WorldWideScience

Sample records for high temperature irradiation

  1. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  2. Irradiation effects of high temperature superconductor of lanthanoid oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Koh-ichi; Kohara, Takao [Himeji Inst. of Tech., Hyogo (Japan)

    1996-04-01

    Neutron irradiation effects on excess oxygen were studied by neutron irradiation on La{sub 2}CuO{sub 4} treated with high pressure oxygen. La{sub 2}CuO{sub 4} was prepared by the usual method and annealed for 10 h under the oxygen pressure of 800-2000 atm. at 600degC. The superconducting transition temperature (Tc) is 27-32K before irradiation (La{sub 2}CuO{sub 4+d}, amount of excess oxygen d=0.03-0.12). Neutron irradiation was carried out by two kinds of experiments. Low irradiation dose test at low temperature (LTL: {approx}20-200K, storage in LN{sub 2}) showed Tc decreased more slowly than that of high temperature range. Experiment at high temperature (Hyd:{approx}80deg{yields}, storage at room temperature) showed -10K/10{sup 18}n/cm{sup 2}, the decrease of Tc was three times larger than that of YBCO type superconductor. (S.Y.)

  3. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  4. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  5. Long duration performance of high temperature irradiation resistant thermocouples

    International Nuclear Information System (INIS)

    Rempe, J.; Knudson, D.; Condie, K.; Cole, J.; Wilkins, S.C.

    2007-01-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature in-pile degrade at temperatures above 1100 C degrees. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL's recommended thermocouple design, a series of high temperature (from 1200 to 1800 C) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 C that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests. (authors)

  6. LVDT Development for High Temperature Irradiation Test and Application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Yong; Ban, Chae Min; Choo, Kee Nam; Jun, Byung Hyuk [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The LVDT (Linear Variable Differential Transformer) is used to measure the elongation and pressure of a nuclear fuel rod, or the creep and fatigue of the material during a reactor irradiation test. This device must be a radiation-resistant LVDT for use in a research reactor. Norway Halden has LVDTs for an irradiation test by the own development and commercialized. But Halden's LVDTs have limited the temperature of the use until to 350 .deg. C. So, KAERI has been developing a new LVDT for high temperature irradiation test. This paper describes the design of a LVDT, the fabrication process of a LVDT, and the result of the performance test. The designed LVDT uses thermocouple cable for coil wire material and one MI cable as signal cable. This LVDT for a high temperature irradiation test can be used until a maximum of 900 .deg. C. Welding is a very important factor for the fabrication of an LVDT. We are using a 150W fiber laser welding system that consists of a welding head, monitoring vision system and rotary index.

  7. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  8. Development of Environment and Irradiation Effects of High Temperature Materials

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.

    2009-11-01

    Proposed materials, Mod.9Cr-1Mo steel (32 mm thickness) and 9Cr-1Mo-1W (100 mm thickness), for the reactor vessel were procured, and welded by the qualified welding technologies. Welding soundness was conformed by NDT, and mechanical testings were done along to weld depth. Two new irradiation capsules for use in the OR test hole of HANARO were designed and fabricated. specimens was irradiated in the OR5 test hole of HANARO with a 30MW thermal power at 390±10 .deg. C up to a fast neutron fluence of 4.4x10 19 (n/cm 2 ) (E>1.0 MeV). The dpa was evaluated to be 0.034∼0.07. Base metals and weldments of both Mod.9Cr-1Mo and 9Cr-1Mo-1W steels were tested tensile and impact properties in order to evaluate the irradiation hardening effects due to neutron irradiation. DBTT of base metal and weldment of Mod.9Cr-1Mo steel were -16 .deg. C and 1 .deg. C, respectively. After neutron irradiation, DBTT of weldment of Mod.9Cr-1Mo steel increased to 25 . deg. C. Alloy 617 and several nickel-base superalloys were studied to evaluate high temperature degradation mechanisms. Helium loop was developed to evaluate the oxidation behaviors of materials in the VHTR environments. In addition, creep behaviors in air and He environments were compared, and oxidation layers formed outer surfaces were measured as a function of applied stress and these results were investigated to the creep life

  9. Irradiation performance of AGR-1 high temperature reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization

  10. Irradiation performance of AGR-1 high temperature reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Ploger, Scott A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Morris, Robert N.; Baldwin, Charles A. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Harp, Jason M.; Winston, Philip L. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Gerczak, Tyler J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Rooyen, Isabella J. van [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Montgomery, Fred C.; Silva, Chinthaka M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2016-09-15

    Highlights: • Post-irradiation examination was performed on AGR-1 coated particle fuel. • Cesium release from the particles was very low in the absence of failed SiC layers. • Silver release was often substantial, and varied considerably with temperature. • Buffer and IPyC layers were found to play a key role in TRISO coating behavior. • Fission products palladium and silver were found in the SiC layer of particles. - Abstract: The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of {sup 110m}Ag from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10{sup −4} to 5 × 10{sup −4} for {sup 154}Eu and 8 × 10{sup −7} to 3 × 10{sup −5} for {sup 90}Sr. The average {sup 134}Cs fractional release from compacts was <3 × 10{sup −6} when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10{sup 5} in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving {sup 134}Cs fractional release in two capsules to approximately 10{sup −5}. Identification and characterization of these particles has provided unprecedented insight into

  11. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  12. High temperature tensile testing of modified 9Cr-1Mo after irradiation with high energy protons

    International Nuclear Information System (INIS)

    Toloczko, M.B.; Hamilton, M.L.; Maloy, S.A.

    2003-01-01

    This study examines the effect of tensile test temperatures ranging from 50 to 600 deg. C on the tensile properties of a modified 9Cr-1Mo ferritic steel after high energy proton irradiation at about 35-67 deg. C to doses from 1 to 3 dpa and 9 dpa. For the specimens irradiated to doses between 1 and 3 dpa, it was observed that the yield strength and ultimate strength decreased monotonically as a function of tensile test temperature, whereas the uniform elongation (UE) remained at approximately 1% for tensile test temperatures up to 250 deg. C and then increased for tensile test temperatures up to and including 500 deg. C. At 600 deg. C, the UE was observed to be less than the values at 400 and 500 deg. C. UE of the irradiated material tensile tested at 400-600 deg. C was observed to be greater than the values for the unirradiated material at the same temperatures. Tensile tests on the 9 dpa specimens followed similar trends

  13. High-fluence hyperthermal ion irradiation of gallium nitride surfaces at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, A.; Gerlach, J.W., E-mail: juergen.gerlach@iom-leipzig.de; Lorbeer, J.; Frost, F.; Rauschenbach, B.

    2014-10-30

    Highlights: • Irradiation of gallium nitride films with hyperthermal nitrogen ions. • Surface roughening at elevated sample temperatures was observed. • No thermal decomposition of gallium nitride films during irradiation. • Asymmetric surface diffusion processes cause local roughening. - Abstract: Wurtzitic GaN films deposited on 6H-SiC(0001) substrates by ion-beam assisted molecular-beam epitaxy were irradiated with hyperthermal nitrogen ions with different fluences at different substrate temperatures. In situ observations with reflection high energy electron diffraction showed that during the irradiation process the surface structure of the GaN films changed from two dimensional to three dimensional at elevated temperatures, but not at room temperature. Atomic force microscopy revealed an enhancement of nanometric holes and canyons upon the ion irradiation at higher temperatures. The roughness of the irradiated and heated GaN films was clearly increased by the ion irradiation in accordance with x-ray reflectivity measurements. A sole thermal decomposition of the films at the chosen temperatures could be excluded. The results are discussed taking into account temperature dependent sputtering and surface uphill adatom diffusion as a function of temperature.

  14. High-temperature annealing of proton irradiated beryllium – A dilatometry-based study

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Savkliyildiz, Ilyas [Rutgers University (United States)

    2016-08-15

    S−200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10{sup 20} cm{sup −2} peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation {sup 4}He and {sup 3}H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  15. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V., E-mail: fedorov@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2016-01-15

    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  16. Mechanical properties of Mo and TZM alloy neutron-irradiated at high temperatures

    International Nuclear Information System (INIS)

    Ueda, Kazukiyo; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori

    1997-01-01

    This work reports the mechanical properties of irradiated molybdenum (Mo) and its alloy, TZM. Recrystallized and stress-relieved specimens were irradiated at five temperatures between 373 and 800degC in FFTF/MOTA to fluence levels of 6.8 to 34 dpa. Irradiation embrittlement and hardening were evaluated by three-point bend test and Vickers hardness test, respectively. Stress-relieved materials showed the enough ductility even after high fluence irradiation. The role of layered structure of stress-relieved specimen was discussed. (author)

  17. Instrumented indentation for characterization of irradiated metals at room and high temperatures

    International Nuclear Information System (INIS)

    Sacksteder, Irene

    2011-01-01

    The reliability and sustainability of future fusion power plants will highly depend on the aptitude of materials to withstand severe irradiation conditions induced by the burning plasma in reactors. The so-called reduced-activation ferritic-martensitic (RAFM) steels are the current promising candidates for the structural applications considering the reactor's first wall. These steels exhibit irradiation embrittlement and hardening for defined irradiation conditions that are mainly characterized by the irradiation temperature and the irradiation dose. A proper characterization of such irradiated steels implies the use of adapted mechanical testing tools. In the present study, the instrumented indentation technique makes use of a post-processing tool based on neural networks. This technique has been selected for its ability to examine tensile properties by multistage indents on miniaturized irradiated metallic samples. The steel specimens studied in this project have been neutron-irradiated up to a dose of 15 dpa. They have been subsequently tested at room temperature in a Hot Cell by means of an adapted commercial indentation device. The significant irradiation-induced hardening effect present in the range of 250-350 deg C could be observed in the hardness and material's strength parameters. These two material parameters show a similar evolution with increasing irradiation temperatures. Post-irradiation annealing treatments of Eurofer97 have been realized and leads to a partial recovery of the irradiation damage. Considering the demands for characterization in irradiated steels at high temperature and for post-irradiation annealing experiments, the existing instrumented indentation device has been further developed during this work. A conceptual design has been proposed for an indentation testing machine, operating at up to 650 deg C, while remaining the critical temperature limit for tensile strength of the newly developed oxide dispersion strengthening ferritic

  18. Thermal conductivity of beryllium under low temperature high dose neutron irradiation

    International Nuclear Information System (INIS)

    Chakin, V.P.; Latypov, R.N.; Suslov, D.N.; Kupriyanov, I.B.

    2004-01-01

    Thermal conductivity of compact beryllium of several Russian grades such as TE-400, TE-56, TE-30, TIP and DIP differing in the production technology, grain size and impurity content has been investigated. The thermal diffusivity of beryllium was measured on the disks in the initial and irradiated conditions using the pulse method in the range from room temperature to 200degC. The thermal conductivity was calculated using the table values for the beryllium thermal capacity. The specimens and beryllium neutron source fragments were irradiation in the SM reactor at 70degC and 200degC to a neutron fluence of (0.5-11.4)·10 22 cm -2 (E>0.1 MeV) and in the BOR-60 reactor at 400degC to 16·10 22 cm -2 (E>0.1MeV), respectively. The low-temperature irradiation leads to the drop decrease of the beryllium thermal conductivity and the effect depends on the irradiation parameters. The paper analyses the effect of irradiation parameters (temperature, neutron fluence), measurement temperature and structural factors on beryllium conductivity. The experiments have revealed that the short time post-irradiation annealing at high temperature results in partial reduction of the thermal conductivity of irradiated beryllium. (author)

  19. Microstructural evolution under high temperature irradiation: fundamental aspects

    International Nuclear Information System (INIS)

    Martin, G.; Valentin, P.

    1984-01-01

    In view of the impossibility to propose theoretically established scaling laws for extrapolating microstructural evolutions to unknown irradiation conditions, a full modelization of microstructural evolution at the atomistic level cannot be avoided. We briefly review the main models available for describing: defect balance under irradiation, the nucleation of clusters of various types, the development of each of the components of the microstructure, synergistic effects among the latter. Attention is called on the problems which remain to be solved at each step. In particular, the swelling incubation phenomenon is just being studied from the fundamental viewpoint. A table of available relevant observations thereof is given. The existence of dose-rate thresholds accross which microstructural evolution undergoes a qualitative change is stressed. Such thresholds call for a detailed modelization of microstructural evolution in order to propose safe extrapolation techniques [fr

  20. An investigation of methods for neutron dose measurement in high temperature irradiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Kosako, Toshisou; Sugiura, Nobuyuki [Tokyo Univ. (Japan); Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan)] [and others

    2000-10-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting the innovative basic research on high temperature since 1994, which is a series of high temperature irradiation studies using the High Temperature Engineering Test Reactor (HTTR). 'The Task Group for Evaluation of Irradiation Dose under High Temperature Radiation' was founded in the HTTR Utilization Research Committee, which is the promoting body of the innovative basic research. The present report is a summary of investigation which has been made by the Task Group on the present status and subjects of research and development of neutron detectors in high temperature irradiation fields, in view of contributing to high temperature irradiation research using the HTTR. Detectors investigated here in the domestic survey are the following five kinds of in-core detectors: 1) small fission counter, 2) small fission chamber, 3) self-powered detector, 4) activation detector, and 5) optical fiber. In addition, the research and development status in Russia has been investigated. The present report will also be useful as nuclear instrumentation of high temperature gas-cooled reactors. (author)

  1. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  2. High ion temperatures from buried layers irradiated with Vulcan Petawatt

    International Nuclear Information System (INIS)

    Karsch, S.; Schreiber, J.; Willingale, L.; Lancaster, K.; Habara, H.; Nilson, P.; Gopal, A.; Wei, M. S.; Stoeckl, C.; Evans, R.; Clarke, R.; Heathcote, R.; Najmudin, Z.; Krushelnick, K.; Neely, D.; Norreys, P. A.

    2005-01-01

    Deuteron acceleration from CH/CD/CH layer targets irradiated with PW laser pulses has been studied using. Thomson parabola spectrometers and neutron TOF spectroscopy. The measured ion and neutron spectra reveal significant MeV deuteron acceleration from the deeply buried CD layer, which scales with the thickness of the overlying CH layer. While the neutron spectra reveal the scaling of the thermal heating with target thickness, the ion spectra indicate the presence of an efficient nonthermal acceleration mechanism inside. the bulk. Possible explanations will be discussed. (Author)

  3. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E.

    2001-01-01

    It has previously been shown that graphite can be transformed into diamond by MeV electron and ion irradiation at temperatures above approximately 600 deg. C. However, there exists geological evidence suggesting that carbonaceous materials can be transformed to diamond by irradiation at substantially lower temperatures. For example, submicron-size diamond aggregates have been found in uranium-rich, Precambrian carbonaceous deposits that never experienced high temperature or pressure. To test if diamonds can be formed at lower irradiation temperatures, sheets of fine-grain polycrystalline graphite were bombarded at 20 deg. C with 350±50 MeV Kr ions to fluences of 6x10 12 cm -2 using the Argonne tandem linear accelerator system (ATLAS). Ion-irradiated (and unirradiated control) graphite specimens were then subjected to acid dissolution treatments to remove untransformed graphite and isolate diamonds that were produced; these acid residues were subsequently characterized by high-resolution and analytical electron microscopy. The acid residue of the ion-irradiated graphite was found to contain nanodiamonds, demonstrating that ion irradiation of graphite at ambient temperature can produce diamond. The diamond yield under our irradiation conditions is low, ∼0.01 diamonds/ion. An important observation that emerges from comparing the present result with previous observations of diamond formation during irradiation is that nanodiamonds form under a surprisingly wide range of irradiation conditions. This propensity may be related to the very small difference in the graphite and diamond free-energies coupled with surface-energy considerations that may alter the relative stability of diamond and graphite at nanometer sizes

  4. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    Science.gov (United States)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  5. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation

    Science.gov (United States)

    Waseem, Owais Ahmed; Jeong, Jong-Ryul; Park, Byong-Guk; Maeng, Cheol-Soo; Lee, Myoung-Goo; Ryu, Ho Jin

    2017-11-01

    The hardness of irradiated AISI type 410 martensitic steel, which is utilized in structural and magnetic components of nuclear power plants, is investigated in this study. Proton irradiation of AISI type 410 martensitic steel samples was carried out by exposing the samples to 3 MeV protons up to a 1.0 × 1017 p/cm2 fluence level at a representative nuclear reactor coolant temperature of 350 °C. The assessment of deleterious effects of irradiation on the micro-structure and mechanical behavior of the AISI type 410 martensitic steel samples via transmission electron microscopy-energy dispersive spectroscopy and cross-sectional nano-indentation showed no significant variation in the microscopic or mechanical characteristics. These results ensure the integrity of the structural and magnetic components of nuclear reactors made of AISI type 410 martensitic steel under high-temperature irradiation damage levels up to approximately 5.2 × 10-3 dpa.

  6. Status for development of a capsule and instruments for high-temperature irradiation in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Lee, Chul Yong; Yang, Seong Woo; Shim, Kyue Taek; Chung, Hwan-Sung [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2012-03-15

    As the reactors planned in the Gen-IV program will be operated at high temperature and under high neutron flux, the requirements for irradiation of materials at high temperature are recently being gradually increased. The irradiation tests of materials in HANARO up to the present have been performed usually at temperatures below 300degC at which the RPV materials of the commercial reactors are being operated. To overcome the restriction for high-temperature use of Al thermal media of the existing standard capsule, a new capsule with double thermal media composed of two kinds of materials such as Al-Ti and Al-graphite was designed and fabricated as a more advanced capsule than the single thermal media capsule. (author)

  7. Experimental studies of neutron irradiated uranium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Tanke, R.H.J.

    1990-01-01

    In case of an accident situation, in which the heat of the nuclear fuel can no longer be transferred to coolin water, the temperature of the nuclear fuel ay rise very strongly, so that radioactive fission products may be released, which can ultimately lead to the release of radioactive substances to the environment. In this respect it is important to know more about the release rate of the various fission products and their fuel samples, used in the investigation, were UO-2 spheres of approximately 1 mm. The chemical forms of the particles which are being released from the sphees during evaporation have been determined using a mass spectrometer. At the same time, the activity of the fission products has been measured using a gamma spectrometer. A gamma tomographer has been developed for determining the three-dimensional distribution of the concentration of radioactive fission products in the sphere. With this tomographer the change of this distribution as a function of temperature could be measured. For interpretation of the results two models have been developed: a model of the evaporation of the non-stoichiometric UO-2, and a model of the diffusion of fission products in UO-2. The first model was used to determine the stoichiometry of the sphere while the second has been used to determine the activation energy for the diffusion of the fission products. The main conclusion is that the microstructure of the nuclear fuel has a great effect on both the amount of free oxygen atoms, the release rate and the chemical form of fission products. This microstructure has not been investigated in greater detail so that all other conclusions are of qualitative nature. (author). 111 refs.; 114 figs.; 13 tabs

  8. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  9. Microstructure and hardness evolution of nanochannel W films irradiated by helium at high temperature

    Science.gov (United States)

    Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong

    2018-04-01

    Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.

  10. Is uranium dioxide a glass at high temperature: the reason for its irradiation resistance?

    International Nuclear Information System (INIS)

    Desgranges, Lionel

    2008-01-01

    Electronic intrinsic carriers are shown to have some influence on UO 2 high temperature properties. The physical nature of these carriers, called polarons, is discussed and it is proposed that they could correspond to quasi-broken bonds, in a similar way to intrinsic electronic defects in SiO 2 . It is shown that this hypothesis provides an explanation, at least qualitative, for UO 2 specific behavior at high temperature and under irradiation. (author)

  11. Study on structural recovery of graphite irradiated with swift heavy ions at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pellemoine, F., E-mail: pellemoi@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Avilov, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Bender, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Ewing, R.C. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Fernandes, S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Lang, M. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Li, W.X. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Severin, D. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Tomut, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Laboratory of Magnetism and Superconductivity, National Institute for Materials Physics NIMP, Bucharest (Romania); Trautmann, C. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Dept. of Materials Science, Technische Universität Darmstadt, Darmstadt (Germany); and others

    2015-12-15

    Thin graphite foils bombarded with an intense high-energy (8.6 MeV/u) gold beam reaching fluences up to 1 × 10{sup 15} ions/cm{sup 2} lead to swelling and electrical resistivity changes. As shown earlier, these effects are diminished with increasing irradiation temperature. The work reported here extends the investigation of beam induced changes of these samples by structural analysis using synchrotron X-ray diffraction and transmission electron microscope. A nearly complete recovery from swelling at irradiation temperatures above about 1500 °C is identified.

  12. A Study on the High Temperature Irradiation Test Possibility for the HANARO Outer Core Region

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Cho, M. S.; Choo, K. N.; Shin, Y. T.; Sohn, J. M.; Park, S. J.; Kim, B. G

    2008-01-15

    1. Information on the neutron flux levels and the gamma heat of the concerned test holes, which have been produced from a series of nuclear analysis and tests performed at KAERI since 1993, were collected and analyzed to develop the nuclear data for the concerned test holes of HANARO and to develop the new design concepts of a capsule for the high temperature irradiation devices. 2. From the literature survey and analysis about the system design characteristics of the new concepts of irradiation devices in the ATR and MIT reactor, U.S. and the JHR reactor, France, which are helpful in understanding the key issues for the on-going R and D programmes related to a SFR and a VHTR, the most important parameters for the design of high temperature irradiation devices are identified as the neutron spectrum, the heat generation density, the fuel and cladding temperature, and the coolant chemistry. 3. From the thermal analysis of a capsule by using a finite element program ANSYS, high temperature test possibility at the OR and IP holes of HANARO was investigated based on the data collected from a literature survey. The OR holes are recommended for the tests of the SFR and VHTR nuclear materials. The IP holes could be applicable for an intermediate temperature irradiation of the SWR and LMR materials. 4. A thermal analysis for the development of a capsule with a new configuration was also performed. The size of the center hole, which is located at the thermal media of a capsule, did not cause specimen temperature changes. The temperature differences are found to be less than 2%. The introduction of an additional gap in the thermal media was able to contribute to an increase in the specimen temperature by up to 27-90 %.

  13. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  14. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    Science.gov (United States)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  15. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.

    Science.gov (United States)

    Zhang, Zhiping; Zhang, Xu; Tan, Tianwei

    2014-04-01

    The capacity of lipid and carotenoid production by Rhodotorula glutinis was investigated under different irradiation conditions, temperatures and C/N ratios. The results showed that dark/low-temperature could enhance lipid content, while irradiation/high-temperature increased the yields of biomass and carotenoid. The optimum C/N ratio for production was between 80 and 100. A two-stage cultivation strategy was used for lipid and carotenoid production in a 5L fermenter. In the first stage, the maximum biomass reached 28.1g/L under irradiation/high-temperature. Then, the cultivation condition was changed to dark/low-temperature, and C/N ratio was adjusted to 90. After the second stage, the biomass, lipid content and carotenoid reached 86.2g/L, 26.7% and 4.2mg/L, respectively. More significantly, the yields of biomass and lipid were 43.1% and 11.5%, respectively. Lipids contained 79.7% 18C and 16.8% 16C fatty acids by GC analysis. HPLC quantified the main carotenoids were β-carotene (68.4%), torularhodin (21.5%) and torulene (10.1%). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. Effects of high temperature neutron irradiation on the physical, chemical and mechanical properties of fine-grained isotropic graphite

    International Nuclear Information System (INIS)

    Matsuo, H.; Nomura, S.; Imai, H.; Oku, T.; Eto, M.

    1987-01-01

    Effects of neutron irradiation on the dimensional change, coefficient of thermal expansion(CTE), thermal conductivity, corrosion rate, Young's modulus and strengths were studied for the candidate graphite material IG-110 of the experimental very high temperature gas-cooled reactor(VHTR) after irradiation at 585 - 1273 deg C to neutron fluences of up to about 3 x 10 25 n/m 2 (E > 29 fJ) in the JMTR and JRR-2, and to about 7 x 10 25 n/m 2 (E > 29 fJ) in the HFR. The results were compared with the irradiation behaviors of other graphites. Dimensional shrinkage was observed in the whole irradiation temperature range, showing lower value than 2 %. The shrinkage rate showed the minimum in the irradiation temperature of around 850 deg C, followed by the increase for the samples irradiated at higher temperatures. The dimensional stability of the material was clarified to be almost the same with that of H451 graphite. The CTE, thermal resistivity and Young's modulus increased in the early stage of irradiation and then only the CTE decreased while the thermal resistivity and Young's modulus levelled off with further irradiation. The neutron fluence showing the maximum CTE shifted to the lower fluence with increasing irradiation temperature. The increases of both thermal resistivity and Young's modulus were remarkable for the samples irradiated at lower temperatures. Compressive and bending strengths measured at room temperature increased after irradiation as well. The corrosion rate with water-vapor of 0.65 % in helium at high temperatures decreased owing to irradiation and the reduction was independent of irradiation temperature and neutron fluence. The activation energy for the reaction was estimated to be the same before and after irradiation. (author)

  17. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Hirosawa, Takashi

    1999-01-01

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  18. A new disordering mechanism in A15 type compounds submitted to low temperature irradiation or to quenching from high temperatures

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1984-05-01

    A new diffusion mechanism describing the changes of the long range order parameter in A15 type compounds after both quenching from high temperatures or low temperature irradiation with high energy particles is presented. It is based on the occupation of nonequilibrium or 'virtual' sites centered halfway between two neighbouring A atoms on 6c sites, arising from the instability of a single 6c vacancy recently found by Welch and coworkers by pair potential calculations. After low temperature irradiation, the occupation of this interstitial site creates the necessary conditions for A B site exchanges over several interatomic distances by focused replacement collision sequences. Due to the occupation of a certain concentration of virtual sites, atomic 'overlapping' is not only possible between A atoms on the chains or between A and B atoms (due to deviations from perfect ordering),but also between B atoms on BBB sequences. The latter are retained after low temperature irradiation only and are responsible for the observed lattice expansion and static displacement. (orig.) [de

  19. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  20. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  1. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    Science.gov (United States)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  2. High temperature graphite irradiation creep experiment in the Dragon Reactor. Dragon Project report

    Energy Technology Data Exchange (ETDEWEB)

    Manzel, R.; Everett, M. R.; Graham, L. W.

