribution is adversely affected by the presence of the gas phase; particularly gas hold-up near outlet channels can cause......-phase flow model for establishing the effect of geometry and a two-phase flow model for studying the effect of dispersed gas bubbles. Both models account for turbulence and heat transport. By means of the developed models, it is elucidated that the circular-planar shape of the interdigitated flow field...

  10. Clear-PEM, a dedicated PET camera for mammography

    CERN Document Server

    Lecoq, P

    2002-01-01

    Preliminary results suggest that Positron Emission Mammography (PEM) can offer a noninvasive method for the diagnosis of breast cancer. Metabolic images from PEM contain unique information not available from conventional morphologic imaging techniques and aid in expeditiously establishing the diagnosis of cancer. A dedicated machine seems to offer better perspectives in terms of position resolution and sensitivity. This paper describes the concept of Clear-PEM, the system presently developed by the Crystal Clear Collaboration at CERN for an evaluation of this approach. This device is based on new crystals introduced by the Crystal Clear as well as on modern data acquisition techniques developed for the large experiments in high energy physics experiments.

  11. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  12. Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Vad Mathiesen, B.; Ridjan, I.; Connolly, D.; Pagh Nielsen, M. [Aalborg Univ., Aalborg (Denmark); Vang Hendriksen, P.; Bjerg Mogensen, M.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)

    2013-08-15

    The transition to 100% renewable energy systems will require a more integrated energy system. Connecting the electricity sector to transport is one of the major challenges in this transition, especially for long-distance and heavy-duty transport. Hydrogen is one potential solution to this challenge, by either using it directly in vehicles or indirectly via the production of synthetic fuels. Electrolysers are necessary to convert electricity to hydrogen and so they will have an essential role in the future smart energy system. However, at present there is a lot of uncertainty in relation to the current and forecasted development of electrolysers. The aim in this report is to reduce this uncertainty by gathering and aligning current knowledge in relation to the technical and economic potential of electrolysers. The results highlight existing and forecasted costs and efficiencies for alkaline, polymer electrolyte membrane (PEM), and solid oxide (SOEC) electrolysers between 2012 and 2050. These inputs can be used for analysing energy systems that include electrolysers. (Author)

  13. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  14. High Temperature PEM Fuel Cell Stacks with Advent TPS Meas

    Directory of Open Access Journals (Sweden)

    Neophytides Stylianos

    2017-01-01

    Full Text Available High power/high energy applications are expected to greatly benefit from high temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs. In this work, a combinatorial approach is presented, in which separately developed and evaluated MEAs, design and engineering are employed to result in reliable and effective stacks operating above 180°C and having the characteristics well matched to applications including auxiliary power, micro combined heat and power, and telecommunication satellites.

  15. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead...... to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  16. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  17. PEM-fuel cells for mobile application. Sub task: development of electrocatalysts. Final report; PEM-Brennstoffzelle fuer mobile Anwendung. Teilprojekt: Katalysatorenentwicklung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Starz, K A

    1999-01-01

    PEM fuel cells are gaining increasing importance for use in automotive application. The goal of the research program reported here was to develop the basic technology and components for PEMFC stacks for use in transport applications. The sub-task of Degussa was to develop improved electrocatalysts for PEMFC single cells and stacks. The technical objectives of the research project were met. Electrocatalysts, characterized by a high Pt-dispersion, high surface area and excellent activity, were developed. With this material, considerable progress was made to reduce the total platinum loading of PEMFC cells and stacks to about 0,5 mgPt/cm{sup 2}. With this value, the goal of the program (<0,8 mg/cm{sup 2}) was significantly surpassed. Additionally, higher power densities of >0.4 W/cm{sup 2} were achieved at Degussa for hydrogen/air and reformate/air operation of the PEMFC. A CO-tolerant anode electrocatalyst, exhibiting a CO-tolerance of up to 100 ppm CO, enables the operation of PEMFC stacks with on-board generated methanol reformate. The performance of the new electrocatalyst materials was verified by DaimlerChrysler in a PEMFC demonstration stack at the end of the program. (orig.) [Deutsch] PEM-Brennstoffzellen gewinnen fuer die mobile Anwendung immer mehr an Bedeutung. Im Rahmen des hier beschriebenen Leitprojektes sollten die Basistechnologien fuer den Einsatz der PEM-Brennstoffzelle im mobilen Bereich (Elektrotraktion) entwickelt werden. Das Teilprojekt der Degussa befasst sich mit der Entwicklung von verbesserten Elektrokatalysatoren fuer PEM-Brennstoffzellenstacks. Die technischen Arbeitsziele des Vorhabens wurden erreicht. So konnten Elektrokatalysatoren bereitgestellt werden, die sich durch eine hohe Pt-Dispersion, eine grosse Pt-Oberflaeche sowie eine sehr gute Aktivitaet auszeichnen. Mit diesen Elektrokatalysatoren gelang es, die Platinbeladung der PEM-Elektroden (Anode und Kathode) erheblich abzusenken. Mit einer Gesamtplatinbeladung von 0,5 mg/cm{sup 2

  18. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  19. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  20. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  1. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  2. PEM - fuel cell system for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Britz, P. [Viessmann Werke GmbH and Co KG, 35107 Allendorf (Germany); Zartenar, N.

    2004-12-01

    Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam-reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  3. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  4. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  5. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  6. UARS PEM Level 2 MEPS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) level 2 Medium-Energy Particle Spectrometer (MEPS) daily product contains the electron and proton high-resolution spectral...

  7. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  8. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  9. Data acquisition electronics for positron emission mammography (PEM) detectors

    International Nuclear Information System (INIS)

    Martinez, J.D.; Sebastia, A.; Cerda, J.; Esteve, R.; Mora, F.J.; Toledo, J.F.; Benlloch, J.M.; Gimenez, N.; Gimenez, M.; Lerche, Ch. W.; Pavon, N.; Sanchez, F.

    2005-01-01

    Positron emission mammography (PEM) is an innovative technique to increase sensitivity and overcome the main drawbacks of conventional X-ray screening. However, dedicated PET imaging systems demand specific hardware solutions for data acquisition and processing that can take advantage of the reduction in the number of channels. Data acquisition issues can affect PEM scanners performance and they should be exhaustively addressed in order to exploit the increment in the event count rate. This is crucial in order to reduce both the scanning time and the total injected dose. This paper presents the electronics for our PEM camera prototype that enables us to achieve very high-count rates and perform comprehensive online processing. Results about acquisition in our detector for a typical clinical setup are studied using Monte Carlo simulation of hot lesion phantoms

  10. Characterization of PM-PEMS for in-use measurements conducted during validation testing for the PM-PEMS measurement allowance program

    Science.gov (United States)

    Khan, M. Yusuf; Johnson, Kent C.; Durbin, Thomas D.; Jung, Heejung; Cocker, David R.; Bishnu, Dipak; Giannelli, Robert

    2012-08-01

    This study provides an evaluation of the latest Particulate Matter-Portable Emissions Measurement Systems (PM-PEMS) under different environmental and in-use conditions. It characterizes four PM measurement systems based on different measurement principles. At least three different units were tested for each PM-PEMS to account for variability. These PM-PEMS were compared with a UC Riverside's mobile reference laboratory (MEL). PM measurements were made from a class 8 truck with a 2008 Cummins diesel engine with a diesel particulate filter (DPF). A bypass around the DPF was installed in the exhaust to achieve a brake specific PM (bsPM) emissions level of 25 mg hp-1h-1. PM was dominated by elemental carbon (EC) during non-regeneration conditions and by hydrated sulfate (H2SO4.6H2O) during regeneration. The photo-acoustic PM-PEMS performed best, with a linear regression slope of 0.90 and R2 of 0.88 during non-regenerative conditions. With the addition of a filter, the photo-acoustic PM-PEMS slightly over reported than the total PM mass (slope = 1.10, R2 = 0.87). Under these same non-regeneration conditions, a PM-PEMS equipped with a quartz crystal microbalance (QCM) technology performed the poorest, and had a slope of 0.22 and R2 of 0.13. Re-tests performed on upgraded QCM PM-PEMS showed a better slope (0.66), and a higher R2 of 0.25. In the case of DPF regeneration, all PM-PEMS performed poorly, with the best having a slope of 0.20 and R2 of 0.78. Particle size distributions (PSD) showed nucleation during regeneration, with a shift of particle size to smaller diameters (˜64 nm to ˜13 nm) with elevated number concentrations when compared to non-regeneration conditions.

  11. Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement

    International Nuclear Information System (INIS)

    Mohamed, W.A.N.W.; Kamikl, M. Haziq M.

    2016-01-01

    Highlights: • A study on the effect of hydrogen preheating using waste heat for low temperature PEM fuel cells. • Theoretical, experimental and analytical framework was established. • The maximum electrical power output increases by 8–10% under specific operating conditions. • Open loop hydrogen supply gives a better performance than closed loop. • The waste heat utilization is less than 10% due to heat capacity limitations. - Abstract: The electrochemical reaction kinetics in a Polymer Electrolyte Membrane (PEM) fuel cell is highly influenced by the reactants supply pressures and electrode temperatures. For an open cathode PEM fuel cell stack, the power output is constrained due to the use of air simultaneously as reactant and coolant. Optimal stack operation temperatures are not achieved especially at low to medium power outputs. Based on the ideal gas law, higher reactant temperatures would lead to higher pressures and subsequently improve the reaction kinetics. The hydrogen supply temperature and its pressure can be increased by preheating; thus, slightly offsetting the limitation of low operating stack temperatures. The exit air stream offers an internal source of waste heat for the hydrogen preheating purpose. In this study, a PEM open-cathode fuel cell was used to experimentally evaluate the performance of hydrogen preheating based on two waste heat recovery approaches: (1) open-loop and (2) closed loop hydrogen flow. The stack waste heat was channelled into a heat exchanger to preheat the hydrogen line before it is being supplied (open loop) or resupplied (closed loop) into the stack. At a constant 0.3 bar hydrogen supply pressure, the preheating increases the hydrogen temperature in the range of 2–13 °C which was dependant on the stack power output and cathode air flow rates. The achievable maximum stack power was increased by 8% for the closed loop and 10% for the open loop. Due to the small hydrogen flow rates, the waste heat utilization

  12. Development and test of 2 kW natural gas reformers for high and low temperature PEM fuel cells. Project report 2; Udvikling/afproevning af 2 kW naturgasreformere for hoej- og lavtemperatur PEM-braendselsceller. Projektrapport 2

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de [Dansk Gasteknisk Center (Denmark); Bech-Madsen, J. [IRD (Denmark); Bandur, V. [DTU (Denmark); Bartholin, N. [DPS (Denmark)

    2005-11-15

    The use of fuel cells for combined heat and power generation has advantages as regards technology and usability compared to existing CHP technology. Special characteristics for a fuel cell plant are: 1) It can be constructed in modules over a wide power range, 2) The efficiency is significantly independent of size, 3) It is noiseless, 4) A flexible coupling between power and heat production, 5) As there is no movable parts, long service check intervals can be expected, 6) Low emissions. The fuel for fuel cells is hydrogen and optimal utilization and CO{sub 2} reduction will require a 'hydrogen society'. While waiting for a 'hydrogen society' to arise, it is possible to use central or on-site reformers that convert natural gas to hydrogen. There will be some CO{sub 2} emission connected to energy use. The objective of the present project has been development and test of on-site reformers (fuel processors) for hydrogen supply to respectively high and low temperature PEM fuel cells aiming at use in single family houses. Sulphur cleaning, reformers, and lab-scale coupling with fuel cell KV units have been developed and tested during the project, as well as development and test of periphery equipment. (BA)

  13. Review: Durability and degradation issues of PEM fuel cell components

    NARCIS (Netherlands)

    Bruijn, de F.A.; Dam, V.A.T.; Janssen, G.J.M.

    2008-01-01

    Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow

  14. UARS PEM Level 2 AXIS 1 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  15. UARS PEM Level 2 AXIS 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  16. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  17. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  18. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  19. CFD modelling of cooling channel geometry of PEM fuel cell for ...

    African Journals Online (AJOL)

    In this study, a numerical investigation was carried out to deter mine the impact of cooling channel geometry in combination with temperature dependent operating parameters on thermal management and overall performance of a PEM fuel cell system. The evaluation is performed using a computational fluid dynamics ...

  20. Study on modulation amplitude stabilization method for PEM based on FPGA in atomic magnetometer

    Science.gov (United States)

    Wang, Qinghua; Quan, Wei; Duan, Lihong

    2017-10-01

    Atomic magnetometer which uses atoms as sensitive elements have ultra-high precision and has wide applications in scientific researches. The photoelastic modulation method based on photoelastic modulator (PEM) is used in the atomic magnetometer to detect the small optical rotation angle of a linearly polarized light. However, the modulation amplitude of the PEM will drift due to the environmental factors, which reduces the precision and long-term stability of the atomic magnetometer. Consequently, stabilizing the PEM's modulation amplitude is essential to precision measurement. In this paper, a modulation amplitude stabilization method for PEM based on Field Programmable Gate Array (FPGA) is proposed. The designed control system contains an optical setup and an electrical part. The optical setup is used to measure the PEM's modulation amplitude. The FPGA chip, with the PID control algorithm implemented in it, is used as the electrical part's micro controller. The closed loop control method based on the photoelastic modulation detection system can directly measure the PEM's modulation amplitude in real time, without increasing the additional optical devices. In addition, the operating speed of the modulation amplitude stabilization control system can be greatly improved because of the FPGA's parallel computing feature, and the PID control algorithm ensures flexibility to meet different needs of the PEM's modulation amplitude set values. The Modelsim simulation results show the correctness of the PID control algorithm, and the long-term stability of the PEM's modulation amplitude reaches 0.35% in a 3-hour continuous measurement.

  1. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  2. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site....... This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  3. The effect of test configuration on the true operating conditions of PEM fuel cells. Paper no. IGEC-1-124

    International Nuclear Information System (INIS)

    Simpson, T.; Li, X.

    2005-01-01

    The operating conditions of a single PEM fuel cell can be significantly affected by the configuration in which the fuel cell test is setup. This study investigates the effect on the gas dewpoint temperature of not insulating the inlet fittings to a PEM fuel cell and the effect of non-optimal stack control thermocouple placement on fuel cell stack operating temperature. Both of these setup configurations can significantly affect fuel cell membrane humidification conditions, especially in a single fuel cell as demonstrated through the sample test conditions presented in this paper. (author)

  4. Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels

    International Nuclear Information System (INIS)

    Carton, J.G.; Lawlor, V.; Olabi, A.G.; Hochenauer, C.; Zauner, G.

    2012-01-01

    Effective water management is one of the key strategies for improving low temperature PEM (Proton Exchange Membrane) fuel cell performance and durability. Phenomena such as membrane dehydration, catalyst layer flooding, mass transport and fluid flow regimes can be affected by the interaction, distribution and movement of water in flow plate channels. In this paper a literature review is completed in relation to PEM fuel cell water flooding. It is clear that droplet formation, movement and interaction with the GDL (Gas Diffusion Layer) have been studied extensively. However slug formation and droplet accumulation in the flow channels has not been analysed in detail. In this study, a CFD (Computational Fluid Dynamic) model and VOF (Volume of Fluid) method is used to simulate water droplet movement and slug formation in PEM fuel cell mini-channels. In addition, water slug visualisation is recorded in ex situ PEM fuel cell mini-channels. Observation and simulation results are discussed with relation to slug formation and the implications to PEM fuel cell performance. -- Highlights: ► Excess water in mini-channels from the collision and coalescence of droplets can directly form slugs in PEM fuel cells. ► Slugs can form at low flow rates so increasing the flow rate can reduce the size and frequency of slugs. ► One channel of a double serpentine mini-channel may become blocked due to the redistribution of airflow and pressure caused by slug formation. ► Correct GDL and mini-channel surface coatings are essential to reduce slug formation and stagnation. ► Having geometry changes (bends and steps) in the flow fields can disrupt slug movement and avoid channel blockages.

  5. Development of coincidence processing module for PEM

    International Nuclear Information System (INIS)

    Feng Baotong; Shuai Lei; Li Ke

    2011-01-01

    For the breast cancer diagnosis and therapy, a prototype of positron emission mammography (PEM) was developed in Institute of High Energy Physics, Chinese Academy of Sciences. In this paper, the design of coincidence processing module (CPM) for this PEM was presented. Both the hardware architecture and the software logic were introduced. In this design, the CPM used the Rocket IO fast interface in FPGA and fiber technology to acquire the preprocessed data from the continuous sampling module (CSM) and then selected the valid event with the coincidence timing window method, which was performed in the FPGA on the daughter board. The CPM transmits the processed data to host computer via gigabit Ethernet. The whole system was controlled by CAN bus. The primary tests indicate that the performance of this design is good. (authors)

  6. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  7. Development and Study of Tantalum and Niobium Carbides as Electrocatalyst Supports for the Oxygen Electrode for PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Prag, Carsten Brorson

    2013-01-01

    Polymer electrolyte membrane (PEM) water electrolysis is a prospective method of producing hydrogen. We focused on one of its issues – the lack of a suitable support material for the anode electrocatalyst. TaC and NbC were studied as possible electrocatalyst supports for the PEM water electrolysis...

  8. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  9. Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla [TUBITAK Marmara Research Centre, Energy Systems and Environmental Research Institute, 41470 Gebze, Kocaeli (Turkey); Olgun, Hayati [TUBITAK Marmara Research Centre, Energy Systems and Environmental Research Institute, 41470 Gebze, Kocaeli (Turkey); Ozdogan, Sibel [Marmara University, Faculty of Engineering, Department of Mechanical Engineering, 81040 Goztepe, Istanbul (Turkey)

    2006-08-15

    This paper presents the results of a study for a 100 kW net electrical power PEM fuel cell system. The major system components are an autothermal reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor and an expander. Intensive heat integration within the PEM fuel cell system has been necessary to achieve acceptable net electrical efficiency levels. The calculations comprise the auxiliary equipment such as pumps, compressors, heaters, coolers, heat exchangers and pipes. The process simulation package 'ASPEN-HYSYS 3.1' has been used along with conventional calculations. The operation conditions of the autothermal reformer have been studied in detail to determine the values, which lead to the production of a hydrogen rich gas mixture with CO concentration at ppm level. The operation parameters of the other reactors have been determined considering the limitations implied by the catalysts involved. A gasoline type hydrocarbon fuel has been studied as the source for hydrogen production. The chemical composition of the hydrocarbon fuel affects the favorable operation conditions of autothermal reforming and the following fuel purification steps. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of the number of cells (500-1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 30 (500 cells) and 37% (1250 cells). Hence, they are comparable with or higher than those of the conventional gasoline based internal combustion engine systems, in terms of the mechanical power efficiency.

  10. Simulation study of a proton exchange membrane (PEM) fuel cell system with autothermal reforming

    International Nuclear Information System (INIS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    2006-01-01

    This paper presents the results of a study for a 100 kW net electrical power PEM fuel cell system. The major system components are an autothermal reformer, high and low temperature shift reactors, a preferential oxidation reactor, a PEM fuel cell, a combustor and an expander. Intensive heat integration within the PEM fuel cell system has been necessary to achieve acceptable net electrical efficiency levels. The calculations comprise the auxiliary equipment such as pumps, compressors, heaters, coolers, heat exchangers and pipes. The process simulation package 'ASPEN-HYSYS 3.1' has been used along with conventional calculations. The operation conditions of the autothermal reformer have been studied in detail to determine the values, which lead to the production of a hydrogen rich gas mixture with CO concentration at ppm level. The operation parameters of the other reactors have been determined considering the limitations implied by the catalysts involved. A gasoline type hydrocarbon fuel has been studied as the source for hydrogen production. The chemical composition of the hydrocarbon fuel affects the favorable operation conditions of autothermal reforming and the following fuel purification steps. Thermal efficiencies have been calculated for all of the major system components for selected operation conditions. The fuel cell stack efficiency has been calculated as a function of the number of cells (500-1250 cells). Efficiencies of all of the major system components along with auxiliary unit efficiencies determine the net electrical efficiency of the PEM fuel cell system. The obtained net electrical efficiency levels are between 30 (500 cells) and 37% (1250 cells). Hence, they are comparable with or higher than those of the conventional gasoline based internal combustion engine systems, in terms of the mechanical power efficiency

  11. Prescription-event monitoring in Japan (J-PEM).

    Science.gov (United States)

    Kubota, Kiyoshi

    2002-01-01

    In prescription-event monitoring in Japan (J-PEM), patients are identified by prescriptions in individual pharmacies where drugs are dispensed. The methodology is somewhat different to that used by the Drug Safety Research Unit in the UK, in that two questionnaires, one to the pharmacist and the other to the doctor are sent for each patient and the method of concurrent control is employed in J-PEM. In the data analysis, the list of events reported as a suspected reaction or a reason for stopping the drug is made to generate a signal. In addition, a signal may be generated for some events with the statistically significant difference of crude rates followed by the regression analysis or a follow-up study. In J-PEM, Medical Dictionary for Regulatory Activities (MedDRA) terminology is used for data entry and data analysis. Lowest level terms (LLTs) in MedDRA are used in data entry while a signal is generated using preferred terms (PTs). However, to generate a signal effectively, some PTs may be grouped as one term. In addition, if two terms are so similar, it may be instructed that one of those two terms is normally selected in data entry to avoid confusion. Many more PEM studies could be undertaken to determine if MedDRA can be used for effective signal generation, but the usefulness of MedDRA in J-PEM is still to be determined.

  12. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  13. Clear-PEM: A dedicated PET camera for improved breast cancer detection

    International Nuclear Information System (INIS)

    Abreu, M. C.; Almeida, P.; Balau, F.; Ferreira, N. C.; Fetal, S.; Fraga, F.; Martins, M.; Matela, N.; Moura, R.; Ortigao, C.; Peralta, L.; Rato, P.; Ribeiro, R.; Rodrigues, P.; Santos, A. I.; Trindade, A.; Varela, J.

    2005-01-01

    Positron emission mammography (PEM) can offer a non-invasive method for the diagnosis of breast cancer. Metabolic images from PEM using 18 F-fluoro-deoxy-glucose, contain unique information not available from conventional morphologic imaging techniques like X-ray radiography. In this work, the concept of Clear-PEM, the system presently developed in the frame of the Crystal Clear Collaboration at CERN, is described. Clear-PEM will be a dedicated scanner, offering better perspectives in terms of position resolution and detection sensitivity. (authors)

  14. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    The aim of the present project is to systematically quantify and improve the durability of the PEM FC including the following three PEM FC variants: LT PEM FC, DMFC, and HT PEM FC. Different factors influencing dissolution properties of noble metal catalyst platinum and platinum-ruthenium alloy has been studied. The dissolution was found to increase by increasing the CV cycle upper potential limit, number of potential cycles, solution acidity, oxygen partial pressure, involvement of chloride, and temperature. Ruthenium was found to deteriorate ten (10) times faster than platinum catalyst; and carbon supported catalyst (Pt: 20%, Ru: up to 100%) deteriorate ten (10) times faster than non-supported catalyst (Pt: 2%, Ru: 30%) at the same condition. Loss of sulphonic acid groups and fluoride from perfluorinated sulfonic acid membrane was confirmed by different techniques, which locally leads to loss of acidity, and consequently enhances dissolution of noble metal catalyst. Degradation of Nafion ionomer in the electrode was enhanced by noble metal catalyst and the thermal decomposition properties has synergetic effect with carbon degradation. Hydrophobicity of GDL and electrode on GDL were found to degrade e.g. radical attack, oxidation, and physical wear out. The very top micro surface structure turned out to be responsible for wetting property after chemical ageing. Optimal catalyst and ionomer ratio is also reflected in contact angle value, which can be understood in terms of catalyst/carbon - ionomer affinity and layered structure. Long-term tested and 'virgin' LT PEM MEAs have been characterised with respect to SEM, TEM, EDS, and XRD. Both failed and well-functioning MEAs have been characterised. The Post Mortem analysis has shown and quantified degradation mechanisms like catalyst growth and carbon corrosion. Furthermore, the effect of fuel starvation was shown by pronounced Ru-catalyst band within the membrane. The catalyst coarsening observed after

  15. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic

  16. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  17. Experimental characterization of the Clear-PEM scanner spectrometric performance

    Energy Technology Data Exchange (ETDEWEB)

    Bugalho, R; Carrico, B; Ferreira, C S; Frade, M; Ferreira, M; Moura, R; Ortigao, C; Pinheiro, J F; Rodrigues, P; Rolo, I; Silva, J C; Trindade, A; Varela, J [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Av. Elias Garcia 14-1, 1000-149 Lisboa (Portugal)], E-mail: frade@lip.pt

    2009-10-15

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Portugues de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 x 2 x 20 mm{sup 3} LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean C{sub DOI}{sup -1} is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  18. An alternative approach to continuous compliance monitoring and turbine plant optimization using a PEMS (predictive emission monitoring system)

    International Nuclear Information System (INIS)

    Swanson, B.G.; Lawrence, P.

    2009-01-01

    This paper reviewed the use of a predictive emissions monitoring system (PEMS) at 3 different gas turbine facilities in the United States and highlighted the costs and benefits of using a PEMS for documenting emissions of priority pollutants and greenhouse gases (GHG). The PEMS interfaces directly to the turbine control system and represents a lower cost alternative to the traditional continuous emission monitoring system (CEMS). The PEMS can track combustion efficiency through modeling of the turbine's operation and emissions. Excess emissions can be tracked and the causes of pollution can be determined and mitigated. The PEMS installed at the 3 turbine plants must meet rigorous performance specification criteria and the sites perform ongoing quality assurance tasks such as periodic audits with portable analyzers. The PEMS is much less expensive to install, operate, and maintain compared to the standard CEMS gas analyzer. Empirical PEMS achieves very high accuracy levels and has demonstrated superior reliability over CEMS for various types of continuous process applications under existing air compliance regulations in the United States. Annual accuracy testing at the gas turbine sites have shown that the PEMS predictions are usually within 5 per cent of the reference method. PEMS can be certified as an alternative to gas analyzer based CEMS for nitrogen oxides and carbon dioxide compliance and for GHG trading purposes. 5 refs., 8 figs.

  19. Simulation results of a veto counter for the ClearPEM

    CERN Document Server

    Trummer, J; Lecoq, P

    2009-01-01

    The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.

  20. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2011-01-01

    The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all e...

  1. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  2. Thermal stability control system of photo-elastic interferometer in the PEM-FTs

    Science.gov (United States)

    Zhang, M. J.; Jing, N.; Li, K. W.; Wang, Z. B.

    2018-01-01

    A drifting model for the resonant frequency and retardation amplitude of a photo-elastic modulator (PEM) in the photo-elastic modulated Fourier transform spectrometer (PEM-FTs) is presented. A multi-parameter broadband-matching driving control method is proposed to improve the thermal stability of the PEM interferometer. The automatically frequency-modulated technology of the driving signal based on digital phase-locked technology is used to track the PEM's changing resonant frequency. Simultaneously the maximum optical-path-difference of a laser's interferogram is measured to adjust the amplitude of the PEM's driving signal so that the spectral resolution is stable. In the experiment, the multi-parameter broadband-matching control method is applied to the driving control system of the PEM-FTs. Control of resonant frequency and retardation amplitude stabilizes the maximum optical-path-difference to approximately 236 μm and results in a spectral resolution of 42 cm-1. This corresponds to a relative error smaller than 2.16% (4.28 standard deviation). The experiment shows that the method can effectively stabilize the spectral resolution of the PEM-FTs.

  3. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  4. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  5. Comparative study of the break in process of post doped and sol–gel high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Araya, Samuel Simon

    2014-01-01

    In this paper six High Temperature PEM (HTPEM) MEAs from two manufacturers have been tested. The MEAs are three Dapozol 77 from Danish Power Systems (DPS) with varying electrode composition and two Celtec P2100 and one Celtec P1000 from BASF. The break in process of the MEAs has been monitored us...

  6. Experimental study of a PEM 15 W fuel cell; Influencia das temperaturas de operacao e umidificacao no desempenho de uma celula combustivel tipo 'PEM' de 15 W

    Energy Technology Data Exchange (ETDEWEB)

    Heusi, Daniel S.; Steidel, Paulo S.; Matelli, Jose A. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Lab. de Combustao e Engenharia de Sistemas Termicos (LabCET); Bazzo, Edson [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2004-07-01

    Experimental results are presented for a fuel cell type PEM of 15 W. The influence of the operating temperature, as well as the effect of the humidification temperature in the draining of the gases Hydrogen and oxygen, are considered for analysis. The tests were performed at operating temperature in the range of 30 to 70 deg C and humidification temperature form 30 to 85 deg C. For hydrogen flows fixed to be 200 ml/min and 300 ml/min, as well as for oxygen flow of 165 ml/min, the polarization curves were raised taking into account different combinations of operation and different combinations of humidification temperatures. (author)

  7. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  8. Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions

    International Nuclear Information System (INIS)

    Al-Hadeethi, Farqad; Al-Nimr, Moh'd; Al-Safadi, Mohammad

    2015-01-01

    The performance of PEM (proton exchange membrane) fuel cell was experimentally investigated at three temperatures (30, 50 and 70 °C), four flow rates (5, 10, 15 and 20 ml/min) and two flow patterns (co-current and counter current) in order to generate two correlations using multiple regression analysis with respect to ANOVA. Results revealed that increasing the temperature for co-current and counter current flow patterns will increase both hydrogen and oxygen diffusivities, water management and membrane conductivity. The derived mathematical correlations and three dimensional mapping (i.e. surface response) for the co-current and countercurrent flow patterns showed that there is a clear interaction among the various variables (temperatures and flow rates). - Highlights: • Generating mathematical correlations using multiple regression analysis with respect to ANOVA for the performance of the PEM fuel cell. • Using the 3D mapping to diagnose the optimum performance of the PEM fuel cell at the given operating conditions. • Results revealed that increasing the flow rate had direct influence on the consumption of oxygen. • Results assured that increasing the temperature in co-current and counter current flow patterns increases the performance of PEM fuel cell.

  9. Building a Predictive Capability for Decision-Making that Supports MultiPEM

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    Multi-phenomenological explosion monitoring (multiPEM) is a developing science that uses multiple geophysical signatures of explosions to better identify and characterize their sources. MultiPEM researchers seek to integrate explosion signatures together to provide stronger detection, parameter estimation, or screening capabilities between different sources or processes. This talk will address forming a predictive capability for screening waveform explosion signatures to support multiPEM.

  10. Risk Assessment for Distribution Systems Using an Improved PEM-Based Method Considering Wind and Photovoltaic Power Distribution

    Directory of Open Access Journals (Sweden)

    Qingwu Gong

    2017-03-01

    Full Text Available The intermittency and variability of permeated distributed generators (DGs could cause many critical security and economy risks to distribution systems. This paper applied a certain mathematical distribution to imitate the output variability and uncertainty of DGs. Then, four risk indices—EENS (expected energy not supplied, PLC (probability of load curtailment, EFLC (expected frequency of load curtailment, and SI (severity index—were established to reflect the system risk level of the distribution system. For the certain mathematical distribution of the DGs’ output power, an improved PEM (point estimate method-based method was proposed to calculate these four system risk indices. In this improved PEM-based method, an enumeration method was used to list the states of distribution systems, and an improved PEM was developed to deal with the uncertainties of DGs, and the value of load curtailment in distribution systems was calculated by an optimal power flow algorithm. Finally, the effectiveness and advantages of this proposed PEM-based method for distribution system assessment were verified by testing a modified IEEE 30-bus system. Simulation results have shown that this proposed PEM-based method has a high computational accuracy and highly reduced computational costs compared with other risk assessment methods and is very effective for risk assessments.

  11. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...... model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the startup time of one of the fuel cell stacks from 1 h to about 6 min....

  12. Experimental analysis of a PEM fuel cell 15 W; Analise experimental de uma celula a combustivel PEM 15W

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: miyake@labcet.ufsc.br, e-mail: ebazzo@emc.ufsc.br

    2006-07-01

    Fuel cells have been considered a promising alternative for electric energy generation. In order to contribute with the development of this technology, a PEM fuel cell was installed and new experiments were carried out at LabCET (Laboratory of Combustion and Thermal System Engineering). Previous results have shown polarization curves identifying the need of rigorous controlling of humidification temperature of the fuel cell. In this paper, new results were carried out considering the use of a fan connected to the fuel cell and possible degradation in the electrolyte, after a relative long time operation. New polarization curves were plotted for comparison with previous results. (author)

  13. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  14. Model-supported characterization of a PEM water electrolysis cell for the effect of compression

    DEFF Research Database (Denmark)

    Frensch, Steffen Henrik; Olesen, Anders Christian; Simon Araya, Samuel

    2018-01-01

    This paper investigates the influence of the cell compression of a PEM water electrolysis cell. A small single cell is therefore electrochemically analyzed by means of polarization behavior and impedance spectroscopy throughout a range of currents (0.01 A cm−2 to 2.0 A cm−2) at two temperatures (60...

  15. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  16. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  17. Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H{sub 2}/air PEM fuel cell at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mahmoud M.; Okajima, Takeoshi; Kitamura, Fusao; Ohsaka, Takeo [Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hayase, Masahiko [Development Department, NF Co., 6-3-20 Tsunashima-higashi, Kohoku-ku, Yokohama 223-8508 (Japan)

    2007-02-10

    This article is dedicated to study the interlinked effects of symmetric relative humidity (RH), and asymmetric RH on the performance of H{sub 2}/air PEM fuel cell at different temperatures. The symmetric and asymmetric RH were achieved by setting the cathode relative humidity (RHC) and anode relative humidity (RHA) as equal and unequal values, respectively. The cell performance was evaluated by collecting polarization curves of the cell at different RH, RHC and RHA and at different cell temperatures (T{sub cell}). The polarization curves along with the measured internal cell resistance (membrane resistance) were discussed in the light of the present fuel cell theory. The results showed that symmetric relative humidity has different impacts depending on the cell temperature. While at RH of 35% the cell can show considerable performance at T{sub cell} = 70 C, it is not so at T{sub cell} = 90 C. At T{sub cell} = 70 C, the cell potential increases with RH at lower and medium current densities but decreases with RH at higher currents. This was attributed to the different controlling processes at higher and lower current densities. This trend at 70 C is completely destroyed at 90 C. Operating our PEM fuel cell at dry H{sub 2} gas conditions (RHA = 0%) is not detrimental as operating the cell at dry Air (O{sub 2}) conditions (RHC = 0%). At RHA = 0% and humidified air, water transport by back diffusion from the cathode to the anode at the employed experimental conditions can support reasonable rehydration of the membrane and catalysts. At RHA = 0, a possible minimum RHC for considerable cell operation is temperature dependent. At RHC = 0 conditions, the cell can operate only at RHA = 100% with a loss that depends on T{sub cell}. It was found that the internal cell resistance depends on RH, RHA, RHC and T{sub cell} and it is consistent with the observed cell performance. (author)

  18. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  19. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    Science.gov (United States)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  20. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Schaltz, Erik; Kær, Søren Knudsen

    2009-01-01

    This work constitutes detailed EIS (Electrochemical Impedance Spectroscopy) measurements on a PBIbased HT-PEM unit cell. By means of EIS the fuel cell is characterized in several modes of operation by varying the current density, temperature and the stoichiometry of the reactant gases. Using...

  1. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    Science.gov (United States)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  2. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    International Nuclear Information System (INIS)

    Cucciati, G; Vara, N Di; Ghezzi, A; Paganoni, M; Pizzichemi, M; Auffray, E; Frisch, B; Lecoq, P; Bugalho, R; Neves, J; Cao, L; Peter, J; Farina, F; Felix, N; Juhan, V; Mundler, O; Siles, P; Jun, D; Lasaygues, P; Mensah, S

    2014-01-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information

  3. A comprehensive review of PBI-based high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Simon Araya, Samuel; Zhou, Fan; Liso, Vincenzo

    2016-01-01

    of their design and characterization techniques at single cell, stack and system levels is given. The state-of-the-art concepts of different degradation mechanisms and methods of their mitigation are also discussed. Moreover, accelerated stress testing (AST) procedures for HT-PEMFCs available in literature...... fuel cell faults for targeted interventions based on the observed conditions to prevent sudden failures and to prolong the fuel cell's lifetime. However, the technology is still under development and robust on-line diagnostics tools are hardly available. Currently, mitigation is mainly done based......The current status on the understanding of the various operational aspects of high temperature proton exchange membrane fuel cells (HT-PEMFC) has been summarized. The paper focuses on phosphoric acid-doped polybenzimidazole (PBI)-based HT-PEMFCs and an overview of the common practices...

  4. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  5. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  6. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peihua; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2011-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  7. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peilin; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2010-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  8. Advanced Materials for PEM-Based Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and

  9. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  10. A retrospective on the LBNL PEM project

    International Nuclear Information System (INIS)

    Huber, J.S.; Moses, W.W.; Wang, G.C.; Derenzo, S.E.; Huesman, R.H.; Qi, J.; Virador, P.; Choong, W.S.; Mandelli, E.; Beuville, E.; Pedrali-Noy, M.; Krieger, B.; Meddeler, G.

    2004-01-01

    We present a retrospective on the LBNL Positron Emission Mammography (PEM) project, looking back on our design and experiences. The LBNL PEM camera utilizes detector modules that are capable of measuring depth of interaction (DOI) and places them into 4 detector banks in a rectangular geometry. In order to build this camera, we had to develop the DOI detector module, LSO etching, Lumirror-epoxy reflector for the LSO array (to achieve optimal DOI), photodiode array, custom IC, rigid-flex readout board, packaging, DOI calibration and reconstruction algorithms for the rectangular camera geometry. We will discuss the highlights (good and bad) of these developments

  11. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...

  12. Polymers and composites synthesis and characterization for application on PEM type fuel cells; Sintese e caracterizacao de polimeros e compositos para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da Paz; Souza, Daniele Ribeiro; Barreto, Ednardo Gomes; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)]. E-mail: raigenis@gmail.com

    2006-07-01

    The PEM (proton exchanging membrane) type fuel cell presents good potential for the energy production without the residue generation. However, its manufacture presents high costs for commercial application, mainly due to the electrolyte. Sulfonated Peek (polish-ether-ether-ketone) supported or auto immobilized the in a silicone matrix is an interesting alternative as electrolyte for PEM fuel cells. The commercial PEEK in powder form was functionalized with sulfuric acid, giving the SPEEK (Sulfonated PEEK). The membranes were produced by hot pressing the SPEEK immobilized in a silicone matrix produced by the sol-gel process. The membranes obtained were characterized by DRX, FTIR, TGA, MEV, DSC and protonic conductivity measurements. (author)

  13. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  14. Characterization and quality control of avalanche photodiode arrays for the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Abreu, Conceicao; Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rato, Pedro; Varela, Joao

    2007-01-01

    Clear-PEM is a Positron Emission Mammography (PEM) prototype being developed in the framework of the Crystal Clear Collaboration at CERN. This device is a dedicated PET camera for mammography, based on LYSO:Ce scintillator crystals, Avalanche PhotoDiodes (APD) and a fast, low-noise electronics readout system, designed to examine both the breast and the axillary lymph node areas, and aiming at the detection of tumors down to 2 mm in diameter. The prototype has two planar detector heads, each composed of 96 detector modules. The Clear-PEM detector module is composed of a matrix of 32 identical 2x2x20 mm 3 LYSO:Ce crystals read at both ends by Hamamatsu S8550 APD arrays (4x8) for Depth-of-Interaction (DoI) capability. The APD arrays were characterized by the measurement of gain and dark current as a function of bias voltage, under controlled temperature conditions. Two independent setups were used. The full set of 398 APD arrays followed a well-defined quality control (QC) protocol, aiming at the rejection of arrays not complying within defined specifications. From a total of 398 arrays, only 2 (0.5%) were rejected, reassuring the trust in these detectors for prototype assembly and future developments

  15. Energy flows modelling of a PEM electrolyzer-Photovoltaic generator-PEM fuel cell coupling dedicated to stationary applications

    International Nuclear Information System (INIS)

    Agbli, Krehi Serge

    2012-01-01

    A standalone multi-source system based on the coupling of photovoltaic energy and both a PEM electrolyzer and a PEMFC for stationary application is studied. The system gathers photovoltaic array as main energy source, ultra-capacitors and batteries packs in order to smooth respectively fast and medium dynamic by supplying the load or by absorbing photovoltaic source overproduction. Because of the necessity of fuel availability, especially for islanding application like this one, a PEM electrolyzer is integrated to the system for in situ hydrogen production. The relevance of PEMFC system powered by solar hydrogen is pointed out before examining hydrogen storage issue. Energetic and economic analyses have been performed leading to the choice of the pressurised hydrogen storage (in the bottle) rather than hydrogen storage both as liquid and within metal hydride. The main purpose being the proper management of the power flows in order to meet the energy requirement (the load) without power cut, a graphical modelling tool namely Energetic Macroscopic Representation (EMR) is used because of its analysis and control strengths. The EMR ability to describe multi-physics energetic tools is used to develop a PEM electrolyzer model. The multi-domain interaction between the electrical, the electrochemical, the thermodynamic and the fluidic domain is emphasised. Moreover, the temperature variation influence on the electrochemical parameters of the electrolyzer is taken into account by the developed EMR model. Afterwards, thanks to the modular feature of the EMR, the different models of each energetic entity of the system are performed before their assembling leading to the overall system EMR model. By using scale effect allowing extending the energetic tool power range from the experimental validation one to another one, the energetic system sizing is performed according to a household power profile. Then, by the help of the multi-level representation, the maximal control

  16. Protein-energy malnutrition induces an aberrant acute-phase response and modifies the circadian rhythm of core temperature.

    Science.gov (United States)

    Smith, Shari E; Ramos, Rafaela Andrade; Refinetti, Roberto; Farthing, Jonathan P; Paterson, Phyllis G

    2013-08-01

    Protein-energy malnutrition (PEM), present in 12%-19% of stroke patients upon hospital admission, appears to be a detrimental comorbidity factor that impairs functional outcome, but the mechanisms are not fully elucidated. Because ischemic brain injury is highly temperature-sensitive, the objectives of this study were to investigate whether PEM causes sustained changes in temperature that are associated with an inflammatory response. Activity levels were recorded as a possible explanation for the immediate elevation in temperature upon introduction to a low protein diet. Male, Sprague-Dawley rats (7 weeks old) were fed a control diet (18% protein) or a low protein diet (PEM, 2% protein) for either 7 or 28 days. Continuous core temperature recordings from bioelectrical sensor transmitters demonstrated a rapid increase in temperature amplitude, sustained over 28 days, in response to a low protein diet. Daily mean temperature rose transiently by day 2 (p = 0.01), falling to normal by day 4 (p = 0.08), after which mean temperature continually declined as malnutrition progressed. There were no alterations in activity mean (p = 0.3) or amplitude (p = 0.2) that were associated with the early rise in mean temperature. Increased serum alpha-2-macroglobulin (p protein diet had no effect on the signaling pathway of the pro-inflammatory transcription factor, NFκB, in the hippocampus. In conclusion, PEM induces an aberrant and sustained acute-phase response coupled with long-lasting effects on body temperature.

  17. An Open-Source Toolbox for PEM Fuel Cell Simulation

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2018-05-01

    Full Text Available In this paper, an open-source toolbox that can be used to accurately predict the distribution of the major physical quantities that are transported within a proton exchange membrane (PEM fuel cell is presented. The toolbox has been developed using the Open Source Field Operation and Manipulation (OpenFOAM platform, which is an open-source computational fluid dynamics (CFD code. The base case results for the distribution of velocity, pressure, chemical species, Nernst potential, current density, and temperature are as expected. The plotted polarization curve was compared to the results from a numerical model and experimental data taken from the literature. The conducted simulations have generated a significant amount of data and information about the transport processes that are involved in the operation of a PEM fuel cell. The key role played by the concentration constant in shaping the cell polarization curve has been explored. The development of the present toolbox is in line with the objectives outlined in the International Energy Agency (IEA, Paris, France Advanced Fuel Cell Annex 37 that is devoted to developing open-source computational tools to facilitate fuel cell technologies. The work therefore serves as a basis for devising additional features that are not always feasible with a commercial code.

  18. Development of integrated DMFC and PEM fuel cell units. Final report; Udvikling af integrerede DMFC og PEM braendselscelle enheder. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Odgaard, M. (IRD Fuel Cell Technology, Svendborg (DK))

    2007-06-15

    The 36-month long project 'Development of integrated DMFC and PEM fuel cell units' has been completed. The project goal was to develop a completely new MEA concept for integrated PEM and DMFC unit cells with enhanced power density and in this way obtain a price reduction. The integrated unit cell consists of a MEA, a gas diffusion layer with flow fields completed with bipolar plates and seals. The main focus of the present project was to: 1) Develop new catalyst materials fabricated by the use of FSD (flame spray deposition method). 2) Optimisation of the state-of-the-art MEA materials and electrode structure. 3) Implementation of a model to account for the CO poisoning of PEM fuel cells. Results and progress obtained in the project established that the individual unit cell components were able to meet and follow the road map of LT-PEM FC regarding electrode catalyst loading and fulfilled the targets for Year 2006. The project has resulted in some important successes. The highlights are as follows: The project has resulted in some important successes. The highlights are as follows: 1) MEA structure knowledge acquired in the project provide a sound basis for further progress. 2) A novel method for the synthesis of electrode by using flame spray synthesis was explored. 3) Electrochemical and catalytic behaviours of catalysts activity for CH{sub 3}OH explored. 4) Implementation of a sub model to account for the CO poisoning of PEM FC has been developed. 5) Numerical study of the flow distribution in FC manifolds was developed and completed with experimental data. 6) The electrode catalyst loading targets for year 2006 achieved. 7) The DMFC MEA performance has been improved by 35%. 8) Optimisation of the MEAs fabrication process has been successfully developed. 9) A new simple flow field design has been designed. 10) A procedure for integrated seals has been developed (au)

  19. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  20. Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry

    Science.gov (United States)

    Inman, Kristopher; Wang, Xia; Sangeorzan, Brian

    Internal temperatures in a proton exchange membrane (PEM) fuel cell govern the ionic conductivities of the polymer electrolyte, influence the reaction rate at the electrodes, and control the water vapor pressure inside the cell. It is vital to fully understand thermal behavior in a PEM fuel cell if performance and durability are to be optimized. The objective of this research was to design, construct, and implement thermal sensors based on the principles of the lifetime-decay method of phosphor thermometry to measure temperatures inside a PEM fuel cell. Five sensors were designed and calibrated with a maximum uncertainty of ±0.6 °C. Using these sensors, surface temperatures were measured on the cathode gas diffusion layer of a 25 cm 2 PEM fuel cell. The test results demonstrate the utility of the optical temperature sensor design and provide insight into the thermal behavior found in a PEM fuel cell.