    1971-05-15

    The irradiation induced creep of pressed Gilsocarbon graphite under constant tensile stress has been investigated in an experiment carried out in FE 317 of the OECD High Temperature Gass Cooled Reactor ''Dragon'' at Winfrith (England). The experiment covered a temperature range of 850 dec C to 1240 deg C and reached a maximum fast neutron dose of 1.19 x 1021 n cm-2 NDE (Nickel Dose DIDO Equivalent). Irradiation induced dimensional changes of a string of unrestrained graphite specimens are compared with the dimensional changes of three strings of restrained graphite specimens stressed to 40%, 58%, and 70% of the initial ultimate tensile strength of pressed Gilsocarbon graphite. Total creep strains ranging from 0.18% to 1.25% have been measured and a linear dependence of creep strain on applied stress was observed. Mechanical property measurements carried out before and after irradiation demonstrate that Gilsocarbon graphite can accommodate significant creep strains without failure or structural deterioration. Total creep strains are in excellent agreement with other data, however the results indicate a relatively large temperature dependent primary creep component which at 1200 deg C approaches a value which is three times larger than the normally assumed initial elastic strain. Secondary creep constants derived from the experiment show a temperature dependence and are in fair agreement with data reported elsewhere. A possible determination of the results is given.

  3. Evaluation of Candidate Linear Variable Displacement Transducers for High Temperature Irradiations in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Knudson, D.L.; Rempe, J.L.; Daw, J.E.

    2009-01-01

    The United States (U.S.) Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to promote nuclear science and technology in the U.S. Given this designation, the ATR is supporting new users from universities, laboratories, and industry as they conduct basic and applied nuclear research and development to advance the nation's energy security needs. A fundamental component of the ATR NSUF program is to develop in-pile instrumentation capable of providing real-time measurements of key parameters during irradiation experiments. Dimensional change is a key parameter that must be monitored during irradiation of new materials being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can experience significant changes during high temperature irradiation. Currently, dimensional changes are determined by repeatedly irradiating a specimen for a defined period of time in the ATR and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data (i.e., only characterizing the end state when samples are removed from the reactor) and may disturb the phenomena of interest. To address these issues, the Idaho National Laboratory (INL) recently initiated efforts to evaluate candidate linear variable displacement transducers (LVDTs) for use during high temperature irradiation experiments in typical ATR test locations. Two nuclear grade LVDT vendor designs were identified for consideration - a smaller diameter design qualified for temperatures up to 350 C and a larger design with capabilities to 500 C. Initial evaluation efforts include collecting calibration data as a function of temperature, long duration testing of LVDT response while held at high temperature, and the assessment of changes

  4. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H; Blackstone, R [Stichting Energieonderzoek Centrum Nederland, Petten; Loelgen, R

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10/sup 21/ n cm/sup -2/ DNE in the temperature range 600 to 1200/sup 0/C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material.

  5. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10 21 n cm -2 DNE in the temperature range 600 to 1200 0 C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material. (author)

  6. Use of TRIGA-pulsed irradiations for high-temperature Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W K; Cashwell, R J; Bhattacharyya, S K [Argonne National Laboratory, Argonne, IL (United States); Russell, G J [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1974-07-01

    Conventional activation and reactivity measurements of the nuclear Doppler Effect have been limited to temperatures of about 2000{sup o}K because of problems with furnace equipment. There is a need for Doppler data at higher temperatures for design of reactors and analysis of reactor accidents. To fill this need, a novel technique using pulsed-mode operation of a TRIGA reactor has been developed at the University of Wisconsin. This new method, the Pulsed Activation Doppler (PAD) technique, has been used successfully for high temperature Doppler measurements of UO{sub 2} fuel pellets. In the PAD technique, UO{sub 2} test pellets were doped with varying amounts of U-235, with fissile enrichments varying from 0.22% to 12% by weight. The pellets were encapsulated in individual irradiation cells and electrically preheated to predetermined temperatures. Pyrofoam-graphite heaters were used to give preheat temperatures of up to 1720 deg. K. The cells were then positioned in the University of Wisconsin TRIGA reactor core and pulse-irradiated. During the rapid irradiation, adiabatic fission energy deposition occurred in the pellets and very high temperatures (over 3115 deg, K) were attained. Corresponding resonance neutron captures occurred at the elevated temperatures. The Doppler Ratio was deduced from the gamma activities of the Np-239 in the heated and unheated reference pellets. UO{sub 2} pellets of two nominal diameters, 210 mils (a surface-to-mass ratio, s/m = 1.1 cm{sup 2} /gm) and 360 mils (s/m = 0.63 cm{sup 2}/gm), were used for the experiments. For the 210 mil diameter pellets there was very good agreement between experimental results and Doppler ratios predicted both from extrapolations of the Hellstrand low-temperature resonance integral correlations and from GAROL calculations. Significantly, the agreement was good even for those pellets which experienced extensive melting. For the 360 mil diameter pellets the theoretical predictions were 10-15% lower than

  7. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  8. HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.; Chrisensen, Cad L.

    2016-11-01

    High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Test Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two

  9. Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations

    International Nuclear Information System (INIS)

    Balat-Pichelin, M.; Eck, J.; Heurtault, S.; Glénat, H.

    2014-01-01

    Highlights: • New results for the high temperature study of pBN in high vacuum for the heat shield of solar probes. • Physico-chemical behavior of pBN studied up to 1700 K with proton and VUV irradiations. • Rather low effect of synergistic aggressions on the microstructure of pBN material. • The α/ε ratio of pBN coating on C/C measured up to 2200 K is 20% lower than for the C/C itself. - Abstract: In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on massive pBN samples are presented through in situ mass spectrometry and mass loss rate, and post-test microstructural characterization by XRD, SEM, AFM and nano-indentation techniques, some of them leading to mechanical properties. It could be concluded that synergistic effect of high temperature, protons and VUV radiation has an impact on the emission of gaseous species, the mass loss rate and the mechanical properties of the material

  10. Erosion and mass transfer of Mo, W and Nb under neutron irradiation of high temperature materials

    International Nuclear Information System (INIS)

    Berzhatyj, V.I.; Luk'yanov, A.N.; Zavalishin, A.A.; Tkach, V.N.; Fedorenko, A.I.

    1980-01-01

    Studies have been made of the medium composition in thermionic fuel elements of two types during reactor tests; erosion and mass transfer of electrode materials have been investigated in the after-reactor analysis of the tested fuel elements. The studies of electrode material evaporation at the conditions approaching (in environment temperature and composition) those of reactor tests of thermionic fuel elements have shown that the process proceeds in the form of metal oxides. Evaporation rates are determined, the mechanism of evaporation is discussed, and the analytical dependences are obtained for calculating the evaporation rates of Mo and W at certain temperature and gaseous medium composition. It is found that the main contribution to the material transfer off the Mo and Nb surfaces under a high-temperature reactor irradiation comes through the thermal evaporation; in the case of tungsten at the same experimental conditions the rates of mass transfer due to thermal evaporation and neutron sputtering are nearly the same [ru

  11. Tritium release from beryllium pebbles after high temperature irradiation up to 3000 appm He in the HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Til, S. van, E-mail: vantil@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Fedorov, A.V.; Stijkel, M.P.; Cobussen, H.L.; Mutnuru, R.K.; Idsert, P. van der [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and The Development of Fusion Energy, c/ Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    In the HIDOBE (HIgh DOse irradiation of BEryllium) irradiation program, various grades of constrained and unconstrained beryllium pebbles, beryllium pellets and titanium-beryllide samples are irradiated in the High Flux Reactor (HFR) in Petten at four different temperatures (between 698 K and 1023 K) for 649 days [1]. The first of two HIDOBE irradiation experiments, HIDOBE-01, was completed after achieving a DEMO relevant helium production level of 3000 appm and the samples are retrieved for postirradiation examination (PIE). This work shows preliminary results of the out-of-pile tritium release analysis performed on different grades of irradiated beryllium pebbles (different in size). Relationships between irradiation temperature, tritium inventory and microstructural evolution have been observed by light microscopy and scanning electron microscopy.

  12. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Wang, Lumin; Was, Gary

    2010-01-01

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  13. Superconductivity degradation in Gd-containing high temperature superconductors (HTSC) under thermal neutron irradiation

    International Nuclear Information System (INIS)

    Petrov, A.; Kudrenitskis, I.; Makletsov, A.; Arhipov, A.; Karklin, N.

    1999-01-01

    The physical properties of ordered crystals are extremely sensitive to the degree of order in the distribution of the various kinds of atoms over the corresponding sites in the crystal lattice. An increasingly popular means of creating disordered states is to use nuclear radiation. The type of radiation defects which appear and the nature and degree of the structural changes in ordered crystals depend on the kind of radiation and the fluence level, the irradiation temperature, the type of crystal structure, the composition and initial disorder of the material, the character of the interatomic forces, etc. There are many such scientific publications where the effects of fast neutron irradiation on high temperature superconductors (HTSC) have been studied in both polycrystalline and single crystalline superconductors. It is known also that the role of thermal neutrons in structural defects forming is negligible in comparison with fast neutrons because of their small (∼0.025 eV) energy. But it is evident enough that in superconductors containing isotopes with large thermal neutron cross sections the important results concerning the role of point defects could be obtained. Such point defects are creating due to soft displacements of isotopes having interacted with thermal neutrons. Such the possibility of creating point defects in solids including HTSC is investigating by several groups (Austria, USA, China, Latvia) and these investigations have found the support in the person of IAEA. In this review the authors consider the changes brought about by thermal-neutron irradiation (E∼0.025 eV) in the structure, superconducting and magnetic properties of gadolinium containing ordered HTSC with the structure 123, whose extreme electric and magnetic properties continue to attract both research and practical interest. All of the studies reviewed have been done on bulk polycrystalline samples RBa 2 Cu 3 O 7-δ (where R - natural mixture of Gd isotopes, 155 Gd, 157 Gd, 160

  14. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    International Nuclear Information System (INIS)

    Nickel, H.

    1990-05-01

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO 2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10 -5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.) [de

  15. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  16. High-temperature irradiation effects on mechnical properties of HTGR graphites

    International Nuclear Information System (INIS)

    Oku, Tatsuo; Eto, Motokuni; Fujisaki, Katsuo

    1978-04-01

    The irradiation effects on stress-strain relation, Young's modulus, tensile strength, bending strength and compressive strength of HTGR graphites were studied in irradiation temperature ranges of 200 - 300 0 C and 800 - 1400 0 C and in neutron fluences up to 7.4 x 10 20 n/cm 2 and 3 x 10 21 n/cm 2 (> 0.18 MeV). Fracture criteria and strain energy to fracture of the unirradiated and the irradiated graphites were also examined. (1) Neutron fluence dependences are similar in Young's modulus, tensile strength and bending strength. (2) The change of compressive strength and of tensile and bending strengths with neutron fluence differ; the former varies with graphite kind. (3) At lower irradiation temperatures the bending fracture strain energy decreases with increasing neutron fluence and at higher irradiation temperatures it increases. (4) The fracture criteria of graphites deviates from the constant strain energy theory (α = 0.5) and the constant strain theory (α = 1), shifting from α asymptotically equals 0.5 to α asymptotically equals 1 with increasing irradiation temperature. (auth.)

  17. High Temperature Tensile Properties of Unirradiated and Neutron Irradiated 20 Cr-35 Ni Austenitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R B; Solly, B

    1966-12-15

    The tensile properties of an unirradiated and neutron irradiated (at 40 deg C) 20 % Cr, 35 % Ni austenitic steel have been studied at 650 deg C, 750 deg C and 820 deg C. The tensile elongation and mode of fracture (transgranular) of unirradiated specimens tested at room temperature and 650 deg C are almost identical. At 750 deg C and 820 deg C the elongation decreases considerably and a large part of the total elongation is non-uniform. Furthermore, the mode of fracture at these temperatures is intergranular and microscopic evidence suggests that fracture is caused by formation and linkup of grain boundary cavities. YS and UTS decrease monotonically with temperature. Irradiated specimens show a further decrease in ductility and an increase in the tendency to grain boundary cracking. Irradiation has no significant effect on the YS, but the UTS are reduced. The embrittlement of the irradiated specimens is attributed to the presence of He and Li atoms produced during irradiation and the possible mechanisms are discussed. Prolonged annealing of irradiated and unirradiated specimens at 650 deg C appears to have no significant effect on tensile properties.

  18. Comparative Analysis of Single and Dual Irradiation Pass of Deep Burn High Temperature Reactor Scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Jo, Chang Keun; Noh, Jae Man

    2012-01-01

    A concept of a deep-burn (DB) of trans uranic (TRU) elements in a high temperature reactor (HTR) has been proposed and studied with a single irradiation pass. However, there is still a significant amount of TRU after burn in an HTR. Therefore, it is necessary to burn more TRU in a fast reactor (FR) with repeated reprocessing such as a pyro-process. In this study, the fuel cycle calculations are performed and the results are compared for a singlepass DB-HHR scenario and a dual-pass sodium-cooled fast reactor (SFR) scenario. For the analysis, front-end and back-end parameters are compared. The calculations were performed by the DANESS (Dynamic Analysis of Nuclear Energy System Strategies), which is an integrated system dynamic fuel cycle analysis code

  19. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment

    International Nuclear Information System (INIS)

    Lambard, V.

    2000-01-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  20. STATUS OF TRISO FUEL IRRADIATIONS IN THE ADVANCED TEST REACTOR SUPPORTING HIGH-TEMPERATURE GAS-COOLED REACTOR DESIGNS

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Michael; Petti, D. A.; Palmer, Joe

    2016-11-01

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control

  1. Array-type sensor to determine corrosive conditions in high temperature water under gamma rays irradiation

    International Nuclear Information System (INIS)

    Satoh, T.; Tsukada, T.; Uchida, S.; Katoh, C.

    2010-01-01

    One of the problems to determine electrochemical corrosion potential (ECP) in high temperature water under irradiation is to apply long-lived and reliable reference electrodes. In order to avoid troubles due to the reference electrode, a new concept to determine ECP without the reference electrode has been proposed. Several metal plates are applied as working electrodes and at the same time as the reference electrodes. Potential of the metal plates with stable oxide films on their surfaces show stable values in high temperature water. As a result of the combination of their potential values, ECP of each metal can be determined without any specific reference electrode. Array-type sensors consisting of several metal plates, e.g., Fe, Ni, Cr, Zr, Pt, Pd, Re, Ir, with well developed oxide films on their surface were prepared for ECP measurement in high temperature water under neutron/gamma ray irradiations. In order to confirm the feasibility of this concept, responses of the redox potentials of the pure metals to changes in the simulated BWR reactor water conditions were measured and the ECP was determined by the differences in potentials between a couple of metal plates. Major conclusions of the study are as follows: 1) The redox potentials of the Fe, Pt, Zr, Ir, Pd, and Re electrodes showed the different dependences on the changes in O 2 and H 2 O 2 concentrations. The redox potentials of the electrodes increased as the oxidant concentrations increased except for Zr electrode. The potential of the Zr electrode was kept the very low potential at the wide range of O 2 and H 2 O 2 concentrations differed form the other electrodes. 2) It was estimated that the redox potential of highly soluble metal may be increased, while that of low soluble metal may be decreased by an oxide film. The stable oxide film would cause the stable potential response of the electrode with oxide film. 3) The relationship between the oxidant concentrations and the redox potentials of the

  2. Release behavior of fission products from irradiated dispersion fuels at high temperatures

    International Nuclear Information System (INIS)

    Iwai, Takashi; Shimizu, Michio; Nakagawa, Tetsuya

    1990-02-01

    As a framework of reduced enrichment fuel program of JMTR Project, the measurements of fission products release rates at high temperatures (600degC - 1100degC) were performed in order to take the data to use for safety evaluation of LEU fuel. Three type miniplates of dispersion silicide and aluminide fuel, 20% enrichment LEU fuel with 4.8 gU/cc (U 3 Si 2 90 %, USi 10 % and U 3 Si 2 50 %, U 3 Si 50 % dispersed in aluminium) and 45 % enrichment MEU fuel with 1.6 gU/cc, were irradiated in JMTR. The burnups attained by one cycle (22 days) irradiation were within 21.6 % - 22.5 % of initial 235 U. The specimens cut down from miniplates were measured on fission products release rates by means of new apparatus specially designed for this experiment. The specimens were heated up within 600degC - 1100degC in dry air. Then fission products such as 85 Kr, 133 Xe, 131 I, 137 Cs, 103 Ru, 129m Te were collected at each temperature and measured on release rates. In the results of measurement, the release rates of 85 Kr, 133 Xe, 131 I, 129m Te from all specimens were slightly less than that of G.W. Parker's data on U-Al alloy fuel. For 137 Cs and 103 Ru from a silicide specimen (U 3 Si 2 90 %, USi 10 % dispersed in aluminium) and 137 Cs from an aluminide specimen, the release rates were slightly higher than that of G.W. Parker's. (author)

  3. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  4. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  5. New fixed-point mini-cell to investigate thermocouple drift in a high-temperature environment under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Vlahovic, L.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, (Germany); Sadli, M.; Failleau, G. [Laboratoire Commun de Metrologie, LNE-Cnam, Saint-Denis, (France); Fuetterer, M.; Lapetite, J.M. [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten, (Netherlands); Fourrez, S. [Thermocoax, 8 rue du pre neuf, F-61100 St Georges des Groseillers, (France)

    2015-07-01

    Temperature measurements in the nuclear field require a high degree of reliability and accuracy. Despite their sheathed form, thermocouples subjected to nuclear radiations undergo changes due to radiation damage and transmutation that lead to significant EMF drift during long-term fuel irradiation experiment. For the purpose of a High Temperature Reactor fuel irradiation to take place in the High Flux Reactor Petten, a dedicated fixed-point cell was jointly developed by LNE-Cnam and JRC-IET. The developed cell to be housed in the irradiation rig was tailor made to quantify the thermocouple drift during the irradiation (about two year duration) and withstand high temperature (in the range 950 deg. C - 1100 deg. C) in the presence of contaminated helium in a graphite environment. Considering the different levels of temperature achieved in the irradiation facility and the large palette of thermocouple types aimed at surveying the HTR fuel pebble during the qualification test both copper (1084.62 deg. C) and gold (1064.18 deg. C) fixed-point materials were considered. The aim of this paper is to first describe the fixed-point mini-cell designed to be embedded in the reactor rig and to discuss the preliminary results achieved during some out of pile tests as much as some robustness tests representative of the reactor scram scenarios. (authors)

  6. Fusion neutron irradiation induced ordering and defect production in Cu3Au at high temperatures

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Kirk, M.A.; Hahn, P.A.

    1987-08-01

    We irradiate three Cu 3 Au alloys different degrees of initial long-range order at temperatures between 300K and 434K. The resistivity of samples is monitored during irradiation and related to the long-term order parameter by the Muto relation. The results show that the ordering rate, which is proportional to the concentration of freely migrating vacancies, increases at the beginning and then decreases later with fluence. The decrease is a result of the continuous production of sinks in the form of dislocation loops. The effect of sinks on vacancy annihilation in some cases causes a reversed temperature dependence of ordering rate. The free vacancy production rate and the rate of sink production are determined using an ordering kinetics theory. The results of the 14 MeV neutron irradiations are compared to those obtained in other neutron spectra and particle irradiations. The estimated free vacancy production rate is also compared to the primary defect production rate measured at 4.2K in disordered samples

  7. Analytical and numerical study of graphite IG110 parts in advanced reactor under high temperature and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinling, E-mail: Jinling_Gao@yeah.net; Yao, Wenjuan, E-mail: wj_yao@yeah.net; Ma, Yudong

    2016-08-15

    Graphical abstract: An analytical model and a numerical procedure are developed to study the mechanical response of IG-110 graphite bricks in HTGR subjected to high temperature and irradiation. The calculation results show great accordance with each other. Rational suggestions on the calculation and design of the IG-110 graphite structure are proposed based on the sensitivity analyses including temperature, irradiation dimensional change, creep and Poisson’s ratio. - Highlights: • Analytical solution of stress and displacement of IG-110 graphite components in HTGR. • Finite element procedure developed for stress analysis of HTGR graphite component. • Parameters analysis of mechanical response of graphite components during the whole life of the reflector. - Abstract: Structural design of nuclear power plant project is an important sub-discipline of civil engineering. Especially after appearance of the fourth generation advanced high temperature gas cooled reactor, structural mechanics in reactor technology becomes a popular subject in structural engineering. As basic ingredients of reflector in reactor, graphite bricks are subjected to high temperature and irradiation and the stress field of graphite structures determines integrity of reflector and makes a great difference to safety of whole structure. In this paper, based on assumptions of elasticity, side reflector is regarded approximately as a straight cylinder structure and primary creep strain is ignored. An analytical study on stress of IG110 graphite parts is present. Meanwhile, a finite element procedure for calculating stresses in the IG110 graphite structure exposed in the high temperature and irradiation is developed. Subsequently, numerical solution of stress in IG110 graphite structure is obtained. Analytical solution agrees well with numerical solution, which indicates that analytical derivation is accurate. Finally, influence of temperature, irradiation dimensional change, creep and Poisson

  8. Temperature dependence of magnetoresistance in neutron-irradiated and unirradiated high resistivity p-type silicon

    International Nuclear Information System (INIS)

    Yildirim, M.; Efeoglu, H.; Abay, B.; Yogurtcu, Y.K.

    1996-01-01

    The temperature dependence of the transverse magnetoresistance in irradiated and unirradiated p-type Si is studied in the range from 120 to 290 K. The magnetoresistance coefficients for the unirradiated left angle 001 right angle and left angle 1 anti 10 right angle samples increases with decreasing sample temperature in the range from 160 to 290 K, however, this behavior is reversed below 160 K. It is proposed that this reversal is due to the double injection effect. The magnetoresistance coefficient for the irradiated left angle 001 right angle sample increases with decreasing sample temperature in the range of 120 to 290 K and is greater than that for the unirradiated left angle 001 right angle sample. This result can be explained by increased scattering due to the increased number of defects produced by irradiation. On the other hand, the magnetoresistance coefficient for the unirradiated left angle 1 anti 10 right angle sample is found to be greater than that of the unirradiated left angle 001 right angle sample. (orig.)

  9. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Science.gov (United States)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  10. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, K.; Shimomura, Y. [Hiroshima Univ. (Japan). Faculty of Engineering

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT, dislocation lines and voids are discussed. (orig.) 8 refs.

  11. Effect of individual or combined treatment by γ-irradiation or temperature (high or low) on bacillus subtilis spores and its application for sterilization of ground beef

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Mostafa, S.A.; Awny, N.M.

    1986-01-01

    The combination of two lethal agents such as irradiation and temperature (high or sub zero) resulted in synergistic death or B. subtilis spores (as indicated by decrease in the thermal D-value). The extent of this synergism in killing a spore population depended mainly on the sequence on application of the two physical agents. Irradiation-temperature (high or sub zero) sequence killed more but injured less B. subtilis spores than temperature irradiation sequence or irradiation and temperature applied separately. Storage at -20 0 C killed more spores than storage at -2 0 C if carried after irradiation, while the reverse was true of storage was prior irradiation. An irradiation dose of 8 KGY followed by thermal exposure to 70 0 C for 1 hr is suggested for the sterilization of ground beef. Irradiation induced certain quantitative changes on the amino-N, protein-N, RNA and DNA of the first subcultures of irradiated spores with stimulatory effect at low irradiation doses and inhibitory effect at the high irradiation doses. This might explain the increased sensitivity of irradiated spores to subsequent exposure to unfavourable temperature (high or sub zero). Exposure of B. subtilis spore to 70 0 C induced a stimulation in the amino- and protein-N of the resulting cells while exposure to 80 0 C resulted in a significant decrease in the amino-N. The protein-N remained more or less the same

  12. Using the quantum yields of photosystem II and the rate of net photosynthesis to moniter high irradiance and temperature stress in chrysanthemum (Dendrantherma grandiflora)

    DEFF Research Database (Denmark)

    Janka, Eshetu; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII operating efficiency may be used to optimise dynamic greenhouse control regimes by detecting plant stress caused by extreme microclimatic conditions.......Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting...... irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes...

  13. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kanda, Keiji; Mishima, Kaichiro; Tamai, Tadaharu; Hayashi, Masatoshi; Snelgrove, James L.; Stahl, David; Matos, James E.; Travelli, Armando; Case, F. Neil; Posey, John C.

    1983-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel cladding material. The release of fission products from the fuel plate at temperature below 500 deg. C was found negligible. The first rapid release of fission products was observed with the occurrence of blistering at 561±1 deg. C on the plates. The next release at 585. C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 deg. C of U-Al x . The released material was mostly xenon, but small amounts of iodine and cesium were observed. (author)

  14. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500 0 C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1 0 C on the plates. The next release at 585 0 C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 0 C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed

  15. Fission gas release and grain growth in THO2-UO2 fuel irradiated at high temperature

    International Nuclear Information System (INIS)

    Goldberg, I.; Waldman, L.A.; Giovengo, J.F.; Campbell, W.R.

    1979-01-01

    Data are presented on fission gas release and grain growth in ThO 2 -UO 2 fuels irradiated as part of the LWBR fuel element development program. These data for rods that experienced peak linear power outputs ranging from 15 to 22 KW/ft supplement fission gas release data previously reported for 51 rods containing ThO 2 and ThO 2 -UO 2 fuel irradiated at peak linear powers predominantly below 14 KW/ft. Fission gas release was relatively high (up to 15.0 percent) for the rods operated at high power in contrast to the relatively low fission gas release (0.1 to 5.2 percent) measured for the rods operated at lower power. Metallographic examination revealed extensive equiaxed grain growth in the fuel at the high power axial locations of the three rods

  16. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The FUBR-1B experiment, irradiation of lithium ceramics to high burnups under large temperature gradients

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Knight, R.C.; Densley, P.J.; Pember, L.A.; Johnson, C.E.; Poeppel, R.B.; Yang, L.

    1985-01-01

    Solid breeder materials used for supplying the tritium for fueling fusion power reactors will be required to withstand a variety of severe environmental conditions such as irradiation damage, thermal stresses and chemical reactions while continuing to produce tritium and not interfering with other essential components in the complex blanket region. In the FUBR-1B experiment several solid breeder candidates are being subjected to the most hostile conditions foreseen in a fusion reactor's blanket. Some material, such as Li 2 O, Li 8 ZrO 6 , and Li 4 SiO 4 , possess high lithium atom densities which are reflected in high tritium breeding ratios. Other material, such as LiAlO 2 and Li 2 ZrO 3 , appear to have exceptional irradiation stability. Verifying the magnitude of these differences will allow national selection between design options

  18. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Lam, N.Q.; Okamoto, P.R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. As a result, damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions

  19. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    Science.gov (United States)

    Lam, N. Q.; Okamoto, P. R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. Damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions.

  20. Molecular weight distribution of electron and γ-ray irradiated PEEK measured by very high temperature GPC

    International Nuclear Information System (INIS)

    Nakahara, H.

    1996-01-01

    Poly(ether ether ketone)(PEEK) films were irradiated with electron beam in air and in helium. Gel fractions of the PEEK samples were determined as the ratio of the weight of insoluble fraction/total weigh by extracting the samples with 1-chloronaphthalene (1-CN) at 260degC. While unirradiated PEEK samples were dissolved in 1-CN completely, PEEK samples highly (10 - 50 MGy) irradiated in air were almost insoluble in the solvent. The weight-average molecular weight M w of soluble fractions of the samples were measured by very high temperature gel permeation chromatography (VHTGPC): it was found that the M w decreases with increasing dose. On the other hand, PEEK samples irradiated in helium gave gel fractions at lower doses (0 - 5 MGy) than in air. The PEEK films were also irradiated with 60 Co γ-rays in the dose range, i.e. from 0 to 5 MGy. The γ-irradiated PEEK samples were completely dissolved in 1-CN at 260degC. Their M w measured by VHTGPC decreases with increasing dose. (author)

  1. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  2. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  3. Low-temperature formation of high-quality gate oxide by ultraviolet irradiation on spin-on-glass

    International Nuclear Information System (INIS)

    Usuda, R.; Uchida, K.; Nozaki, S.

    2015-01-01

    Although a UV cure was found to effectively convert a perhydropolysilazane (PHPS) spin-on-glass film into a dense SiO x film at low temperature, the electrical characteristics were never reported in order to recommend the use of PHPS as a gate-oxide material that can be formed at low temperature. We have formed a high-quality gate oxide by UV irradiation on the PHPS film, and obtained an interface midgap trap density of 3.4 × 10 11  cm −2 eV −1 by the UV wet oxidation and UV post-metallization annealing (PMA), at a temperature as low as 160 °C. In contrast to the UV irradiation using short-wavelength UV light, which is well known to enhance oxidation by the production of the excited states of oxygen, the UV irradiation was carried out using longer-wavelength UV light from a metal halide lamp. The UV irradiation during the wet oxidation of the PHPS film generates electron-hole pairs. The electrons ionize the H 2 O molecules and facilitate dissociation of the molecules into H and OH − . The OH − ions are highly reactive with Si and improve the stoichiometry of the oxide. The UV irradiation during the PMA excites the electrons from the accumulation layer, and the built-in electric field makes the electron injection into the oxide much easier. The electrons injected into the oxide recombine with the trapped holes, which have caused a large negative flat band voltage shift after the UV wet oxidation, and also ionize the H 2 O molecules. The ionization results in the electron stimulated dissociation of H 2 O molecules and the decreased interface trap density

  4. Low-temperature formation of high-quality gate oxide by ultraviolet irradiation on spin-on-glass

    Energy Technology Data Exchange (ETDEWEB)

    Usuda, R.; Uchida, K.; Nozaki, S., E-mail: nozaki@ee.uec.ac.jp [Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-1515 (Japan)

    2015-11-02

    Although a UV cure was found to effectively convert a perhydropolysilazane (PHPS) spin-on-glass film into a dense SiO{sub x} film at low temperature, the electrical characteristics were never reported in order to recommend the use of PHPS as a gate-oxide material that can be formed at low temperature. We have formed a high-quality gate oxide by UV irradiation on the PHPS film, and obtained an interface midgap trap density of 3.4 × 10{sup 11 }cm{sup −2} eV{sup −1} by the UV wet oxidation and UV post-metallization annealing (PMA), at a temperature as low as 160 °C. In contrast to the UV irradiation using short-wavelength UV light, which is well known to enhance oxidation by the production of the excited states of oxygen, the UV irradiation was carried out using longer-wavelength UV light from a metal halide lamp. The UV irradiation during the wet oxidation of the PHPS film generates electron-hole pairs. The electrons ionize the H{sub 2}O molecules and facilitate dissociation of the molecules into H and OH{sup −}. The OH{sup −} ions are highly reactive with Si and improve the stoichiometry of the oxide. The UV irradiation during the PMA excites the electrons from the accumulation layer, and the built-in electric field makes the electron injection into the oxide much easier. The electrons injected into the oxide recombine with the trapped holes, which have caused a large negative flat band voltage shift after the UV wet oxidation, and also ionize the H{sub 2}O molecules. The ionization results in the electron stimulated dissociation of H{sub 2}O molecules and the decreased interface trap density.

  5. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States); Dickerson, Bryan [Luna Innovations, Inc. (United States)

    2013-01-03

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica's optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and

  6. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to High Temperature

    International Nuclear Information System (INIS)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-01

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica'@@s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and

  7. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  8. Temperature annealing of tracks induced by ion irradiation of graphite

    International Nuclear Information System (INIS)

    Liu, J.; Yao, H.J.; Sun, Y.M.; Duan, J.L.; Hou, M.D.; Mo, D.; Wang, Z.G.; Jin, Y.F.; Abe, H.; Li, Z.C.; Sekimura, N.

    2006-01-01

    Highly oriented pyrolytic graphite (HOPG) samples were irradiated by Xe ions of initial kinetic energy of 3 MeV/u. The irradiations were performed at temperatures of 500 and 800 K. Scanning tunneling microscopy (STM) images show that the tracks occasionally have elongated structures under high-temperature irradiation. The track creation yield at 800 K is by three orders of magnitude smaller compared to that obtained during room-temperature irradiation. STM and Raman spectra show that amorphization occurs in graphite samples irradiated at 500 K to higher fluences, but not at 800 K. The obtained experimental results clearly reveal that the irradiation under high temperature causes track annealing

  9. Progress report on irradiation experiment on small size specimens in high temperature flux module

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.; Jacquet, P.; Chaouadi, R.

    2011-02-15

    This report describes the progress made in IFREC/DEMO Research and Development Program during the year 2010 at SCK/CEN. This task is part of demonstrating the possibility to irradiate small specimens in the HFTM modules that will be used in DEMO. Different small specimens of three candidate materials of DEMO fusion reactor will be irradiated with the objective of validating the specimen geometry and size to reliably characterize the mechanical properties of unirradiated and in future of irradiated materials.

  10. Stability of Y-Ti-O nanoparticles in ODS alloys during heat treatment and high temperature swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A. [FLNR, JINR, Dubna (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Dubna State University, Dubna (Russian Federation); Sohatsky, A.S.; Kornieieva, K. [FLNR, JINR, Dubna (Russian Federation); O' Connell, J.H.; Neethling, J.H. [CHRTEM, NMMU, Port Elizabeth (South Africa); Nikitina, A.A.; Ageev, V.S. [JSC VNIINM, Moscow (Russian Federation); Zdorovets, M. [Institute of Nuclear Physics, Astana (Kazakhstan); Ural Federal University, Yekaterinburg (Russian Federation); Volkov, A.D. [Nazarbayev University, Astana (Kazakhstan)

    2016-12-15

    Aim of this report is to compare the morphology of swift (167 and 220 MeV) Xe ion induced latent tracks in Y{sub 2}Ti{sub 2}O{sub 7} nanoparticles during post-irradiation heat treatment and after irradiation at different temperatures in pre-thinned TEM foils and TEM targets prepared from hundreds microns thick irradiated oxide dispersion strengthened (ODS) steel. No difference in track parameters was found in room temperature irradiated nanoparticles in pre-thinned and conventional samples. Microstructural data gathered from pre-thinned foils irradiated in the temperature range 350-650 C or annealed at similar temperatures demonstrate that amorphous latent tracks interact with the surrounding matrix, changing the track and nanoparticle morphology, while such effect is not observed in conventional ODS material treated at the same conditions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Transmission electron-microscopic studies of structural changes in polycrystalline graphite after high temperature irradiation

    International Nuclear Information System (INIS)

    Platonov, P.A.; Gurovich, B.A.; Shtrombakh, Ya.I.; Karpukhin, V.I.

    1985-01-01

    Transmission electron-microscopic investigation of polycrystalline graphite before and after irradiation is carried out. The direct use of graphite samples after ion thinning, as an inquiry subject is the basic peculiarity of the work. Main structural components of MPG-6 graphite before and after irradiation are revealed, the structural mechanism of the reactor graphite destruction under irradiation is demonstrated. The mean values of L αm and L cm crystallite dimensions are determined. Radiation defects, occuring in some crystallites after irradiation are revealed by the dark-field electron microscopy method

  12. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  13. High-temperature method of rapid separation of In-111 from irradiated silver targets

    International Nuclear Information System (INIS)

    Mazgaj, Z.; Kolaczkowski, A.; Mikulski, J.; Novgorodov, A.F.; Zielinski, A.; Joint Inst. for Nuclear Research, Dubna

    1990-01-01

    A high-temperature method of separation of In-111 from α-particle activated silver targets was developed. The separation is carried out under reduced pressure, in the atmosphere of HCl and H 2 O vapours. Indium-111, adsorbed on a quartz collector, is washed out quantitatively with 0.1 N HCl. The contaminant, Cd-109 (product of decay of In-109), is removed from the preparation by means of ion-exchange chromatography. 4 tabs., 6 refs. (author)

  14. Irradiation temperature measurements in the surveillance program

    International Nuclear Information System (INIS)

    Pav, T.; Krhounek, V.

    1991-01-01

    Evaluation of the diamond monitor method for the determination of the irradiation temperature in the surveillance programme of WWER-440 reactors is discussed. One of the difficulties with the practical application of the method is that the measured values of irradiation temperature are unlikely high. Using a thermodynamical model of the processes in the annealing of the irradiated diamond crystals, it was shown that experimental difficulties came from the principles of the method used. An analysis was performed of the thermal field inside the capsule of the surveillance chain in operational conditions, using the finite element method. The diamond monitor method was suggested to be eliminated from the surveillance programme and the use was proposed of the value of 273+-3 degC (as the most likely value) for the irradiation temperature of surveillance samples in WWER-440 reactors. (Z.S.). 3 tabs., 6 figs., 4 refs

  15. High temperature homogenization improves impact toughness of vitamin E-diffused, irradiated UHMWPE.

    Science.gov (United States)

    Oral, Ebru; O'Brien, Caitlin; Doshi, Brinda; Muratoglu, Orhun K

    2017-06-01

    Diffusion of vitamin E into radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is used to increase stability against oxidation of total joint implant components. The dispersion of vitamin E throughout implant preforms has been optimized by a two-step process of doping and homogenization. Both of these steps are performed below the peak melting point of the cross-linked polymer (homogenization of antioxidant-doped, radiation cross-linked UHMWPE could improve its toughness. We found that homogenization at 300°C for 8 h resulted in an increase in the impact toughness (74 kJ/m 2 compared to 67 kJ/m 2 ), the ultimate tensile strength (50 MPa compared to 43 MPa) and elongation at break (271% compared to 236%). The high temperature treatment did not compromise the wear resistance or the oxidative stability as measured by oxidation induction time. In addition, the desired homogeneity was achieved at a much shorter duration (8 h compared to >240 h) by using high temperature homogenization. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1343-1347, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  17. Final report on neutron irradiation at low temperature to investigate plastic instability and at high temperature to study caviation

    DEFF Research Database (Denmark)

    Singh, B.N; Eldrup, Morten Mostgaard; Golubov, D.J.

    2005-01-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties of pure iron and F82H and EUROFER 97 ferritic-martensitic steels have been investigated. Tensile specimens were neutron irradiated to a dose level of 0,23 dpa at333 and 573 K. Electrical resistivity......, based on the production bias model (PBM) were carried out to study the details of evolution of cavitieswith and without helium generation. The phenomena of dislocation decoration and raft formation, which are important for understanding radiation hardening and plastic flow localization, have been...... studied using the Kinetic Monte Carlo (KMC) code during arealistic dynamic irradiation of bcc iron at 300 K. Molecular dynamics (MD) simulations have been carried out to study the stress dependencies of dislocation velocity and drag coefficient for an edge dislocation decorated with small SIA loops...

  18. Final report on neutron irradiation at low temperature to investigate plastic instability and a high temperature to study cavitation

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Edwards, D.J.; Jung, P.

    2005-01-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties of pure iron and F82H and EUROFER 97 ferritic-martensitic steels have been investigated. Tensile specimens were neutron irradiated to a dose level of 0,23 dpa at 333 and 573 K. Electrical resistivity and tensile properties were measured both in the unirradiated and irradiated condition. Some additional specimens of pure iron were irradiated at 333 K to doses of 10-3, 10-2 and 10-1 dpa and tensile tested at 333 K. To investigate the effect of helium on cavity nucleation and growth, specimens of pure iron and EUROFER 97 were implanted with different amounts of helium at 323 K and subsequently neutron irradiated to doses of 10-3, 10-2 and 10-1 dpa at 323 K. Defect microstructures were investigated using positron annihilation spectroscopy (PAS) and transmission electron microscopy (TEM). Numerical calculations, based on the production bias model (PBM) were carried out to study the details of evolution of cavities with and without helium generation. The phenomena of dislocation decoration and raft formation, which are important for understanding radiation hardening and plastic flow localization, have been studied using the Kinetic Monte Carlo (KMC) code during a realistic dynamic irradiation of bcc iron at 300 K. Molecular dynamics (MD) simulations have been carried out to study the stress dependencies of dislocation velocity and drag coefficient for an edge dislocation decorated with small SIA loops.The present report describes both experimental procedure and calculational methodology employed in the present work. The main results of all these investigations, both experimental and theoretical, are highlighted with appropriate examples. Finally, a brief summary is given of the main results conclusions. (au)

  19. The behavior of lattice defects produced in Al2O3 irradiated by neutrons at high temperatures

    International Nuclear Information System (INIS)

    Atobe, K.; Koizumi, T.; Okada, M.

    2003-01-01

    Single crystals of α-Al 2 O 3 were irradiated by the two reactors, KUR and JMTR, at three different temperatures. Lattice defects produced by irradiation were studied by esr (electron spin resonance). Three kinds of esr spectram, which are denoted as A, B and C spectram, are observed. The spectram A was observed at three different irradiation temperatures and was ascribed to oxygen vacancies. The spectram B showed no angular dependence for the rotation of external magnetic field to the crystal axis, and the defect density of this spectram decreased with an increase of annealing temperature. When the specimen was annealed at 400 degC after irradiation at 200 degC, the spectram C was observed and was presumed to be due to Al-colloids. (Y. Kazumata)

  20. Compaction of irradiated fuel can wastes by high temperature melting in cold crucibles

    International Nuclear Information System (INIS)

    Piccinato, R.; Ruty, J.P.; Caraballo, R.; Jacquet-Francillon, N.

    1993-01-01

    The fusion of hull wastes obtained from the reprocessing of various irradiated fuels is an alternative method to the cementation process used for the conditioning of such wastes. This new process, based on the direct fusion of hulls, has been carried out at CEA Marcoule with an inactive industrial prototype and qualified with an active laboratory prototype. The report shows the results obtained with the lab prototype on stainless steel and zircaloy hulls

  1. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  2. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  3. High-temperature strength of Nb-1%Zr alloy for irradiation-capsules inner-shell

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Nakata, Hirokatsu; Tanaka, Mitsuo; Fukaya, Kiyoshi.

    1978-04-01

    Coated fuel particles in capsules will be irradiated at about 1600 0 C in JMTR. Nb-1%Zr alloy was chosen for inner shell material of the capsules because of its sufficient strength at 1000 0 C and low induced radioactivity. Nb-1%Zr ingot produced by electron beam melting was formed into seamless tubes by hollowing and swaging, followed by annealing. Creep test in helium flow and tensile test in vacuum were made to examine mechanical strength of the Nb-1%Zr tubes at 1000 0 C. Following are the results; 1) 0.2% yield stress at 1000 0 C is about 6 kg/mm 2 . 2) 3000 hr creep rupture stress at 1000 0 C is about 6 kg/mm 2 . (auth.)

  4. Irradiation test HT-31: high-temperature irradiation behavior of LASL-made extruded fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; Davidson, K.V.; Schell, D.H.

    1977-04-01

    Three LASL-made extruded graphite and coated particle fuel rods have been irradiated in the Oak Ridge National Laboratory High Fluence Isotope Reactor test HT-31. Test conditions were about 9 x 10 21 nvt(E > .18 MeV) at 1250 0 C. The graphite matrix showed little or no effect of the irradiation. LASL-made ZrC containing coated particles with ZrC coats and ZrC-doped pyrolytic carbon coats showed no observable effects of the irradiation

  5. Estimation of irradiation temperature within the irradiation program Rheinsberg

    CERN Document Server

    Stephan, I; Prokert, F; Scholz, A

    2003-01-01

    The temperature monitoring within the irradiation programme Rheinsberg II was performed by diamond powder monitors. The method bases on the effect of temperature on the irradiation-induced increase of the diamond lattice constant. The method is described by a Russian code. In order to determine the irradiation temperature, the lattice constant is measured by means of a X-ray diffractometer after irradiation and subsequent isochronic annealing. The kink of the linearized temperature-lattice constant curves provides a value for the irradiation temperature. It has to be corrected according to the local neutron flux. The results of the lattice constant measurements show strong scatter. Furthermore there is a systematic error. The results of temperature monitoring by diamond powder are not satisfying. The most probable value lays within 255 C and 265 C and is near the value estimated from the thermal condition of the irradiation experiments.

  6. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria - interactions of irradiance, exposure duration and high temperature

    International Nuclear Information System (INIS)

    Gauslaa, Y.; Solhaug, K.A.

    1999-01-01

    High-light damage in air-dry thalli of Lobaria pulmonaria were measured in the laboratory as reductions in maximal PSII efficiency (FV/FM) after a 48 h recovery in a hydrated state at low light to account for permanent damage. Thalli treated with the lowest light dose (90 mol photons m −2 ) recovered normal FV/FM-values with increasing irradiances (400–700 nm) up to 1000 µmol photons m −2 s −1 . Doubling this dose lowered the threshold level for damage from 1000 to 320 µmol photons m −2 s −1 , and reduced FV/FM at 1000 µmol photons m −2 s −1 by more than 50%. A second doubling of the dose to 360 mol photons m −2 caused damage at 200 µmol photons m −2 s −1 , and a nearly complete cessation of PSII efficiency occurred at 1000 µmol photons m −2 s −1 . No reciprocity of irradiance and duration of illumination for PSII function was found. The measured time-dependent decrease in FV/FM was remarkably similar for the naturally coupled, but artificially separated, light and temperature factors. Therefore, the damage of high light on desiccated L. pulmonaria seemed to be an additive effect of high irradiance and high temperatures. Air-dry thalli were highly heat susceptible, being affected already at temperatures around 40 °C. Logging operations in forests are likely to raise the solar radiation at remaining lichen sites to destructive levels. (author)

  7. Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    International Nuclear Information System (INIS)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p + ) and back (n + ) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N eff . The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N eff distortions among various detectors irradiated by different neutron fluences are compared

  8. Swelling of uranium dioxide and deformation behavior of the fuel element at high temperature irradiation

    International Nuclear Information System (INIS)

    Gontar, A.S.; Gutnik, V.S.; Nelidov, M.V.; Nikolaev, Yu.V.

    1993-01-01

    As post-reactor investigations showed, significant difference of swelling rates is connected with the fact that swelling of UO 2 with the equiaxial structure is mainly the result of fission gas bubbles accumulation along grain boundaries, and, in the case of the column structure, with formation of fine bubbles inside grains. The data given testify to usefulness of such investigations to predict TFE lifetime. As proven in this study one can see rates of radial deformation of fuel element cladding of a multi-cell TFE as a result of UO 2 swelling. They were calculated using the code SDS. Typical sizes were taken for calculation: cladding diameter--20 mm, cladding temperature at the central section of the fuel element--1,900 K, energy generation rate--145 W/cm 3 . These parameters provide output electric power of the TFE 600 W at the active zone length--400 mm

  9. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D. [Laboratoire PROMES-CNRS, Laboratoire Procedes, Materiaux et Energie Solaire, 7 rue du Four Solaire, 66120 Font-Romeu Odeillo (France)

    2007-07-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H{sup +} ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  10. Divertor materials for ITER - Tungsten and carbon/carbon composite behavior under coupled ionic irradiation and high temperature

    International Nuclear Information System (INIS)

    Raunier, S.; Balat-Pichelin, M.; Sans, J.L.; Hernandez, D.

    2007-01-01

    Full text of publication follows: In the frame of the International Thermonuclear Experimental Reactor ITER, the physical-chemical characterization of plasma-facing components (divertor and structural materials) is essential because they are subjected to simultaneous high thermal and ionic fluxes. In this paper, an experimental and theoretical study of the physical-chemical behavior of carbon/carbon composite and tungsten (materials for ITER divertor) under extreme conditions is performed. The simulation of the interaction of hydrogen ions with the material, the theoretical study of physical erosion (TRIM and TRIDYN codes) and the chemical erosion (GEMINI code) are carried out. The conditions of nominal or accidental mode that can occur during the operation of the reactor (high temperature 1300 - 2500 K, high vacuum, H + ionic flux with different energies) are experimentally simulated. In this work, we have studied the material degradation, the mass loss kinetics, the characterization of the emitted neutral and charged species of heated and both heated and irradiated materials, and the determination of the thermo-radiative properties versus time. This study, done in collaboration with CEA Cadarache, is realized using the MEDIASE experimental device (Moyen d'Essai et de Diagnostic en Ambiance Solaire Extreme) located at the focus of the 1000 kW solar furnace of PROMES-CNRS laboratory in Odeillo. Material characterization pre- and post-processing is performed with classical techniques as SEM, XRD and XPS and also by measuring the BRDF (Bidirectional Reflectivity Diffusion Function). (authors)

  11. Determination of irradiation temperature using SiC temperature monitors

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    This paper describes a method for detecting the change in length of SiC temperature monitors and a discussion is made on the relationship between irradiation temperature and the recovery in length of SiC temperature monitors. The SiC specimens were irradiated in the experimental fast reactor JOYO' at the irradiation temperatures around 417 to 645degC (design temperature). The change in length of irradiated specimens was detected using a dilatometer with SiO 2 glass push rod in an infrared image furnace. The temperature at which recovery in macroscopic length begins was obtained from the annealing intersection temperature. The results of measurements indicated that a difference between annealing intersection temperature and the design temperature sometimes reached well over ±100degC. A calibration method to obtain accurate irradiation temperature was presented and compared with the design temperature. (author)

  12. Irradiation test OF-2: high-temperature irradiation behavior of LASL-made fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1977-10-01

    Three LASL-made, substoichiometric ZrC-coated particles with inert kernels, and two high-density molded graphite fuel rods that contained LASL-made, ZrC-coated fissile particles were irradiated in the Oak Ridge Research Reactor test OF-2. The severest test conditions were 8.36 x 10 21 nvt (E greater than 0.18 MeV) at 1350 0 C. The graphite matrix showed no effect of the irradiation. There was no interaction between the matrix and any of the particle coats. The loose ZrC coated particles with inert kernels showed no irradiation effects. The graded ZrC-C coats on the fissile particles were cracked. It is postulated that the cracking is associated with the low LTI deposition rate and is not related to the ZrC

  13. High-energy electron beam irradiation of Al-doped ZnO thin films deposited at room temperature

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Hwang, Jong-Ha; Lee, Byung-Cheol; Jung, Myung-Hee

    2011-01-01

    In this research, we demonstrated the effects of high-energy electron beam irradiation (HEEBI) on the optical and structural properties of Al-doped ZnO (AZO) films grown on transparent corning glass substrates at room temperature (RT) by using a radio-frequency magnetron sputtering technique. The AZO thin films were treated with HEEBI in air at RT at an electron beam energy of 0.8 MeV and doses of 1 x 10 14 - 1 x 10 16 electrons/cm 2 . The photoluminescence (PL) measurements revealed that the dominant peak at 2.77 eV was a blue emission originating from donor-like defects, oxygen vacancies (V o ), suggesting that the n-type conductivity was preserved in HEEBI-treated films. On the basis of PL, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy results, we suggest that the density of V o donor defects is decreased due to in-diffusion of oxygen from the ambient into the films after HEEBI treatment at low doses up to 10 15 electrons/cm 2 while the opposite phenomenon can occur with further increase in the dose. We also found from the XRD analysis that the worse crystallinity with a smaller grain size was observed in HEEBI-treated AZO films at a higher dose, corresponding to a higher oxygen fraction in the films. We believe that our results will contribute to developing high-quality AZO-based materials and devices for space applications.