  1. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan

    2014-01-01

    This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA......) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed....... Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After...

  2. GEC Alsthom put their hopes on fuel cells: A large potential for PEM fuel cells; GEC Alsthom setzt auf Brennstoffzellen: Grosses Potential fuer PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-07-01

    Fuel cells are regarded as one of the high-tech products of great promise for future energy supplies. High hopes are pinned on the PEM technology: This low-temperature fuel cell is applicable to both mobile applications as well as stationary systems, i.e. from small-scale heating systems through to CHP systems of medium output. GEC Alsthom, who entered into a strategic alliance with Ballard, the market leader in fuel cell technology, are the first power plant manufacturers to commit themselves in the fuel cell market sector. (orig./CB) [Deutsch] Brennstoffzellen gelten als einer der Hoffnungstraeger der zukuenftigen Energieversorgung. Grosse Erwartungen werden dabei in die PEM-Technologie gesetzt: Diese Niedertemperatur-Brennstoffzelle eignet sich sowohl fuer mobile Anwendungen als auch fuer den stationaeren Einsatz - von kleinen Hausheizungsanlagen bis hin zu BHKW mittlerer Leistungklasse. Mit GEC Alsthom und seinem Engagement beim Marktfuehrer Ballard steigt nun erstmals ein grosser Energieanlagenhersteller verstaerkt in dieses Marktsegment ein. (orig.)

  3. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  4. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER).

    Science.gov (United States)

    Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian

    2011-09-01

    Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells

    International Nuclear Information System (INIS)

    Kim, Jintae; Kim, Minjin; Kang, Taegon; Sohn, Young-Jun; Song, Taewon; Choi, Kyoung Hwan

    2014-01-01

    High-temperature PEMFCs (proton exchange membrane fuel cells) using PA (phosphoric acid)-doped PBI (polybenzimidazole) membranes have received attention as a potential solution to several of the issues with traditional low-temperature PEMFCs. However, the durability of high-temperature PEMFCs deteriorates rapidly with increasing temperature, although its performance improves. This characteristic makes it difficult to select the proper operating temperature to achieve its target lifetime. In this paper, to resolve this problem, models were developed to predict the performance and durability of the high-temperature PEMFC as a function of operating temperature. The optimal operating temperature was then determined for a variety of lifetimes. Theoretical model to estimate cell performance and empirical model to predict the degradation rate of cell performance were constructed, respectively. The prediction results of the developed models agreed well with the experimental data. From the simulation, we could obtain higher average cell performances by optimizing the operating temperature for the given target lifetime compared to the cell performance at some temperatures determined using an existing rule of thumb. It is expected that the proposed methodologies will lead to the more rapid commercialization of this technology in such applications as stationary and automotive fuel cell systems. - Highlights: • High-temperature PEMFCs (proton exchange membrane fuel cells). • Operational optimization for improving the lifetime. • Development of the degradation modeling for high-temperature PEMFCs

  6. Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs

    International Nuclear Information System (INIS)

    Contestabile, Marcello

    2010-01-01

    Proton exchange membrane fuel cells (PEM FCs) offer a promising alternative to internal combustion engines in road transport. During the last decade PEM FC research, development and demonstration (RD and D) activities have been steadily increasing worldwide, and targets have been set to begin their commercialisation in road transport by 2015-2020. However, there still is considerable uncertainty on whether these targets will actually be met. The picture is complex and market and technology issues are closely interlinked; investment in RD and D projects is essential but not sufficient; the development of suitable early markets is also necessary and policy is set to play an important role. Auxiliary power units (APUs) are generally regarded as one important early market for FCs in transport. This paper analyses the possible future market for diesel PEM FC APUs onboard long-haul trucks and its implications for the development of PEM FCs in general. The analysis, part of the project HyTRAN (EC Contract no. 502577), is aided by the use of a dynamic simulation model of technology and markets developed by the author. Results suggest that an interesting window of opportunity for diesel PEM FC APUs exists but this is subject to additional research particularly targeted at the rapid development of fuel processors.

  7. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  8. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    performance loss caused by CO poisoning can be alleviated by the presence of water vapor. The CO oxidation via the water gas shift reaction is the main reason for the mitigated CO poisoning with the presence of water vapor. Meanwhile, the CO poisoning can deteriorate with the presence of CO2, although the CO2...... for HT-PEM fuel cell based micro-CHP units for households, the daily startup/shutdown operation is necessary. Moreover, the faults in the H2 supply system or in controlling the reformer can cause the H2 starvation of the HT-PEM fuel cell. The effects of these operating conditions to the degradation...... results in the degradation in cell performance of the HT-PEM fuel cell by increasing the charge transfer resistance and mass transfer resistance. The CO with volume fraction of 1% – 3% can cause significant performance loss to the HT-PEM fuel cell at the operating temperature of 150 oC. The cell...

  9. Development of an approach to correcting MicroPEM baseline drift.

    Science.gov (United States)

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed

  10. Design and construction of an electrolyte PEM test; Diseno y construccion de un electrolizador PEM de prueba

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R. G.; Santillan-Aragon, G. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx; Solorza-Feria, O. [CINVESTAV-IPN, Mexico D.F. (Mexico)

    2009-09-15

    The use of hydrogen as a fuel is directly linked to its efficient and clean production. One of the most promising methods is water electrolysis, which coupled with a renewable energy source prevents the emission of pollutants into the atmosphere. If a proton exchange membrane (PEM) electrolysis is used, a highly pure hydrogen is produced, ready to be used in a fuel battery. Many studies and investigations in this area concentrate on finding different stable and selective electrocatalysts for the cathode reaction (production of hydrogen) and anode reaction (production of oxygen). To conduct these studies, equipment is needed to perform electrochemical studies and determine the stability and performance of different electrocatalysts. This work presents the design and construction of an a PEM electrolysis test to determine the performance of different anode electrocatalysts. Its active area is 4 cm{sup 2}, its structure is graphite and the current distribution mesh is made of stainless steel. Its performance was determined using as electrocatalysts 10% Pt/C E-tek® anodes and a 50%-50%, 25%-75% and 75%-25% combination of RuO{sub 2}-IrO{sub 2}. The authors wish to thank the ICYTDF (PICS08-37) for financial support and IPN (SIP-20090433) and architect Nestor Romero for the electrolysis machining. [Spanish] La utilizacion del hidrogeno como combustible esta ligado directamente a su produccion eficiente y limpia, uno de los metodos mas prometedores es la electrolisis del agua, ya que acoplado con una fuente de energia renovable se evita la emision de contaminantes a la atmosfera. Si se utiliza un electrolizador de membrana de intercambio protonico (Tipo PEM), el hidrogeno que se produce es de alta pureza, listo para ser utilizado en una pila de combustible. Muchos estudios e investigaciones en esta area se concentran en encontrar distintos electrocatalizadores estables y selectivos para la reaccion catodica (produccion de hidrogeno) y anodica (produccion de oxigeno). Para

  11. Structured modelling and nonlinear analysis of PEM fuel cells; Strukturierte Modellierung und nichtlineare Analyse von PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hanke-Rauschenbach, R.

    2007-10-26

    In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)

  12. Use of biogas in PEM fuel cells; Einsatz von Biogas in PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Volkhard; Schmersahl, Ralf; Ellner, Janine (comps.)

    2009-06-15

    This research project was dedicated to two problems: 1. What demands must biogas meet in order to conform to the specifications of PEM fuel cell systems and permit safe operation? 2. How must a fuel cell system be designed and operated in order to be well-adapted to the special features of biogas as opposed to natural gas? For this purpose biogas samples were taken from laboratory-scale and commercial plants and analysed by gas chromatography using various substrates and methods. By combining this with the use of a mass spectroscopy detector (GC-MS system) it was possible to perform a qualitative and quantitative analysis of sulphurious trace gases in the biogas which might cause damage to the fuel cell system. Investigations were performed on an experimental reformer using either modelled or native biogas of different compositions, the intent being to obtain information for the design of the individual process stages. The two operating parameters steam-methane ratio (or S/C ratio) and reforming temperature were varied to optimise parameter settings in terms of energy efficiency. By linking the reformer to a 500 W fuel cell it was possible confirm the suitability of the reformed biogas for use in fuel cells. [German] In diesm Forschungsvorhaben werden zwei Fragestellungen bearbeitet: 1. Welche Anforderungen ergeben sich an das Biogas, um den Spezifikationen von PEM-Brennstoffzellensystemen zu genuegen und eine sicheren Betrieb zu ermoeglichen? 2. Wie muss das Brennstoffzellensystem ausgelegt und gefuehrt werden, um den Besonderheiten von Biogas im Vergleich zu Erdgas Rechnung zu tragen? Dazu wurden Biogasproben aus Labor- und Praxisanlagen unter Beruecksichtigung unterschiedlicher Substrate und Verfahren gaschromatisch analysiert. Die Kopplung mit einem massenspektroskopischen Detektor (GC-MS System) ermoeglicht dabei die Qualifizierung und Quantifizierung der vorhandenen schwefelhaltigen Spurengase, die eine Schaedigung von Brennstoffzellenanlagen verursachen. Die

  13. A novel analytical analysis of PEM fuel cell

    International Nuclear Information System (INIS)

    Yazdi, Mohamad Zardoshtizade; Kalbasi, Mansour

    2010-01-01

    In this study, a quasi three-dimensional model was developed for a single proton exchange membrane (PEM) fuel cell. The model was used for a half-cell which includes the cathode gas channel, gas diffusion layer (GDL), cathode catalyst layer and membrane is modeled. This model includes mass transfer in the gas channel and GDL, electrochemistry reaction in cathode catalyst layer, and charge transfer in the membrane phase. These expressions were solved by analytical methods. An agglomerate approach was used to describe cathode catalyst layer. By using analytical solution, the expressions can predict the PEM fuel cell behavior in different conditions which is the advantage of this method.

  14. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  15. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  16. Plastic Encapsulated Microcircuits (PEMs) Reliability Guide

    Science.gov (United States)

    Sandor, M.

    2000-01-01

    It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.

  17. Laser Ablation Increases PEM/Catalyst Interfacial Area

    Science.gov (United States)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  18. UARS PEM Level 2 AXIS 2 V001 (UARPE2AXIS2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 2 daily product contains the X-ray high-resolution spectral...

  19. UARS PEM Level 2 AXIS 1 V001 (UARPE2AXIS1) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The UARS Particle Environment Monitor (PEM) level 2 Atmosphere X-Ray Imaging Spectrometer (AXIS) unit 1 daily product contains the X-ray high-resolution spectral...

  20. A Frequency-Domain Adaptive Filter (FDAF) Prediction Error Method (PEM) Framework for Double-Talk-Robust Acoustic Echo Cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....

  1. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, F.D. Jr.; James, B.D. [Directed Technologies, Inc., Arlington, VA (United States); Mooradian, R.P. [Ford Motor Co., Dearborn, MI (United States)

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  2. A multi-phase, multi-component PEM fuel cell model. Paper no. IGEC-1-051

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li, X.

    2005-01-01

    'Full text:' Mathematical modeling is an important tool for PEM fuel cell commercialization. Mathematical models can illustrate the effect of the different processes on the overall performance of a PEM fuel cell; thus, mathematical models can be used to as a design tool to find optimal designs and operating conditions. A general formulation for a comprehensive fuel cell model, based on the conservation principle and volume-averaging, is presented. The model formulation includes the electro-chemical reactions, proton migration, and the mass transport of the gaseous reactants and liquid water. Additionally, the model formulation can be applied to all regions of the PEM fuel cell: the bipolar plates, gas flow channels, electrode backing, catalyst, and polymer electrolyte layers. Numerical results, showing the effect of water flooding on PEM fuel cell performance, are presented. (author)

  3. PEM fuel cell monitoring system

    Science.gov (United States)

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  4. Compendium of NASA data base for the global tropospheric experiment's Pacific Exploratory Mission West-B (PEM West-B)

    Science.gov (United States)

    Gregory, Gerald L.; Scott, A. Donald, Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-B (PEM West-B). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic/continental sources; and to investigate sulfur chemistry -- continental and marine sulfur sources. The PEM West program encompassed two expeditions. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air was from mid-Pacific (marine) regions, but (at times) was modified by Asian outflow. PEM West-B was conducted during February 1994, a period characterized by maximum Asian outflow. Results from PEM West-A and B are public domain. PEM West-A data are summarized in NASA TM 109177 (published February 1995). Flight experiments were based at Guam, Hong Kong, and Japan. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The DAAC includes numerous other data such as meteorological and modeling products, results from surface studies, satellite observations, and sonde releases.

  5. Compendium of NASA data base for the Global Tropospheric Experiment's Pacific Exploratory Mission West-A (PEM West-A)

    Science.gov (United States)

    Gregory, G. L.; Scott, A. D., Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Pacific Exploratory Mission West-A (PEM West-A). PEM West is a component of the International Global Atmospheric Chemistry's (IGAC) East Asia/North Pacific Regional Study (APARE) project. The PEM- West program encompassed two expeditions to study contrasting meteorological regimes in the Pacific. Objectives of PEM West are to investigate the atmospheric chemistry of ozone over the northwest Pacific -- natural budgets and the impact of anthropogenic sources; and to investigate sulfur chemistry -- continental versus marine sulfur sources. PEM West-A was conducted in September 1991 during which the predominance of tropospheric air is from the mid-Pacific (marine) regions, but (at times) is modified/mixed with Asian continental outflow. PEM West-B was conducted during February 1994, a period characterized by maximum continental outflow. PEM-B data (not included) will become public domain during the Summer of 1995. PEM West-A flight experiments were based at Japan, Hong Kong, and Guam. This document provides a representation of NASA DC-8 aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC), which include numerous data such as meteorological observations, modeling products, results from surface studies, satellite observations, and sonde releases.

  6. A Direct DME High Temperature PEM Fuel Cell

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    2012-01-01

    Dimethyl ether (DME) has been identified as an alternative to methanol for use in direct fuel cells. It combines the advantages of hydrogen in terms of pumpless fuel delivery and high energy density like methanol, but without the toxicity of the latter. The performance of a direct dimethyl ether...... fuel cell suffers greatly from the very low DME-water miscibility. To cope with the problem polybenzimidazole (PBI) based membrane electrode assemblies (MEAs) have been made and tested in a vapor fed system. PtRu on carbon has been used as anode catalyst and air at ambient pressure was used as oxidant...

  7. Integration of high temperature PEM fuel cells with a methanol reformer

    DEFF Research Database (Denmark)

    Pan, Chao; He, Ronghuan; Li, Qingfeng

    2005-01-01

    On-board generation of hydrogen by methanol reforming is an efficient and practical option to fuel PEMFC especially for vehicle propulsion purpose. The methanol reforming can take place at temperatures around 200°C with a nearly 100% conversion at a hydrogen yield of about 400 L–(h–kg catalyst)-1...

  8. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  9. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jie; Lee, Seung Jae [Energy Lab, Samsung Advanced Institute of Technology, Mt. 14-1 Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-712 (Korea, Republic of)

    2006-11-22

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T>=393K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement. (author)

  10. Regeneration of CO poisoned PEM fuel cells by periodic pulsed oxidation

    International Nuclear Information System (INIS)

    Adams, W.A.; Blair, J.; Bullock, K.R.; Gardner, C.L.

    2004-01-01

    CO poisoning is a major issue when reformate is used as a fuel in PEM fuel cells. Normally it is necessary to reduce the CO to very low levels (∼5 ppm) and CO tolerant catalysts, such as Pt-Ru, are often employed. As an alternative approach, we have studied the use of pulsed oxidation for the regeneration of CO poisoned cells. Results are presented for the regeneration of Pt and Pt-Ru anodes in a PEM fuel cell fed with CO concentrations as high as 10,000 ppm. The results show periodic removal of CO from the catalyst surface by pulsed oxidation can increase the average cell potential and increase overall efficiency. A method for enhancing the performance of a fuel cell stack using a microprocessor-based Fuel Cell Health Manager (FCHM) has been developed. The results of a cost/benefit analysis for the use of a FCHM on a 4 kW residential fuel cell system are presented. (author)

  11. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    Science.gov (United States)

    2005-09-01

    produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites...funded the Department of Defense (DOD) Residential PEM Demonstration Project to demonstrate domestically-produced, residential Proton Exchange Membrane...PEM) fuel cells at DOD Facilities. The objectives were to: (1) assess PEM fuel cells’ role in supporting sustainability at military installations

  12. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  13. Fuel cell processor with low-temperature PEM fuel cell - testing. Final report; Naturgasreformersystem med lavtgemperatur-PEM braendselsceller - TEST. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bech-Madsen, J.

    2006-11-03

    The purpose of the project is to further develop a Danish natural gas reformer system including optimisation of subsystems and the overall system consisting of a natural gas reformer and fuel cell CHP generator. This will contribute to the evaluation of to what extend Denmark shall develop small reformer units for PEM fuel Cells. In the project a reformer system with a high degree of automatic control has been build that fulfils the CHP requirements to operation time, dynamics etc. This work, with a FP05 reformer unit, has given valuable results concerning the possibilities and limitations of the reformer technology for CHP usage. It is important that the reformer and fuel cell units are designed with matching yields to optimise efficiency, turn-down start-up time etc. The burner that delivers heat for the steam reaction shall be able to use natural gas as fuel. This gives the possibility of using existing burner technology. In addition this will improve the efficiency since it will not be necessary to reform natural gas to feed the burner. The large number of BoP components in the FP05 unit is primarily used for achieving good regulation dynamics and accuracy. To reduce the number of components, a CHP unit with few or only one operational point should be considered. A single point of operation will reduce the number of valves as well as the requirements to the control and regulation of the system. A large part of the reformer size is needed to meet the high demands for CO purification of the reformat. This purification results in a very narrow window of operation for the reformer system. By using more CO tolerant fuel cells this part of the system can be reduced or even eliminated. To test the developed automatic control it was planned to integrate the FP05 reformer with a 10kW CHP unit that was being build by IRD in a separate project. This unit was perfect in size for testing with the reformer. However due to a number of reasons it was not possible during the

  14. Potential Usage of Thermoelectric Devices in a High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Andreasen, Søren Juhl

    2012-01-01

    Methanol fuelled high temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved and they still rely on a large Li-ion battery...... for system startup. In this paper, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. Firstly, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas......-liquid heat exchanger to jointly form a heat recovery subsystem for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To further improve the TEG subsystem performance, a finite...

  15. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  16. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.

    Science.gov (United States)

    Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota

    2018-06-13

    European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Experimental characterization and modeling of an ethanol steam reformer

    DEFF Research Database (Denmark)

    Mandø, Matthias; Bovo, Mirko; Nielsen, Mads Pagh

    2006-01-01

    This work describes the characterization of an ethanol reforming system for a high temperature PEM fuel cell system. High temperature PEM fuel cells are well suited for operation on reformate gas due to the superior CO tolerance compared with low temperature PEM. Steam reforming of liquid biofuels...

  19. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Minett, Andrew I.; Zhao, Jie; Razal, Joselito M.; Wallace, Gordon G.; Romeo, Tony; Chen, Jun [Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522 (Australia); Gao, Mei [Division of Materials Science and Engineering, CSIRO, Bayview Ave, Clayton, VIC 3168 (Australia)

    2011-07-15

    A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  1. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  2. Investigation on the corrosion resistance of PIM 316L stainless steel in PEM fuel cell simulated environment

    International Nuclear Information System (INIS)

    Oliveira, Mara Cristina Lopes de; Costa, Isolda; Antunes, Renato Altobelli

    2009-01-01

    Bipolar plates play main functions in PEM fuel cells, accounting for the most part of the weight and cost of these devices. Powder metallurgy may be an interesting manufacturing process of these components owing to the production of large scale, complex near-net shape parts. However, corrosion processes are a major concern due to the increase of the passive film thickness on the metal surface, lowering the power output of the fuel cell. In this work, the corrosion resistance of PIM AISI 316L stainless steel specimens was evaluated in 1M H 2 SO 4 + 2 ppm HF solution at room temperature during 30 days of immersion. The electrochemical measurements comprised potentiodynamic polarization and electrochemical impedance spectroscopy. The surface morphology of the specimens was observed before and after the corrosion tests through SEM images. The material presented low corrosion current density suggesting that it is suitable to operate in the PEM fuel cell environment. (author)

  3. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  4. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  5. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng

    2012-01-01

    (MEAs) is currently hampering the commercial viability of the technology. In the present study, thermoset PBI membranes were prepared by curing the membranes under inert atmosphere at temperatures of up to 350 °C prior to the acid doping. The systematic membrane characterizations with respect...... to solubility, phosphoric acid doping, radical-oxidative resistance and mechanical strength indicated that the PBI membranes were irreversibly cured by the thermal treatment. After curing, the PBI membranes demonstrated features that are fundamental characteristics of a thermoset resin including complete...