  14. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  15. Property changes in graphite irradiated at changing irradiation temperature

    International Nuclear Information System (INIS)

    Price, R.J.; Haag, G.

    1979-07-01

    Design data for irradiated graphite are usually presented as families of isothermal curves showing the change in physical property as a function of fast neutron fluence. In this report, procedures for combining isothermal curves to predict behavior under changing irradiation temperatures are compared with experimental data on irradiation-induced changes in dimensions, Young's modulus, thermal conductivity, and thermal expansivity. The suggested procedure fits the data quite well and is physically realistic

  16. High-temperature irradiation of niobium-1 w/o zirconium-clad UO/sub 2/. [Compatibility with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kangilaski, M.; Fromm, E.O.; Lozier, D.H.; Storhok, V.W.; Gates, J.E.

    1965-06-28

    Twenty-four 0.225-in.-diameter and six 0.290-in.-diameter UO/sub 2/ specimens clad with 80 mils of niobium-1 w/o zirconium were irradiated to burnups of 1.4 to 6.0 at. % of uranium at surface temperatures of 900 to 1400/sup 0/C. UO/sub 2/ and lithium were found to be incompatible at these temperatures, and the thick cladding was used primarily to minimize the chances of contact of UO/sub 2/ and the lithium coolant. The thickly clad specimens did not undergo any dimensional changes as a result of irradiation, although it was found that movement of UO/sub 2/ took place in the axial direction by a vaporization-redeposition mechanism. It was found that 32 to 87% of the fission gases was released from the fuel, depending on the temperature of the specimen. Metallographic examination of longitudinal and transverse sections of the specimens indicated the usual UO/sub 2/ microstructure with columnar grains. Grain-boundary thickening was observed in the UO/sub 2/ at higher burnups. The oxygen/uranium ratio of UO/sub 2/ increased with increasing burnup.

  17. Effect of irradiation temperature on microstructural changes in self-ion irradiated austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun

    2017-09-01

    We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.

  18. Ruthenium release at high temperature from irradiated PWR fuels in various oxidising conditions. Main findings from the VERCORS program

    International Nuclear Information System (INIS)

    Ducros, G.; Pontillon, Y.; Malgouyres, P.P.; Taylor, P.; Dutheillet, Y.

    2005-01-01

    Fission product release and transport in case of PWR severe accident is a major topic in reactor safety assessment due to the potential radiological consequences for surrounding populations and the environment. In this context, the Institute for Radiological Protection and Safety (IRSN) and Electricite de France (EDF) have supported the VERCORS analytical test program which was performed by the ''Commissariat a l'Energie Atomique'' (CEA). It is usually considered as complementary to the PHEBUS FP in-pile integral experimental program. 25 annealing tests were performed between 1983 and 2002 on irradiated PWR fuels under various conditions of temperature and atmospheres (oxidising or reducing conditions).The influence of the nature of the fuel (UO 2 versus MOX, burn-up) and the fuel morphology (initially intact or fragmented fuels) have also been investigated. These led to an extended data base allowing on the one hand to study mechanisms which promote fission products release, and on the other hand to enhance models implemented in severe accident codes. Among all the fission products investigated, ruthenium is of specific concern because of its high radiological effects due essentially to the combination of both its short and long half-life isotopes (i.e. 103 Ru and 106 Ru respectively), but also by its ability to generate volatile gaseous oxides (RuO 3 , RuO 4 ) in very oxidising conditions, in particular in the case of air ingress accidents. Important uncertainties still remain on the release and transport of this element in such situations, and investigations on this open issue are notably carried out in the SARNET European framework. The present communication gives a general overview of the VERCORS program and presents more deeply the main findings concerning the ruthenium release. Its global behaviour is analysed on the basis of several comparative tests: same UO 2 sample (35 and 50 GWd/t) under hydrogen or steam conditions, similar MOX sample (40 GWd/t) under

  19. Effects of cryogenic irradiation on temperature sensors

    International Nuclear Information System (INIS)

    Courts, S.S.; Holmes, D.S.

    1996-01-01

    Several types of commercially available cryogenic temperature sensors were calibrated, irradiated at 4.2 K by a gamma or neutron source, and recalibrated in-situ to determine their suitability for thermometry in radiation environments. Comparisons were made between pre- and post-irradiation calibrations with the equivalent temperature shift calculated for each sensor at various temperature in the 4.2 K to 330 K range. Four post-irradiation calibrations were performed with annealing steps performed at 20 K, 80 K, and 330 K. Temperature sensors which were gamma irradiated were given a total dose of 10,000 Gy. Temperature sensors which were neutron irradiated were irradiated to a total fluence of 2 x 10 12 n/cm 2 . In general, for gamma radiation environments, diodes are unsuitable for use. Both carbon glass and germanium resistance sensors performed well at lower temperature, while platinum resistance sensors performed best above 30 K. Thin-film rhodium and Cernox trademark resistance sensors both performed well over the 4.2 K to 330 K range. Only thin-film rhodium and Cernox trademark resistance temperature sensors were neutron irradiated and they both performed well over the 4.2 K to 330 K range

  20. High temperature annealing of minority carrier traps in irradiated MOCVD n(+)p InP solar cell junctions

    Science.gov (United States)

    Messenger, S. R.; Walters, R. J.; Summers, G. P.

    1993-01-01

    Deep level transient spectroscopy was used to monitor thermal annealing of trapping centers in electron irradiated n(+)p InP junctions grown by metalorganic chemical vapor deposition, at temperatures ranging from 500 up to 650K. Special emphasis is given to the behavior of the minority carrier (electron) traps EA (0.24 eV), EC (0.12 eV), and ED (0.31 eV) which have received considerably less attention than the majority carrier (hole) traps H3, H4, and H5, although this work does extend the annealing behavior of the hole traps to higher temperatures than previously reported. It is found that H5 begins to anneal above 500K and is completely removed by 630K. The electron traps begin to anneal above 540K and are reduced to about half intensity by 630K. Although they each have slightly different annealing temperatures, EA, EC, and ED are all removed by 650K. A new hole trap called H3'(0.33 eV) grows as the other traps anneal and is the only trap remaining at 650K. This annealing behavior is much different than that reported for diffused junctions.

  1. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel - A macroscopic assessment

    Science.gov (United States)

    Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.; Camino, F.; Şavklıyıldız, İ.; Akdoğan, E. K.

    2017-06-01

    The study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ∼2 × 1018 n/cm2. At the higher neutron dose of ∼2 × 1019, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe2B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.

  2. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel – A macroscopic assessment

    International Nuclear Information System (INIS)

    Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.

    2017-01-01

    Here, this study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ~2 x 10 18 n/cm 2 . At the higher neutron dose of ~2 x 10 19 , macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe 2 B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.

  3. High sensitivity ethanol gas sensor based on Sn - doped ZnO under visible light irradiation at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peishuo; Pan, Guofeng; Zhang, Bingqiang; Zhen, Jiali; Sun, Yicai, E-mail: pgf@hebut.edu.cn [Institute of Microelectronic, Hebei University of Technology, Tianjin (China)

    2014-07-15

    Pure ZnO and 5at%, 7at%, 9at% Sn - doped ZnO materials are prepared by the chemical co - precipitation method. They were annealed by furnace at temperature range of 300 - 700ºC in air for 1h. The ZnO materials are characterized by X - ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the Sn - doped ZnO materials appear rough porous structures. The maximum sensitivity can be achieved by doping the amount of 7 at%. It has much better sensing performance towards ethanol vapor under visible light irradiation. The response and recovery time are ~1s and ~5s, respectively. The mechanism for the improvement in the sensing properties can be explained with the surface adsorption theory and the photoactivation theory. (author)

  4. High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli.

    Directory of Open Access Journals (Sweden)

    Wan-Fu Yue

    Full Text Available Shiga toxin (stx genes have been transferred to numerous bacteria, one of which is E. coli O157:H7. It is a common belief that stx gene is transferred by bacteriophages, because stx genes are located on lambdoid prophages in the E. coli O157:H7 genome. Both E. coli O157:H7 and non-pathogenic E. coli are highly enriched in cattle feedlots. We hypothesized that strong UV radiation in combination with high temperature accelerates stx gene transfer into non-pathogenic E. coli in feedlots.E. coli O157:H7 EDL933 strain were subjected to different UV irradiation (0 or 0.5 kJ/m(2 combination with different temperature (22, 28, 30, 32, and 37 °C treatments, and the activation of lambdoid prophages was analyzed by plaque forming unit while induction of Stx2 prophages was quantified by quantitative real-time PCR. Data showed that lambdoid prophages in E. coli O157:H7, including phages carrying stx2, were activated under UV radiation, a process enhanced by elevated temperature. Consistently, western blotting analysis indicated that the production of Shiga toxin 2 was also dramatically increased by UV irradiation and high temperature. In situ colony hybridization screening indicated that these activated Stx2 prophages were capable of converting laboratory strain of E. coli K12 into new Shiga toxigenic E. coli, which were further confirmed by PCR and ELISA analysis.These data implicate that high environmental temperature in combination with UV irradiation accelerates the spread of stx genes through enhancing Stx prophage induction and Stx phage mediated gene transfer. Cattle feedlot sludge are teemed with E. coli O157:H7 and non-pathogenic E. coli, and is frequently exposed to UV radiation via sunlight, which may contribute to the rapid spread of stx gene to non-pathogenic E. coli and diversity of shiga toxin producing E. coli.

  5. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    CERN Document Server

    Makarenko, L F; Korshunov, F P; Murin, L I; Moll, M

    2009-01-01

    It has been revealed that self-interstitials formed under low intensity electron irradiationin high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkelpair sinsilicon can be stable at temperatures of about or higher than 100K. A broad DLTS peak with activation energy of 0.14–0.17eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120 140K. Experimental evidences are presented that be coming more mobile under forwardcurrent injection the self-interstitials change their charge state to a less positive one.

  6. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  7. Selection of support structure materials for irradiation experiments in the HFIR [High Flux Isotope Reactor] at temperatures up to 500 degrees C

    International Nuclear Information System (INIS)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500 degree C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs

  8. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent; Biondo, Stephane; Vervisch, Vanessa [IM2NP, UMR CNRS 7334, Aix-Marseille University, Case 231,13397 Marseille Cedex 20, (France); Szalkai, Dora; Klix, Axel [KIT- Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology Karlsruhe 76344, (Germany); Vermeeren, Ludo [SCK-CEN, Boeretang 200, B-2400 Mol, (Belgium); Saenger, Richard [Schlumberger, Clamart, (France); Lyoussi, Abadallah [CEA, DEN, Departement d' Etudes des Reacteurs, Service de Physique Experimentale, Laboratoire Dosimetrie Capteurs Instrumentation, 13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Work is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)

  9. Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage.

    Science.gov (United States)

    Hofmann, Norbert; Markert, Tanja; Hugo, Burkard; Klaiber, Bernd

    2003-12-01

    To determine polymerization shrinkage kinetics and temperature rise of light-cured resin-based composites after high intensity vs. soft-start quartz tungsten halogen irradiation. Shrinkage kinetics was evaluated using the "deflecting disk technique", modified for simultaneous measurement of temperature within the resin-based composite using a thermocouple. Additional irradiations after 60 and 65 minutes allowed the determination of temperature rises caused by radiation or by reaction heat. Four hybrids (Filtek Z250, Herculite, Solitaire 2, Tetric Ceram), an inhomogeneously filled hybrid (InTen-S) and a microfill (Filtek A110, formerly Silux Plus) were cured using the quartz tungsten halogen units Astralis 10 and Optilux 501 in the high intensity (A10 HiPo: 10 seconds at 1300 mW/cm2; OL Boost: 10 seconds at 1140 mW/cm2) or soft-start modes (A10 Pulse: increase to 700 mW/cm2 within 10 seconds, three periods of 2 seconds at 1300 mW/cm2 alternating with two periods of 2 seconds at 700 mW/cm2; OL Ramp: exponential increase within 10 seconds, followed by 10 seconds at 1140 mW/cm2). The soft-start protocols produced less contraction, and polymerization shrinkage started later and progressed slower (or: more slowly), compared to high intensity irradiation [correction]. The lowest shrinkage was observed for InTen-S, followed by Filtek Z250 and A110, whereas Solitaire 2, Herculite and Tetric Ceram scored highest for this parameter. Temperature rise was caused more or less equally by radiation and by reaction heat and reached values of up to 28.9 degrees C relative to a baseline of 37 degrees C. For some combinations of curing modes and resin-based composites, less heat was generated by the soft-start protocols and by Optilux 501.

  10. Minimizing material damage using low temperature irradiation

    International Nuclear Information System (INIS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-01-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to −80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use. - Highlights: ► A study is performed to quantify low temperature irradiation effects on polymer materials and BIs. ► Low temperature irradiation alters the balance of cross-linking and chain scissoning in polymers. ► Low temperatures provide radioprotection for BIs. ► Benefits of low temperatures are application specific and must be considered when dose setting.

  11. High Temperature Mechanical Properties, Fractography and Synchrotron Studies of ATF clad materials from the UCSB-NSUF Irradiations.

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Tobias J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprouster, David [Brookhaven National Lab. (BNL), Upton, NY (United States); Ecker, Lynne [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-23

    A variety of tensile samples of Ferritic and Oxide Dispersion Strengthened (ODS or nanostructured ferritic) steels were placed the ATR reactor over 2 years achieving doses of roughly 4-6 dpa at temperatures of roughly 290°C. Samples were shipped to Wing 9 in the CMR facility at Los Alamos National Laboratory and imaged then tested in tension. This report summarizes the room temperature tensile tests, the elevated temperature tensile tests (300°C) and fractography and reduction of area calculations on those samples. Additionally small samples were cut from the undeformed grip section of these tensile samples and sent to the NSLS synchrotron for high energy X-ray analysis, initial results will be described here.

  12. Effect of simultaneous ion irradiation on microstructural change of SiC/SiC composites at high temperature

    International Nuclear Information System (INIS)

    Taguchi, T.; Wakai, E.; Igawa, N.; Nogami, S.; Snead, L.L.; Hasegawa, A.; Jitsukawa, S.

    2002-01-01

    The effect of simultaneous triple ion irradiation of He, H and Si on microstructural evolution of two kinds of SiC/SiC composites (HNS composite (using Hi-Nicalon type S SiC fiber) and TSA composite (using Tyranno SA SiC fiber)) at 1000 deg. C has been investigated. The microstructure observations of SiC/SiC composites irradiated to 10 dpa were examined by transmission electron microscopy. He bubbles were hardly formed in matrix of TSA composite, but many helium bubbles and some cracks were observed at grain boundaries of matrix of HNS composite. He bubbles and cracks were not, on the other hand, observed in the both fiber fabrics of HNS and TSA composites. Debonding between fiber and carbon layer following irradiation region was not observed in the both composites. Under these irradiation conditions, TSA composite showed the better microstructural stability against ion beams irradiation than one of HNS composite

  13. Development of crack growth and crack initiation test units for stress corrosion cracking examinations in high-temperature water environments under neutron irradiation (1) (Contract research)

    International Nuclear Information System (INIS)

    Izumo, Hironobu; Ishida, Takuya; Kawamata, Kazuo; Inoue, Shuichi; Ide, Hiroshi; Saito, Takashi; Ishitsuka, Etsuo; Chimi, Yasuhiro; Ise, Hideo; Miwa, Yukio; Ugachi, Hirokazu; Nakano, Junichi; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-04-01

    To evaluate integrity of irradiation-assisted stress corrosion cracking (IASCC) on in-core structural materials used in light water reactors (LWRs), useful knowledge regarding IASCC has been obtained mainly by post-irradiation examinations (PIEs). In the core of commercial LWRs, however, the actual IASCC occurs under the effects of irradiation on both materials and high-temperature water environment. Therefore, it is necessary to confirm the suitability of the knowledge by PIE with comparison to IASCC behaviors during in-core SCC tests. Fundamental techniques for in-core crack growth and crack initiation tests have been developed already at the Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency (JAEA). For the in-core crack growth test technique, to evaluate the effects of neutron irradiation on stainless steels irradiated to low neutron fluences, it is indispensable to develop new loading technique which is applicable to compact tension (CT) specimens with thickness of 0.5 inch (0.5T), from the viewpoint of validity based on the fracture mechanics. Based on the present technical investigation for the in-core loading technique, it is expected that a target load of 7.6 kN approximately can apply to a 0.5T-CT specimen by adopting a loading unit of a lever type instead of the previous uni-axial tension type. For the in-core crack initiation test technique, moreover, construction of a loading unit adopting linear variable differential transformers (LVDTs) has been investigated and technical issues have examined. (author)

  14. Stability of lithium niobate on irradiation at elevated temperature

    International Nuclear Information System (INIS)

    Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E.

    1977-01-01

    In contrast to results obtained for neutron irradiation in a thermal reactor near room temperature, lithium niobate plates irradiated in the Experimental Breeder Reactor II (EBR-II) did not become metamict. This is attributed to the elevated temperature of the EBR-II. Ion bombardment experiments indicate that to avoid disordering of lithium niobate on irradiation, its temperature should be maintained above 673 K. Evidence for ionic conductivity was found at 873 K, indicating that it would be inadvisable to permit the temperature to rise that high, particularly with voltage across the plate. In reactor application as a microphone transducer, it is tentatively recommended that the lithium niobate be maintained in the middle of this temperature range for a major portion of reactor operating time

  15. Minimizing material damage using low temperature irradiation

    Science.gov (United States)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  16. Temperature detectors on irradiated silicon base

    International Nuclear Information System (INIS)

    Karimov, M.; Dzhalelov, M.A.; Kurbanov, A.O.

    2005-01-01

    It is well known, that the most suitable for thermal resistors production is compensated silicon with impurities forming deep lying in forbidden zone, having big negative resistance temperature coefficients (RTC). In the capacity of initial materials for thermal resistors with negative RTC the n-type monocrystalline silicon with specific resistance ∼30 Ω·cm at 300 K is applied. Before the irradiation the phosphorus diffusion is realizing at temperature ∼1000 deg. C for 10 min. Irradiation is putting into practise by WWR-SM reactor fast neutrons within the range (7-10)·10 13 cm -2 . The produced resistors have nominal resistance range (8-20)·10 3 Ω·cm, coefficient of the thermal sensitivity B=4000-6000 deg. C., RTC α 300K =4-6.6 %/grad. It is shown, that offered method allows to obtain same type resistors characteristics on the base of neutron-irradiated material

  17. The behavior of lattice defects produced in Al{sub 2}O{sub 3} irradiated by neutrons at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Koizumi, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Research Reactor Inst., Kumatori, Osaka (Japan)

    2003-01-01

    Single crystals of {alpha}-Al{sub 2}O{sub 3} were irradiated by the two reactors, KUR and JMTR, at three different temperatures. Lattice defects produced by irradiation were studied by esr (electron spin resonance). Three kinds of esr spectram, which are denoted as A, B and C spectram, are observed. The spectram A was observed at three different irradiation temperatures and was ascribed to oxygen vacancies. The spectram B showed no angular dependence for the rotation of external magnetic field to the crystal axis, and the defect density of this spectram decreased with an increase of annealing temperature. When the specimen was annealed at 400 degC after irradiation at 200 degC, the spectram C was observed and was presumed to be due to Al-colloids. (Y. Kazumata)

  18. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    International Nuclear Information System (INIS)

    Javier-Ccallata, Henry; Filho, Luiz Tomaz; Sartorelli, Maria L.; Watanabe, Shigueo

    2013-01-01

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe 2+ and Fe 3+ . •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe 3+ . -- Abstract: Natural silicate mineral of pumpellyite, Ca 2 MgAl 2 (SiO 4 )(Si 2 O 7 )(OH) 2 ·(H 2 O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe 2+ and Fe 3+ . The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe 2+ → e − + Fe 3+ . On the other hand, EPR measurements reveal six lines of Mn 2+ , and satellites due to hyperfine interaction, superimposed on the signal of Fe 3+ around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe 3+ hides all Mn 2+ lines. The strong growth of this signal indicates that the transitions are due to Fe 3+ dipole–dipole interactions

  19. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Energy Technology Data Exchange (ETDEWEB)

    Javier-Ccallata, Henry, E-mail: henrysjc@gmail.com [Escuela de Ingeniería Electrónica y Telecomunicaciones, Universidad Alas Peruanas Filial Arequipa, Urb. D. A. Carrión G-14, J. L. Bustamante y Rivero, Arequipa (Peru); Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Filho, Luiz Tomaz [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil); Faculdade de Tecnologia e Ciências Exatas, Universidade São Judas Tadeu, Rua Taquari 546, São Paulo, SP (Brazil); Sartorelli, Maria L. [Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Watanabe, Shigueo [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil)

    2013-09-15

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe{sup 2+}and Fe{sup 3+}. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe{sup 3+}. -- Abstract: Natural silicate mineral of pumpellyite, Ca{sub 2}MgAl{sub 2}(SiO{sub 4})(Si{sub 2}O{sub 7})(OH){sub 2}·(H{sub 2}O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe{sup 2+} and Fe{sup 3+}. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe{sup 2+} → e{sup −} + Fe{sup 3+}. On the other hand, EPR measurements reveal six lines of Mn{sup 2+}, and satellites due to hyperfine interaction, superimposed on the signal of Fe{sup 3+} around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe{sup 3+} hides all Mn{sup 2+} lines. The strong growth of this signal indicates that the transitions are due to Fe{sup 3+} dipole–dipole interactions.

  20. Radiation damage in stainless steel under varying temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  1. Recovery of tungsten surface with fiber-form nanostructure by the argon plasma irradiation at a high surface temperature

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Miyamoto, Takanori

    2011-01-01

    One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation, while the helium is one of fusion products. Fiber-formed nanostructure is worried to have a possible weakness against the plasma heat flux and may destroy the reflectivity as an optical mirror. In this communication an interesting method for a recovery of such a tungsten surface is shown. (author)

  2. The effect of helium generation and irradiation temperature on tritium release from neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Gorokhov, V.A.; Vlasov, V.V.; Kovalev, A.M.; Chakin, V.P.

    2004-01-01

    The effect of neutron irradiation condition on tritium release from beryllium is described in this paper. Beryllium samples were irradiated in the SM reactor with neutron fluence (E > 0.1 MeV) of (0.37-2.0) x 10 22 cm -2 at 70-100degC and 650-700degC. Mass-spectrometer technique was used in out of tritium release experiments during stepped-temperature anneal within a temperature range from 250 to 1300degC. The total amount of helium accumulated in irradiated beryllium samples varied from 521 appm to 3061 appm. The first signs of tritium release were detected at temperature of 406-553degC. It was shown that irradiation temperature and helium generation level significantly affect the tritium release. A fraction of 44 - 74 % of tritium content in samples irradiated at low temperature (70 - 100degC) is release from beryllium at an annealing temperature below 800degC, whereas for samples after high temperature irradiation (650 - 700 degC) tritium release did not exceed 14 %. Majority of tritium (∼68%) is released within a temperature range from 800 to 920 degC. The increase of helium generation from 521 appm to 3061 appm results in lowering the temperature of maximal tritium release rate and the upper temperature of tritium release from beryllium by 100-130degC and 200-240degC, correspondingly. On the basis of data obtained, the diffusion coefficients of tritium in beryllium were calculated. (author)

  3. Behavior of high Tc-superconductors and irradiated defects under reactor irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Yoshida, Hiroyuki.

    1991-01-01

    It has been well known that the lattice defects of various types are introduced in ceramics without exception, and exert large effect to the function of these materials. Among oxides, the electronic materials positively using oxygen defect control have been already put in practical use. Also in the oxide high temperature superconductors which are Perovskite type composite oxides, the superconductive characteristics are affected largely by the concentration of the oxygen composing them. This is regarded as an important factor for causing superconductivity, related with the oxygen cavities arising at this time and the carriers bearing superconductivity. In this study, the irradiation effect with relatively low dose, the measurement under irradiation, the effect of irradiation temperature, and the effect of radiation quality were evaluated by the irradiation of YBCO, EBCO and LBCO. The experimental method, and the irradiation effect at low temperature and normal temperature, the effect of Co-60 gamma ray irradiation instead of reactor irradiation are reported. (K.I.)