  6. Development of PEM fuel cell stack for small combined heat and power units; Udvikling af PEM braendselscellestak for smaa decentrale kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The aim of the project was to further develop cells and stack elements in order to reach a higher yield, longer service life, lower production costs and reduced demands for the plants' help, security and SRO (control - regulation - monitoring) systems, i.e. take the PEM fuel cell core technology's yield and cost to a level that will make power generating plants based on PEM fuel cells commercial interesting for CHP production within a capacity area of a few kW. The project focused on development of materials and processes for the individual cell and stack elements, including optimization of materials and production processes for MEAs (membrane electrode assemblies) with integrated diffusion layer, development of materials and production processes for bipolar graphite plates and development of manifold end plates for casting in polymer sandwich construction. (BA)

  7. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  8. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  9. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  10. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  11. A comprehensive, consistent and systematic mathematical model of PEM fuel cells

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li Xianguo

    2009-01-01

    This paper presents a comprehensive, consistent and systematic mathematical model for PEM fuel cells that can be used as the general formulation for the simulation and analysis of PEM fuel cells. As an illustration, the model is applied to an isothermal, steady state, two-dimensional PEM fuel cell. Water is assumed to be in either the gas phase or as a liquid phase in the pores of the polymer electrolyte. The model includes the transport of gas in the gas flow channels, electrode backing and catalyst layers; the transport of water and hydronium in the polymer electrolyte of the catalyst and polymer electrolyte layers; and the transport of electrical current in the solid phase. Water and ion transport in the polymer electrolyte was modeled using the generalized Stefan-Maxwell equations, based on non-equilibrium thermodynamics. Model simulations show that the bulk, convective gas velocity facilitates hydrogen transport from the gas flow channels to the anode catalyst layers, but inhibits oxygen transport. While some of the water required by the anode is supplied by the water produced in the cathode, the majority of water must be supplied by the anode gas phase, making operation with fully humidified reactants necessary. The length of the gas flow channel has a significant effect on the current production of the PEM fuel cell, with a longer channel length having a lower performance relative to a shorter channel length. This lower performance is caused by a greater variation in water content within the longer channel length

  12. The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2015-01-01

    In this work, a non-equilibrium formulation of a compression dependent water uptake model has been implemented in a two-dimensional, two-phase, multi-component and non-isothermal high pressure PEM electrolysis model. The non-equilibrium formulation of the water uptake model was chosen in order...... to account for interfacial transport kinetics between each fluid phase and the perfluorinated sulfonic acid membrane. Besides modeling water uptake, the devised membrane model accounts for water transport through diffusion and electro-osmotic drag in the electrolyte phase, and hydraulic permeation...... in the liquid phase. Charge transport and electrochemistry are likewise included. The obtained model is validated against experimental measurements. In order to investigate the effect of membrane compression, a parametric study is carried. Results underline that the predicted water uptake and cell voltage...

  13. Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Yunsong; Siu, Ana; Peckham, Timothy J.

    2008-01-01

    Chemical structure, polymer microstructure, sequence distribution, and morphology of acid-bearing polymers are important factors in the design of polymer electrolyte membranes (PEMs) for fuel cells. The roles of ion aggregation and phase separation in vinylic- and aromatic-based polymers in proton...... conductivity and water transport are described. The formation, dimensions, and connectivity of ionic pathways are consistently found to play an important role in determining the physicochemical properties of PEMs. For polymers that possess low water content, phase separation and ionic channel formation...

  14. PEM Low Cost Endplates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Martin; Clyens, S.; Steenstrup, F.R.; Christiansen, Jens [Danish Technological Institute. Plastics Technology, Taastrup (Denmark); Yde-Andersen, S. [IRD Fuel Cell A/S, Svendborg (Denmark)

    2013-03-15

    In the project, an endplate for the PEM-type fuel cells has been developed. The initial idea was to use an injection mouldable fibre reinforced polymer to produce the endplate and thereby exploit the opportunities of greater geometrical freedom to reduce weight and material consumption. Different PPS/glass-fibre compounds were produced and tested in order to use the results to optimize the results on the computer through FEM simulations. As it turned out, it was impossible to achieve adequate stiffness for the endplates within the given geometrical limitations. At the relatively high temperatures at which the endplates operate the material simply goes to soft. Material focus shifted to fibre reinforced high strength concrete composite. Test specimens were produced and tested so the results again could be used for FEM-simulations which also accounted for the technical limitations the concrete composite has regarding casting ability. In the process, the way the endplate is mounted was also alternated to better accommodate the properties of the concrete composite. A number of endplates were cast in specially produced moulds in order to map the optimum process parameters, and a final endplate was tested at IRD Fuel Cells A/S. The field test was in many aspects successful. However, the gas sealing and the surface finish can be further improved. The weight may still be an issue for some applications, even though it is lower than the endplate currently used. This issue can be addressed in a future project. The work has resulted in a new endplate design, which makes the stack assembly simpler and with fewer components. The endplates fabrication involves low cost methods, which can be scaled up as demand of fuel cells begin to take off. (Author)

  15. Optimization Study of PEMFC stack at elevated temperature

    African Journals Online (AJOL)

    UPUser

    structures improves the PEM fuel cell system performance at higher temperature of operation and optimal aspect ... theoretical voltage at which a fuel cell can operate [4]. ... distribution. ... water loss in the cell until a critical temperature is.

  16. Psychometric Evaluation of the Young Children's Participation and Environment Measure (YC-PEM) for use in Singapore.

    Science.gov (United States)

    Lim, Chun Yi; Law, Mary; Khetani, Mary; Rosenbaum, Peter; Pollock, Nancy

    2018-08-01

    To estimate the psychometric properties of a culturally adapted version of the Young Children's Participation and Environment Measure (YC-PEM) for use among Singaporean families. This is a prospective cohort study. Caregivers of 151 Singaporean children with (n = 83) and without (n = 68) developmental disabilities, between 0 and 7 years, completed the YC-PEM (Singapore) questionnaire with 3 participation scales (frequency, involvement, and change desired) and 1 environment scale for three settings: home, childcare/preschool, and community. Setting-specific estimates of internal consistency, test-retest reliability, and construct validity were obtained. Internal consistency estimates varied from .59 to .92 for the participation scales and .73 to .79 for the environment scale. Test-retest reliability estimates from the YC-PEM conducted on two occasions, 2-3 weeks apart, varied from .39 to .89 for the participation scales and from .65 to .80 for the environment scale. Moderate to large differences were found in participation and perceived environmental support between children with and without a disability. YC-PEM (Singapore) scales have adequate psychometric properties except for low internal consistency for the childcare/preschool participation frequency scale and low test-retest reliability for home participation frequency scale. The YC-PEM (Singapore) may be used for population-level studies involving young children with and without developmental disabilities.

  17. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    Polymer electrolyte membrane (PEM) fuel cells require good hydration in order to deliver high performance and ensure long life operation. Water is essential for proton conductivity in the membrane which increases by nearly six orders of magnitude from dry to fully hydrated. Adequate water...... management in PEM fuel cell is crucial in order to avoid an imbalance between water production and water removal from the fuel cell. In the present study, a novel mathematical zero-dimensional model has been formulated for the water mass balance and hydration of a polymer electrolyte membrane. This model...... is validated against experimental data. In the results it is shown that the fuel cell water balance calculated by this model shows better fit with experimental data-points compared with model where only steady state operation were considered. We conclude that this discrepancy is due a different rate of water...

  19. Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle

    International Nuclear Information System (INIS)

    Gomez, Alberto; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Experimental study of a dead-end anode PEM fuel cell stack during a driving cycle. • Low purging duration is preferred at high current. • High purging frequency can sustain a better performance over time. • Lower cathode stoichiometry is preferred to minimize the parasitic loads. - Abstract: The dynamic performance of the PEM fuel cell is one of the key factors for successful operation of a fuel cell-powered vehicle. Maintaining fast time response while keeping stable and high stack performance is of importance, especially during acceleration and deceleration. In this paper, we evaluate the transient response of a PEM fuel cell stack with a dead-end anode during segments of a legislated European driving cycle together with the effect of purging factors. The PEM fuel cell stack comprises of 24 cells with a 300 cm"2 active catalyst area and operates at a low hydrogen and air pressure. Humidified air is supplied to the cathode side and the dry hydrogen is fed to the anode. The liquid coolant is circulated to the stack and the radiator to maintain the thermal envelope throughout the stack. The stack performance deterioration over time is prevented by utilizing the purging, which removes the accumulated water and impurities. The effect of purging period, purging duration, coolant flow rate and cathode stoichiometry are examined with regard to the fuel cell’s transient performance during the driving cycle. The results show that a low purging duration may avoid the undesired deceleration at a high current, and a high purging period may sustain a better performance over time. Moreover, the coolant flow rate is found to be an important parameter, which affects the stack temperature–time response of the cooling control and the stack performance, especially at high operating currents.

  20. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells....... The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation......, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high...

  1. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  2. Performance and quality control of Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Da Silva, Jose C.; Trindade, Andreia; Varela, Joao

    2007-01-01

    Clear-PEM is a dedicated PET scanner for breast and axilla cancer diagnosis, under development within the framework of the Crystal Clear Collaboration at CERN, aiming at the detection of tumors down to 2 mm in diameter. The camera consists of two planar detector heads with active dimensions 16.0x14.5 cm 2 . Each head has 96 Clear-PEM detector modules consisting of 32 LYSO:Ce pixels with dimensions 2x2x20 mm 3 packed in a 4x8 BaSO 4 reflector matrix compressed between two Hamamatsu S8550 APD arrays in a double-readout configuration for Depth-of-Interaction (DoI) determination. The modules are individually measured and characterized before being grouped into Supermodules (comprised of 24 modules). Measured properties include photo-peak position, relative gain dispersion, energy resolution, cross-talk and DoI resolution. Optical inspection of matrices was also performed with the aid of a microscope, to search for pixel misalignments and matrix defects. Modules' performance was thoroughly evaluated with a 511 keV collimated beam to exactly determine DoI resolution. In addition, a fast quality control (QC) procedure using flood irradiations from a 137 Cs source was applied systematically. The overall performance of the 24 detector modules complies with the design goals of the Clear-PEM detector, showing energy resolution around 15%, DoI resolution of about 2 mm and gain dispersion among pixels of 15%

  3. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  4. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes technology advances in its unique PEM IFF water electrolyzer design to meet the NASA requirement for an electrolyzer that will operate very...

  5. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  6. Modelling and optimization of reforming systems for use in PEM fuel cell systems

    International Nuclear Information System (INIS)

    Berry, M.; Korsgaard, A.R.; Nielsen, M.P.

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest and exhibits a comparable efficiency to the SR system. The SR system had the best relation between efficiency and volume increase. Optimal temperature profiles within each reactor were found. It was shown that temperature control can significantly reduce reactor volume and increase conversion capabilities. (author)

  7. Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions

    International Nuclear Information System (INIS)

    Salva, J. Antonio; Iranzo, Alfredo; Rosa, Felipe; Tapia, Elvira

    2016-01-01

    This work presents a one dimensional analytical model developed for a 50 cm"2 PEM (polymer electrolyte membrane) fuel cell with five-channel serpentine flow field. The different coupled physical phenomena such as electrochemistry, mass transfer of hydrogen, oxygen and water (two phases) together with heat transfer have been solved simultaneously. The innovation of this work is that the model has been validated with two different variables simultaneously and quantitatively in order to ensure the accuracy of the results. The selected variables are the cell voltage and the water content within the membrane MEA (Membrane Electrode Assembly) and GDL (gas diffusion layers) experimentally measured by means of neutron radiography. The results show a good agreement for a comprehensive set of different operating conditions of cell temperature, pressure, reactants relative humidity and cathode stoichiometry. The analytical model has a relative error less than 3.5% for the value of the cell voltage and the water content within the GDL + MEA for all experiments performed. This result presents a new standard of validation in the state of art of PEM fuel cell modeling where two variables are simultaneously and quantitatively validated with experimental results. The developed analytical model has been used in order to analyze the behavior of the PEM fuel cell under different values of relative humidity. - Highlights: • One dimensional analytical model has been developed for a PEM fuel cell. • The model is validated with two different variables simultaneously. • New standard of validation is proposed.

  8. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  9. UARS Particle Environment Monitor (PEM) Level 3TP V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Particle Environment Monitor (PEM) Level 3TP data product consists of daily, 65.536 second and 2.048 interval time-ordered, vertical profiles of electron and...

  10. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  11. A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Proton Exchange membrane (PEM) fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, durability, reliability, manufacturability and cost-effectiveness. PEM fuel cell assembly pressure is known to cause large strains in the cell components. All components ...

  12. The use of PEM united regenerative fuel cells in solar- hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Arun K Doddathimmaiah; John Andrews

    2006-01-01

    Remote area power supply (RAPS) is a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. Solar hydrogen RAPS systems commonly employ photovoltaic panels, a Proton Exchange Membrane (PEM) electrolyser, a storage for hydrogen gas, and a PEM fuel cell. Currently such systems are more costly than conventional RAPS systems employing diesel generator back up or battery storage. Unitized regenerative fuel cells (URFCs) have the potential to lower the costs of solar hydrogen RAPS systems since a URFC employs the same hardware for both the electrolyser and fuel cell functions. The need to buy a separate electrolyser and a separate fuel cell, both expensive items, is thus avoided. URFCs are in principle particularly suited for use in RAPS applications since the electrolyser function and fuel cell function are never required simultaneously. The present paper reports experimental findings on the performance of a URFC compared to that of a dedicated PEM electrolyser and a dedicated fuel cell. A design for a single-cell PEM URFC for use in experiments is described. The experimental data give a good quantitative description of the performance characteristics of all the devices. It is found that the performance of the URFC in the electrolyser mode is closely similar to that of the stand-alone electrolyser. In the fuel cell mode the URFC performance is, however, lower than that of the stand-alone fuel cell. The wider implications of these findings for the economics of future solar-hydrogen RAPS systems are discussed, and a design target of URFCs for renewable-energy RAPS applications proposed. (authors)

  13. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  14. PEM Water Electrolysis: Preliminary Investigations Using Neutron Radiography

    Science.gov (United States)

    de Beer, Frikkie; van der Merwe, Jan-Hendrik; Bessarabov, Dmitri

    The quasi-dynamic water distribution and performance of a proton exchange membrane (PEM) electrolyzer at both a small fuel cell's anode and cathode was observed and quantitatively measured in the in-plane imaging geometry direction(neutron beam parallel to membrane and with channels parallel to the beam) by applying the neutron radiography principle at the neutron imaging facility (NIF) of NIST, Gaithersburg, USA. The test section had 6 parallel channels with an active area of 5 cm2 and in-situ neutron radiography observation entails the liquid water content along the total length of each of the channels. The acquisition was made with a neutron cMOS-camera system with performance of 10 sec per frame to achieve a relatively good pixel dynamic range and at a pixel resolution of 10 x 10 μm2. A relatively high S/N ratio was achieved in the radiographs to observe in quasi real time the water management as well as quantification of water / gas within the channels. The water management has been observed at increased steps (0.2A/cm2) of current densities until 2V potential has been achieved. These observations were made at 2 different water flow rates, at 3 temperatures for each flow rate and repeated for both the vertical and horizontal electrolyzer orientation geometries. It is observed that there is water crossover from the anode through the membrane to the cathode. A first order quantification (neutron scattering correction not included) shows that the physical vertical and horizontal orientation of the fuel cell as well as the temperature of the system up to 80 °C has no significant influence on the percentage water (∼18%) that crossed over into the cathode. Additionally, a higher water content was observed in the Gas Diffusion Layer at the position of the channels with respect to the lands.

  15. Using the PAW/PEM monitoring systems to support operations at Point Lepreau

    International Nuclear Information System (INIS)

    MacDonald, S.; McIntyre, M.; Dai, H.

    1997-01-01

    The plant data logger was brought on-line at the Point Lepreau Generating Station (PLGS) in 1992 in order to record information from instruments throughout the plant. Using the System Engineers Data Extraction (SEDE) utility, current plant data is at the fingertips of anyone with a network connection. System engineers can monitor the performance of their systems at any time and take pro-active measures to avoid problems with performance, as well as monitor behaviour during tests and plant upsets. Nuclear Safety personnel gather data for use in simulation and analysis validation, as well as to ensure that plant parameters are kept within the safe operating envelope. The PLGS operational safety group embarked on a project to develop a data management system. The project and the monitoring process has come to be known as the Plant Analysis Workbench (PAW). When the need for complex monitoring of safety system signals was identified, this led to a similar project called the Plant Expert Monitor (PEM). In this paper we present an overview of the functionality of both PAW and PEM, outlining in particular the expert system architecture in PEM and giving an example of its day-to-day use

  16. Synchrotron radiography and tomography of a PEM fuel cell; Synchrotron-Radiographie und -Tomographie einer PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Markoetter, Henning; Manke, Ingo [Helmholtzzentrum Berlin fuer Materialien und Energie, Berlin (Germany). Fachgruppe Bildgebende Verfahren; Arlt, Tobias [TU Berlin, Berlin (Germany); Banhart, John [TU Berlin, Institut fuer angewandte Materialforschung, Berlin (Germany); TU Berlin, Institut fuer Werkstoffwissenschaften und -technologien, Berlin (Germany); Riesemeier, Heinrich [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Arbeitsgruppe Synchrotronstrahlanalytik (Germany); Krueger, Philipp [CONSULECTRA Unternehmensberatung GmbH, Hamburg (Germany); Haussmann, Jan; Klages, Merle [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany); Scholta, Joachim [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany). Fachgruppe Brennstoffzellen-Stacks

    2013-06-01

    The three dimensional water distribution and transport pathways in gas diffusion layers (GDL) of a polymer electrolyte membrane fuell cell (PEM FC) are analysed at various operating conditions. The method of quasi in-situ X-ray tomography is used for a three dimensional visualization of the water distribution and the GDL structure. Based on the results of dynamic radiographic measurements water transport pathways are located and subsequently investigated in detail by means of tomography. The combination of 2D and 3D techniques allows for an identification of 3D transport pathways through the GDl.

  17. PEMS. Advanced predictive emission monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J.

    2010-07-15

    In the project PEMS have been developed for boilers, internal combustion engines and gas turbines. The PEMS models have been developed using two principles: The one called ''first principles'' is based on thermo-kinetic modeling of the NO{sub x}-formation by modeling conditions (like temperature, pressure and residence time) in the reaction zones. The other one is data driven using artificial neural network (ANN) and includes no physical properties and no thermo-kinetic formulation. Models of first principles have been developed for gas turbines and gas engines. Data driven models have been developed for gas turbines, gas engines and boilers. The models have been tested on data from sites located in Denmark and the Middle East. Weel and Sandvig has conducted the on-site emission measurements used for development and testing the PEMS models. For gas turbines, both the ''first principles'' and the data driven models have performed excellent considering the ability to reproduce the emission levels of NO{sub x} according to the input variables used for calibration. Data driven models for boilers and gas engines have performed excellent as well. The rather comprehensive first principle model, developed for gas engines, did not perform as well in the prediction of NO{sub x}. Possible a more complex model formulation is required for internal combustion engines. In general, both model types have been validated on data extracted from the data set used for calibration. The data for validation have been selected randomly as individual samplings, and is scattered over the entire measuring campaign. For one natural gas engine a secondary measuring campaign was conducted half a year later than the campaign used for training the data driven model. In the meantime, this engine had been through a refurbishment that included new pistons, piston rings and cylinder linings and cleaning of the cylinder heads. Despite the refurbishment, the

  18. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  19. Use of hydrogen-deuterium exchange for contrast in {sup 1}H NMR microscopy investigations of an operating PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alta. T6G 2G2 (Canada)

    2007-11-08

    The use of hydrogen-deuterium (H-D) exchange as a method to introduce contrast in {sup 1}H NMR microscopy images and to investigate the dynamic distribution of water throughout an operating H{sub 2}/O{sub 2} polymer electrolyte membrane fuel cell, PEMFC, is demonstrated. Cycling D{sub 2}O(l) through the flow channels of a PEMFC causes H-D exchange with water in the PEM to result in a D{sub 2}O-saturated PEM and thus concomitant removal of the {sup 1}H NMR signal. Subsequent operation of the PEMFC with H{sub 2}(g) enables visualization of the redistribution of water from wet or flooded conditions as H-D exchange occurs with D{sub 2}O in the PEM and results in recovery of the {sup 1}H NMR signal. Alternating between H{sub 2}(g) and D{sub 2}(g) as fuel allows observation of water distributions in the PEM while the cell is operating at a steady-state under low relative humidity. At similar currents, the rate of observable H-D exchange in the PEM during fuel cell operation was faster when the PEM was saturated with water than when under low relative humidity. These results are consistent with the known proportions of the conductive hydrophilic and nonconductive hydrophobic domains of Nafion when exposed to different relative humidities. (author)

  20. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  1. ClearPEM: prototype PET device dedicated to breast imaging

    CERN Multimedia

    Joao Varela

    2009-01-01

    Clinical trials have begun in Portugal on a new breast imaging system (ClearPEM) using positron emission tomography (PET). The system, developed by a Portuguese consortium in collaboration with CERN and laboratories participating in the Crystal Clear collaboration, will detect even the smallest tumours and thus help avoid unnecessary biopsies.

  2. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis

    International Nuclear Information System (INIS)

    Yilmaz, Ceyhun; Kanoglu, Mehmet

    2014-01-01

    Thermodynamic energy and exergy analysis of a PEM water electrolyzer driven by geothermal power for hydrogen production is performed. For this purpose, work is produced from a geothermal resource by means of the organic Rankine cycle; the resulting work is used as a work input for an electrolysis process; and electrolysis water is preheated by the waste geothermal water. The first and second-law based performance parameters are identified for the considered system and the system performance is evaluated. The effects of geothermal water and electrolysis temperatures on the amount of hydrogen production are studied and these parameters are found to be proportional to each other. We consider a geothermal resource at 160 °C available at a rate of 100 kg/s. Under realistic operating conditions, 3810 kW power can be produced in a binary geothermal power plant. The produced power is used for the electrolysis process. The electrolysis water can be preheated to 80 °C by the geothermal water leaving the power plant and hydrogen can be produced at a rate of 0.0340 kg/s. The energy and exergy efficiencies of the binary geothermal power plant are 11.4% and 45.1%, respectively. The corresponding efficiencies for the electrolysis system are 64.0% and 61.6%, respectively, and those for the overall system are 6.7% and 23.8%, respectively. - Highlights: • Thermodynamic analysis of hydrogen production by PEM electrolysis powered by geothermal energy. • Power is used for electrolyser; used geothermal water is for preheating electrolysis water. • Effect of geothermal water and electrolysis temperatures on the amount of hydrogen production. • Hydrogen can be produced at a rate of 0.0340 kg/s for a resource at 160 °C available at 100 kg/s. • Energy and exergy efficiencies of the overall system are 6.7% and 23.8%, respectively

  3. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    Science.gov (United States)

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  4. Numerical Simulations and Diagnostic Studies of Meteorological Conditions During PEM-Tropics B

    Science.gov (United States)

    Fuelberg, Henry E.

    2001-01-01

    Provides a final report on the work accomplished by several meteorological scientists under a NASA grant in conjunction with the DC-8 component of Pacific Exploratory Mission (PEM)-Tropics B. The responsibilities of the principal investigator included collaboration with the Science Team on flight planning, presentation of forecasts, and the preparation of map discussions for each flight. In a published manuscript, the principal investigator summarized the meteorological conditions during PEM-TB which included mean flow patterns, subtropical anticyclones, the South Pacific Convergence Zone (SPCZ), and the Intertropical Convergence Zone (ITCZ). Methodologies used included streamlines, ten day backward trajectories, thermodynamic soundings, and satellite imagery. Other interests included air sampling for the purpose of determining pollution levels.