  4. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  5. In-reactor behaviour of centrifugally atomized U3Si dispersion fuel irradiated at high temperature in HANARO

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Park, Jong Man; Yoo, Byeong Ok; Park, Dae Kyu; Lee, Choong Sung; Kim, Chang Kyu

    2002-01-01

    The irradiation test on full-size U 3 Si dispersion fuel elements, prepared by centrifugal atomization and conventional comminution method, has been performed up to about 77 at.% U-235 in maximum burn-up at CT hole position having the highest power condition in the HANARO reactor, in order to examine the irradiation performance of the atomized U 3 Si for the driver fuels of HANARO. The in-reactor interaction of the atomized U 3 Si dispersion fuel meats is generally assumed to be acceptable with the range of 5-15 μm in average thickness. The atomized spherical particles have more uniform and thinner reaction layer than the comminuted irregular particles. The U 3 Si particles have relatively fine and uniform size distribution of fission gas bubbles, irrespective of the powdering method. The bubble population in the atomized particles appears to be finer and more homogeneous with the characteristics of narrower bubble size distribution than that of the comminuted fuel. The atomized U 3 Si dispersion fuel elements exhibit sound swelling behaviours of 5 % in ΔV/V m even at ∼77 at.% U-235 burn-up, which meets with the safety criterion of the fuel rod, 20vol.% for HANARO. The atomized U3Si dispersion fuel elements show smaller swelling than the comminuted fuel elements

  6. Analysis of irradiation-induced stresses in coating layers of coated fuel particles for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Fukuda, Kousaku; Sato, Sadao; Toyota, Junji; Shiozawa, Shusaku; Sawa, Kazuhiro; Kashimura, Satoru.

    1991-07-01

    Irradiation-induced stresses in coating layers of coated fuel particles were analyzed by the MICROS-2 code for the fuels of the High Temperature Engineering Test Reactor (HTTR) under its operating conditions. The analyses were made on the standard core fuel (A-type) and the test fuels comprising the advanced SiC-coated particle fuel (B-1 type) and the ZrC-coated particle fuel (B-2 type). For the B-1 type fuel, the stresses were relieved due to the thicker buffer and SiC layers than for the A type fuel. The slightly decreased thickness of the fourth layer for the B-1 type than for the A type fuel had no significant effect on the stresses. As for the B-2 type fuel, almost the same results as for the B-1 type were obtained under an assumption that the ZrC layer as well as the SiC layer undergoes negligible dimension change within the analysis conditions. The obtained results indicated that the B-1 and B-2 type fuels are better than the A type fuel in terms of integrity against the irradiation-induced stresses. Finally, research subjects for development of the analysis code on the fuel behavior are discussed. (author)

  7. Evaluation of the Centerline Temperature for the Irradiated DUPIC Pellet

    International Nuclear Information System (INIS)

    Park, Chang Je; Lee, Cheol Yong; Kang, Kweon Ho; Song, Kee Chan

    2007-01-01

    The DUPIC (Direct Use of spent PWR fuels In a CANDU reactor) fuel has a proliferation-resistant property and provides an efficient utilization of a spent fuel through a direct fabrication with the OREOX process in which most of the fission products remain and some volatile elements such as Xe, Kr, Cs, and I are reduced significantly. It is expected that the performance of the DUPIC fuel exhibits different behavior when compared with the fresh uranium oxide fuel. To evaluate the performance of the DUPIC fuel, total five irradiation tests have been performed in the HANARO reactor since May 2000. Recently, the fifth irradiation test of the DUPIC fuel was successfully completed for a total of three cycles from March 2006 to July 2006. The important characteristics of the first irradiation test are a high power test and a validation of a remote assembly of an irradiation rig. The second irradiation test was instrumented with a SPND (self-powered neutron detector) first for a typical CANDU burnup test. The third test was an extensive irradiation test of the second test and the total burnup was estimated as 6,700 MWd/tU. The forth test was a remote instrumented test of the pellet centerline temperature and the inlet and outlet coolant temperatures. The first remote instrumentation test was achieved with our own technology. The fifth test was a remote-instrumented test of the pellet centerline temperature by extending the technology of the forth irradiation test. In this paper, a DUPIC fuel performance code (KAOS, KAERI Advanced Oxide fuel performance code System) was used to compare the main simulation results of the irradiation tests in the HANARO

  8. Stability of uranium silicides during high energy ion irradiation

    International Nuclear Information System (INIS)

    Birtcher, R.C; Wang, L.M.

    1991-11-01

    Changes induced by 1.5 MeV Kr ion irradiation of both U 3 Si and U 3 Si 2 have been followed by in situ transmission electron microscopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion beam amorphization, both compounds disorder with the Martensite twin structure in U 3 Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material

  9. low temperature irradiation effects in iron-alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Abe, Hironobu; Tanaka, Minoru; Nishi, Kazuya; Tomiyama, Noriyuki.

    1991-01-01

    Electron beam irradiation at 77K and neutron irradiation at 20K were carried out on Fe-Cr and Fe-Cr-Ni alloys and ZnO and graphite system ceramics, and by measuring positron annihilation lifetime, the micro-information about irradiation-introduced defects was obtained. The temperature of the movement of atomic vacancies in pure iron is about 200K, but it was clarified that by the addition of Cr, it was not much affected. However, in the case of high concentration Cr alloys, the number of atomic vacancies which take part in the formation of micro-voids decreased as compared with the case of pure iron. It is considered that among the irradiation defects of ZnO, O-vac. restored below 300degC. It is considered that in the samples without irradiation, the stage of restoration exists around 550degC, which copes with structural defects. By the measurement of graphite without irradiation, the positron annihilation lifetime corresponding with the interface of matrix and crystal grains, grain boundaries and internal surfaces was almost determined. The materials taken up most actively in the research and development of nuclear fusion reactor materials are austenitic and ferritic stainless steels, and their irradiation defects have been studied. (K.I.)

  10. Nuclear magnetic resonance in solids: evolution of spin temperature under multipulse irradiation and high symmetry molecular motions

    International Nuclear Information System (INIS)

    Quiroga, Luis

    1982-01-01

    In a first part, autocorrelation functions are calculated taking into account the symmetry of molecular motions by group theoretical techniques. This very general calculation method is then used to evaluate the NMR spin-lattice relaxation times T 1 and T 1 p as a function of the relative orientations of the magnetic field, the crystal and the rotation axis, in particular for cyclic, dihedral and cubic groups. Models of molecular reorientations such as jumps between a finite number of allowed orientations, rotational diffusion and superimposed reorientations are all investigated with the same formalism. In part two, the effect of the coherent excitation of spins, by multipulse sequences of the WHH-4 type, on the evolution of the heat capacity and spin temperature of the dipolar reservoir is analysed. It is shown both theoretically and experimentally that adiabatic (reversible) reduction of the dipolar Hamiltonian and its spin temperature is obtained when the amplitude of pulses (rotation angle) is slowly raised. The sudden switching on and off of the HW-8 sequence is then shown to lead to the same reversible reduction in a shorter time. It is also shown that, by this way, sensibility and selectivity of double resonance measurements of weak gyromagnetic ratio nuclei are strongly increased. This is experimentally illustrated in some cases. (author) [fr

  11. Effect of heat treatments and pre-irradiation on the corrosion at high pressure and temperature of pressure tube Zr-2.5Nb

    International Nuclear Information System (INIS)

    Olmedo, A.M; Bordoni, R

    2006-01-01

    Zr and its alloys are widely used in the nuclear industry. The pressure tubes (PT) of CANDU reactors are made using the alloy Zr-2.5Nb because of its high mechanical resistance and its good behavior under aqueous corrosion at high pressure and temperature. The resulting microstructure after the production process consists of elongated grains of Zr-α with hcp structure (≤ 1%Nb) , approximately 0.3-0.5 μ thick, surrounded by a metastable β Zr bcc phase rich in Nb (≅20%). Temperatures of less than 600 C produce an evolution of the β Zr phase towards an equilibrium structure consisting of β Nb (≅85% of Nb) and α Zr phases. The conditions for the evolution of this phase may involve a Nb-poor intermediate phase called ω and the enrichment of Nb for the rest. The radiation, particularly the flow of rapid neutrons (E ≥1Mev), modifies the microstructure of the material inducing β-Nb precipitates in the grains of the α-Zr phase. The temperature and radiation induced changes in the microstructure modify the resistance to the corrosion of the Zr-2.5Nb of the PT. This work studies the behavior to corrosion of Zr-2.5Nb coupons of (PT) with aging heat treatments (HT) of (PT) at 400 o C for 72 and 1000 hours and at 500 o C for 2.6 and 10 hours. The results indicated that the corrosion speed of the test pieces with HT is less than for those without HT and that the decrement of the corrosion speed is much more pronounced in the first 2.6 h of aging at 500 o C and in the first 72 h at 400 o C. Also the greater the duration of the HT, the better the behavior to corrosion. This decreased corrosion speed is associated with the modifications produced in the microstructure of the PT material due to the effect of the HT, which cause the decomposition of the βZr phase and lead to a microstructure that is much closer to one of equilibrium. That is, the closer the material's microstructure is to equilibrium the greater will be the resistance to its corrosion. This effect

  12. Evaluation of temperature variation in pulp chamber after high power diode laser irradiation (λ=830 nm) on dental enamel: 'in vitro' study

    International Nuclear Information System (INIS)

    Macri, Rodrigo Teixeira

    2001-01-01

    The aim of this study was to observe the variation of temperature in the pulp chamber caused by irradiation of a commercial diode laser operating in continuous wave with wavelength 830 nm over the dental enamel. In the first part of this study, two types of tooth models were tested: 3,5 mm slice and whole tooth. In the second part, we irradiated the buccal si de of the enamel in 2 primary lower incisors from cattle with Opus 10 diode laser for 10 s with power levels of 1 W and 2 W, always using an absorber. Two thermocouples were used. The first one was inserted in the dentin wall closest to the irradiation site, while the second was inserted in the middle of the pulp chamber. It was observed that the thermocouples registered different temperatures. Always, the dentin thermocouple registered higher temperatures. Considering the dentin records, the irradiation of 1 W for 10 s can be safe for the pulp. Further studies must be developed related to the correct positioning of the thermocouples inside the pulp chamber. This was a first step of using diode laser in enamel, and in this study, we concluded that the Opus 10 diode laser shown to be safe for this use, with 1 W power for 10 S. (author)

  13. Temperature Dependent Surface Modification of Tungsten Exposed to High-Flux Low-Energy Helium Ion Irradiation

    OpenAIRE

    Damico, Antony Q; Tripathi, Jitendra K; Novakowski, Theodore J; Miloshevsky, Gennady; Hassanein, Ahmed

    2016-01-01

    Nuclear fusion is a great potential energy source that can provide a relatively safe and clean limitless supply of energy using hydrogen isotopes as fuel material. ITER (international thermonuclear experimental reactor) is the world first fusion reactor currently being built in France. Tungsten (W) is a prime candidate material as plasma facing component (PFC) due to its excellent mechanical properties, high melting point, and low erosion rate. However, W undergoes a severe surface morphology...

  14. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung Du [School of Electrical and Electronic Engineering, 50, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jin-Seong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, K. B., E-mail: kbchung@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2014-10-20

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of device performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.

  15. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  16. Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR). Post Irradiation Examination (PIE) toward investigation of the cause

    International Nuclear Information System (INIS)

    Shinohara, Masanori; Saito, Kenji; Takada, Shoji; Ishimi, Akihiro; Katsuyama, Kozo; Motegi, Toshihiro

    2012-08-01

    An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, two experimental investigations were carried out to reveal the cause of the outage by specifying the damaged part causing the event in the WRM. The one is a post irradiation examination using the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF) to specify the damaged part in the WRM. The other is an experiment using a mock-up simulating the WRM fabricated by the fabricator. The characteristic impedance of the damaged WRM was measured by Time Domain Reflectometry, which was compared with that of the mock-up, which could narrow down the damaged part in the WRM. This report summarized the results of the PIE and the experimental investigation using the mock-up to reveal the cause of outage of WRM. (author)

  17. Role of the irradiation temperature on the modifications of swift-heavy-ion irradiated polyethylene

    International Nuclear Information System (INIS)

    Melot, M.; Ngono-Ravache, Y.; Balanzat, E.

    2003-01-01

    The damage processes triggered by swift heavy ions, SHI, can be very different to those induced by classical low ionising particles. This is due to the very high electronic stopping power, (dE/dx) e , of SHI. This paper concerns the effects of SHI on polyethylene, PE. In PE, low (dE/dx) e irradiations induce crosslinking and in-chain double bond formation. At high (dE/dx) e , the creation yield of vinyl groups becomes significant. Above a (dE/dx) e threshold, alkyne and allene groups appear. We present results on low temperature irradiations that bring new enlightenment on the damage process by preventing the migration of radiation-induced radicals and molecules. Two SHI specific modifications are studied: vinyl groups and alkyne end groups. We have irradiated PE films with oxygen and sulphur beams at 13.6 and 11.2 MeV/amu, respectively. The modifications were followed by in situ infrared spectroscopy (FTIR). We have performed irradiations at 8 and 290 K. The samples irradiated at 8 K have been annealed up to 290 K for investigating the effect of radical migration. Lowering the irradiation temperature to 8 K increases the creation yield of vinyl groups and alkyne end groups. The enhancement factor between 290 and 8 K is around three. Consequently the formation of defects specific to SHI irradiations is sensitive to radical migration and hence requires some time. During annealing, the alkyne concentration remains stable indicating that the creation of this group cannot be induced by radical recombination. The annealing spectra of vinyl groups are more complex

  18. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  19. Development of ODS ferritic-martensitic steels for application to high temperature and irradiation environment; Developpement d'une nouvelle nuance martensitique ODS pour utilisation sous rayonnement a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lambard, V

    2000-07-01

    Iron oxide dispersion strengthened alloys are candidate for nuclear fuel cladding. Therefore, it is crucial to control their microstructure in order to optimise their mechanical properties at temperatures up to 700 deg C. The industrial candidates, ODS ferritic alloys, present an anisotropic microstructure which induces a weakening of mechanical properties in transversal direction as well as the precipitation of brittle phases under thermal aging and irradiation. For this purpose, we tried to develop a material with isotropic properties. We studied several 9Cr-1Mo ferritic/martensitic alloys, strengthened or not by oxide dispersion. The mechanical alloying was performed by attribution and powders were consolidated by hot extrusion. In this work, different metallurgical characterisation techniques and modelling were used to optimise a new martensitic ODS alloy. Microstructural and chemical characterization of matrix has been done. The effect of austenitizing and isochronal tempering treatments on microstructure and hardness has been studied. Oxide distribution, size and chemical composition have been studied before and after high temperature thermal treatment. The study of phase transformation upon heating has permitted the extrapolation to the equilibrium temperature formation of austenite. Phase transformation diagrams upon cooling have been determined and the transformation kinetics have been linked to austenite grain size by a simple relation. Fine grain size is unfavourable for the targeted application, so a particular thermal treatment inducing a coarser grain structure has been developed. Finally, tensile properties have been determined for the different microstructures. (author)

  20. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  1. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  2. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  3. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  4. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  5. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  6. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  7. Irradiation Creep of Ferritic-Martensitic Steels EP-450, EP-823 and EI-852 Irradiated in the BN-350 Reactor over Wide Ranges of Irradiation Temperature and Dose

    International Nuclear Information System (INIS)

    Porollo, S.I.; Konobeev, Y.V.; Ivanov, A.A.; Shulepin, S.V.; Garner, F.

    2007-01-01

    Full text of publication follows: Ferritic/martensitic (F/M) steels appear to be the most promising materials for advanced nuclear systems, especially for fusion reactors. Their main advantages are higher resistance to swelling and lower irradiation creep rate as has been repeatedly demonstrated in examinations of these materials after irradiation. Nevertheless, available experimental data on irradiation resistance of F/M steels are insufficient, with the greatest deficiency of data for high doses and for both low and high irradiation temperatures. From the very beginning of operation the BN-350 fast reactor has been used for irradiation of specimens of structural materials, including F/M steels. The most unique feature of BN-350 was its low inlet sodium temperature, allowing irradiation at temperatures over a very wide range of temperatures compared with the range in other fast reactors. In this paper data are presented on swelling and irradiation creep of three Russian F/M steels EP-450, EP-823 and EI-852, irradiated in experimental assemblies of the BN-350 reactor at temperatures in the range of 305-700 deg. C to doses ranging from 20 to 89 dpa. The investigation was performed using gas-pressurized creep tubes with hoop stresses in the range of 0 - 294 MPa. (authors)

  8. Irradiation-assisted stress corrosion cracking considerations at temperatures below 288 degree C

    International Nuclear Information System (INIS)

    Simonen, E.P.; Jones, R.H.; Bruemmer, S.M.

    1995-03-01

    Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs

  9. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  10. Temperature of loose coated particles in irradiation tests

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1975-04-01

    An analysis is presented of the temperature of a monolayer bed of loose High-Temperature Gas-Cooled Reactor (HTGR) type fissioning fuel particles in an annular cavity. Both conduction and radiant heat transfer are taken into account, and the effect of particle contact with the annular cavity surfaces is evaluated. Charts are included for the determination of the maximum surface temperature of the particle coating for any size particle or power generation rate in a fuel bed of this type. The charts are intended for the design and evaluation of irradiation experiments on loose beds of coated fuel particles of the type used in HTGRs. Included in an Appendix is a method for estimating the temperature of a particle in circular hole. (U.S.)

  11. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  12. The application of high dose food irradiation

    International Nuclear Information System (INIS)

    Bruyn, I. De

    1997-01-01

    During the 1950's to end 1970's the United States Army developed the basic methodology to produce shelf stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive 'dried cooked' taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 25 to 45 kGy (depending on the product) at a temperature of between -20 and -40 Centigrade to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions. The product can be guaranteed for more than two years as long as the integrity of the packaging is maintained. (Author)

  13. The application of high dose food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bruyn, I. De [Atomic Energy Corporation of South Africa LTD, Building 2000, P.O. Box 582, Pretoria 0001, (South Africa)

    1997-12-31

    During the 1950`s to end 1970`s the United States Army developed the basic methodology to produce shelf stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive `dried cooked` taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 25 to 45 kGy (depending on the product) at a temperature of between -20 and -40 Centigrade to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions. The product can be guaranteed for more than two years as long as the integrity of the packaging is maintained. (Author)

  14. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  15. Effects of temperature during the irradiation of calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Camargo R, C.; Ramos B, S. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M., E-mail: negron@nucleares.unam.mx [Kent State University, College of Technology, Kent 44240 Ohio (United States)

    2015-10-15

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  16. Effects of temperature during the irradiation of calcium carbonate

    International Nuclear Information System (INIS)

    Negron M, A.; Camargo R, C.; Ramos B, S.; Gomez V, V.; Uribe, R. M.

    2015-10-01

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  17. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  18. Low temperature irradiation creep of tungsten and molybdenum

    International Nuclear Information System (INIS)

    Pouchou, J.-L.

    1975-12-01

    It is demonstrated that the mechanism of stress biased nucleation of dislocation loops may contribute significantly to the low temperature irradiation creep. This is achieved by measuring length and electrical resistivity changes at liquid hydrogen temperature, under fission fragments bombardement. From these measurements (correlated with some electron microscopy observations of irradiated samples), the following three stages of deformation appear: at low doses (smaller than 10 -2 displacement per atom) the deformation is mainly an increase in volume due to point defects. The study of this stage gives the formation volume of a Frenkel pair, and the number of point defects created by an initial fission fragment; for doses higher than 10 -2 d.p.a., the point defects saturation is reached. At this stage, vacancies and interstitials collapse into loops, the nucleation of which is polarized by the applied stress. At zero stress, the corresponding creep rate is zero. At high stresses (>50 kg/mm 2 ), creep rate saturates at value of the order of 10 -21 (FF/cm 3 ) -1 ; because of the recombinations of loops, the creep rate decreases continuously during irradiation. The recombinations lead to a dense dislocation network (formed at doses of 1 d.p.a.), the climb of which oriented by the applied stress gives rise to a steady state creep. The creep rate is smaller, by at least one order of magnitude, than that which is observed in the stage of loop formation [fr

  19. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  20. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  1. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  2. High activity gamma irradiators developed in Hungary

    International Nuclear Information System (INIS)

    Stenger, V.

    1997-01-01

    The development of high activity Gamma irradiators began in Hungary already in the early years of 60s. The very first designs were serving research in irradiation chemistry, radiation physics, food and agricultural research, radiation sterilization, plastic radiation chemistry, radiobiology, cancer therapy, personal and high dose dosimetry, following the international trends. Domestic and new international demands forced us to design and construct High Activity Gamma Irradiators: Multipurpose Pilot, Portable and Large scale bulk, Multipurpose Industrial scale types

  3. Temperature and 8 MeV electron irradiation effects on GaAs solar cells

    Indian Academy of Sciences (India)

    1Department of Physics, Mangalore Institute of Technology and Engineering, ... strate were irradiated with 1 MeV electrons, they showed high radiation tolerance ... under both forward and reverse bias in the temperature range of 270–315 K ...

  4. Design practice and operational experience of highly irradiated, high-performance normal magnets

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1982-09-01

    The limitations of high performance magnets are discussed in terms of mechanical, temperature, and electrical limits. The limitations of magnets that are highly irradiated by neutrons, gamma radiation, or x radiation are discussed

  5. Change in digestibility of gamma-irradiated starch by low temperature cooking

    International Nuclear Information System (INIS)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-01-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by γ-irradiation and the required cooking temperature was decreased from 75-80 0 C to 65 0 C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion. (orig.) [de

  6. Change in digestibility of gamma-irradiated starch by low temperature cooking

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-04-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by ..gamma..-irradiation and the required cooking temperature was decreased from 75-80/sup 0/C to 65/sup 0/C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion.

  7. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  8. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  9. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  10. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  11. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  12. Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

    International Nuclear Information System (INIS)

    Casagrande, L.; Barnett, B.M.; Bartalina, P.

    1999-01-01

    In this work, the authors show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of ∼4 x 10 14 p/cm 2 , no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T < 120 K. Besides confirming the previously observed Lazarus effect in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments

  13. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.

    1968-08-01

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined

  14. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1968-08-15

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined.

  15. High-dose irradiation of food

    International Nuclear Information System (INIS)

    Diehl, J.F.

    1999-01-01

    Studies performed on behalf of the International Project on Food Irradiation in the period from 1971 until 1980 resulted in the concluding statement that ''.the irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard; hence, toxicological testing of foods so treated is no longer required.'' Since then, licenses for food irradiation have been restricted to this maximum dose in any country applying this technology. Further testing programmes have been carried out investigating the wholesomeness or hazards of high-dose irradiation, but there has been little demand so far by the food industry for licensing of high-dose irradiation, as there is only a small range of products whose irradiation at higher doses offers advantages for given, intended use. These include eg. spices, dried herbs, meat products in flexible pouch packagings for astronauts, or patients with immune deficiencies. (orig./CB) [de

  16. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  17. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  18. HTCAP-1: a program for calcuating operating temperatures in HFIR target irradiation experiments

    International Nuclear Information System (INIS)

    Kania, M.J.; Howard, A.M.

    1980-06-01

    The thermal modeling code, HTCAP-1, calculates in-reactor operating temperatures of fueled specimens contained in the High Flux Isotope Reactor (HFIR) target irradiation experiments (HT-series). Temperature calculations are made for loose particle and bonded fuel rod specimens. Maximum particle surface temperatures are calculated for the loose particles and centerline and surface temperatures for the fuel rods. Three computational models are employed to determine fission heat generation rates, capsule heat transfer analysis, and specimen temperatures. This report is also intended to be a users' manual, and the application of HTCAP-1 to the HT-34 irradiation capsule is presented

  19. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  20. Microstructure evolution by neutron irradiation during cyclic temperature variation

    International Nuclear Information System (INIS)

    Kiritani, M.; Yoshiie, T.; Iseki, M.; Kojima, S.; Hamada, K.; Horiki, M.; Kizuka, Y.; Inoue, H.; Tada, T.; Ogasawara, Y.

    1994-01-01

    Utilizing a technique to control the temperature which is not influenced by the operation mode of a reactor, an irradiation during which the temperature was alternatively changed several times between two temperatures (T-cycle) has been performed. Some defect structures are understood as combinations of the defect processes at lower and higher temperatures, and some others are understood if the defect processes during the transient between the two temperatures are taken into consideration. However, the most remarkable characteristic of defect processes associated with the temperature variation is the reaction of point defect clusters induced by lower-temperature irradiation at the higher temperature. During lower-temperature irradiation, there is a greater accumulation of vacancy clusters as stacking fault tetrahedra in fcc metals than that of interstitial clusters as dislocation loops. Vacancies evaporated from the vacancy clusters at higher temperature can eliminate interstitial clusters completely, and the repetition of these processes leads to unexpectedly slow defect structure development by T-cycle irradiation. ((orig.))

  1. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  2. Impact behavior of 9-Cr and 12-Cr ferritic steels after low-temperature irradiation

    International Nuclear Information System (INIS)

    Klueh, R.L.; Vitek, J.M.; Corwin, W.R.; Alexander, D.J.

    1987-01-01

    Miniature Charpy impact specimens of 9Cr-1MoVNb and 12Cr-1MoVW steels and these steels with 1 and 2% Ni were irradiated in the High-Flux Isotope Reactor (HFIR) at 50 0 C to displacement damage levels of up to 9 dpa. Nickel was added to study the effect of transmutation helium. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT). The 9Cr-1MoVNb steels, with and without nickel, showed a larger shift than the 12Cr-1MoVW steels, with and without nickel. The results indicated that helium also increased the DBTT. The same steels were previously irradiated at higher temperatures. From the present and past tests, the effect of irradiation temperature on the DBTT behavior can be evaluated. For the 9Cr-1MoVNb steel, there is a continuous decrease in the magnitude of the DBTT increase up to an irradiation temperature of about 400 0 C, after which the shift drops rapidly to zero at about 450 0 C. The DBTT of the 12Cr-1MoVW steel shows a maximum increase at an irradiation temperature of about 400 0 C and less of an increase at either higher or lower irradiation temperatures

  3. Thermodynamic studies on the ferroelectric phase transition in neutron irradiated (LixK1-x)2SO4 crystals at high temperature

    International Nuclear Information System (INIS)

    Kassem, M.E.; El-Khatib, A.M.; Ammar, E.A.; Denton, M.M.

    1989-05-01

    Thermodynamic studies of (Li x K 1-x ) 2 SO 4 , LKS, mixed crystals have been made in the concentration range (x=0.1,0.2,...,x=0.5). The thermal behavior has been investigated by differential thermal analysis, DTA, and differential scanning calorimeter, DSC, in the vicinity of high temperature phases. Also, the effect of the mixed neutron field of fast and thermal neutrons (10% of the reactor neutron pile is fast neutrons) on the thermal properties of mixed crystals was studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat Cp at transition temperature, due to the change of stoichiometric ratio and radiation doses. The change of enthalpy and entropy of mixed crystals have been estimated numerically. The obtained small values of ΔS/R is characteristic of incommensurate phase transition as previously confirmed by the results of neutron diffraction technique. (author). 16 refs, 5 figs, 1 tab

  4. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  5. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    International Nuclear Information System (INIS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-01-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al 2 O 3 (sapphire) and TiO 2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO 2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al 2 O 3 . Results for MgO and α-Al 2 O 3 show steep negative gradients from 10 to 370 K, whereas that for TiO 2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al 2 O 3 , this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO 2 , in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization

  6. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  7. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  8. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  9. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  10. Low temperature irradiation of vitrifiable mixtures of unsaturated monomers

    International Nuclear Information System (INIS)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1975-01-01

    A specific mixture containing at least one polymerizable unsaturated monomer which is not vitrifiable by itself can advantageously be polymerized by irradiating the mixture at a temperature not higher than 100 0 C above glass transition temperature of the mixture with an ionizing radiation and/or a light. 12 claims, 6 drawings, figures

  11. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  12. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  13. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  14. Spectral and raw quasi in-situ energy dispersive X-ray data captured via a TEM analysis of an ODS austenitic stainless steel sample under 1 MeV Kr2+ high temperature irradiation.

    Science.gov (United States)

    Brooks, Adam J; Yao, Zhongwen

    2017-10-01

    The data presented in this article is related to the research experiment, titled: ' Quasi in-situ energy dispersive X-ray spectroscopy observation of matrix and solute interactions on Y-Ti-O oxide particles in an austenitic stainless steel under 1 MeV Kr 2+ high temperature irradiation' (Brooks et al., 2017) [1]. Quasi in-situ analysis during 1 MeV Kr 2+ 520 °C irradiation allowed the same microstructural area to be observed using a transmission electron microscope (TEM), on an oxide dispersion strengthened (ODS) austenitic stainless steel sample. The data presented contains two sets of energy dispersive X-ray spectroscopy (EDX) data collected before and after irradiation to 1.5 displacements-per-atom (~1.25×10 -3  dpa/s with 7.5×10 14  ions cm -2 ). The vendor software used to process and output the data is the Bruker Esprit v1.9 suite. The data includes the spectral (counts vs. keV energy) of the quasi in-situ scanned region (512×512 pixels at 56k magnification), along with the EDX scanning parameters. The.raw files from the Bruker Esprit v1.9 output are additionally included along with the.rpl data information files. Furthermore included are the two quasi in-situ HAADF images for visual comparison of the regions before and after irradiation. This in-situ experiment is deemed ' quasi' due to the thin foil irradiation taking place at an external TEM facility. We present this data for critical and/or extended analysis from the scientific community, with applications applying to: experimental data correlation, confirmation of results, and as computer based modeling inputs.

  15. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  16. A comprehensive analysis of irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Santocchia, A; Hall, G; MacEvoy, B; Moscatelli, F; Passeri, D; Pignatel, Giogrio Umberto

    2003-01-01

    The effect of particle irradiation on high-resistivity silicon detectors has been extensively studied with the goal of engineering devices able to survive the very challenging radiation environment at the CERN Large Hadron Collider (LHC). The main aspect under investigation has been the changes observed in detector effective doping concentration (N/sub eff/). We have previously proposed a mechanism to explain the evolution of N/sub eff/, whereby charge is exchanged directly between closely-spaced defect centres in the dense terminal clusters formed by hadron irradiation. This model has been implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. To control the risk of breakdown due to the high leakage currents foreseen during ten years of LHC operation, silicon detectors will be operated below room temperature (around -10 degrees C). This, and more general current interest in the field of cryogenic operation, has led us to inve...

  17. Low temperature gamma-ray irradiation effects on polymer materials

    International Nuclear Information System (INIS)

    Kudoh, Hisaaki; Kasai, Noboru; Sasuga, Tsuneo; Seguchi, Tadao

    1995-01-01

    The gamma radiation induced degradation of glass fiber reinforced plastic (GFRP) and polymethylmethacrylate (PMMA) at 77K was examined by flexural test and gas analysis after irradiation and compared by the irradiation at room temperature. The decrease in flexural strength at break was much less at 77K than at RT. The evolution of CH 4 , CO and CO 2 was also depressed at 77K. The temperature dependence of the degradation closely relates to the local molecular motion of matrix resin during irradiation. Polytetrafluoroethylene (PTFE) was also studied by irradiation at RT, 77K and 4K in terms of tensile elongation and molecular weight. The degradation was much less at 77K and 4K than at RT, and the same between 77K and 4K. (author)

  18. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-03-31

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  19. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  20. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  1. The behaviour of transport from the fission products caesium and strontium in coated particles for high temperature reactors under irradiation conditions

    International Nuclear Information System (INIS)

    Zoller, P.

    1976-07-01

    At first survey is given about existing knowledge of the behaviour of caesium and strontium fission product transport in coated particles. In order to describe the complicated fission product transport mechanisms under irradiation conditions a suitable calculating model (SLIPPER) is taken over and modified to the special problems of an irradiation experiment. Fundamentally, the fission product transport is represented by the two contributions of diffusion and recoil, at which the diffusion is described by effective diffusion coefficients. In difference of that the possibility of a two-phase-diffusion is examined for the Cs diffusion in the fuel kernel. The model application on measuring results from irradiation experiments of KFA-Juelich and Mol-Belgien allowed the explanation from the characteristic of fission product transport in coated particles under irradiation conditions and produced effective diffusion coefficients for the fission products Cs and Sr. (orig.) [de

  2. Low temperature irradiation facility at Kyoto University Reactor (KUR)

    International Nuclear Information System (INIS)

    Atobe, Kozo; Okada, Moritami; Yoshida, Hiroyuki; Kodaka, Hisao; Miyata, Kiyomi.

    1977-01-01

    A new refrigeration system has been substituted to the low temperature irradiation facility at KUR instead of the previous one, since April in 1975. The model 1204 CTi He liquifier was designed to be modified for the refrigerator with the capacity of 30 watts at 10 K. The refrigeration capacity of 38 watts at 10 K was defined using a special cryostat and transfer-tubes, and the lowest temperature of about 18 K was measured using the irradiation loop without reactor operation. The reconstructed facility enables us to hold the many specimens simultaneously in the sample chamber of the irradiation loop at about 25 K during reactor operation of 5 MW. The irradiation dose has been reached about 6.6 x 10 16 n sub(f)/cm 2 and 6.1 x 10 17 n sub(th)/cm 2 with the normal reactor operation cycle of up to 77 hours. The stable operation condition of the machine and the special safety system for the refrigeration system enable us to maintain easily the facility with a constant operation condition for such a long time irradiation. Many kinds of low temperature neutron irradiation experiments are carried out using the facility, which techniques are partially reported. (auth.)

  3. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  4. Development of irradiation technique with satured temperature capsule in the JMTR

    International Nuclear Information System (INIS)

    Ohtaka, Kimihiro

    1999-01-01

    The irradiation assisted stress corrosion cracking (IASCC) of in-core structural materials caused by the simultaneous effects of neutron irradiation and high temperature water environments has been pointed out as one of the major concerns not only for the light water reactors (LWRs) but also for the water-cooled fusion reactor, i.e,. ITER. The IASCC of the austenitic stainless steels or nickel base alloys has been studied for more than ten years under international efforts in the various projects for the plant life assessment and extension of LWRs. However its mechanism has not been clarified yet in spite of the extensive post-irradiation examinations. Under this situation, it is desired to perform irradiation tests under specially controlled conditions so that the effect of irradiation and high temperature water can be separately evaluated. In the Japan Materials Testing Reactor (JMTR), irradiation technique with the saturation temperature capsule (SATCAP) was developed for irradiation of the materials in the water with high, but constant, temperature and applied to study the IASCC. The capability of the SATCAP was improved by enhancing the temperature controllability to irradiate materials even in a low gamma region in the JMTR core. The performance tests of the improved SATCAP carried out in the JMTR have proven its capabilities. Based on experiences of the SATCAP, preliminary design study for the upgraded in-pile test facility are now underway in the JMTR. The test facility has a new test loop to achieve irradiate test simulated water environment of LWRs. The design, test results of the SATCAP and the design study of upgraded in-pile test facility are described in this paper

  5. Modification of embedded Cu nanoparticles: Ion irradiation at room temperature

    International Nuclear Information System (INIS)

    Johannessen, B.; Kluth, P.; Giulian, R.; Araujo, L.L.; Llewellyn, D.J.; Foran, G.J.; Cookson, D.J.; Ridgway, M.C.

    2007-01-01

    Cu nanoparticles (NPs) with an average diameter of ∼25 A were synthesized in SiO 2 by ion implantation and thermal annealing. Subsequently, the NPs were exposed to ion irradiation at room temperature simultaneously with a bulk Cu reference film. The ion species/energy was varied to achieve different values for the nuclear energy loss. The short-range atomic structure and average NP diameter were measured by means of extended X-ray absorption fine structure spectroscopy and small angle X-ray scattering, respectively. Transmission electron microscopy yielded complementary results. The short-range order of the Cu films remained unchanged consistent with the high regeneration rate of bulk elemental metals. For the NP samples it was found that increasing nuclear energy loss yielded gradual dissolution of NPs. Furthermore, an increased structural disorder was observed for the residual NPs

  6. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  7. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  8. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  9. Strain acceleration of the low temperature irradiated zirconium

    International Nuclear Information System (INIS)

    Fortis, Ana M.; Coccoz, Guillermina D. H.

    2003-01-01

    The strain of a Zr-0,06 at.% 235 U specimen irradiated during 4800 h in the RA-3 at a temperature near 40 C degrees is presented. An equivalent neutron fluence of 3.1 x 10 26 n m -2 was achieved by means of the generation of fission fragment within the material. The experimental conditions are described and a sudden strain acceleration independent of the neutron flux variations occurred during irradiation is shown. This behavior is compared with previous data obtained at different temperatures. (author)

  10. Further study of the glassy low-temperature properties of irradiated crystalline quartz: neutron and electron irradiation

    International Nuclear Information System (INIS)

    Laermans, C.; Daudin, B.

    1979-01-01

    Recently it has been shown that a quartz crystal after light fast neutron irradiation shows low temperature hypersonic properties which are similar to those found in glasses although the sample was still crystalline. Additional measurements have been carried out in the neutron-irradiated sample and a sample irradiated with high energy electrons has also been investigated. (Fast neutron dose 6 x 10 18 n/cm 2 , 2 MeV electron dose 3 x 10 19 e/cm 2 ). A magnetic field up to 1.5 T was found to have no influence in the hypersonic saturation behaviour of the neutron-irradiated sample (9 GHz, 1.65 K) and thermal conductivity measurements are consistent with a number of two level systems (2 LS) an order of magnitude lower than in vitreous silica as found before. Low temperature hypersonic measurements as a function of acoustic intensity and temperature as well as thermal conductivity measurements give no evidence for the presence of 2 LS in the electron irradiated sample. Considering the damage created in both samples this indicates that 2 LS are probably not related to point defects

  11. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  12. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  13. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    Science.gov (United States)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  14. Intracranial meningiomas after high-dose irradiation

    International Nuclear Information System (INIS)

    Soffer, D.; Gomori, J.M.; Siegal, T.; Shalit, M.N.

    1989-01-01

    Three patients who presented with intracranial meningiomas 12, 15, and 20 years, respectively, after therapeutic high-dose irradiation of a primary brain tumor are described. Analysis of these cases and similar documented cases suggests that meningiomas after high-dose irradiation constitute a recognizable entity. Patients with such tumors received radiation therapy at a young age (mean age, 9.4 years). After a latent period of 2 to 47 years (mean, 19.8 years) they developed meningiomas at the site of irradiation, at a much younger age than patients with ''spontaneous'' meningiomas. Similar to the situation with meningiomas after low-dose irradiation, a relatively high proportion of meningiomas induced by high-dose irradiation tend to be malignant and biologically aggressive. A very young age at the time of irradiation seems to predispose to the induction of malignant meningiomas, rather than benign tumors. These unusual features provide indirect evidence that high-dose radiation may play a role in the pathogenesis of meningiomas.41 references

  15. Use of miniature and standard specimens to evaluate effects of irradiation temperature on pressure vessel steels

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Byrne, S.T.

    1991-01-01

    The effects of neutron irradiation on the steel reactor vessel for the modular high-temperature gas-cooled reactor (MHTGR) are being investigated, primarily because the operating temperatures are low [121 to 210 degrees C (250--410 degrees F)] compared to those for commercial light-water reactors (LWRs) [∼288 degrees C (550 degrees F)]. The need for design data on the reference temperature shift necessitated the irradiation at different temperatures of A 533 grade B class 1 plate. A 508 class 3 forging, and welds used for the vessel shell, vessel closure head, the vessel flange. This paper presents results from the first four irradiation capsules of this program. The four capsules were irradiated in the University of Buffalo Reactor to an effective fast fluence of 1 x10 18 neutron/cm 2 [0.68 x 10 18 neutron/cm 2 (>1 MeV)] at temperatures of 288, 204, 163, and 121 degrees C (550, 400, 325, and 250 degrees F), respectively. The yield and ultimate strengths of both steel plate materials of the MHTGR Program increased with decreasing irradiation temperature. Similarly, the 41-J Charpy V-notch (CVN) transition temperature shift increased with decreasing irradiation temperature (in agreement with the increase in yield strength). The miniature tensile and automated ball indentation (ABI) test results (yield strength and flow properties) were in good agreement with those from standard tensile specimens. The miniature tensile and ABI test results were also used in a model that utilizes the changes in yield strength to estimate the CVN ductile-to-brittle transition temperature shift due to irradiation. The model predictions were compared with CVN test results obtained here and in earlier work. 5 refs., 11 figs., 6 tabs

  16. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  17. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  18. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    Science.gov (United States)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  19. Thermoluminescence in KBr:D electron irradiated at room temperature

    International Nuclear Information System (INIS)

    Paredes Campoy, J.C.; Lopez Carranza, E.

    1991-07-01

    The thermoluminescence of KBr:D samples electron irradiated at room temperature after thermal annealing at 673 K for 1 hour have been studied in the temperature range 360-730 K. The experimental TL-curve was discomposed by computer analysis in seven overlapping TL peaks, giving for them the order of the kinetics of thermal stimulation, the activation energy, the frequency factor, the relative values of the electronic concentration in traps at the initial heating temperature and the temperature at the maximum of the peak. (author). 18 refs, 1 fig., 3 tabs

  20. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 5900494 (Japan)]. E-mail: okada@rri.kyoto-u.ac.jp; Atobe, Kozo [Faculty of Science, Naruto University of Education, Naruto, Tokushima 7728502 (Japan); Nakagawa, Masuo [Faculty of Education, Kagawa University, Takamatsu, Kagawa 7608522 (Japan)

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, {alpha}-Al{sub 2}O{sub 3} (sapphire) and TiO{sub 2} (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature ({approx}370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 {mu}m band in TiO{sub 2} differs greatly from that of anion vacancy (F-type centers) in MgO and {alpha}-Al{sub 2}O{sub 3}. Results for MgO and {alpha}-Al{sub 2}O{sub 3} show steep negative gradients from 10 to 370 K, whereas that for TiO{sub 2} includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and {alpha}-Al{sub 2}O{sub 3}, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO{sub 2}, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 {mu}m band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  1. The impact of microwaves irradiation and temperature manipulation ...

    African Journals Online (AJOL)

    The impact of microwaves irradiation and temperature manipulation for control of stored-products insects. ... This treatment could provide an effective and friendly environmental treatment technique in integrated pest management (IPM) program. Key words: Cold storage, microwaves, saw-toothed grain beetle, cigarette ...

  2. Low-temperature annealing of radiation defects in electron-irradiated gallium phosphide

    International Nuclear Information System (INIS)

    Kolb, A.A.; Megela, I.G.; Buturlakin, A.P.; Goyer, D.B.

    1990-01-01

    The isochronal annealing of radiation defects in high-energy electron irradiated n-GaP monocrystals within the 77 to 300 K range has been investigated by optical and electrical techniques. The changes in conductance and charge carrier mobility as functions of annealing temperature as well as the variation of optical absorption spectra of GaP under irradiation and annealing provide evidence that most of radiation defects are likely secondary complexes of defects

  3. Low temperature modification of gamma-irradiation effect on peas. II.Low temperature effect on the radio-sensitivity and the chlorophyll mutations

    International Nuclear Information System (INIS)

    Najdenova, N.; Vasileva, M.

    1976-01-01

    Dry pea seeds of cv.Ramonskii 77 with 11-12% moisture were γ-irradiated by 60 Co in doses 5, 15, 20 and 30 krad. Low temperature (-78 deg C) was effected in the form of dry ice for a 24 h period prior to, at the time of and post irradiation. As control were used: (a) dry non-irradiated seeds, stored at room temperature; (b) non-irradiated seeds subjected to low temperature (-78 deg C) for a 24 h period. and (c) seeds irradiated by the named doses, stored at room temperature until the time of irradiation. Treated and control seeds were sown in the field. Germination, survival rate and sterility were recorded in M 1 , while in M 2 chlorophyll mutations were scored. Results obtained showed that low temperature modification effect on the various irradiation doses depended on the time of its application; low temperature (-78 deg C) treatment prior to seed irradiation with doses 15, 20 and 30 krad increased germination percentage, plant survival and yield components in M 1 . The post-irradiation treatment did not have a significant effect on gamma-rays; highest protection effect was obtained in case seeds were irradiated at low temperature and then received supplementary treatment at high temperature. In this way the damaging effect of radiation was reduced to a maximum degree; low temperature treatment prior to irradiation with doses of 15 and 20 krad or at the time of irradiation with doses of 15, 20 and 30 krad resulted in a considerably wider chlorophyll mutation spectrum. (author)

  4. Moessbauer spectroscopy of He irradiated austenitic stainless steel SUS304 at low temperature

    International Nuclear Information System (INIS)

    Horii, Kiyomasa; Ishibashi, Tetsu; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi; Kawasaki, Katsunori; Hayashi, Nobuyuki; Sakamoto, Isao.

    1996-01-01

    SUS 304 austenitic stainless steel causes the magnetic transition at 60 K, and the Young's modulus lowers. In addition, its composition elements have the large (n,α) reaction cross section to high energy neutrons, and helium is apt to be generated, and this is a factor that lowers the material strength. In the He-irradiated parts in austenitic stainless steel, the precursory state of martensite transformation should exist, and its effect is considered to be observable by carrying out low temperature Moessbauer spectroscopy. As to the preparation of He-irradiation samples, the SUS 304 foils used and the irradiation conditions are described. The measurement of low temperature Moessbauer spectra for the samples without irradiation and with irradiation is reported. In order to determine the magnetic transition point, the thermal scanning measurement was carried out for the samples without or with irradiation. The martensite transformation was measured by X-ray diffraction and transmission type Moessbauer spectroscopy. In order to observe the state of the sample surfaces, the measurement by internal conversion electron Moessbauer spectroscopy was performed. These results and the temperature dependence of the Moessbauer spectra for the irradiated parts are reported. (K.I.)

  5. Moessbauer spectroscopy of He irradiated austenitic stainless steel SUS304 at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Horii, Kiyomasa; Ishibashi, Tetsu; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Kawasaki, Katsunori; Hayashi, Nobuyuki; Sakamoto, Isao

    1996-04-01

    SUS 304 austenitic stainless steel causes the magnetic transition at 60 K, and the Young`s modulus lowers. In addition, its composition elements have the large (n,{alpha}) reaction cross section to high energy neutrons, and helium is apt to be generated, and this is a factor that lowers the material strength. In the He-irradiated parts in austenitic stainless steel, the precursory state of martensite transformation should exist, and its effect is considered to be observable by carrying out low temperature Moessbauer spectroscopy. As to the preparation of He-irradiation samples, the SUS 304 foils used and the irradiation conditions are described. The measurement of low temperature Moessbauer spectra for the samples without irradiation and with irradiation is reported. In order to determine the magnetic transition point, the thermal scanning measurement was carried out for the samples without or with irradiation. The martensite transformation was measured by X-ray diffraction and transmission type Moessbauer spectroscopy. In order to observe the state of the sample surfaces, the measurement by internal conversion electron Moessbauer spectroscopy was performed. These results and the temperature dependence of the Moessbauer spectra for the irradiated parts are reported. (K.I.)

  6. Defect evolution in a Ni−Mo−Cr−Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Massey de los [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Nuclear Fuel Cycle Royal Commission (NFCRC), 50 Grenfell Street Adelaide South Australia, 5000 (Australia); Voskoboinikov, Roman [The National Research Centre ‘Kurchatov Institute’, Kurchatov Sq 1, Moscow 123182 (Russian Federation); Kirk, Marquis A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Huang, Hefei [Shanghai Institute of Applied Physics, Chinese Academy of Science (CAS), 2019 Jialuo Road, Jiading District, Shanghai 201800 (China); Lumpkin, Greg [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia); Bhattacharyya, Dhriti, E-mail: dhriti.bhattacharyya@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234 (Australia)

    2016-06-15

    A candidate Ni−Mo−Cr−Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr{sup 2+} ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  7. Microstructural evolution in modified 9Cr-1Mo ferritic/martensitic steel irradiated with mixed high-energy proton and neutron spectra at low temperatures

    International Nuclear Information System (INIS)

    Sencer, B.H.; Garner, F.A.; Gelles, D.S.; Bond, G.M.; Maloy, S.A.

    2002-01-01

    Modified 9Cr-1Mo ferritic/martensitic steel was exposed at 32-57 deg. C to a mixed proton/neutron particle flux and spectrum at the Los Alamos Neutron Science Center. The microstructure of unirradiated 9Cr-1Mo consists of laths, dislocations and carbides. Examination of electron diffraction patterns obtained from extraction replicas of unirradiated 9Cr-1Mo revealed that the precipitate microstructure was primarily dominated by M 23 C 6 carbides. The post-irradiation microstructure contained black-spot damage in addition to precipitates and dislocations. Examination of electron diffraction patterns revealed diffuse rings from M 23 C 6 carbides, indicating amorphization and/or nanocrystallinity. Crystalline MC carbides were also found. No cavity formation was found although a significant amount of helium and hydrogen generation had been generated. TEM-EDS examination of extraction replicas for carbides from unirradiated and irradiated samples did not show any detectable changes in composition of either M 23 C 6 or MC carbides. There was also no evident change in carbide size. Lattice images of M 23 C 6 carbides revealed an amorphous microstructure following irradiation, but MC carbides were still crystalline

  8. Radionuclides release from re-irradiated fuel under high temperature and pressure conditions. Gamma-ray measurements of VEGA-5 test

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Akihide; Kudo, Tamotsu; Nakamura, Takehiko; Kanazawa, Toru; Kiuchi, Toshio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program is being performed at JAERI to clarify mechanisms of radionuclides release from irradiated fuel during severe accidents and to improve source term predictability. The fifth VEGA-5 test was conducted in January 2002 to confirm the reproducibility of decrease in cesium release under elevated pressure that was observed in the VEGA-2 test and to investigate the release behavior of short-life radionuclides. The PWR fuel of 47 GWd/tU after about 8.2 years of cooling was re-irradiated at Nuclear Safety Research Reactor (NSRR) for 8 hours before the heat-up test. After that, the two pellets of 10.9 g without cladding were heated up to about 2,900 K at 1.0 MPa under the inert He condition. The experiment reconfirmed the decrease in cesium release rate under the elevated pressure. The release data on short-life radionuclides such as Ru-103, Ba-140 and Xe-133 that have never been observed in the previous VEGA tests without re-irradiation was obtained using the {gamma} ray measurement. (author)

  9. Mechanical properties of low temperature proton irradiated single crystal copper

    International Nuclear Information System (INIS)

    Schildcrout, M.