  5. Numerical investigation of the coupled water and thermal management in PEM fuel cell

    International Nuclear Information System (INIS)

    Cao, Tao-Feng; Lin, Hong; Chen, Li; He, Ya-Ling; Tao, Wen-Quan

    2013-01-01

    Highlights: ► A fully coupled, non-equilibrium, anisotropic PEM fuel cell computational model is developed. ► The coupled water and heat transport processes are numerically investigated. ► Anisotropic property of gas diffusion layer has an effect on local cell performance. ► The boundary temperature greatly affects the cell local temperature and indirectly influences the saturation profile. ► The cathode gas inlet humidity slightly affects the local temperature distribution. - Abstract: Water and thermal managements are the most important issue in the operation and optimization of proton exchange membrane fuel cell (PEMFC). A three-dimensional, two-phase, non-isothermal model of PEMFC is presented in this paper. The model is used to investigate the interaction between water and thermal transport processes, the effects of anisotropic characters of gas diffusion layer, different boundary temperature of flow plate and the effect of gas inlet humidity. By comparing the numerical results of different cases, it is found that maximum cell temperature is higher in the isotropic gas diffusion layer; in contrast, the liquid saturation is lower than other case. Moreover, the boundary temperature greatly affects the temperature distribution in PEMFC, and indirectly influences the water saturation distribution. This indicates that the coupled relationship between water and thermal managements cannot be ignored, and these two processes must be considered simultaneously in the optimization of PEMFC

  6. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes

    International Nuclear Information System (INIS)

    Tang Yong; Yuan Wei; Pan Minqiang; Li Zongtao; Chen Guoqing; Li Yong

    2010-01-01

    The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.

  7. Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Achim Kienle

    2009-03-01

    Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.

  8. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  9. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Smith, Mark F.; Proffitt, James; Hammond, William; Srinivasan, Amarnath; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Judy, Clifford O.; Kross, Brian; Ramasubramanian, Srikanth; Banta, Larry E.; Kinahan, Paul E.; Champley, Kyle

    2008-02-01

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 × 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 × 72 array of 2 × 2 × 15 mm3 LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 × 15 × 15 cm3. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 ± 0.09 mm (radial), 2.04 ± 0.08 mm (tangential) and 1.84 ± 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 ± 0.08 mm (radial), 2.16 ± 0.07 mm (tangential) and 1.87 ± 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps µCi-1 ml-1 (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  10. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Proffitt, James [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hammond, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Srinivasan, Amarnath [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); McKisson, John [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Judy, Clifford O [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ramasubramanian, Srikanth [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); Banta, Larry E [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Kinahan, Paul E [Department of Radiology, University of Washington, Seattle, WA (United States); Champley, Kyle [Department of Radiology, University of Washington, Seattle, WA (United States)

    2008-02-07

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm{sup 3} LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm{sup 3}. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 {+-} 0.09 mm (radial), 2.04 {+-} 0.08 mm (tangential) and 1.84 {+-} 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 {+-} 0.08 mm (radial), 2.16 {+-} 0.07 mm (tangential) and 1.87 {+-} 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps {mu}Ci{sup -1} ml{sup -1} (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  11. A PEM fuel cell for in situ XAS studies

    International Nuclear Information System (INIS)

    Wiltshire, Richard J.K.; King, Colin R.; Rose, Abigail; Wells, Peter P.; Hogarth, Martin P.; Thompsett, David; Russell, Andrea E.

    2005-01-01

    A miniature proton exchange membrane (PEM) fuel cell has been designed to enable in situ XAS investigations of the anode catalyst using fluorescence detection. The development of the cell is described, in particular the modifications required for elevated temperature operation and humidification of the feed gasses. The impact of the operating conditions is observed as an increase in the catalyst utilisation, which is evident in the EXAFS collected at the Pt L III and Ru K edges for a PtRu/C catalyst. The Pt component of the catalyst was found to be readily reduced by hydrogen in the fuel, while the Ru was only fully reduced under conditions of good gas flow and electrochemical contact. Under such conditions no evidence of O neighbours were found at the Ru edge. The results are interpreted in relation to the lack of surface sensitivity of the EXAFS method and indicate that the equilibrium coverage of O species on the Ru surface sites is too low to be observed using EXAFS

  12. Hydrogen production by a PEM electrolyser

    International Nuclear Information System (INIS)

    Aragón-González, G; León-Galicia, A; Camacho, J M Rivera; Uribe-Salazar, M; González-Huerta, R

    2015-01-01

    A PEM electrolyser for hydrogen production was evaluated. It was fed with water and a 400 mA, 3.5 V cc electrical power source. The electrolyser was built with two acrylic plates to form the anode and the cathode, two meshes to distribute the current, two seals, two gas diffusers and an assembly membrane-electrode. A small commercial neoprene sheet 1.7 mm thin was used to provide for the water deposit in order to avoid the machining of the structure. For the assembly of the proton interchange membrane a thin square 50 mm layer of Nafion 115 was used

  13. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    OpenAIRE

    Yousri M.A. Welaya; Mohamed M. El Gohary; Nader R. Ammar

    2012-01-01

    Proton exchange membrane fuel cell (PEM) generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas productio...

  14. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  15. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  16. PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters

    International Nuclear Information System (INIS)

    Abdin, Z.; Webb, C.J.; Gray, E.MacA.

    2016-01-01

    An advanced PEM fuel cell mathematical model is described and realised in four ancillaries in the Matlab–Simulink environment. Where possible, the model is based on parameters with direct physical meaning, with the aim of going beyond empirically describing the characteristics of the fuel cell. The model can therefore be used to predict enhanced performance owing to, for instance, improved electrode materials, and to relate changes in the measured performance to internal changes affecting influential physical parameters. Some simplifying assumptions make the model fairly light in computational demand and therefore amenable to extension to simulate an entire fuel-cell stack as part of an energy system. Despite these assumptions, the model emulates experimental data well, especially at high current density. The influences of pressure, temperature, humidification and reactant partial pressure on cell performance are explored. The dominating effect of membrane hydration is clearly revealed. - Highlights: • Model based on physical parameters where possible. • Effective binary diffusion modelled in detail on an atomistic basis. • The dominating effect of membrane hydration is clearly revealed. • Documented Simulink model so others can use it. • Conceived as a research tool for exploring enhanced fuel cell performance and diagnosing problems.

  17. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    Science.gov (United States)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  18. HyLIFT-0. 'Development and benchmarking of a 1st gen. HT-PEM/Li-lon hybrid motive power system for forklifts'. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Karsten (H2 Logic A/S, Herning (Denmark)); Elkjaer Toennesen, A. (Teknologisk Institut, AArhus (Denmark)); Torrendrup, C. (Lithium Balance A/S, Ishoej (Denmark)); Sangers, A. (Grundfos DK A/S, Bjerringbro (Denmark)); Junge, S. (Atlet Danmark A/S, Engesvang (Denmark))

    2010-04-15

    In the HyLIFT-0 project a HT-PEM/Li-Ion hybrid system for a forklift was developed and built. The system has been benchmark'et and tested both at H2 Logic, in a test bench at the Teknologisk Institut and by an end user, Grene A/S, who already has a hydrogen hybrid vehicle in service with LT-PEM system. The HT-PEM/Li-Ion system is based on a 1 kW SerEnergy fuel cell, with a 2.5 kWh Li-Ion battery pack and the newly developed BMS. Both Fuel cell systems were measured in the test bench at Teknologisk Institut. The conclusions are not fully accurate because there are many factors influencing such as the HT-PEM system not being fully optimized. The benchmark at Grene, showed that the heat up time is critical for the vehicle, but once it is in operation, there are no difference to the LT-PEM system, either in experienced performance or in user experience. The purpose of HyLIFT-0 project is met since the measurements and the benchmark has revealed the technology's advantages and disadvantages. Above all the conclusion is that HT-PEM/Li-Ion hybrid fuel cell system at the present stage of development is not a disruptive technology compared to known LT-PEM systems. There are numerous advantages of the system, but there are also some disadvantages, doing that, overall, it is not a usable technology in forklifts - it is especially the long start-up time of up to 45 minutes that is unacceptable for the fork lifter user; the user wants to have immediate maximum output and the battery cannot handle this during the time it lasts until the HT-PEM fuel cell is warm and producing power. The HT-PEM/Li-Ion system is relatively simple to build and it saves a number of components compared to the LT-PEM system, but the economic advantage of this is counterbalanced by the fuel cell being rather expensive and furthermore it has a relatively low efficiency. This will probably change over time when the technology completed development and volume increase. (LN)

  19. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  20. A computational model of a PEM fuel cell with finite vapor absorption rate

    Energy Technology Data Exchange (ETDEWEB)

    Vorobev, A.; Zikanov, O.; Shamim, T. [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Dearborn, MI (United States)

    2007-03-30

    The paper presents a new computational model of non-steady operation of a PEM fuel cell. The model is based on the macroscopic hydrodynamic approach and assumptions of low humidity operation and one-dimensionality of transport processes. Its novelty and advantage in comparison with similar existing models is that it takes into account the finite-time equilibration between vapor and membrane-phase liquid water within the catalyst layers. The phenomenon is described using an additional parameter with the physical meaning of the typical reciprocal time of the equilibration. A computational parametric study is conducted to identify the effect of the finite-time equilibration on steady-state and transient operation of a PEM fuel cell. (author)

  1. Long-term stability of the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Bruyndonckx, Peter; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Silva, Jose C. da; Trindade, Andreia; Varela, Joao

    2007-01-01

    Experimental evaluation of the imaging system Clear-PEM for positron emission mammography, under development within the framework of the crystal clear collaboration at CERN, is presented in terms of its long-term stability. The detector modules and experimental setup are described. Time evolution results of signal yield, energy resolution, depth-of-interaction and inter-channel crosstalk for a reference detector module are reported

  2. Analysis of coupled proton and water transport in a PEM fuel cell using the binary friction membrane model

    International Nuclear Information System (INIS)

    Carnes, B.; Djilali, N.

    2006-01-01

    Transport of liquid water within a polymer electrolyte membrane (PEM) is critical to the operation of a PEM fuel cell, due to the strong dependence of the membrane transport coefficients on water content. In addition, enhanced predictive abilities are particularly significant in the context of passive air breathing fuel cell designs where lower water contents will prevail in the membrane. We investigate and analyze the numerical predictions of a recently proposed rational model for transport of protons and water in a PEM, when compared to a widely used empirical model. While the performance is similar for a saturated membrane, for PEMs with low water content, the difference in computed current density and membrane water crossover can be substantial. The effects of coupling partially saturated gas diffusion electrodes (GDLs) with the membrane are studied in both a 1D and 2D context. In addition, a simplified 1D analytical membrane water transport model is validated against the complete 1D model predictions. Our numerical results predict a higher current density and more uniform membrane hydration using a dry cathode instead of a dry anode, and illustrate that the strongest 2D effects are for water vapor transport

  3. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  4. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  5. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    Science.gov (United States)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    2000-01-01

    Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.

  6. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  7. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  8. Full-scale demonstration of EBS construction technology II. Design, manufacturing and transportation of pre-fabricated EBS module (PEM)

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Toguri, Satohito; Iwata, Yumiko; Kawakami, Susumu; Nagasawa, Yuji; Yoshida, Takeshi

    2008-01-01

    PEM was investigated as a full-scale demonstration for the design, manufacturing and construction by using simulated buffer material and overpack in consideration of horizontal emplacement. Also near full-scale tests were conducted to examine the applicability of air-bearing system which can be used to transport a heavy load at the drift tunnel as for PEM. With regard to PEM casing, design requirements were selected from the viewpoints of EBS performance and operation safety issues. The construction procedure was examined in consideration of the shapes of buffer material, which are previously positioned inside the casing. And design procedure of the casing was also examined and presented. A full-scale PEM casing as a longitudinally two-part divided cylinder type with connection flanges was manufactured by using carbon steel plate. The wall thickness of this non-leak tight type PEM casing was evaluated its mechanical integrity by 2-dimensional stress analysis in consideration of the emplacement condition on the drift tunnel basement. Mechanical integrity of a percolated type casing was also examined its mechanical integrity. Air-bearing unit, which originally apply to a flat/smooth surface, was modified to fit a curved surface of the drift tunnel. Two units were aligned with two parallel lines, which estimate to be able to lift 12 tons, about two-fifth of the total weight of full scale PEM. On the conducted transportation tests of the air-bearing units, considering the surface roughness of the drift tunnel, especially for its unevenness, capability and availability of the run-over such gaps were investigated. And effect of covering sheets which can improve the gapped surface into relatively smooth was also examined by using several candidate materials. Through these tests, combination of the covering sheets and the maximum available height difference were evaluated and identified. Also the maximum traction force to toe the loading was measured to design the air

  9. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    International Nuclear Information System (INIS)

    Mhlanga, Joyce C.; Lodge, Martin; Carrino, John A.; Wang, Hao; Wahl, Richard L.

    2014-01-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18 F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18 F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  10. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  11. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  12. Patriot Script 1.0.13 User Guide for PEM 1.3.2

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Timothy James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kubicek, Deborah Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Phillip David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cuellar-Hengartner, Leticia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mathis, Mark [Descartes Labs, Inc., Los Alamos, NM (United States)

    2015-11-02

    This document provides an updated user guide for Patriot Script Version 1.0.13, for release with PEM 1.3.1 (LAUR-1422817) that adds description and instructions for the new excursion capability (see section 4.5.1).

  13. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  14. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This paper reports an accelerated degradation test of a high temperature PEM fuel cell under repeated H2 starvation condition. The H2 stoichiometry is cycled between 3.0 and 0.8 every 2 min during the test. The experimental results show that the polarity of the fuel cell is reversed under H2......, there is only a slight decrease in open circuit voltage of the fuel cell which implies the membrane is not affected by the test. The electrochemical impedance spectrum measurement shows that the H2 starvation can cause significant increase in the ohmic resistance and charge transfer resistance. By looking...... starvation condition, and the cell performance indicated by cell voltage at H2 stoichiometry of 3.0 declines from 0.59 V to 0.41 V in 19 cycles. Since CO2 is detected in anode exhaust under H2 starvation condition, carbon corrosion is believed to be the reason for the degradation in this test. After the test...

  15. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  16. Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.

    High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.

  17. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  18. The effect of material properties on the performance of a new geometry PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, Iman [Islamic Azad University, Department of Mechanical Engineering, Torbat-e-jam Branch, Torbat-e-jam (Iran, Islamic Republic of); Ghazikhani, Mohsen [Ferdowsi University of Mashhad, Department of Mechanical Engineering, Faculty of Engineering, Mashhad (Iran, Islamic Republic of)

    2012-05-15

    In this paper a computational dynamics model for duct-shaped geometry proton exchange membrane (PEM) fuel cell was used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the 2-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by increasing the thermal conductivity of the GDL and membrane, the overall cell performance increases. (orig.)

  19. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  20. {sup 18}F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mhlanga, Joyce C.; Lodge, Martin [Johns Hopkins University School of Medicine, Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Carrino, John A. [Johns Hopkins University School of Medicine, Division of Musculoskeletal Radiology, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Wang, Hao [Johns Hopkins University School of Medicine, Department of Oncology Biostatistics Division, Baltimore, MD (United States); Wahl, Richard L. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Johns Hopkins University Hospitals, Division of Nuclear Medicine, Baltimore, MD (United States)

    2014-12-15

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with {sup 18}F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological {sup 18}F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  1. Silicon carbide-silicon as a support material for oxygen evolution reaction in PEM steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    cells. In the present work a commercial SiC-Si, produced by the Acheson process, with a fraction of free silicon around 20% wt. was investigated as a catalyst support for anode electrocatalyst in PEM steam electrolysers. This electrocatalyst system was characterized using several techniques such as XRD......, cyclic voltammetry, SEM, EDX and steady state electrochemical polarisation in a working PEM steam electrolyser. Several SiC-Si-IrO2 electrodes have been prepared and tested. The iridium oxide content at the electrode active layer varied from x=0.2 to x=1, corresponding to the general formula (1-x...... for phosphoric acid doped membrane steam electrolysers....

  2. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty

    2018-02-01

    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  3. Performance comparison of low and high temperature polymer electrolyte membrane fuel cells. Experimental examinations, modelling and numerical simulation; Leistungsvergleich von Nieder- und Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen. Experimentelle Untersuchungen, Modellierung und numerische Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Loehn, Helmut

    2010-11-03

    danger of washing out of the phosphoric acid. In an additional test row the Celtec-P-1000 HT-MEA was subjected to temperature change cycles (40 - 160 C), which lead to irreversible voltage losses. In a final test row performance tests were carried out with a HT-PEM fuel cell stack (16 cells /1 kW), developed in the fuel cell research centre of Volkswagen with a special gas diffusion electrode, which should avoid the degradation at deep temperatures. In these examinations no irreversible voltage losses could be detected, but the tests had to be aborted because of leakage problems. The by the experimental examinations gained insight of the superior operating behaviour and the further advantages of the HT-PEMFC in comparison to the LT-PEMFC were crucial for the construction of a simulation model for a single HT-PEM fuel cell in the theoretical part of this thesis, that also should be suitable as process simulation model for the computer based development of a virtual fuel cell within the interdisciplinary project ''Virtual Fuel Cell'' at the TU Darmstadt. The model is a numerical 2D ''along the channel'' - model, that was constructed with the finite element software COMSOL Multiphysics (version 3.5 a). The stationary, one phase model comprises altogether ten dependent variables in seven application modules in a highly complex, coupled non linear system of equations with 33713 degrees of freedom (1675 rectangle elements with 1768 nodes). The simulation model describes the mass transport processes and the electro-chemical reactions in a HT-PEM fuel cell with good accuracy, the model validation by comparing the model results with experimental data could be proved. So the 2D-model is basically suitable as process simulation model for the projecting of a virtual HT-PEM fuel cell. (orig.)

  4. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  5. Mesoporous TiO2 : an alternative material for PEM fuel cells catalyst support

    Energy Technology Data Exchange (ETDEWEB)

    Do, T.B. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Materials Science; Ruthkosky, M.; Cai, M. [General Motors, Warren, MI (United States). Research and Development Center

    2008-07-01

    This paper discussed the feasibility of using an alternative catalyst support material to replace carbon in proton exchange membrane (PEM) fuel cells. The alternative catalyst support material requires a high surface area with a large porosity but must have comparable conductivity with carbon. A mesoporous titanium oxide (TiO2) material produced by coprecipitation was introduced. The conductivity of the material is about one order of that of carbon. The 8 mole per cent Nb-doped TiO2 was formed and deposited on the surface of a nano polystyrene (PS) template via the hydrolysis of a co-solution of Ti(OC4H9)4 and Nb(OC2H5)5. The removal of PS by heat treatment produced porous structure of TiO2 with the appearance of 3 different pore types, notably open pore, ink-pot pores and closed pores. TiO2 formed from the rutile phase, allowing a lower activation temperature at 850 degrees C in a hydrogen atmosphere. The pore structures were retained after this heat treatment. The BET surface area was 116 m{sup 2}/g, porosity was 22 per cent and the average pore size was 159 angstrom. The conductivity improved considerably from almost non-conductive to one order of that of carbon.

  6. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  7. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  8. Construction of a dynamic model for a PEM power module with applications to distributed power generation. Paper no. IGEC-1-086

    International Nuclear Information System (INIS)

    Zhang, Z.; Jiang, J.; Wu, B.

    2005-01-01

    This paper deals with dynamic model construction for a PEM fuel cell power module with potential applications for distributed power generation. In particular, the effects of temperature and variations in the internal impedance as load changes have been considered. Analytical models are synthesized first by using the measurements taken at different operating conditions, and then these models are validated by performing static as well as dynamic tests on the fuel cells. The results have indicated that the models indeed represent the dynamic behaviour of the fuel cell power module accurately. (author)

  9. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    2010-01-01

    proton exchange membrane (PEM) water electrolysers (HTPEMWE). All samples were exposed to anodic polarisation in 85% phosphoric acid electrolyte solution. Platinum and gold plates were tested for the valid comparison. Steady-state voltammetry was used in combination with scanning electron microscopy...

  10. Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Søndergaard, Stine; Cleemann, Lars Nilausen; Jensen, Jens Oluf

    2017-01-01

    This paper describes the results of adding small amounts of CO gas to the cathode side in a HT-PEM fuel cell with a polybenzimidazole (PBI) membrane running on either oxygen or air. Experimental conditions: Temperature ranges 120–160 °C, constant current either 200 mA/cm2 or 800 mA/cm2 and CO...... improvement of the potential is seen before the situation goes back to normal. A good explanation for this is a competition between CO, O2 and H3PO4 at the three phase boundaries, also that a steady state exist in which CO constantly is oxidized to CO2....

  11. PEM Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    . This is followed in chapter 4 by a description of the electrolysis setups and electrolysis cells used during the work. Two different setups were used, one operating at atmospheric pressure and another that could operate at elevated pressure so that liquid water electrolysis could be performed at temperature above...... such as porosity and resistance which were supported by images acquired using scanning electron microscopy (SEM). In chapters 6 and 7 the results of the steam electrolysis and pressurised water electrolysis, respectively, are presented and discussed. The steam electrolysis was tested at 130 °C and atmospheric...... needed and hence it has become acute to be able to store the energy. Hydrogen has been identified as a suitable energy carrier and water electrolysis is one way to produce it in a sustainable and environmentally friendly way. In this thesis an introduction to the subject (chapter 1) is given followed...

  12. Proton tunneling-induced bistability, oscillations and enhanced performance of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Katsaounis, A.; Balomenou, S.; Tsiplakides, D.; Brosda, S.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Patras GR 26504 (Greece); Neophytides, S. [Institute of Chemical Engineering and High Temperature Chemical Processes, FORTH, 26500 Patras (Greece)

    2005-03-25

    Proton migration through hydrated Nafion membranes in polymer electrolyte membrane (PEM) fuel cells occurs both in the aqueous phase of the membrane and on the sulfonate groups on the surface of the membrane pores. Here we show using D{sub 2} and H{sub 2} fuel and basic quantum mechanical equations that this surface proton migration is largely due to proton tunneling between adjacent sulfonate groups, leading to an exponential variation of Nafion conductivity with cell potential. This amphibious mode of proton migration, particle-like in the aqueous phase and wave-like in the narrow pores, is shown to be the major cause of cell overpotential, bistability and oscillations of state-of-the-art PEM fuel cells operating on H{sub 2}, reformate or methanol fuel. We also show that this phenomenon can be exploited via introduction of a third auxiliary electrode to independently control the anode-cathode potential difference and dramatically enhance fuel cell power output even in absence of noble metals at the anode.

  13. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    Science.gov (United States)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  14. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  15. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  16. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneously...... under different H2 stoichiometries below 1.0 and at different current loads. The experimental results show that the cell voltage decreases promptly when the H2 stoichiometry decreases to below 1.0. Negative cell voltage can be observed which indicates cell reversal. The local current density starts...... to diverge when the cell voltage decreases. In the H2 upstream regions the current densities show an increasing trend, while those in the H2 downstream regions show a decreasing trend. Consequently, the current density distribution becomes very uneven. The current density is the highest in the upstream...