    1975-01-01

    Single crystal copper samples, of varying degrees of cold work, were irradiated near either liquid helium or liquid nitrogen temperature by 10.1-MeV protons. The internal friction and dynamic Young's modulus were observed as a function of either temperature or integrated proton flux. The primary effect of irradiation was to produce dislocation pinning. The initial pinning rate was found to be very sensitive to cold work. During irradiation it was found that heavily cold worked samples (25 percent compression) exhibited, almost exclusively, exponential pinning given by Y = e/sup --lambda phi/. This is attributed to the immobilization, rather than shortening, of loop lengths and is characterized by the pinning constant lambda. Exponential pinning was also found, to a smaller degree, in less heavily cold worked samples. Cold work appears to reduce the ''effective volume'' within which the defect clusters produced by irradiation, can immobilize dislocation segments. The bulk effect was observed after dislocation pinning was completed. Expressed in terms of the fractional change in Young's modulus per unit concentration of irradiation induced defects, it was measured at liquid helium temperature to be --18.5 +- 3. An anelastic process occurring near 10 0 K for low kHz frequencies and due to stress-induced ordering of point defects produced by irradiation has also been studied. The peak height per unit fluence was found to decrease with increasing cold work. The peak was not observed in samples compressed 25 percent. For the most carefully handled sample the activation energy was (1.28 +- 0.05) x 10 -2 eV, the attempt frequency was 10/sup 11.6 +- .8/ s -1 , the shape factor was 0.20, and the half width of the peak was 11 percent larger than the theoretical value calculated from the Debye equation for a single relaxation process

  10. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo

    2007-01-01

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring

  11. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Oh, Sang-Hee [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Kim, Jae-Hun [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Byun, Eui-Hong [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Ree Kim, Mee [Department of Food and Nutrition, Chungnam National University, Gung-Dong 220, Yuseong, Daejeon 305-764 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Science and Technology, Government Complex-Gwacheon, Kyunggi 427-715 (Korea, Republic of); Byun, Myung-Woo [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of)]. E-mail: mwbyun@kaeri.re.kr

    2007-05-15

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.

  12. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  13. Damage accumulation in MgO irradiated with MeV Au ions at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bachiller-Perea, Diana, E-mail: dianabachillerperea@gmail.com [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, 91405, Orsay Cedex (France); Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, 28049, Madrid (Spain); Dpto. de Física Aplicada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid (Spain); Debelle, Aurélien, E-mail: aurelien.debelle@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, 91405, Orsay Cedex (France); Thomé, Lionel [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, 91405, Orsay Cedex (France); Behar, Moni [Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970, Porto Alegre, RS (Brazil)

    2016-09-15

    The damage accumulation process in MgO single crystals under medium-energy heavy ion irradiation (1.2 MeV Au) at fluences up to 4 × 10{sup 14} cm{sup −2} has been studied at three different temperatures: 573, 773, and 1073 K. Disorder depth profiles have been determined through the use of the Rutherford backscattering spectrometry in channeling configuration (RBS/C). The analysis of the RBS/C data reveals two steps in the MgO damage process, irrespective of the temperature. However, we find that for increasing irradiation temperature, the damage level decreases and the fluence at which the second step takes place increases. A shift of the damage peak at increasing fluence is observed for the three temperatures, although the position of the peak depends on the temperature. These results can be explained by an enhanced defect mobility which facilitates defect migration and may favor defect annealing. X-ray diffraction reciprocal space maps confirm the results obtained with the RBS/C technique. - Highlights: • High-temperature MeV-ion irradiated MgO exhibits a two-step damage process. • The occurrence of the second step is delayed with increasing temperature. • The damage level decreases with increasing temperature. • A shift of the damage peak is observed with increasing fluence. • A high defect mobility at high temperatures in MgO is clearly evidenced.

  14. Thermal effects on tenebrio molitor and lawn irradiated by high power centimeter wave

    International Nuclear Information System (INIS)

    Zhang Jie; Han Lijun; Qi Hongxing; Chen Shude; Qiao Dengjiang

    2008-01-01

    A system of high power centimeter wave(HPCW) was built up. The temperature change of tenebrio molitor and lawn was sampled during HPCW irradiation. It is shown that the relationship between the temperature increase of tenebrio molitor and irradiation time is approximately linear, and the relationship between the temperature increase of lawn and irradiation time is nonlinear. It is also considered that the temperature of lawn increases faster than that of tenebrio molitor does during the earlier stage of irradiation. The death percentage of tenebrio molitor and injury rate of lawn irradiated by HPCW could be fitted by normal distribution. The fitting curves of relations between death rate and irradiation time and between death rate and temperature are presented. (authors)

  15. High Temperature Studies of La-Monazite

    Science.gov (United States)

    2004-07-01

    Hay, E. Boakeye, M. D. Petry, Y. Berta, K. Von Lehmden, and J. Welch, " 5 A. Meldrum , L. A. Boatner, and R. C. Ewing, "Electron-Irradiation-Induced... Meldrum , L. A. Boatner, and R. C. Ewing, "A Comparison of Radiation Alumina-based Fiber for High Temperature Composite Reinforcement," Ceram. Eng... acid . The processing included procedures that allowed the La/P ratio to be controlled to be very close to the stoichiometric value of unity (within less

  16. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  17. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  18. Influence of the irradiation temperature on the free-radical response of alanine

    International Nuclear Information System (INIS)

    Wieser, A.; Siegele, R.; Regulla, D.F.

    1989-01-01

    GSF operates the only IAEA high-level dosimetry reference laboratory and, as a joint project with the IAEA, the International Dose Assurance Service (IDAS). Dosimetry is based on long-lived free radicals in organic alanine induced by ionizing radiation and readout by ESR spectroscopy. The thermal time response of the radical concentration in alanine is fairly constant after irradiation provided that the alanine samples are stored at temperatures below 50 0 C. By contrast, a positive temperature coefficient had earlier been found at GSF for the production rate of alanine radicals, for irradiation temperatures between 0 and 50 0 C. This effect has to be considered for reference dosimetry in radiation processing. Radiation processing is also of interest at irradiation temperatures below 0 0 C. The present study describes experiments on the influence of irradiation temperatures between +50 and -100 0 C. Comparison is made between the present and earlier results, in the overlapping temperature range. An empirical function is proposed for the temperature coefficient based on the experimental data. (author)

  19. Effect of temperature during UV and gamma irradiations of TL phosphor CaSO4:Dy

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Pendurkar, H.K.

    1979-01-01

    Temperature is an important parameter in thermoluminescence studies. Irradiation at enhanced temperatures reduces the γ response of TL phosphor CaSO 4 :Dy. However, in the presence of fluorescent lights, the γ response of the phosphor is enhanced by approximately 20% for temperatures around 60-100 0 C. If the phosphor temperature during UV exposure is kept high, the integrated TL output continues to increase until it reaches 18 times at 160 0 C as compared to that produced by UV exposure at room temperature. (Auth.)

  20. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50–400)°C

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, E.A., E-mail: evgenia-orm@yandex.ru [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation); National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe Highway 31, Moscow 115409 (Russian Federation); Gurovich, B.A.; Bukina, Z.V.; Frolov, A.S.; Maltsev, D.A.; Krikun, E.V.; Zhurko, D.A.; Zhuchkov, G.M. [National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2017-07-15

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50–400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔT{sub K}) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects – dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔT{sub K} shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔT{sub K} shift in the studied range of irradiation temperature and fluence. - Highlights: •Structural elements in RPV steel are studied at different irradiation temperatures. •Highest number density dislocation loops are

  1. Effect of periodic temperature variations on the microstructure of neutron-irradiated metals

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Hashimoto, N.; Hoelzer, D.T.

    2002-01-01

    Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom.......-induced microstructural features consisted of dislocation loops, stacking fault tetrahedra and voids in the stainless steel, Ti-rich precipitates in the V alloy, and voids (along with a low density of stacking fault tetrahedra) in copper.......Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom....... Specimens exposed to periodic temperature variations experienced a low temperature (360 °C) during the initial 10% of accrued dose in each of the eight cycles, and a higher temperature (520 °C) during the remaining 90% of accrued dose in each cycle. The microstructures of the irradiated stainless steel...

  2. Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel

    International Nuclear Information System (INIS)

    Mosbrucker, P.L.; Brown, D.W.; Anderoglu, O.; Balogh, L.; Maloy, S.A.; Sisneros, T.A.; Almer, J.; Tulk, E.F.; Morgenroth, W.; Dippel, A.C.

    2013-01-01

    Material harvested from several positions within a nuclear fuel duct (the ACO-3 duct) used in a 6-year irradiation of a fuel assembly in the Fast Flux Test Reactor Facility (FFTF) was examined using neutron and high-energy X-ray diffraction. Samples with a wide range of irradiation dose and irradiation temperature history, reaching doses of up to 147 dpa and temperatures of up to 777 K, were examined. The response of various microstructural characteristics such as the weight fraction of M 23 C 6 carbides, the dislocation density and character, and the crystallographic texture were determined using whole profile analysis of the diffraction data and related to the macroscopic mechanical behavior. For instance, the dislocation density was observed to be intimately linked with observed flow strength of the irradiated materials, following the Taylor law. In general, at the high doses studied in this work, the irradiation temperature is the predominant controlling factor of the dislocation density and, thus, the flow strength of the irradiated material. The results, representing some of the first diffraction work done on samples exposed to such a high received dose, demonstrate how non-destructive and stand-off diffraction techniques can be used to characterize irradiation induced microstructure and at least estimate mechanical properties in irradiated materials without exposing workers to radiation hazards

  3. Charge collection efficiency recovery in heavily irradiated silicon detectors operated at cryogenic temperatures

    CERN Document Server

    Da Vià, C; Berglund, P; Borchi, E; Borer, K; Bruzzi, Mara; Buontempo, S; Casagrande, L; Chapuy, S; Cindro, V; Dimcovski, Zlatomir; D'Ambrosio, N; de Boer, Wim; Dezillie, B; Esposito, A P; Granat, V; Grigoriev, E; Heijne, Erik H M; Heising, S; Janos, S; Koivuniemi, J H; Konotov, I; Li, Z; Lourenço, C; Mikuz, M; Niinikoski, T O; Pagano, S; Palmieri, V G; Paul, S; Pirollo, S; Pretzl, Klaus P; Ropotar, I; Ruggiero, G; Salmi, J; Seppä, H; Suni, I; Smith, K; Sonderegger, P; Valtonen, M J; Zavrtanik, M

    1998-01-01

    The charge collection efficiency (CCE) of high resistivity silicon detectors, previously neutron irradiated up to 2*10/sup 15/ n/cm/sup 2/, was measured at different cryogenic temperatures and different bias voltages. In order to $9 study reverse annealing (RA) effects, a few samples were heated to 80 degrees C and kept at room temperature for several months after irradiation. For comparison other samples (NRA) where kept at -10 C after irradiation. The RA and $9 NRA samples, measured at 250 V forward and reverse bias voltage, present a common temperature threshold at 150 K. Below 120 K the CCE is constant and ranges between 55and 65 0.000000or the RA and NRA sample respectively. Similar CCE $9 was measured for a device processed with low resistivity contacts (OHMIC), opening the prospect for a consistent reduction of the cost of large area particle tracking. (7 refs).

  4. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  5. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  6. Low temperature irradiation effects on plastic deformation in BCC metals

    International Nuclear Information System (INIS)

    Aono, Yasuhisa

    1984-01-01

    Low temperature electron beam experiment was carried out on high purity iron and molybdenum single crystals, and its effect on the plastic deformation was examined. As the characteristics of the irradiated iron below 77 K, remarkable softening occurred in all orientations. This phenomenon is based on the interaction of self interstitial atoms and screw dislocations, and the other features such as the absorption of interstitial atoms into screw dislocations and the slip on maximum shearing stress planes were shown. On the other hand, the aggregate of interstitial atoms formed by annealing showed the different plastic characteristics from those of interstitial atoms, and gave the results corresponding to respective stages of the electric resistance recovery curves. Regarding molybdenum, the transfer of its self interstitial atoms is near 40 K, therefore at 77 K, cluster is formed, and it largely affects abnormal slip, which is one of the features of the plasticity of molybdenum. The peculiar dependence of the yield stress on the crystalline orientation was shown. The property of the interaction of the aggregate of interstitial atoms formed and grown by the annealing from 77 K to 500 K with dislocations corresponded to the information of defects obtained by the X-ray research of Maeta, and the similarity to the aggregate of iron was observed. (Kako, I.)

  7. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  8. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  9. Nanomechanical Characterization of Temperature-Dependent Mechanical Properties of Ion-Irradiated Zirconium with Consideration of Microstructure and Surface Damage

    Science.gov (United States)

    Marsh, Jonathan; Zhang, Yang; Verma, Devendra; Biswas, Sudipta; Haque, Aman; Tomar, Vikas

    2015-12-01

    Zirconium alloys for nuclear applications with different microstructures were produced by manufacturing processes such as chipping, rolling and annealing. The two Zr samples, rolled and rolled-annealed were subjected to different levels of irradiation, 1 keV and 100 eV, to study the effect of irradiation dosages. The effect of microstructure and irradiation on the mechanical properties (reduced modulus, hardness, indentation yield strength) was analyzed with nanoindentation experiments, which were carried out in the temperature range of 25°C to 450°C to investigate temperature dependence. An indentation size effect analysis was performed and the mechanical properties were also corrected for the oxidation effects at high temperatures. The irradiation-induced hardness was observed, with rolled samples exhibiting higher increase compared to rolled and annealed samples. The relevant material parameters of the Anand viscoplastic model were determined for Zr samples containing different level of irradiation to account for viscoplasticity at high temperatures. The effect of the microstructure and irradiation on the stress-strain curve along with the influence of temperature on the mechanisms of irradiation creep such as formation of vacancies and interstitials is presented. The yield strength of irradiated samples was found to be higher than the unirradiated samples which also showed a decreasing trend with the temperature.

  10. Thermoluminescence analysis of co-doped NaCl at low temperature irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E., E-mail: ecruz@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Ortiz, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Circne Gianicolense 15-17, 00153 Rome (Italy); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2011-02-15

    The thermoluminescent response and kinetics parameters of NaCl, doubly activated by Ca-Mn and Cd-Mn ions, exposed to gamma radiation are analyzed. The doped NaCl samples were irradiated at relative low temperature, i.e. at the liquid nitrogen temperature (LNT) and at dry ice temperature (DIT), and the glow curves obtained after 2 Gy of gamma irradiation were analyzed using the computerized glow curve deconvolution (CGCD). An evident variation in the glow curve structure after LNT and DIT was observed. It seems that different kinds of trapping levels are activated at relative low temperature. The original two prominent peaks in compositions A (Ca,Mn) and B (Ca,Mn) have been changed in only one main peak with satellites in the low temperature side of the glow curves. In compositions C (Cd,Mn) and D (Cd,Mn), low temperature peaks become stronger and prominent than the high temperature peaks; this effect could be explained considering that the trapping probability for low temperature traps, the one very close to the conduction band, is enhanced by low temperatures during irradiation.

  11. Effect of irradiation dose and irradiation temperature on the thiamin content of raw and cooked chicken breast meat

    International Nuclear Information System (INIS)

    Graham, W.D.; Stevenson, M.H.; Stewart, E.M.

    1998-01-01

    The usefulness of ionising radiation for the elimination of pathogenic bacteria in poultry meat has been well documented as have the effects of this processing treatment on the nutritional status of the food, in particular, the vitamins. Unfortunately, much of the earlier research carried out on the effect of irradiation on vitamins was carried out in solution or in model systems at doses much greater than those used commercially thereby resulting in considerable destruction of these compounds. Thus, those opposed to the process of food irradiation labelled the treated food as nutritionally poor. However, in reality, due to the complexity of food systems the effects of irradiation on vitamins are generally not as marked and many processes, for example cooking, cause the same degree of change to the vitamins. Thiamin (vitamin B1) is the most radiation sensitive of the water-soluble vitamins and is therefore a good indicator of the effect of irradiation treatment. In this study the effects of irradiation at either 4°C or −20°C followed by cooking on the thiamin content of chicken breast meat was determined. Results showed that whilst both irradiation and cooking resulted in a decrease in thiamin concentration, the losses incurred were unlikely to be of nutritional significance and could be further minimised by irradiating the chicken meat at a low temperature. Thiamin analyses were carried out using high-performance liquid chromatography since this technique is faster and more selective than the chemical or microbiological methods more commonly employed. Total thiamin, both free and combined form, was determined following acid and enzyme hydrolysis. © 1998 Society of Chemical Industry

  12. Irradiation temperature effect on glutamine (spectrophotometric readout) dosimeter

    International Nuclear Information System (INIS)

    Gupta, B.L.; Narayan, G.R.; Nilekani, S.R.; Bhat, R.M.

    2001-01-01

    For the dose estimation using glutamine dosimeter, 20 mg L-glutamine powder is dissolved in 10 ml of a solution which contains 2x10 -3 mol dm -3 ferrous ammonium sulphate and 10 -4 mol dm -3 xylenol orange in aerated aqueous 0.033 mol dm -3 sulphuric acid (FX). The plot of absorbance at 549 nm against dose is non-linear, however, the plot of 1/absorbance vs. 1/dose is linear. The slope of this linear plot changes above an absorbance of 0.3 corresponding to a dose of about 15 kGy. The response of the dosimeter is independent of irradiation temperature in the temperature range of 23-30 deg. C within the uncertainty of dose measurement. Below 23 deg. C, the absorbance decreases by 1.23% per deg. sign C decrease in temperature while between 30 and 40 deg. C, the absorbance increases by 0.75% per deg. C increase in temperature. Above 40 deg. C, the absorbance increases by 0.2% per deg. C only. The absorbance is corrected for the irradiation temperature and the dose is read from a calibration graph at 25 deg. C. Either a linear or polynomial relation can be used for the dose calculation

  13. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  14. The morphology of radiation damage in copper irradiated with neutrons at elevated temperatures

    International Nuclear Information System (INIS)

    Kemm, K.R.

    1977-01-01

    This thesis is an investigation of the radiation damage morphology of high purity copper crystals irradiated with fast neutrons at temperatures in the range of 250 to 400 degrees C. At these high temperatures neutron damage is found to accumulate into large 3-dimensional rafts up to 100 μm in size, and the well known homogeneous distribution of black dot damage which is characteristic of irradiations at low temperatures is not observed. The characteristics and composition of the rafts of damage at different temperatures in the range 250 to 400 degrees C have been compared and found to differ to a large extent. It has also been shown that the background areas between rafts contain a rather low density of damage at all temperatures studied. It is therefore concluded that many of the interstitial atoms formed during irradiation migrate over large distances through the crystal lattice to precipitate at the sites of the dislocations forming the large rafts, and so denuded inter-rafts areas are left behind. It is proposed that these large rafts originate from grown-in dislocations present in the crystal before irradiation

  15. Improvement in the technology of thermocouples for the detection of high temperatures with a view to using them in irradiation safety tests in reactor

    International Nuclear Information System (INIS)

    Schley, R.; Liermann, J.; Aujollet, J.M.; Wilkins, S.C.

    1979-01-01

    The safety tests carried out under the CABRI and PHEBUS programmes have made it possible to improve the technology of W/Re thermocouples and their reliability in particularly hard operating conditions. An element of response is provided to the problem of W/Re thermocouple drift under neutron flux by defining the new thermocouple Mo 5% Nb/Nb 10% Mo which, because of the low capture cross section of thermoelectric elements, gives one reason to hope for a less significant drift of these thermocouples under neutron flux than that found with W/Re thermocouples. Finally, determining the surface temperature of fuel element cladding with the Mo/Zircaloy thermocouple may prove worthwhile providing the temperatures do not exceed 1300 0 C and the electric insulator is aluminium oxide which up to 1300 0 C does not appear to react with thermoelectric wires [fr

  16. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    Science.gov (United States)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  17. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  18. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    OpenAIRE

    R. Brian Jenkins; Peter Joyce; Deborah Mechtel

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initia...

  19. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  20. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  1. The proceedings of 1993-workshop on 'development and application of facilities for low temperature irradiation as well as controlled irradiation'

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Okada, Moritami

    1993-03-01

    This is the proceedings of 1992-workshop of the working group on 'Development and Application of Facilities for Low Temperature Irradiation as well as Controlled Irradiation' held at the Research Reactor Institute of Kyoto University on February 23 and 24, 1993. In this workshop until now, studies on irradiation effects in many materials irradiated at lower and higher temperatures have been reported. It has been clearly defined that a careful choice of irradiation conditions is most important. At the present time, a setting plan of exactly controlled irradiation facility, which is able to irradiate with higher temperatures, is in progress. On the other hand, a plan of vertical low temperature irradiation facility has not yet been performed for lack of funds. In last year, a middle scale plan of low temperature irradiation facility, which is possible to irradiate a fast-neutron dose above 10 17 n/cm 2 at about 5K, was proposed in this workshop. In this proceedings, the advanced facility is required to construct to the KUR as soon as possible by many of the workshop members. (author)

  2. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  3. Use of high irradiation doses for preservation of canned beef

    International Nuclear Information System (INIS)

    Hammad, A.A.I; Salem, F.A.; El-Sahy, K.M.; Rady, A.; Badr, H.H.

    1997-01-01

    The effect of high irradiation doses (11.25,22.5 and 45 KGy) on the bacteriology, organoleptic quality and shelf - life extension of beef meat that are hermetically sealed in metal cans was investigated in comparison with commercial heat sterilization. The unirradiated cans of pre cooked (enzyme inactivated) unirradiated beef were swollen after only one month of storage at ambient temperature (20-30 degree). Application of 11.25 and 22.5 kGy to vacuum packed and enzyme inactivated beef was not enough for sterilization and only delayed swelling of beef cans. Application of 45 KGy irradiation dose prevented swelling of beef vans up to 12 months at ambient temperature and provided meat product, similar to the commercial heat sterilized one, organoleptically acceptable and microbiologically safe. Running title: Radiation sterilization of meat

  4. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  5. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  6. Effects of irradiation at low temperature on V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Alexander, D.J.; Snead, L.L.; Zinkle, S.J.

    1996-01-01

    Irradiation at low temperatures (100 to 275 degrees C) to 0.5 dpa causes significant embrittlement and changes in the subsequent room temperature tensile properties of V-4Cr-4Ti. The yield strength and microhardness at room temperature increase with increasing irradiation temperature. The tensile flow properties at room temperature show large increases in strength and a complete loss of work hardening capacity with no uniform ductility. Embrittlement, as measured by an increase in the ductile-to-brittle transition temperature, increases with increasing irradiation temperature, at least up to 275 degrees C. This embrittlement is not due to pickup of O or other interstitial solutes during the irradiation

  7. Effects of irradiation at low temperature on V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    Irradiation at low temperatures (100 to 275{degrees}C) to 0.5 dpa causes significant embrittlement and changes in the subsequent room temperature tensile properties of V-4Cr-4Ti. The yield strength and microhardness at room temperature increase with increasing irradiation temperature. The tensile flow properties at room temperature show large increases in strength and a complete loss of work hardening capacity with no uniform ductility. Embrittlement, as measured by an increase in the ductile-to-brittle transition temperature, increases with increasing irradiation temperature, at least up to 275{degrees}C. This embrittlement is not due to pickup of O or other interstitial solutes during the irradiation.

  8. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  9. Mechanical properties of 1950's vintage 304 stainless steel weldment components after low temperature neutron irradiation

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Caskey, G.R. Jr.; Thomas, J.K.; Hawthorne, J.R.; Hiser, A.L.; Lott, R.A.; Begley, J.A.; Shogan, R.P.

    1991-01-01

    The reactor vessels of the nuclear production reactors at the Savannah River Site (SRS) were constructed in the 1950's from Type 304 stainless steel plates welded with Type 308 stainless steel filler using the multipass metal inert gas process. An irradiated mechanical properties database has been developed for the vessel with materials from archival primary coolant system piping irradiated at low temperatures (75 to 150 degrees C) in the State University of New York at Buffalo reactor (UBR) and the High Flux Isotope Reactor (HFIR) to doses of 0.065 to 2.1 dpa. Fracture toughness, tensile, and Charpy-V impact properties of the weldment components (base, weld, and weld heat-affected-zone (HAZ)) have been measured at temperatures of 25 degrees C and 125 degrees C in the L-C and C-L orientations for materials in both the irradiated and unirradiated conditions for companion specimens. Fracture toughness and tensile properties of specimens cut from an SRS reactor vessel sidewall with doses of 0.1 and 0.5 dpa were also measured at temperatures of 25 and 125 degrees C. The irradiated materials exhibit hardening with loss of work hardenability and a reduction in toughness relative to the unirradiated materials. The HFIR-irradiated materials show an increase in yield strength between about 20% and 190% with a concomitant tensile strength increase between about 15% to 30%. The elastic-plastic fracture toughness parameters and Charpy-V energy absorption both decrease and show only a slight sensitivity to dose. The irradiation-induced decrease in the elastic-plastic fracture toughness (J def at 1 mm crack extension) is between 20% to 65%; the range of J 1C values are 72.8 to 366 kJ/m 2 for the irradiated materials. Similarly, Charpy V-notch results show a 40% to 60% decrease in impact energies

  10. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  11. Defect formation in n-type InP at elevated temperatures of irradiation

    International Nuclear Information System (INIS)

    Kozlovskij, V.V.; Kol'chenko, T.I.; Lomako, V.M.; Moroz, S.E.