  17. Parameter changes during gradual flooding of a PEM fuel cell through EIS studies; Cambio en parametros de una celda de combustible PEM durante inundacion gradual mediante estudios de EIS

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Cruz Manzo, Samuel; Arriaga Hurtado, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Ortiz, Alondra; Orozco, German [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C. (CIDETEQ) (Mexico)

    2008-07-01

    The gradual flooding of a single PEM fuel cell was produced and Electrochemical Impedance Spectroscopy (EIS) measurements were realized in order to follow changes of the fuel cell impedance parameters. These changes were followed by using two equivalent circuit models: one simple model of the Randles type accounting for cathode and anode interfaces and a more complex model based on distributed elements, more suitable for porous electrodes in order to include protonic resistance of the catalyst layers. [Spanish] La inundacion gradual de una monocelda de combustible tipo PEM fue estudiada empleando espectroscopia de impedancia electroquimica (EIS), con el proposito de seguir cambios en los parametros de impedancia de la celda. Estos cambios fueron estudiados utilizando dos circuitos equivalentes: un modelo simple de tipo Randles, el cual considerara las interfaces del catodo y del anodo, y un modelo mas complejo basado en elementos distribuidos, el cual fuera adecuado para electrodos porosos, a fin de incluir la resistencia protonica de las capas catalizadoras.

  18. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    Science.gov (United States)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  19. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission-Tropics B (PEM-Tropics B). Volume 1; DC-8

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  20. Influence from sea water constituents on the efficiency of water electrolysis by PEM-cells

    DEFF Research Database (Denmark)

    Agersted, Karsten; Bentzen, Janet Jonna; Yde-Andersen, S.

    Among the sea-water specific impurities tested, magnesium has the most profound effect on PEM-cell degradation. Significant amounts of the cation was retrieved in the NAFION®-membrane structure after testing. Degradation was seen from a magnesium concentration as low as 3 10-7 mol/l, and increasing...... with concentration it led to a 86% increase of the area specific resistance at a concentration of 3 10-5 mol/l; equivalent to a conductivity of ~5 μS/cm. Other species (Cl-, Na+, SO4 2- ) seems to affect, though slowly, the performance negatively. If PEM will be used for electrolysis it seems therefore necessary...... to purify the feed water to ~1 μS/cm or even further while particularly focusing on the concentrations of polyvalent cations. e.g. magnesium....

  1. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  2. The Effect of Temperature Treatment on the Structure of Polyelectrolyte Multilayers

    Directory of Open Access Journals (Sweden)

    Maximilian Zerball

    2016-04-01

    Full Text Available The study addresses the effect of thermal treatment on the internal structure of polyelectrolyte multilayers (PEMs. In order to get insight into the internal structure of PEMs, Neutron Reflectometry (NR was used. PEMs with a deuterated inner block towards the substrate and a non-deuterated outer block were prepared and measured in 1% RH and in D2O before and after a thermal treatment. Complementarily, PEMs with the same number of layers but completely non-deuterated were investigated by ellipsometry. The analysis for the overall thickness (d, the average scattering length density (SLD and the refractive index (n indicate a degradation of the PEM. The loss in material is independent of the number of layers, i.e., only a constant part of the PEM is affected by degradation. The analysis of the internal structure revealed a more complex influence of thermal treatment on PEM structure. Only the outermost part of the PEM degenerates, while the inner part becomes denser during the thermal treatment. In addition, the swelling behavior of PEMs is influenced by the thermal treatment. The untreated PEM shows a well pronounced odd—even effect, i.e., PDADMAC-terminated PEMs take up more water than PSS-terminated PEMs. After the thermal treatment, the odd-even effect becomes much weaker.

  3. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    International Nuclear Information System (INIS)

    Balakrishnan, A; Mueller, C; Reinecke, H

    2014-01-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH 4 . Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH 4 . The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm 2 ) when driven by the catalytic hydrolysis of chemical hydride (NaBH 4 and the prototype system shows run time more than 15 hours

  4. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Kunz, H. Russell [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States); Fenton, James M. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL (United States)

    2007-03-01

    Polarization losses of proton exchange membrane (PEM) fuel cells at 120 C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion {sup registered} 112 membrane and electrodes that have 35 wt.% Nafion {sup registered} and 0.3 mg/cm{sup 2} platinum supported on carbon, membrane resistance at 20%RH was 0.407 {omega} cm{sup 2} and electrode resistance 0.203 {omega} cm{sup 2}, significantly higher than 0.092 and 0.041 {omega} cm{sup 2} at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm{sup 2}. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis. (author)

  5. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different curre...

  6. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  7. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Samuel Simon Araya

    2012-10-01

    Full Text Available In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA of 45 cm2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO2. Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

  8. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission - Tropics B (PEM-Tropics B). Volume 2; P-3B

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  9. Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 {sup o}C and reduced relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States)]. E-mail: huixu@lanl.gov; Kunz, H. Russell [Department of Chemical Engineering, University of Connecticut, Storrs, CT (United States); Fenton, James M. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL (United States)

    2007-03-01

    Polarization losses of proton exchange membrane (PEM) fuel cells at 120 {sup o}C and reduced relative humidity (RH) were analyzed. Reduced RH affects membrane and electrode ionic resistance, catalytic activity and oxygen transport. For a cell made of Nafion (registered) 112 membrane and electrodes that have 35 wt.% Nafion (registered) and 0.3 mg/cm{sup 2} platinum supported on carbon, membrane resistance at 20%RH was 0.407 {omega} cm{sup 2} and electrode resistance 0.203 {omega} cm{sup 2}, significantly higher than 0.092 and 0.041 {omega} cm{sup 2} at 100%RH, respectively. In the kinetically controlled region, 20%RH resulted in 96 mV more cathode activation loss than 100%RH. Compared to 100%, 20%RH also produced significant oxygen transport loss across the ionomer film in the electrode, 105 mV at 600 mA/cm{sup 2}. The significant increase in polarization losses at elevated temperature and reduced RH indicates the extreme importance of designing electrodes for high temperature PEM fuel cells since membrane development has always taken most emphasis.

  10. Experimental determination of optimal clamping torque for AB-PEM Fuel cell

    Directory of Open Access Journals (Sweden)

    Noor Ul Hassan

    2016-04-01

    Full Text Available Polymer electrolyte Membrane (PEM fuel cell is an electrochemical device producing electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell stack is provided with an appropriate clamping torque to prevent leakage of reactant gases and to minimize the contact resistance between gas diffusion media (GDL and bipolar plates. GDL porous structure and gas permeability is directly affected by the compaction pressure which, consequently, drastically change the fuel cell performance. Various efforts were made to determine the optimal compaction pressure and pressure distributions through simulations and experimentation. Lower compaction pressure results in increase of contact resistance and also chances of leakage. On the other hand, higher compaction pressure decreases the contact resistance but also narrows down the diffusion path for mass transfer from gas channels to the catalyst layers, consequently, lowering cell performance. The optimal cell performance is related to the gasket thickness and compression pressure on GDL. Every stack has a unique assembly pressure due to differences in fuel cell components material and stack design. Therefore, there is still need to determine the optimal torque value for getting the optimal cell performance. This study has been carried out in continuation of deve­lopment of Air breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV application. Compaction pressure at minimum contact resistance was determined and clamping torque value was calcu­la­ted accordingly. Single cell performance tests were performed at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving optimal cell per­formance. Clamping pressure distribution tests were also performed at these torque values to verify uniform pressure distribution at optimal torque value. Experimental and theoretical results were compared for making inferences about optimal cell perfor­man­ce. A

  11. PEM-Scoot - Control system and analysis of operation; PEM-Scoot. Steuerung und Betriebsanalyse. Diplomarbeit 2006/07

    Energy Technology Data Exchange (ETDEWEB)

    Naegeli, M.; Kaiser, R.

    2007-07-01

    This diploma thesis presented at the Bernese University of Applied Sciences, Switzerland, describes a project concerning a new drive technology. The PEM-Scoot is a scooter with an electric drive which is powered by a fuel cell, using hydrogen and oxygen stored in two pressure cylinders. That only water is exhausted during operation is considered to be an important advantage. The work done in the project consisted on the one hand of the writing of software for the control and putting it into service and, on the other hand, of various driving tests carried out in order to optimise the control software for stand-alone handling. The planning of the project is described, as are the various components used. The software for the operation of the vehicle is described in detail. The results of driving tests are presented. The report is complemented with a comprehensive appendix.

  12. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM.

    Science.gov (United States)

    Maity, Sudhangshu; Jana, Tushar

    2014-05-14

    A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

  13. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  14. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  15. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.

    Science.gov (United States)

    Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert

    2009-06-01

    A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.

  16. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2013-11-01

    Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.

  17. Assessing techniques and performance of thin OGFC/PEM overlay on micro-milled surface : final report.

    Science.gov (United States)

    2014-08-01

    The practice of placing an open-graded friction course (OGFC) or a porous European mix (PEM) : directly on top of a conventional milled surface has rarely been done in Georgia due to concerns that this : rehabilitation method could potentially cause ...

  18. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  19. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Fernández-Moreno, J.; Guelbenzu, G.; Martín, A.J.; Folgado, M.A.; Ferreira-Aparicio, P.; Chaparro, A.M.

    2013-01-01

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H 2 . - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm −2 ) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H 2 . An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  20. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  1. X-ray absorption spectroscopy for characterisation of catalysts for PEM fuel cells; Roentgenabsorptionsspektroskopie zur Charakterisierung von Katalysatoren fuer die PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, G.

    2001-10-01

    The investigation of bimetallic nanoparticles is of great interest for the development of powerful anode catalysts in PEM fuel cells. The determination of their electronic and geometric structure is crucial for the optimization of the activity and selectivity in the fuel cell. Especially carbon supported PtRu particles have shown superior activity as anode catalysts due to their high CO tolerance. To state the reason on an atomic level, X-ray absorption spectroscopy (XAS) with synchrotron radiation has been used to examine several Pt and PtRu nanoparticle systems. They were either prepared on the basis of preformed PtRu alloy colloids stabilized by different surfactants or by chemical reduction of precursors, Na{sub 6}Pt(SO{sub 3}){sub 4} and Na{sub 6}Ru(SO{sub 3}){sub 4}. Although a PtRu interaction was observed in all systems, a nonstatistical distribution of Pt and Ru atoms in the nanoparticles could be verified. In additional investigations the reaction mechanism during the synthesis of an organometallic stabilized Pt colloid was examined. In-situ measurements revealed the formation of an hitherto unknown Pt complex as intermediate state prior to the nucleation of the particles. (orig)

  2. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    Science.gov (United States)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  3. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  4. Carbon monoxide tolerant anodes for proton exchange membrane (PEM) fuel cells. 1. Catalyst development approach

    Energy Technology Data Exchange (ETDEWEB)

    Holleck, G L; Pasquariello, D M; Clauson, S L

    1998-07-01

    PEM fuel cells are highly attractive for distributed power and cogeneration systems. They are efficient and function virtually without noise or pollution. To be competitive PEM fuel cells must operate on fuel mixtures obtained by reforming of widely available natural gas or liquid hydrocarbons. Reformed fuel gas mixtures invariably contain CO, a strong poison for Pt. Therefore CO tolerant anode catalysts are essential for wide spread PEMFC introduction. It is the objective to develop effective CO tolerant fuel cell catalysts based on multi-component platinum-transition metal alloys. Towards this goal the authors have developed a novel approach for the synthesis and performance evaluation of multifunctional ternary alloy fuel cell catalysts. The alloys are prepared as well-defined thin films on standard TFE-bonded carbon substrates via a dc magnetron sputtering technique. The anodes are laminated to Nafion membranes and the electrochemical performance is measured in a representative fuel cell configuration with H{sub 2} and H{sub 2}/CO gas mixtures. The multi-target sputtering technique permits one to reproducibly synthesize true alloy films of controlled composition. The deposit morphology and electrode structure are determined by the standardized TFE bonded carbon substrate. The thin catalyst layer is concentrated at the electrode ionomer interface where it can be fully utilized in a representative fuel cell configuration. Thus, a true comparative fuel cell catalyst evaluation is possible. The effectiveness of this approach will be demonstrated with Pt, Pt-Ru and Pt-Ru-X catalyzed anodes.

  5. The electronics system for the LBNL positron emission mammography (PEM) camera

    CERN Document Server

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  6. Optimal Control of a PEM Fuel Cell for the Inputs Minimization

    Directory of Open Access Journals (Sweden)

    José de Jesús Rubio

    2014-01-01

    Full Text Available The trajectory tracking problem of a proton exchange membrane (PEM fuel cell is considered. To solve this problem, an optimal controller is proposed. The optimal technique has the objective that the system states should reach the desired trajectories while the inputs are minimized. The proposed controller uses the Hamilton-Jacobi-Bellman method where its Riccati equation is considered as an adaptive function. The effectiveness of the proposed technique is verified by two simulations.

  7. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  8. Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus.

    Science.gov (United States)

    Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt

    2017-10-18

    The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.

  9. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  10. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  11. XAS Investigations of PEM Fuel Cells

    Science.gov (United States)

    Roth, Christina; Ramaker, David E.

    Polymer-electrolyte membrane (PEM) fuel cells are still far from an area-wide market launch due in part to long-term stability, reliability and cost issues. A more detailed knowledge of the underlying reaction mechanisms is expected to further their application, as it would allow for the design of tailor-made catalysts. However, this will only be possible by complementing traditional in situ studies on single-crystals in electrochemical cells with more sophisticated metal/electrolyte interfacial studies by novel spectroscopic methodologies, which can provide complementary insights into the behaviour of commercial catalysts under real fuel cell operating conditions. This review will focus on the advances of Xray absorption spectroscopy (XAS) in applied fuel cell research utilizing several examples. XAS enables both the nanoparticle morphology and the adsorbate coverage and binding site to be investigated with just one technique. The latter is possible when complementing the conventional extended X-ray absorption fine structure (EXAFS) analysis with the more novel Δμ XANES approach.

  12. Experimental comparison of standard fuel cells PEM in radial configuration, coil and spiral; Comparacion experimental de celdas de combustible tipo PEM en configuracion radial, serpentin y espiral

    Energy Technology Data Exchange (ETDEWEB)

    Cano Andrade, Sergio

    2008-12-15

    After analyzing each one of the possible energy sources to replace oil the following question arises: which of all the possible sources is the suitable one? With no doubt another important factor in the election of this source is due to take into account, which has to do with the great problem that the humanity deals on a daily basis: the greenhouse effect. Taking into account the greenhouse effect, the fuel cells on the basis of hydrogen are the more viable energy source to substitute oil, since in their operation they are friendly with the environment since they do not produce polluting agents, reducing enormously the problem of global heating in which the planet is bottled. It is very certain that many disadvantages in these fuel cells on the basis of hydrogen still exist, but the arduous investigations realized until the present time foresee an excellent future where the planet will be able to satisfy its daily energy demand on the basis of the hydrogen technology. In future works one must have special care of the humidity control of gases before entering the fuel cell, since it is an important parameter in the correct operation of the standard fuel cells PEM. In the present investigation the advance in the state-of-the-art of the hydrogen technology is illustrated, specifically with the generation of electricity on the basis of the novel configurations of standard fuel cells PEM. Until the moment similar work it has not been found in the bibliography similar work where it is experienced with this type of radial configuration for the hydrogen technologies. The geometry and the results presented/displayed in this analysis correspond to a work of the highest category in the state-of-the-art of the fuel cells; in addition, an ample expectation due to the highly satisfactory results found, either numerically as well as experimentally, in comparison with other geometries is obtained. [Spanish] Despues de analizar cada una de las posibles fuentes de energia para

  13. Impact of the water symmetry factor on humidification and cooling strategies for PEM fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Picot, D; Metkemeijer, R; Bezian, J J; Rouveyre, L [Centre d` Energetique, Ecole des Mines de Paris, 06 - Sophia Antipolis (France)

    1998-10-01

    In this paper, experimental water and thermal balances with three proton exchange membrane fuel cells (PEMFC) are proposed. On the test facility of Ecole des Mines de Paris, three De Nora SPA fuel cell stacks have been successfully studied: An 1 kW{sub e} prototype using Nafion {sup trademark} 117, a 5 and 10 kW{sub e} module using Nafion {sup trademark} 115. The averaged water symmetry factor determines strategies to avoid drying membrane. So, we propose analytical solutions to find compromises between humidification and cooling conditions, which determines outlet temperatures of gases. For transport applications, the space occupied by the power module must be reduced. One of the main efforts consists in decreasing the operative pressure. Thus, if adequate cooling power is applied, we show experimentally and theoretically the possibility to use De Nora PEM fuel cells with low pressure, without specific external humidification. (orig.)

  14. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  15. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  16. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  17. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    International Nuclear Information System (INIS)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M.

    2006-01-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H 2 shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H 2 generation. These commercial applications may be satisfied by a 100 kg H 2 /day module; this platform can be the pathway towards a 500 kg H 2 /day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H 2 /day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  18. Three-dimensional multi-phase flow computational fluid dynamics model for analysis of transport phenomena and thermal stresses in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maher, A.R.; Al-Baghdadi, S. [International Technological Univ., London (United Kingdom). Dept. of Mechanical Engineering; Haroun, A.K.; Al-Janabi, S. [Babylon Univ., Babylon (Iraq). Dept. of Mechanical Engineering

    2007-07-01

    Fuel cell technology is expected to play an important role in meeting the growing demand for distributed generation because it can convert the chemical energy of a clean fuel directly into electrical energy. An operating fuel cell has varying local conditions of temperature, humidity, and power generation across the active area of the fuel cell in 3D. This paper presented a model that was developed to improve the basic understanding of the transport phenomena and thermal stresses in PEM fuel cells, and to investigate the behaviour of polymer membrane under hygro and thermal stresses during the cell operation. This comprehensive 3D, multiphase, non-isothermal model accounts for the major transport phenomena in a PEM fuel cell, notably convective and diffusive heat and mass transfer; electrode kinetics; transport and phase change mechanism of water; and potential fields. The model accounts for the liquid water flux inside the gas diffusion layers by viscous and capillary forces and can therefore predict the amount of liquid water inside the gas diffusion layers. This study also investigated the key parameters affecting fuel cell performance including geometry, materials and operating conditions. The model considers the many interacting, complex electrochemical, transport phenomena, thermal stresses and deformation that cannot be studied experimentally. It was concluded that the model can provide a computer-aided tool for the design and optimization of future fuel cells with much higher power density and lower cost. 21 refs., 2 tabs., 14 figs.

  19. Electrochemical extraction of oxygen using PEM electrolysis technology

    Directory of Open Access Journals (Sweden)

    BOULBABA ELADEB

    2012-11-01

    Full Text Available Electrochemical extraction of oxygen from air can be carried out by chemical reduction of oxygen at the cathode and simultaneous oxygen evolution by water anode oxidation. The present investigation deals with the use of an electrolysis cell of PEM technology for this purpose. A dedicated 25 cm2 cell provided with a commercial water electrolysis MEA and titanium grooved plates has been designed for continuous operation at pressures close to the ambient level. The MEA consisted of a Nafion 117 membrane sandwiched between a Pt/C cathode and a non-supported Pt-Ir anode. Oxygen partial consumption in long-term runs was evaluated by analysis of the outlet air by gas chromatography, depending on the cell voltage - or the current density - and the excess in air oxygen fed to the cathode. Runs over more 50 hours indicated the relative stability of the components used for current densities ranging from 0.1 to 0.2 A cm-2 with high efficiency of oxygen reduction. Higher current density could be envisaged with more efficient MEA’s, exhibiting lower overpotentials for oxygen evolution to avoid too significant degradation of the anode material and the membrane. Interpretation of the data has been carried out by calculation of the cathode current efficiency.

  20. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  1. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  2. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  3. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  4. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  5. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chang

    2011-01-01

    Full Text Available In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS. These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  6. Investigation of physical properties and cell performance of Nafion/TiO{sub 2} nanocomposite membranes for high temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, M.; Peighambardoust, S.J. [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Rowshanzamir, S. [School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Fuel Cell Research Laboratory, Green Research Centre, Iran University of Science and Technology, Tehran (Iran); Hosseini, M.G. [Electrochemistry Research Laboratory, Physical Chemistry Department, Chemistry Faculty, Tabriz University, Tabriz (Iran); Eikani, M.H. [Department of Chemical Industries, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran)

    2010-09-15

    Synthesis and characterization of Nafion/TiO{sub 2} membranes for proton exchange membrane fuel cell (PEMFC) operating at high temperatures were investigated in this study. Nafion/TiO{sub 2} nanocomposite membranes have been prepared by in-situ sol-gel and casting methods. In the sol-gel method, preformed Nafion membranes were soaked in tetrabutylortotitanate (TBT) and methanol solution. In order to compare synthesis methods, a Nafion/TiO{sub 2} composite membrane was fabricated with 3 wt.% of TiO{sub 2} particles by the solution casting method. The structures of membranes were investigated by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDXA). Also, water uptake and proton conductivity of modified membranes were measured. Furthermore, the membranes were tested in a real PEMFC. X-Ray spectra of the composite membranes indicate the presence of TiO{sub 2} in the modified membranes. In case of the same doping level, sol-gel method produces more uniform distribution of Ti particles in Nafion/TiO{sub 2} composite membrane than the ones produced by casting method. Water uptake of Nafion/TiO{sub 2} membrane with 3 wt.% of doping level was found to be 51% higher than that of the pure Nafion membrane. EIS measurements showed that the conductivity of modified membranes decreases with increasing the amount of doped TiO{sub 2}. Finally, the membrane electrode assembly (MEA) prepared from Nafion/Titania nanocomposite membrane shows the highest PEMFC performance in terms of voltage vs. current density (V-I) at high temperature (110 C) which is the main goal of this study. (author)

  7. The use of a medical dictionary for regulatory activities terminology (MedDRA) in prescription-event monitoring in Japan (J-PEM).

    Science.gov (United States)

    Yokotsuka, M; Aoyama, M; Kubota, K

    2000-07-01

    The Medical Dictionary for Regulatory Activities Terminology (MedDRA) version 2.1 (V2.1) was released in March 1999 accompanied by the MedDRA/J V2.1J specifically for Japanese users. In prescription-event monitoring in Japan (J-PEM), we have employed the MedDRA/J for data entry, signal generation and event listing. In J-PEM, the lowest level terms (LLTs) in the MedDRA/J are used in data entry because the richness of LLTs is judged to be advantageous. A signal is generated normally at the preferred term (PT) level, but it has been found that various reporters describe the same event using descriptions that are potentially encoded by LLTs under different PTs. In addition, some PTs are considered too specific to generate the proper signal. In the system used in J-PEM, when an LLT is selected as a candidate to encode an event, another LLT under a different PT, if any, is displayed on the computer screen so that it may be coded instead of, or in addition to, the candidate LLT. The five-level structure of the MedDRA is used when listing events but some modification is required to generate a functional event list.

  8. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells - Effect of Humidification

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Zhong, Lijie

    2018-01-01

    In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 textdegreeC (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either...... with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h...

  9. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium.

    Science.gov (United States)

    Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang

    2012-02-01

    Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Development of integrated system to operational control and monitoring for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mauricio Stelita; Ferreira, Valdemar Stelita [NovoCell Sistemas de Energia S.A., Santa Barbara D' Oeste, SP (Brazil)], Email: mauricio.ferreira@novocell.ind.br

    2010-07-01

    The demonstration of fuel cells prototype in some applications such as in stationary systems and vehicles has been increased, but higher costs and lack of criteria for system longevity still prevent their mass production. Acting directly on this aspect, Novocell has proposed to develop innovative processes and materials to manufacture at scale and with competitive cost for these systems. Thus, this paper presents solutions that enable its production line of PEM fuel cells. (author)

  11. Experimental validation of modelling tools for a PEM fuel cell; Validation experimentale d'outils de modelisation d'une pile a combustible de type PEM

    Energy Technology Data Exchange (ETDEWEB)

    Boillot, M.

    2005-10-15

    In this work, a global view of the phenomena occurring in a PEM fuel cell is given. An original methodology was developed in order to determine the main parameters: thermodynamics, kinetics and transport phenomena. The gas flow in bipolar plates was characterised using experimental determination of residence time distributions and numerical simulations. Kinetics of both electrochemical reactions were analysed feeding the cell by diluted gases. In this part, the diffusion of reactants in the membrane electrodes assembly was taken into account. Finally, the relationship between humidity and electrical performance was investigated and the ohmic resistance of the cell was estimated. (author)

  12. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  13. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  14. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    International Nuclear Information System (INIS)

    Nguyen, Huy Du; Nguyen, T Thuy Luyen; Nguyen, Khac Manh; Ha, Thuc Huy; Nguyen, Quoc Hien

    2015-01-01

    Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation–reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation–reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm"−"2 when applying a voltage of 2.0 V at 25 °C. (paper)

  15. Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Prag, Carsten Brorson; Polonsky, J.

    2012-01-01

    Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis...

  16. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  17. Hybrid Modelling of a Traveling Wave Piezoelectric Motor

    DEFF Research Database (Denmark)

    El, Ghouti N.

    a theoretical model is derived. Since the dynamic characteristics of the real motor are difficult to capture in an analytical model, and the parameters of the motor are time varying and highly nonlinear, then some assumptions are required in order to simplify the modeling task and thus provide a suitable model......This thesis considers the modeling of the traveling wave piezoelectric motor (PEM). The rotary traveling wave ultrasonic motor "Shinsei type USR60" is the case study considered in this work. The traveling wave PEM has excellent performance and many useful features such as high holding torque, high....... Despite many attempts a lumped motor model of the PEM is unavailable so far. The dynamical characteristics of the PEM are complicated, highly nonlinear, and the motor parameters are time varying due to temperature rise and changes in motor drive operating conditions. Therefore it is difficult to predict...

  18. Estimation of CO concentration in high temperature PEM fuel cells using electrochemical impedance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-01-01

    of the reformer and fuel cell stack. This work focus on the estimation of CO percentage in the hydrogen rich anode gas in a fuel cell, by combining signal processing ideas with impedance information of the fuel cell while it is running. The presented approach functions during in the normal operating range......Storing electrical energy is one of the main challenges for modern society grid systems containing increasing amounts of renewable energy from wind, solar and wave sources. Although batteries are excellent storage devices for electrical energy, their usage is often limited by a low energy density......, a possible solution, an avoidance of the long recharging time is combining them with the use of fuel cells. Fuel cells continuously deliver electrical power as long as a proper fuel supply is maintained. The ideal fuel for fuel cells is hydrogen, which in it’s pure for has high volumetric storage...

  19. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  20. Pigmented Epithelioid Melanocytoma (PEM)/Animal Type Melanoma (ATM): Quest for an Origin. Report of One Unusual Case Indicating Follicular Origin and Another Arising in an Intradermal Nevus.

    Science.gov (United States)

    Tarasen, Ashley; Carlson, J Andrew; Leonard, M Kathryn; Merlino, Glenn; Kaetzel, David; Slominski, Andrzej T

    2017-08-15

    Pigmented epithelioid melanocytoma (PEM) is a tumor encompassing epithelioid blue nevus of Carney complex (EBN of CNC) and was previously termed animal-type melanoma. Histologically PEMs are heavily pigmented spindled and epithelioid dermal melanocytic tumors with infiltrative borders, however, their origin remains unclear. Stem cells for the epidermis and hair follicle are located in the bulge area of the hair follicle with the potential to differentiate into multiple lineages. Multiple cutaneous carcinomas, including follicular cutaneous squamous cell carcinoma (FSCC), are thought to arise from stem cells in the follicular bulge. We present two cases of PEM/ATM in a 63 year-old male on the scalp with follicular origin and a 72 year-old female on the upper back arising in an intradermal nevus. Biopsy of both cases revealed a proliferation of heavily pigmented dermal nests of melanocytes with atypia. The Case 1 tumor was in continuation with the outer root sheath of the hair follicle in the bulge region. Case 2 arose in an intradermal melanocytic nevus. Rare mitotic figures, including atypical mitotic figures, were identified in both cases. We present two cases of PEM, with histologic evidence suggesting two origins: one from the follicular bulb and one from an intradermal nevus.

  1. Primary and secondary electrical space power based on advanced PEM systems

    Science.gov (United States)

    Vanderborgh, N. E.; Hedstrom, J. C.; Stroh, K. R.; Huff, J. R.

    1993-01-01

    For new space ventures, power continues to be a pacing function for mission planning and experiment endurance. Although electrochemical power is a well demonstrated space power technology, current hardware limitations impact future mission viability. In order to document and augment electrochemical technology, a series of experiments for the National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) are underway at the Los Alamos National Laboratory that define operational parameters on contemporary proton exchange membrane (PEM) hardware operating with hydrogen and oxygen reactants. Because of the high efficiency possible for water electrolysis, this hardware is also thought part of a secondary battery design built around stored reactants - the so-called regenerative fuel cell. An overview of stack testing at Los Alamos and of analyses related to regenerative fuel cell systems are provided in this paper. Finally, this paper describes work looking at innovative concepts that remove complexity from stack hardware with the specific intent of higher system reliability. This new concept offers the potential for unprecedented electrochemical power system energy densities.

  2. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  3. High Temperature PEM Fuel Cell Performance Characterisation with CO and CO2 using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Vang, Jakob Rabjerg; Kær, Søren Knudsen

    2011-01-01

    at different temperatures, currents, and different content of CO, CO2 and H2 in the anode gas. The impedance spectrum at each operating point is fitted to an equivalent circuit and an analysis to identify the different mechanisms governing the impedance is performed. The trends observed, when varying...

  4. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  5. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  6. Effect of sulphuric acid concentration on electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. Paper no. IGEC-1-061

    International Nuclear Information System (INIS)

    Karimi, G.; Li, X.

    2005-01-01

    Polymer electrolyte membrane (PEM) fuel cells are highly efficient and environmentally clean, and hence one of the most promising power sources for both stationary and mobile applications. The operations of PEM fuel cells are complicated by the electroosmotic flow of water from anode to cathode through the polymer electrolyte membrane leading to the membrane dehydration and fuel cell performance degradations. In this study, electro osmotic flow in polymer electrolyte membranes is modeled by incorporating the electro kinetic effects in the presence of euphoric acid. The governing Poisson-Boatman and the Nervier-Stokes equations were solved numerically for a single membrane pore to determine the electro osmotic flow distributions through the membrane over a wide range of acid concentrations. The presence of euphoric acid modifies the protons distribution in the membrane and hence alters the driving force for electroosmotic drag. Numerical results indicate that the electro osmotic flow increases steadily with acid concentration. The water transport due to electro osmosis is almost doubled at 2 M acid concentration compared with that of non-doped membrane. The value of electroosmotic drag coefficient however falls steadily with acid concentration due to the presence of a larger number of protons in the electrolyte. (author)

  7. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  8. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  9. A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection

    Science.gov (United States)

    Motta, A.; Righi, S.; Del Guerra, A.; Belcari, N.; Vaiano, A.; De Domenico, G.; Zavattini, G.; Campanini, R.; Lanconelli, N.; Riccardi, A.

    2004-07-01

    A prototype for Positron Emission Mammography, the YAP-PEM, is under development within a collaboration of the Italian Universities of Pisa, Ferrara, and Bologna. The aim is to detect breast lesions, with dimensions of 5 mm in diameter, and with a specific activity ratio of 10:1 between the cancer and breast tissue. The YAP-PEM is composed of two stationary detection heads of 6×6 cm 2, composed of a matrix of 30×30 YAP:Ce finger crystals of 2×2×30 mm 3 each. The EGSnrc Monte Carlo code has been used to simulate several characteristics of the prototype. A fast EM algorithm has been adapted to reconstruct all of the collected lines of flight, also at large incidence angles, by achieving 3D positioning capability of the lesion in the FOV. The role of the breast compression has been studied. The performed study shows that a 5 mm diameter tumor of 37 kBq/cm 3 (1 μCi/cm 3), embedded in active breast tissue with 10:1 tumor/background specific activity ratio, is detected in 10 min with a Signal-to-Noise Ratio of 8.7±1.0. Two hot lesions in the active breast phantom are clearly visible in the reconstructed image.

  10. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  11. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  12. Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process

    International Nuclear Information System (INIS)

    Zhang, Caizhi; Liu, Zhitao; Zhang, Xiongwen; Chan, Siew Hwa; Wang, Youyi

    2016-01-01

    To improve fuel utilization of HT-PEMFC (high-temperature proton exchange membrane fuel cell), which normally operates under dead-end mode, with properly periodical purging to flush out the accumulated water vapour in the anode flow-field is necessary, otherwise the performance of HT-PEMFC would drop gradually. In this paper, a semi-empirical dynamic voltage model of HT-PEMFC is developed for controller design purpose via fitting the experimental data and validated with experimental results. Then, a fuzzy controller is designed to schedule the purging based on the obtained model. According to the result, the developed model well reflects transient characteristics of HT-PEMFC voltage and the fuzzy controller offers good performance for purging scheduling under uncertain load demands. - Highlights: • A semi-empirical dynamic voltage model of HT-PEMFC is developed for control design. • The model is developed via fitting and validated with experimental results. • A fuzzy controller is designed to schedule the purging based on the obtained model.

  13. Electro-activity of cobalt and nickel complexes for the reduction of protons into di-hydrogen. Application to PEM water electrolysis

    International Nuclear Information System (INIS)

    Pantani, O.; Anxolabehere, E.; Aukauloo, A.; Millet, P.

    2006-01-01

    Proton exchange membrane (PEM) water electrolysis is a safe and efficient way to perform water splitting into di-hydrogen and di-oxygen. In a PEM water electrolyser, platinum is commonly used as electro-catalyst on the cathodic side of the cells, mostly because of its efficiency for hydrogen evolution. But for cost considerations, there is a need to find alternative low-cost electrocatalysts. Molecular chemistry offers the possibility of synthesizing new compounds for this purpose, such as transition metal complexes. Results obtained with nickel- and cobalt-oximes compounds are presented in this paper. They have been chemically (1H NMR, EPR) and electrochemically (voltametry, spectro-electrochemistry) characterized. Their ability to electrochemically reduce protons into di-hydrogen when they are either dissolved in solution or immobilized at the surface of a solid electrode is discussed. (authors)

  14. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  15. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    International Nuclear Information System (INIS)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna; Haseley, David; Kelly, Mary M.; Liu, Franklin; Parikh, Jay R.; Beatty, J. David; Rogers, James V.

    2012-01-01

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44–4.1 kBq/mL, corresponding to 46–400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to score the presence of spheres. Results: Sensitivity was 100% for lesions ≥12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained ≥90% for injected activities as low as 100 MBq, for lesions ≥8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon attenuation.

  16. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  17. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  18. Feasibility of implementation of an autonomous hybrid system for PEM fuel cells to electrify localities in rural Cuba; Factibilidad de implementacion de un sistema hibrido autonomo con celda de combustible PEM para electrificar localidades rurales en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Torres, Yamir [Centro de Estudios de Tecnologias Energeticas Renovables (CETER), Ciudad de la Habana (Cuba)] e-mail: yamir@ceter.cujae.edu.cu

    2009-09-15

    The use of PEM fuel cells to produce electric energy in autonomous systems is closely linked with the production and storage of hydrogen. Eventually joined with sources of renewable energy, this creates an ecologically clean and sustainable system. In several developing countries, localities exist that do not have electricity but have significant unexploited renewable energy power, where an autonomous hybrid system can be designed to electrify these population centers. This work presents a hybrid electricity scheme with a PEM fuel cell to produce hydrogen and electricity in order to electrify rural zones far from the national power grid in Cuba. The electric demand of the zone and available energy power was calculated using the informatics modeling and simulation programs HOMER, PVSYST and Matlab 1,2,3. Variability in wind and photovoltage power was determined based on daylight hours and seasonal periods throughout the year as well as their effect on the production of hydrogen and electricity. It was shown that the energy demand is met even for the most adverse scenarios. This work offers a detailed description of the behavior of the system and evidence of no effect on the environment, enabling the electrification and wellbeing of residents of the locality. [Spanish] El uso de celdas de combustible PEM para la produccion de energia electrica en sistemas autonomos esta estrechamente ligado a la produccion y almacenamiento de hidrogeno. Esto eventualmente unido a las fuentes renovables de energia forma un sistema ecologicamente limpio y sustentable. En varios paises subdesarrollados existen localidades que no cuentan con electricidad y que tienen importantes potenciales energeticos renovables no explotados actualmente en los cuales se puede disenar un sistema hibrido autonomo para electrificar estas poblaciones. En este trabajo se presenta el esquema de un sistema hibrido autonomo con celda de combustible PEM, para la produccion de hidrogeno y electricidad encaminado

  19. Genetic Interaction Mapping in Schizosaccharomyces pombe Using the Pombe Epistasis Mapper (PEM) System and a ROTOR HDA Colony Replicating Robot in a 1536 Array Format.

    Science.gov (United States)

    Roguev, Assen; Xu, Jiewei; Krogan, Nevan

    2018-02-01

    This protocol describes an optimized high-throughput procedure for generating double deletion mutants in Schizosaccharomyces pombe using the colony replicating robot ROTOR HDA and the PEM (pombe epistasis mapper) system. The method is based on generating high-density colony arrays (1536 colonies per agar plate) and passaging them through a series of antidiploid and mating-type selection (ADS-MTS) and double-mutant selection (DMS) steps. Detailed program parameters for each individual replication step are provided. Using this procedure, batches of 25 or more screens can be routinely performed. © 2018 Cold Spring Harbor Laboratory Press.

  20. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  1. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  2. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  3. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  4. Characterization of the emissions impacts of hybrid excavators with a portable emissions measurement system (PEMS)-based methodology.

    Science.gov (United States)

    Cao, Tanfeng; Russell, Robert L; Durbin, Thomas D; Cocker, David R; Burnette, Andrew; Calavita, Joseph; Maldonado, Hector; Johnson, Kent C

    2018-04-13

    Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO 2 ) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Preparation and characterization of Nafion - TiO{sub 2} composite electrolytes for application in proton exchange membrane fuel cells; Preparacao e caracterizacao de eletrolitos compositos Nafion - TiO{sub 2} para aplicacao em celulas a combustivel de membrana de troca protonica

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Bruno Ribeiro de

    2008-11-06

    The fabrication and characterization of Nafion - TiO{sub 2} composites, and the use of such electrolytes in PEM (Proton Exchange Membrane) fuel cell operating at high temperature (130 deg C) were studied. The operation of a PEM fuel cell at such high temperature is considered as an effective way to promote fast electrode reaction kinetics, high diffusional transport, and high tolerance to the carbon monoxide fuel contaminant. The polymer Nafion{sup R} is the most used electrolyte in PEM fuel cells due to its high proton conductivity. However, the proton transport in Nafion is dependent on the water content in the polymeric membrane. The need of absorbed water in the polymer structure limits the operation of the fuel cell to temperatures close to 100 deg C, above which Nafion exhibits a fast decrease of the ionic conductivity. In order to increase the performance of the electrolyte operating at high temperatures, Nafion-TiO{sub 2} composites have been prepared by casting. The addition of titania hygroscopic particles to the polymeric matrix aims at the enhancement of the humidification of the electrolyte at temperatures above 100 deg C. Three types of titania particles with different specific surface area and morphology have been investigated. Nafion-based composites with the addition of titania nanoparticles, in the 2.5-15 wt.% range, with nearly spherical shape and specific surface area up to approx. 115 m{sup 2}g{sup -1} were found to have higher glass transition temperature than the polymer. Such an increase improves the stability of the electrolyte during the fuel cell operation at high temperatures. The addition of titania-derived nanotubes results in a pronounced increase of the performance of PEM fuel cell operating at 130 deg C. In this composite, the high specific surface area and the tubular shape of the inorganic phase are responsible for the measured increase of both the absorption and retention of water of the composite electrolyte. Nonetheless, the

  6. Transients of Water Distribution and Transport in PEM Fuel Cells

    KAUST Repository

    Hussaini, Irfan S.; Wang, Chao-Yang

    2009-01-01

    The response of polymer electrolyte membrane (PEM) fuel cells to a step change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of transient response following a step increase in current, is due to transients of water distribution in the membrane and ionomers occurring at subsecond time scales. The use of humidified reactants as a means to control the magnitude of voltage undershoot is demonstrated. Further, the response under a step decrease in current density is explored to determine the existence of hysteresis. Under sufficiently humidified conditions, the responses under forward and reverse step changes are symmetric, but under low relative humidity conditions, voltage undershoot is twice as large as the overshoot. © 2009 The Electrochemical Society.

  7. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact......This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...

  8. Modelling and Optimization of Reforming Systems for use in PEM Fuel Cell

    DEFF Research Database (Denmark)

    Berry, Melissa; Korsgaard, Anders Risum; Nielsen, Mads Pagh

    2004-01-01

    Three different reforming methods for the conversion of natural gas to hydrogen are studied and compared: Steam Reforming (SR), Auto-thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Thermodynamic and kinetic models are developed for the reforming reactors as well as the subsequent...... reactors needed for CO removal to make the synthesis gas suitable for use in a PEM fuel cell. The systems are optimized to minimize the total volume, and must supply adequate hydrogen to a fuel cell with a 100kW load. The resultant system efficiencies are calculated. The CPOX system is the smallest...

  9. 21st Century Renewable Fuels, Energy, and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Berry, K. Joel [Kettering Univ., Flint, MI (United States); Das, Susanta K. [Kettering Univ., Flint, MI (United States)

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  10. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  11. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  12. Modeling optimizes PEM fuel cell durability using three-dimensional multi-phase computational fluid dynamics model

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2010-01-01

    Damage mechanisms in a proton exchange membrane (PEM) fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be ...

  13. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  14. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm 2 . The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for a relatively large sized fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  15. A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lin, G.; Shih, A.J.; Hu, S.J. [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2007-01-01

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell constitutes a significant portion of the overall fuel cell electrical resistance under the normal operation conditions. Most current methods for contact resistance estimation are experimental and there is a lack of well developed theoretical methods. A micro-scale numerical model is developed to predict the electrical contact resistance between BPP and GDL by simulating the BPP surface topology and GDL structure and numerically determining the status for each contact spot. The total resistance and pressure are obtained by considering all contact spots as resistances in parallel and summing the results together. This model shows good agreements with experimental results. Influences of BPP surface roughness parameters on contact resistance are also studied. This model is beneficial in understanding the contact behavior between BPP and GDL and can be integrated with other fuel cell simulations to predict the overall performance of PEM fuel cells. (author)

  16. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex.

    Science.gov (United States)

    Sardet, Christian; Nishida, Hiroki; Prodon, Francois; Sawada, Kaichiro

    2003-12-01

    Localization of maternal mRNAs in the egg cortex is an essential feature of polarity in embryos of Drosophila, Xenopus and ascidians. In ascidians, maternal mRNAs such as macho 1, a determinant of primary muscle-cell fate, belong to a class of postplasmic RNAs that are located along the animal-vegetal gradient in the egg cortex. Between fertilization and cleavage, these postplasmic RNAs relocate in two main phases. They further concentrate and segregate in small posterior blastomeres into a cortical structure, the centrosome-attracting body (CAB), which is responsible for unequal cleavages. By using high-resolution, fluorescent, in situ hybridization in eggs, zygotes and embryos of Halocynthia roretzi, we showed that macho 1 and HrPEM are localized on a reticulated structure situated within 2 mum of the surface of the unfertilized egg, and within 8 mum of the surface the vegetal region and then posterior region of the zygote. By isolating cortices from eggs and zygotes we demonstrated that this reticulated structure is a network of cortical rough endoplasmic reticulum (cER) that is tethered to the plasma membrane. The postplasmic RNAs macho 1 and HrPEM were located on the cER network and could be detached from it. We also show that macho 1 and HrPEM accumulated in the CAB and the cER network. We propose that these postplasmic RNAs relocalized after fertilization by following the microfilament- and microtubule-driven translocations of the cER network to the poles of the zygote. We also suggest that the RNAs segregate and concentrate in posterior blastomeres through compaction of the cER to form the CAB. A multimedia BioClip 'Polarity inside the egg cortex' tells the story and can be downloaded at www.bioclips.com/bioclip.html

  17. New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    4 reports results of testing dierent types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum as possible metallic bipolar plates and construction materials for HTPEMEC. The corrosion resistance was measured under simulated conditions of high temperature PEM...... steam electrolyzer. Steady-state voltammetry was used in combination with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant to corrosion under strong anodic...... stainless steel showed outstanding resistance to corrosion in selected media, while passivation of titanium was weak, and the highest rate of corrosion among all tested materials was observed for titanium at 120 °C. Today, there is a high interest in the eld towards investigation of new catalyst materials...

  18. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  19. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  20. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  1. Calculation of the hydrogen produced by a PEM electrolyzer based on solar radiation in Zacatecas; Estimacion del hidrogeno producido por un electrolizador PEM a partir de la radiacion solar en Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S. M.; Villagrana-Munoz, L.E.; Garcia-Saldivar, V.M. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico)]. E-mail: duronsm@prodigy.net.mx; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    This work presents the calculation of the amount of hydrogen obtained from the use of a proton exchange membrane electrolysis cell. Measurements performed at the solarimeter station of the Campus Siglo XXI at the Zacatecas Autonomous University were used as a basis. Solar radiation was analyzed for the period November 2007 to April 2008, corresponding to when there is less solar radiation. The amount of average irradiation measured was de 6.6 kW-h/ m{sup 2}. The evaluation of the solar-hydrogen system was conducted with linear regressions of the behavior of the hydrogen flow in LN/min versus the solar irradiance in W/m{sup 2} for a PEM electrolyzer. The results obtained indicate that the maximum amount of hydrogen produced occurred in the month of April, with 9LN/min produced with a radiation intensity of roughly 900 W/m{sup 2}; a minimum of 6 LN/min was produced with a radiation of roughly 600 W/m{sup 2} during the month of December. Based on these results, we can foresee a minimum amount of hydrogen generated of 6 to 9 LN/min in the state of Zacatecas during an entire year, since the months evaluated are those with the least solar radiation. The measurements performed by the Siglo XXI station show that the solar radiation power measured is higher than the national and worldwide means, making Zacatecas a strategic state for the use of this renewable energy. The amounts calculated of hydrogen produced would indicate that it is feasible to establish solar-hydrogen systems in this region in order to obtain this energy using PEM electrolyzers. [Spanish] En este trabajo se presenta el calculo de la cantidad de hidrogeno que se obtendria, empleando un electrolizador de membrana de intercambio de protones tipo, tomando como base las medidas realizadas en la Estacion Solarimetrica del Campus Siglo XXI en la Universidad Autonoma de Zacatecas. El analisis de la radiacion solar se realizo en el periodo de noviembre de 2007 a abril de 2008 correspondiendo a la epoca de menor

  2. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  3. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  4. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  5. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  6. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  7. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    Science.gov (United States)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  8. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  9. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  10. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  11. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  12. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  13. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    Science.gov (United States)

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  14. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2017-01-01

    In this study, the gaseliquid flow through an interdigitated anode flow field of a PEM water electrolysis cell (PEMEC) is analysed using a three-dimensional, transient, computational fluid dynamics (CFD) model. To account for two-phase flow, the volume of fluid (VOF) method in ANSYS Fluent 17...... of the channel. The model is capable of revealing effect of different bubble shapes/lengths in the outgoing channel. Shape and the sequence of the bubbles affect the water flow distribution in the ATL. The model presented in this work is the first step in the development of a comprehensive CFD model...

  15. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  16. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  17. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  18. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  19. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  20. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  1. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  2. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  3. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  4. A CFD model for analysis of performance, water and thermal distribution, and mechanical related failure in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-07-01

    Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM

  5. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal co...

  6. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  7. Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs

    International Nuclear Information System (INIS)

    Park, Jaehyung; Wang, Liang; Advani, Suresh G.; Prasad, Ajay K.

    2014-01-01

    Graphical abstract: - Highlights: • PBI/PTFE membrane was prepared by porous PTFE with hydrophilic surface pretreatment. • The durability of the prepared PBI/PTFE membrane was compared with pure PBI, PBI with untreated PTFE, and PBI-Nafion with untreated PTFE membranes. • Accelerated durability tests and SEM showed improved durability based the PBI/PTFE membrane with pretreated PTFE. - Abstract: A novel polybenzimidazole (PBI)/poly(tetrafluoroethylene) (PTFE) composite membrane doped with phosphoric acid was fabricated for high temperature operation in a polymer electrolyte membrane (PEM) fuel cell. A hydrophilic surface pretreatment was applied to the porous PTFE matrix film to improve its interfacial adhesion to the PBI polymer, thereby avoiding the introduction of Nafion ionomer which is traditionally used as a coupling agent. The pretreated PTFE film was embedded within the composite membrane during solution-casting using 5wt% PBI/DMAc solution. The mechanical stability and durability of three types of MEAs assembled with PBI only, PBI with pretreated PTFE, and PBI-Nafion with untreated PTFE membranes were evaluated under an accelerated degradation testing protocol employing extreme temperature cycling. Degradation was characterized by recording polarization curves, hydrogen crossover, and proton resistance. Cross-sections of the membranes were examined before and after thermal cycling by scanning electron microscope. Energy-dispersive X-ray spectroscopy verified that the PBI is dispersed homogeneously in the porous PTFE matrix. Results show that the PBI composite membrane with pretreated PTFE has a lower degradation rate than the Nafion/PBI membrane with untreated PTFE. Thus, the hydrophilic pretreatment employed here greatly improved the mechanical stability of the composite membrane, which resulted in improved durability under an extreme thermal cycling regime

  8. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  9. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  10. A three-dimensional model of PEM fuel cells with serpentine flow channels

    International Nuclear Information System (INIS)

    Nguyen, P.T.; Berning, T.; Bang, M.; Djilali, N.

    2003-01-01

    A three-dimensional computational model of PEM fuel cell with serpentine flow field channels is presented in this paper. This model presents a comprehensive account for all important transport phenomena in fuel cell such as heat transfer, mass transfer, electrode kinetics, and potential fields in the membrane and gas diffusion layers. A new approach of solving for the potential losses across the cell was also developed in this model. The dependency of local current density on oxygen concentration and activation overpotential is fully addressed in this model. The computational domain consists of serpentine gas flow channels, porous gas diffusion layers, catalyst layers, and a membrane. Results obtained from this model are in good agreement with experimental results. (author)

  11. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  12. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  13. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  14. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  15. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  16. Experimental study of commercial size proton exchange membrane fuel cell performance

    International Nuclear Information System (INIS)

    Yan, Wei-Mon; Wang, Xiao-Dong; Lee, Duu-Jong; Zhang, Xin-Xin; Guo, Yi-Fan; Su, Ay

    2011-01-01

    Commercial sized (16 x 16 cm 2 active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX (registered) PRIMEA 5621 was used with a 35-μm-thick PEM with an anode catalyst layer with 0.45 mg cm -2 Pt and cathode catalyst layer with 0.6 mg cm -2 Pt and Ru or GORE-TEX (registered) PRIMEA 57 was used with an 18-μm-thick PEM with an anode catalyst layer at 0.2 mg cm -2 Pt and cathode catalyst layer at 0.4 mg cm -2 of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature.

  17. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  18. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  19. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  20. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  1. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  2. Protein-energy malnutrition alters thermoregulatory homeostasis and the response to brain ischemia.

    Science.gov (United States)

    Smith, Shari E; Prosser-Loose, Erin J; Colbourne, Frederick; Paterson, Phyllis G

    2011-02-01

    Co-existing protein-energy malnutrition (PEM), characterized by deficits in both protein and energy status, impairs functional outcome following global ischemia and has been associated with increased reactive gliosis. Since temperature is a key determinant of brain damage following an ischemic insult, the objective was to investigate whether alterations in post-ischemic temperature regulation contribute to PEM-induced reactive gliosis following ischemia. Male Sprague-Dawley rats (190-280 g) were assigned to either control diet (18% protein) or PEM induced by feeding a low protein diet (2% protein) for 7 days prior to either global ischemia or sham surgery. There was a rapid disruption in thermoregulatory function in rats fed the low protein diet as assessed by continuous recording of core temperature with bio-electrical sensor transmitters. Both daily temperature fluctuation and mean temperature increased within the first 24 hours, and these remained significantly elevated throughout the 7 day pre-ischemic period (p protein diet rapidly impairs the ability to maintain thermoregulatory homeostasis, and the resultant PEM also diminishes the ability to thermoregulate in response to a challenge. Since temperature regulation is a key determinant of brain injury following ischemia, these findings suggest that the pathophysiology of brain injury could be altered in stroke victims with coexisting PEM.

  3. PEM fuel cells for mobile applications. Project part: Membrane development. Final report; PEM-Brennstoffzellen fuer mobile Anwendungen. Teilprojekt: Membranentwicklung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Frank, G

    1999-01-20

    Polymer-Electrolyte-Membrane Fuel Cells (PEMFC) are attractive candidates for next century propulsion systems in passenger cars. The technical feasibility has been demonstrated by several car manufacturers. Today, PEMFC lack economical viability. One of the reasons is the cost of currently used materials, e.g. membranes. This project target towards the development of low cost, non-fluorinated membranes, which fulfil all technical requirements in PEMFC systems. In the frame of this project we were able to successfully develop new membranes based on polyaromatic polymers, which can be produced on a technical scale. These membranes enabled high power densities, exceeding 700 mW/cm{sup 2} at 80 C and their longevity has been demonstrated successfully up to 5,000 hours. Therefore, these membranes have sufficient electrochemical stability for the application in fuel cells. The prices in mass production for these new membranes can get significantly below prices of fluorinated membranes. (orig.) [Deutsch] Polymer-Elektrolyt-Membran-Brennstoffzellen (PEMFC) gelten als aussichtsreiche Kandidaten fuer alternative Fahrzeugantriebe fuer das naechste Jahrzehnt. Die technische Machbarkeit ist bereits mehrfach demonstriert worden. Allerdings sind die Kosten der PEMFC-Systeme noch zu hoch u.a. durch zu hohe Kosten der eingesetzten Materialien, so auch der Membranen. Ziel des Projektes war daher die Entwicklung kostenguenstiger, nichtfluorierter Membranen, die die technischen Anforderungen fuer die Anwendung in der PEM-Brennstoffzelle erfuellen. Im Projekt konnten erfolgreich Membranen auf Basis polyaromatischer Polymere entwickelt werden, die sich auch im technischen Massstab herstellen lassen. Die Membranen ermoeglichen hohe Leistungsdichten groesser 700 mW/cm{sup 2} bei Betriebstemperaturen von 80 C. Die Lebensdauer der Membranen wurde erfolgreich ueber 5.000 Stunden nachgewiesen. Die elektrochemische Stabilitaet der untersuchten Materialien ist damit gegeben. Die Preise dieser

  4. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  5. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  6. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  7. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  8. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  9. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    OpenAIRE

    Y. A. ABDELAZIZ; F. M. MEGAHED

    2010-01-01

    An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω) from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the...

  10. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  11. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  12. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  13. Distributed generation system with PEM fuel cell for electrical power quality improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D.; Beites, L.F.; Blazquez, F. [Department of Electrical Engineering, ETSII, Escuela de Ingenieros Industriales, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Ballesteros, J.C. [Endesa Generacion, S.A. c/ Ribera de Loira 60, 28042 Madrid (Spain)

    2008-08-15

    In this paper, a physical model for a distributed generation (DG) system with power quality improvement capability is presented. The generating system consists of a 5 kW PEM fuel cell, a natural gas reformer, hydrogen storage bottles and a bank of ultra-capacitors. Additional power quality functions are implemented with a vector-controlled electronic converter for regulating the injected power. The capabilities of the system were experimentally tested on a scaled electrical network. It is composed of different lines, built with linear inductances and resistances, and taking into account both linear and non-linear loads. The ability to improve power quality was tested by means of different voltage and frequency perturbations produced on the physical model electrical network. (author)

  14. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  15. Effect of formation temperature on properties of graphite/stannum composite for bipolar plate

    International Nuclear Information System (INIS)

    Selamat, Mohd Zulkefli; Yusuf, Muhammad Yusri Md; Wer, Tio Kok; Sahadan, Siti Norbaya; Malingam, Sivakumar Dhar; Mohamad, Noraiham

    2016-01-01

    Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm"3 respectively.

  16. Effect of formation temperature on properties of graphite/stannum composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Selamat, Mohd Zulkefli, E-mail: azulkeflis@utem.edu.my; Yusuf, Muhammad Yusri Md, E-mail: yusri.cheras@gmail.com; Wer, Tio Kok, E-mail: to91@hotmail.my; Sahadan, Siti Norbaya, E-mail: norbaya@utem.edu.my; Malingam, Sivakumar Dhar, E-mail: sivakumard@utem.edu.my; Mohamad, Noraiham, E-mail: noraiham@utem.edu.my [Centre of Advanced Research on Energy (CARe), Faculty of Mechanical Engineering, UniversitiTeknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-03-29

    Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm{sup 3} respectively.

  17. Opportunities for PEM fuel cell commercialization : fuel cell electric vehicle demonstration in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering

    2006-07-01

    The research and development activities devoted to the development of the proton exchange membrane fuel cell (PEMFC) were discussed with reference to its application in the fuel cell electric vehicle (FCEV). In the past decade, PEMFC technology has been successfully applied in both the automobile and residential sector worldwide. In China, more than one billion RMB yuan has been granted by the Chinese government to develop PEM fuel cell technology over the past 5 years, particularly for commercialization of the fuel cell electric vehicle (FCEV). The City of Shanghai has played a significant role in the FCEV demonstration with involvement by Shanghai Auto Industrial Company (SAIC), Tongji University, Shanghai Jiaotong University, and Shanghai Shenli High Tech Co. Ltd. These participants were involved in the development and integration of the following components into the FCEV: fuel cell engines, batteries, FCEV electric control systems, and primary materials for the fuel cell stack. During the course of the next five year-plan (2006-2010), Shanghai will promote the commercialization of FCEV. More than one thousand FCEVs will be manufactured and an FCEV fleet will be in operation throughout Shanghai City by 2010.

  18. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  19. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  20. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  1. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  2. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  3. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  4. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  5. Preliminary design of a small-scale system for the conversion of biogas to electricity by HT-PEM fuel cell

    International Nuclear Information System (INIS)

    Birth, Torsten; Heineken, Wolfram; He, Ling

    2014-01-01

    In this work a novel concept for the decentralized conversion of biogas to electricity is introduced. It consists of five segments: gas supply, gas treatment, gas reforming, gas usage and post-combustion. The system was designed in a regional project called GREEN-FC. The project is dealing with a design study for the conversion of 1 m 3  h −1 biogas to electricity, based on equilibrium calculations for steam reforming and water–gas shift reaction in combination with CFD simulations. The simulation results revealed that the system converts methane fully and delivers a maximum yield of hydrogen with a low concentration of carbon monoxide, thus making it suitable for a high-temperature polymer–electrolyte membrane (HT-PEM) fuel cell. The calculated electrical efficiency of the novel process is approximately 40%. Another important result of this work is the modular prototype design, because the individual components of the prototype can be replaced. For example alternative reactors that convert biogas into hydrogen and other technologies that use hydrogen can be included. - Highlights: • We designed the GREEN-FC process for decentralized hydrogen production from biogas. • We determined optimal process conditions on chemical equilibrium calculations. • The design was evaluated by CFD simulations with chemical reactions included. • The electrical efficiency of the GREEN-FC process is approximately 40%. • The first industrial prototype should have investment costs of 5000 € kW −1

  6. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  7. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  8. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  9. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  10. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  11. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  12. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yongzhu Fu

    2012-10-01

    Full Text Available Fuel cells hold great promise for wide applications in portable, residential, and large-scale power supplies. For low temperature fuel cells, such as the proton exchange membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs, proton-exchange membranes (PEMs are a key component determining the fuel cells performance. PEMs with high proton conductivity under anhydrous conditions can allow PEMFCs to be operated above 100 °C, enabling use of hydrogen fuels with high-CO contents and improving the electrocatalytic activity. PEMs with high proton conductivity and low methanol crossover are critical for lowering catalyst loadings at the cathode and improving the performance and long-term stability of DMFCs. This review provides a summary of a number of novel acid-base blend membranes consisting of an acidic polymer and a basic compound containing N-heterocycle groups, which are promising for PEMFCs and DMFCs.

  13. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  14. A comparison between progressive extension method (PEM) and iterative method (IM) for magnetic field extrapolations in the solar atmosphere

    Science.gov (United States)

    Wu, S. T.; Sun, M. T.; Sakurai, Takashi

    1990-01-01

    This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.

  15. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  16. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  17. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  18. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  19. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  20. Evaluation of the CR{sub 3}C{sub 2}(NICR) coating deposited on S4400 with the HVOF process for PEM fuel flow plates; Evaluacion del recubrimiento CR{sub 3}C{sub 2}(NICR) depositado sobre S4400 por el proceso HVOF para placas de flujo de celdas de combustible PEM

    Energy Technology Data Exchange (ETDEWEB)

    Rendon Belmonte, M.; Perez Quiroz, J.T. [Instituto Mexicano del Transporte, Queretaro, Queretaro (Mexico)]. E-mail: marielarb17@hotmail.com; Porcayo Calderon, J. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Orozco, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S. C., Queretaro, Queretaro (Mexico)

    2009-09-15

    This research studied the behavior of Cr{sub 3}C{sub 2}(NiCr) coating deposited on S4400 with the HVOF (High Velocity Oxygen-Fuel) thermal projection process. Coating was applied after the surface of the plate was prepared with ceramic granulated metal burst according to norm NACE No. 1/ SSPC-SP 5 and cleaned with acetone. The electrolyte used was an H{sub 2}SO{sub 4} 0,5 M + 2 ppm F{sup -} solution at ambient temperature. Mercury sulfate (Hg{sub 2}SO{sub 4}) electrode was used as the reference electrode and the counter electrode used was a graphite bar. To study the electrochemical behavior, polarization curves were generated with a sweep speed of 0.15 mV/s, according to norms ASTM G5 and ASTM G59. Before testing, the Ecorr was measured with a high impedance multimeter (10{sup 6}). The morphological aspect of the coating evaluated was analyzed with SEM (sweep electron microscopy). Based on the obtained icorr values of 1.7*10{sup -4} mA/cm{sup 2} for a period of 576 hours, we can state that this coating meets the criteria for resistance to corrosion required by the DOE (U.S. Department of Energy) for consideration of its use in PEM fuel cell flow plates. [Spanish] En esta investigacion se estudio el comportamiento del recubrimiento Cr{sub 3}C{sub 2}(NiCr), depositado sobre S4400 mediante el proceso de proyeccion termica HVOF (High Velocity Oxygen-Fuel). Previo a la aplicacion del recubrimiento, la placa fue preparada superficialmente mediante rafaga de granalla ceramica de acuerdo con la norma NACE No. 1/ SSPC-SP 5, limpiada con acetona y en esta condicion se procedio a la aplicacion del recubrimiento. El electrolito empleado fue una solucion de H{sub 2}SO{sub 4} 0,5 M + 2 ppm F{sup -} a temperatura ambiente, como electrodo de referencia se empleo un electrodo de sulfato mercuroso (Hg{sub 2}SO{sub 4}) y como contraelectrodo una barra de grafito. Para estudiar el comportamiento electroquimico se realizaron curvas de polarizacion con una velocidad de barrido de 0

  1. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  2. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  3. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  4. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  5. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.

    2011-01-01

    We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO 2 . A reference temperature is 296 K and an intensity cutoff is 10 -27 cm -1 /molecule cm -2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm -1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO 2 , including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site (ftp://ftp.iao.ru/pub/CDSD-4000).

  6. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  7. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  8. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  9. Modeling of laser cladding with application to fuel cell manufacturing.

    Science.gov (United States)

    2010-01-01

    Polymer electrolyte membrane (PEM) fuel cells have many advantages such as compactness, : lightweight, high power density, low temperature operation and near zero emissions. Although : many research organizations have intensified their efforts toward...

  10. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  11. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  12. Design principles of an integrated natural gas steam reformer for stationary PEMFC systems; Auslegungsprinzipien eines integrierten Erdgas-Dampfreformers fuer stationaere PEM-Brennstoffzellen-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, K.

    2006-09-05

    The function, efficiency and economic efficiency of fuel cell systems are defined by various influencing factors, especially in the case of hydrogen production by steam reforming of natural gas. The dissertation describes the design of integrated natural gas steam reformers for PEM fuel cell systems in the electric power range of 1- 10 kW; the influencing factors of the process are investigated and weighted. Design principles are derived from which optimum operating parameters can be defined and which can be used for designing a multitude of components. [German] Die Funktionsfaehigkeit, der Wirkungsgrad und die Wirtschaftlichkeit von Brennstoffzellen-Systemen werden insbesondere bei der Wasserstofferzeugung durch Erdgas-Dampfreformierung durch verschiedene Einflussfaktoren bestimmt. In dieser Dissertation werden die Methodik der Auslegung integrierter Erdgas-Dampfreformer fuer PEM-Brennstoffzellen-Systeme im elektrischen Leistungsbereich von 1-10 kW beschrieben und die prozessbestimmenden Einflussfaktoren untersucht und gewichtet. Daraus werden Auslegungsprinzipien abgeleitet, mit denen sich die optimalen Betriebsparameter ermitteln lassen und die zur konstruktiven Gestaltung einer Vielzahl von Anlagenteilen genutzt werden koennen.

  13. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  14. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  16. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  17. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  18. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  19. Modeling of Diffusive Convective and Electromechanical Processes in PEM fuel cells

    DEFF Research Database (Denmark)

    Bang, Mads

    of their impact on the operational performance of the fuel cell. In the modelling work presented, the commercial CFD package CFX4.4 is used as the foundation to generate a model of a PEM fuel cell. The CFX4.4 platform provides the framework of solving the three-dimensional transport equations for mass, momentum...... as the transport of protons in the membrane phase is accounted for. This provides the possibility of predicting the threedimensional distribution of the activation overpotential in the catalyst layer. The current density's dependency on the gas concentration and activation overpotential can thereby be addressed....... The proposed model makes it possible to predict the effect of geometrical and material properties on fuel cells performance, which means that the model can predict how the gas diffusion layer (GDL) and catalyst layers physical properties affects the distribution of current density, and how this affects...

  20. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  1. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  2. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Hjuler, Hans Aage; Terkelsen, Carina

    2012-01-01

    We employed roll-to-roll coating in the preparation of 40 μm thick poly[2,2′(m-phenylene)-5,5′bibenzimidazole] (PBI) films for fuel cells using both knife-coating (KC) and slot-die (SD) coating. The films were coated directly from a 9% (w/w) solution of PBI in dimethylacetamide onto a sacrificial...

  3. Preparation of gas diffusion electrodes for high temperature PEM-type fuel cells

    Czech Academy of Sciences Publication Activity Database

    Mazur, P.; Mališ, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2010-01-01

    Roč. 14, 1-3 (2010), s. 101-105 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] R&D Projects: GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas diffusion electrode * polymer electrolyte * ionic liquid Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.752, year: 2010

  4. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  5. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  6. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  7. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  8. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  9. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  10. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  11. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  12. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  13. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  14. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  15. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties

    International Nuclear Information System (INIS)

    Sarı, Ahmet; Alkan, Cemil; Bilgin, Cahit

    2014-01-01

    Graphical abstract: Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/(C20-C24), were synthesized successfully as novel encapsulated phase change materials (PCMs) for the different monomer/PEM ratios via emulsion polymerization. The FTIR spectroscopy analysis confirmed the polymerization reaction occurred around the PEMs to be used as core materials. The POM, SEM and PSD analysis results showed that the synthesized PMMA/PEM micro/nano capsules had spherical shape appearance and micro/nano sizes. DSC analysis measurements revealed that the prepared micro/nano capsules containing the highest PEM content had a melting temperature range of about 20–36 °C and latent heat capacities in the range of about 86–169 J/g. TGA findings demonstrated that the encapsulated PEMs had good thermal reliability and chemical stability even after subjecting them to 5000 melting/freezing cycles. Furthermore, the prepared micro/nano capsules had reasonable thermal conductivity values and fine melting–freezing reversibility. - Highlights: • PSD analysis results showed that the encapsulated PEMs had micro/nano sized-spheres. • The encapsulated PEMs melt in the temperature range of about 20–36 °C. • The encapsulated PEMs had latent heat capacities of in the range of about 86–169 J/g. • TGA results demonstrated that they had good thermal stability. • The encapsulated PEMs had good thermal conductivity and phase change reversibility. - Abstract: This work is aimed to prepare, characterize and determine the latent heat thermal energy storage properties of micro/nano encapsulated paraffin eutectic mixtures (PEMs) with polymethylmethacrylate (PMMA) shell. The eutectic combination ratios and optimum melting temperatures of C17-C24, C19-C18, C19-C24 and C20-C24 mixtures were find out prior to the encapsulation processes. Four kinds of micro/nano capsules, PMMA/(C17-C24), PMMA/(C19-C18), PMMA/(C19-C24) and PMMA/(C20-C24), were synthesized

  16. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  17. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  18. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  19. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  20. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%