    1990-01-01

    Effect of irradiation temperature within 25-250 deg C traps in InP. Rate of most deep level introduction, as well as, rate of charge carrier removing at the increase of irradiation temperature are shown to decrease and it is explained by defect annealing occuring simultaneously with irradiation

  12. The effect of helium, radiation damage and irradiation temperature on the mechanical properties of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Scientific Research Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S.

    1998-01-01

    In this work different RF beryllium grades were irradiated in the BOR-60 reactor to a dose of {approx}5-10 dpa at irradiation temperatures 350, 420, 500, 800degC. Irradiation at temperatures of 350-400degC is shown to result in Be hardening due to the accumulation of radiation defect complexes. Hardening is accompanied with a sharp drop in plasticity at T{sub test} {<=} 300degC. A strong anisotropy in plasticity has been found at a mechanical testing temperature of 400degC and this parameter may be preferable when the samples are cut crosswise to the pressing direction. High-temperature irradiation (T{sub irr} = 780degC) gives rise to large helium pores over the grain boundaries and smaller pores in the grain body. Fracture is brittle and intercrystallite at T{sub test} {>=} 600degC. Helium embrittlement is accompanied as well with a drop in the Be strength properties. (author)

  13. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.

    1998-01-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to ∼14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with ∼25% δ-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature

  14. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  15. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  16. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  17. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.

    Science.gov (United States)

    Baroudi, Kusai; Silikas, Nick; Watts, David C

    2009-01-01

    The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.

  18. Investigation of high flux test module for the international fusion materials irradiation facilities (IFMIF)

    International Nuclear Information System (INIS)

    Miyashita, Makoto; Sugimoto, Masayoshi; Yutani, Toshiaki

    2007-03-01

    This report describes investigation on structure of a high neutron flux test module (HFTM) for the International Fusion Materials Irradiation Facilities (IFMIF). The HFTM is aimed for neutron irradiation of a specimen in a high neutron flux domain of the test cell for irradiation ground of IFMIF. We investigated the overall structure of the HFTM that was able to include specimens in a rig and thermocouple arrangement, an interface of control signal and support structure. Moreover, pressure and the amount of the bend in the module vessel (a rectangular section pressure vessel) were calculated. The module vessel did a rectangular section from limitation of a high neutron flux domain. Also, we investigated damage of thermocouples under neutron irradiation, which was a temperature sensor of irradiation materials temperature control demanded high precision. Based on these results, drawings on the HTFM structure. (author)

  19. Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper

    International Nuclear Information System (INIS)

    Singh, B.N.; Horsewell, A.; Toft, P.; Edwards, D.J.

    1995-01-01

    Tensile specimens of pure oxygen free high conductivity (OFHC) copper were irradiated with fission neutrons between 320 and 723 K to fluences in the range 5x10 21 to 1.5x10 24 n/m 2 (E>1 MeV) with a flux of 2.5x10 17 n/m 2 s. Irradiated specimens were investigated by transmission electron microscopy (TEM) and quantitative determinations were made of defect clusters and cavities. The dose dependence of tensile properties of specimens irradiated at 320 K was determined at 295 K. Hardness measurements were made at 295 K on specimens irradiated at different temperatures and doses. Microstructures of tensile tested specimens were also investigated by TEM. Results show that the increase in cluster density and hardening nearly saturate at a dose of similar 0.3 dpa. Irradiations at 320 K cause a drastic decrease in the uniform elongation already at ∼ =0.1 dpa. It is suggested that the irradiation-induced increase in the initial yield stress and a drastic decrease in the ability of copper to deform plastically in a homogeneous fashion are caused by a substantial reduction in the ability of grown-in dislocations to act as efficient dislocation sources. ((orig.))

  20. Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance L.

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 deg. C in an elastically pre-strained bend stress relaxation configuration with the initial stress of ∼100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10 -4 . Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes

  1. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  2. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Magielsen, A.J., E-mail: magielsen@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands)

    2011-08-31

    In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 deg. C and 500 deg. C. During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 deg. C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 deg. C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.

  3. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  4. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  5. The application of high dose food irradiation in South Africa

    Science.gov (United States)

    de Bruyn, Ingrid Nine

    2000-03-01

    During the 1950s to the end of the 1970s the United States Army developed the basic methodology to produce shelf-stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive "dried cooked" taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The Biogam group at the Atomic Energy Corporation of South Africa is currently producing shelf-stable irradiated meats on a commercial basis. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 45 kGy at a temperature of between -20 and -40°C to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions and can be guaranteed for more than two years as long as the integrity of the packaging is maintained. Safari operators in remote parts of Africa, mountaineers, yachtsmen, canoeists and geological survey teams currently use shelf-stable irradiated meat products produced in South Africa.

  6. The application of high dose food irradiation in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bruyn, Ingrid Nine de E-mail: debruyni@mweb.co.za

    2000-03-01

    During the 1950s to the end of the 1970s the United States Army developed the basic methodology to produce shelf-stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive 'dried cooked' taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The Biogam group at the Atomic Energy Corporation of South Africa is currently producing shelf-stable irradiated meats on a commercial basis. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 45 kGy at a temperature of between -20 and -40 deg. C to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions and can be guaranteed for more than two years as long as the integrity of the packaging is maintained. Safari operators in remote parts of Africa, mountaineers, yachtsmen, canoeists and geological survey teams currently use shelf-stable irradiated meat products produced in South Africa. (author)

  7. The application of high dose food irradiation in South Africa

    International Nuclear Information System (INIS)

    Bruyn, Ingrid Nine de

    2000-01-01

    During the 1950s to the end of the 1970s the United States Army developed the basic methodology to produce shelf-stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive 'dried cooked' taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The Biogam group at the Atomic Energy Corporation of South Africa is currently producing shelf-stable irradiated meats on a commercial basis. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 45 kGy at a temperature of between -20 and -40 deg. C to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions and can be guaranteed for more than two years as long as the integrity of the packaging is maintained. Safari operators in remote parts of Africa, mountaineers, yachtsmen, canoeists and geological survey teams currently use shelf-stable irradiated meat products produced in South Africa. (author)

  8. Thermally stimulated current method applied to highly irradiated silicon diodes

    CERN Document Server

    Pintilie, I; Pintilie, I; Moll, Michael; Fretwurst, E; Lindström, G

    2002-01-01

    We propose an improved method for the analysis of Thermally Stimulated Currents (TSC) measured on highly irradiated silicon diodes. The proposed TSC formula for the evaluation of a set of TSC spectra obtained with different reverse biases leads not only to the concentration of electron and hole traps visible in the spectra but also gives an estimation for the concentration of defects which not give rise to a peak in the 30-220 K TSC temperature range (very shallow or very deep levels). The method is applied to a diode irradiated with a neutron fluence of phi sub n =1.82x10 sup 1 sup 3 n/cm sup 2.

  9. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  10. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  11. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  12. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  13. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  14. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  15. High Ni austenite stainless steel resistant to neutron irradiation degradation

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Kanasaki, Hiroshi; Fujimoto, Koji; Nakata, Shizuo; Ajiki, Kazuhide; Nakamura, Mitsuhiro.

    1997-01-01

    The composition of the stainless steel of the present invention comprises from 0.005 to 0.08% of C, up to 3% of Mn, up to 0.2% of Si+P+S, from 25 to 40% of Ni, from 25 to 40% of Cr, up to 3% of Mo, up to 0.3% of Nb+Ta, up to 0.3% of Ti, up to 0.001% of B and the balance of Fe. A solid solubilization treatment at a temperature of from 1,000 to 1,150degC is applied to the stainless steel having the composition. The stainless steel is excellent in stress corrosion cracking-resistance at a working circumstance of a LWR type reactor (high temperature and high pressure water at from 270 to 350degC/from 70 to 160 atm even after undergoing neutron irradiation of about 1 x 10 22 n/cm 2 (E>1 MeV) which is a maximum neutron irradiation amount undergone till the final stage of the working life of the LWR-type reactor. In addition, the average thermal expansion coefficient at from room temperature to 400degC ranges from 15x10 -6 - 19x10 -6 /K. (I.N.)

  16. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  17. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  18. Irradiation temperature dependence of defect formation of nitrides (A1N and c-BN) during neutron irradiations

    International Nuclear Information System (INIS)

    Atobe, Kozo.; Okada, Moritami; Nakagawa, Masuo

    2000-01-01

    The nitrogen vacancy concentration in the more refractory nitrides (A1N and c-BN) is determined as a function of reactor fluence up to 5.2x10 17 thermal neutrons/cm 2 and a function of the irradiation temperature at 25, 50, 100, 150, 200, 250 K. It is found that there is no remarkable dependence of the defect formation in nitrides on the irradiation temperature. The production of damage in the nitrides is considerably different from that in oxides. From the irradiation experiments using thermal neutron irradiation field, it is suggested in reactor irradiation that the atomic displacements in the nitrides occur predominately from energetic particles of the nuclear reactions with thermal neutrons in addition to the elastic collisions by fast neutron

  19. Pressure and temperature phase diagram of Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Catillon, G. [Université Paris-Est, G2I, EA4119, 5 Blvd. Descartes, F-77454 Marne la Vallée Cedex 2 (France); Chartier, A., E-mail: alain.chartier@cea.fr [CEA, DEN, DMN, SCCME, F-91191 Gif-Sur-Yvette Cedex (France)

    2014-11-21

    The pressure and temperature phase diagram of Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation are calculated by means of molecular dynamics calculations. The critical temperature for amorphization obeys a linear law with pressure. Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation transits towards the fluorite above this temperature and amorphizes below. The configuration of the Ti interstitial reveals to be the key of the amorphizability of Gd{sub 2}Ti{sub 2}O{sub 7}. Its stability depends upon disorder and pressure. Low pressure promotes the stabilization of Ti linked-polyhedra that drive the system to the amorphous state under irradiation. Conversely, high pressure activates its destabilization to interstitials that recombine with vacancies, driving the system to the fluorite structure under irradiation.

  20. Characterization of mechanical properties and microstructure of highly irradiated SS 316

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kumar, RanVijay; Vijayaragavan, A.; Venkiteswaran, C.N.; Anandaraj, V.; Parameswaran, P.; Saroja, S.; Muralidharan, N.G.; Joseph, Jojo; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-08-15

    Cold worked austenitic stainless steel type AISI 316 is used as the material for fuel cladding and wrapper of the Fast Breeder Test Reactor (FBTR), India. The evaluation of mechanical properties of these core structurals is very essential to assess its integrity and ensure safe and productive operation of FBTR to very high burn-ups. The changes in the mechanical properties of these core structurals are associated with microstructural changes caused by high fluence neutron irradiation and temperatures of 673–823 K. Remote tensile testing has been used for evaluating the tensile properties of irradiated clad tubes and shear punch test using small disk specimens for evaluating the properties of irradiated hexagonal wrapper. This paper will highlight the methods employed for evaluating the mechanical properties of the irradiated cladding and wrapper and discuss the trends in properties as a function of dpa (displacement per atom) and irradiation temperature.

  1. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  2. A comparison of irradiance responsivity and thermodynamic temperature measurement between PTB and NIM

    International Nuclear Information System (INIS)

    Lu, X.; Yuan, Z.; Anhalt, K.; Taubert, R. D.

    2013-01-01

    This paper describes a comparison between PTB and NIM in the field of absolute spectral-band radiometry and thermodynamic temperature measurement. For the comparison a NIM made interference filter radiometer with a centre wavelength of 633 nm was taken to PTB. The filter radiometer was calibrated at NIM and PTB with respect to spectral irradiance responsivity. For the integral value in the band-pass range an agreement of 0.1% was observed in both calibrations. In a next step, the 633 nm filter radiometer was used to measure the temperature of a high-temperature blackbody in comparison to an 800 nm filter radiometer of PTB in the temperature range between 1400 K and 2750 K. The thermodynamic temperature measured by the two filter radiometers agreed to within 0.2 K to 0.5 K with an estimated measurement uncertainty ranging between 0.1 K and 0.4 K (k=1)

  3. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  4. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  5. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  6. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  7. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires

    International Nuclear Information System (INIS)

    Magagnosc, D.J.; Kumar, G.; Schroers, J.; Felfer, P.; Cairney, J.M.; Gianola, D.S.

    2014-01-01

    Ion irradiation of thermoplastically molded Pt 57.5 Cu 14.3 Ni 5.7 P 22.5 metallic glass nanowires is used to study the relationship between glass structure and tensile behavior across a wide range of structural states. Starting with the as-molded state of the glass, ion fluence and irradiated volume fraction are systematically varied to rejuvenate the glass, and the resulting plastic behavior of the metallic glass nanowires probed by in situ mechanical testing in a scanning electron microscope. Whereas the as-molded nanowires exhibit high strength, brittle-like fracture and negligible inelastic deformation, ion-irradiated nanowires show tensile ductility and quasi-homogeneous plastic deformation. Signatures of changes to the glass structure owing to ion irradiation as obtained from electron diffraction are subtle, despite relatively large yield strength reductions of hundreds of megapascals relative to the as-molded condition. To reconcile changes in mechanical behavior with glass properties, we adapt previous models equating the released strain energy during shear banding to a transit through the glass transition temperature by incorporating the excess enthalpy associated with distinct structural states. Our model suggests that ion irradiation increases the fictive temperature of our glass by tens of degrees – the equivalent of many orders of magnitude change in cooling rate. We further show our analytical description of yield strength to quantitatively describe literature results showing a correlation between severe plastic deformation and hardness in a single glass system. Our results highlight not only the capacity for room temperature ductile plastic flow in nanoscaled metallic glasses, but also processing strategies capable of glass rejuvenation outside of the realm of traditional thermal treatments

  8. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  9. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  10. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  11. Containment of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  12. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  13. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  14. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  15. Effects of the temperature and the irradiation on the behaviour of chlorine 37 in nuclear graphite: consequences on the mobility of chlorine 36 in irradiated graphites

    International Nuclear Information System (INIS)

    Blondel, Antoine

    2013-01-01

    This thesis deals with the studies of the management of irradiated graphite wastes issued from the dismantling of the UNGG French reactors. This work focuses on the behavior of 36 Cl. This radionuclide is mainly issued through the neutron activation of 35 Cl by the reaction 35 Cl(n, γ) 36 Cl, pristine chlorine being an impurity of nuclear graphite, present at the level of some at.ppm. 36 Cl is a long lived radionuclide (about 300,000 years) and is highly soluble in water and mobile in concrete and clay. The solubilization of 36 Cl is controlled by the water accessibility into irradiated graphite pores as well as by factors related to 36 Cl itself such as its chemical speciation and its location within the irradiated graphite. Both speciation and chlorine location should strongly influence its behaviour and need to be taken into account for the choice of liable management options. However, data on radioactive chlorine features are difficult to assess in irradiated graphite and are mainly related to detection sensitivity problems. In this context, we simulated and evaluated the impact of the temperature, the irradiation and the radiolytic oxidation on the chlorine 36 behaviour. In order to simulate the presence of 36 Cl, we implanted 37 Cl into virgin nuclear graphite. Ion implantation has been widely used to study the lattice location, the diffusion and the release of fission and activation products in nuclear materials. Our results on the comparative effects of the temperature and the irradiation show that chlorine occurs in irradiated graphite on temperature and electronic and nuclear irradiation improve this effect. (author)

  16. Stability of 2-Alkylcyclobutanones in irradiated retort pouch Gyudon topping during room temperature storage

    International Nuclear Information System (INIS)

    Kitagawa, Yoko; Okihashi, Masahiro; Takatori, Satoshi; Fukui, Naoki; Kajimura, Keiji; Obana, Hirotaka; Furuta, Masakazu

    2016-01-01

    2-Alkylcyclobutanones (ACBs), such as 2-dodecylcyclobutanone (DCB) and 2-tetradecylcylobutanone (TCB) are specific products in the irradiated liquid. Thus, DCB and TCB are suitable for indicators of the irradiation history of food. We previously reported DCB and TCB concentrations in irradiated retort pouch Gyudon topping (instant Gyudon mixes which were made from a beef, onion and soy sauce and could be preserved for a long term at room temperature) after storage for one year. Here, we have evaluated the stability of ACBs preserved in irradiated retort pouch Gyudon topping at room temperature for three years. Although interfering peaks were detected frequently after the storage at room temperature, it was possible for the detection of the irradiation history and there was no apparent decrease of ACBs concentrations in comparison with the one year storage after irradiation. These results concluded that DCB and TCB formed in retort pouch would be stable at room temperature for three years. (author)

  17. Shelf-stable food through high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Placek, V. E-mail: pla@ujv.cz; Svobodova, V.; Bartonicek, B.; Rosmus, J.; Camra, M

    2004-10-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75 deg. C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30 deg. C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Rez 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO{sub x}-containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested.

  18. Shelf-stable food through high dose irradiation

    International Nuclear Information System (INIS)

    Placek, V.; Svobodova, V.; Bartonicek, B.; Rosmus, J.; Camra, M.

    2004-01-01

    Irradiation of food with high doses (radappertization) is a way, how to prepare shelf-stable ready-to-eat food. The radappertization process requires that the food be heated at first to an internal temperature of at least 75 deg. C to inactivate autolytic enzyme, which could cause the spoilage during storage without refrigeration. In order to prevent radiation induced changes in sensory properties (off flavors, odors, undesirable color change, etc.) the food was vacuum packed and irradiated in frozen state at -30 deg. C or less to a minimum dose of 35 kGy. Such products have characteristics of fresh food prepared for eating even if they are stored for long time under tropical conditions. The wholesomeness (safety for consumption) has been confirmed during 40 years of testing. Within the NRI Rez 10 kinds of shelf-stable meat products have been prepared. The meat was cooked, vacuum packed in SiO x -containing pouch, freezed in liquid nitrogen and irradiated with electron beam accelerator. The microbial, chemical, and organoleptic properties have been tested

  19. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  20. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  1. A low temperature cryostat with a refrigerator for studying electron irradiation effects on solids

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Kitagawa, Michiharu; Yanai, Masayoshi

    1976-01-01

    A low temperature cryostat with a small cryogenic refrigerator is described which is convenient for studying irradiation effects of the energetic electrons on solids. It allows a sample to be kept about 12 K without irradiation and 15 K under the irradiation at a heating rate of 1.5 w. The sample temperature can be changed up to room temperature by adjusting the power of an attached heater and the pressure of a compressor for the refrigerator. The optical and electrical properties of the sample can be measured under and after irradiation. (auth.)

  2. Colloid bands in silver chloride induced by reactor irradiation at low temperature

    International Nuclear Information System (INIS)

    Atobe, K.; Okada, M.; Nakagawa, M.

    1978-01-01

    It is well known that no trapped electron center exists stably in irradiated silver chlorides even at low temperatures. On the other hand, irradiation by ultra-violet light at room temperature produces a broad absorption (colloid bands) on the long wavelength side of the fundamental absorption. In this report, it is shown that one of the colloid bands appears in undoped AgCl crystals by reactor irradiation at low temperature (20 K) and the other colloid band by thermal annealing after the irradiation. The relation between the bands, which correspond to two types of colloidal silver, is represented. (author)

  3. Effect of the irradiation temperature and relative humidity on PVG dosifilm

    International Nuclear Information System (INIS)

    Jia Haishun; Chen Wenxiu; Shen Yuxin

    1999-01-01

    The effect of environmental factors, such as irradiation temperature and relative humidity, on the PVG dosifilm irradiated by EB was tested. Experiments show that the temperature coefficient of irradiated PVG dosifilm was 0.008 deg. C -1 from 20 deg. C to 55 deg. C, and the humidity coefficient was 0.006 per r.h. (%) from r.h. 0% to 76%. The PVG dosifilm can be used as a routine dosimeter for dose measurement for low-energy EB processing. The absorbed dose values for various irradiation temperature and humidity can be corrected based on experimental data. (author)

  4. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  5. Microstructural evolution and hardening of GH3535 alloy under energetic Xe ion irradiation at room temperature and 650 °C

    Science.gov (United States)

    Huang, Hefei; Gao, Jie; Radiguet, Bertrand; Liu, Renduo; Li, Jianjian; Lei, Guanhong; Huang, Qing; Liu, Min; Xie, Ruobing

    2018-02-01

    The GH3535 alloy was irradiated with 7 MeV Xe26+ ions to a dose of 10 dpa at room temperature (RT) and 650 °C, and subsequently examined using Transmission Electron Microscopy (TEM) and nanoindentation. High numbers of nano-sized black dots, identified as dislocation loops were observed in both irradiated samples. The dislocation loops detected at the high temperature irradiated sample (size/number density: 9.5 nm/1.9 × 1021 m-3) were found to be larger in size but less in amount as compared to that of the case of RT irradiation (6.9 nm/18.7 × 1021 m-3). In addition, the large-sized Mo-Cr rich precipitates (16.4 nm/3.7 × 1021 m-3) were observed in the sample irradiated at 650 °C. Moreover, the Xe bubbles, with smaller size (2.9 nm) but higher number density (77.8 × 1021 m-3) among the irradiated induced defects, were also detected in the case of high temperature irradiated sample via the diffusion and aggregation of Xe atoms. Nanoindentaion measurements showed a hardening phenomenon for the irradiated sample, and the hardness increment is higher in the case of high temperature irradiated sample. Dispersed barrier-hardening (DBH) model was applied to predict the hardening produced from the irradiation induced defects. The yield strength increment calculated based on TEM observations and the nanohardness increment measured using nanoindentation are in excellent agreement.

  6. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  7. The effects of irradiation and temperature on the growth of Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Kendoush, A.A.

    1987-01-01

    The growth strain was measured after irradiation for 16 Zircaloy-4 tubes of the recrystallised and stress relieved types. The operating temperature during irradiation ranged between 317 and 344 0 C. The average fast neutron fluence was 9.6x10 20 n/cm 2 . Experimental results indicated the dependence of the growth on the irradiation temperature. The stress relieved result was compared with data of the literature. (orig.)

  8. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  9. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  10. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  11. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  12. Path dependent models to predict property changes in graphite irradiated at changing irradiation temperatures

    CSIR Research Space (South Africa)

    Kok, S

    2010-10-01

    Full Text Available Property changes occur in materials subjected to irradiation. The bulk of experimental data and associated empirical models are for isothermal irradiation. The form that these isothermal models take is usually closed form expressions in terms...

  13. The influence of electron irradiation at the various temperatures and annealing on carriers mobility at the low temperatures in neutron transmutation doped gallium arsenide

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Troshchinskii, V.T.; Shesholko, V.K.

    1999-01-01

    The influence of electron irradiation at the various temperatures and annealing on measured at T=100 K carriers mobility in neutron transmutation doped GaAs have been investigated. It was detected that rate of mobility decreasing with irradiation dose increasing decreases when irradiation temperature increases. It was shown that at the same time it take place the radiation defects creating and their particular or full annealing (in the dependence on irradiation temperature). Radiation stimulated annealing (annealing that take place during irradiation at the elevated temperatures) is more effective than the annealing at the same temperatures that take place after crystals are irradiated at room temperature. It means that any defects annealing during irradiation at elevated temperatures take place at more low temperatures than that during annealing after irradiation at room temperature

  14. Temperature impact on the micro structure of tungsten exposed to He irradiation in LHD

    International Nuclear Information System (INIS)

    Bernard, Elodie; Sakamoto, Ryuichi; Tokitani, Masayuki; Masuzaki, Suguru; Hayashi, Hiromi; Yamada, Hiroshi; Yoshida, Naoaki

    2017-01-01

    A new temperature controlled material probe was designed for the exposure of tungsten samples to helium plasma in the LHD. Samples were exposed to estimated fluences of ∼10 23  m −2 and temperatures ranging from 65 to 600 °C. Transmission Electron Microscopy analysis allowed the study of the impact of He irradiation under high temperatures on tungsten micro structure for the first time in real-plasma exposure conditions. Both dislocation loops and bubbles appeared from low to medium temperatures and saw an impressive increase of size (factor 4 to 6) most probably by coalescence as the temperature reaches 600 °C, with 500 °C appearing as a threshold for bubble growth. Annealing of the samples up to 800 C highlighted the stability of the dislocation damages formed by helium irradiation at high surface temperature, as bubbles and dislocation loops seem to conserve their characteristics. Additional studies on cross-sections showed that bubbles were formed much deeper (70–100 nm) than the heavily damaged surface layer (10–20 nm), raising concern about the impact on the material mechanical properties conservation and potential additional trapping of hydrogen isotopes. - Highlights: • Design and test of a temperature-controlled sample holder to expose samples in LHD. • Dislocation loops and bubbles created in W even at low fluences and temperatures. • Heavily damaged layer (10–20 nm thick) very rich in damages formed at the surface. • He bubbles observed much deeper than implantation range (until 100 nm). • He effects not only at the surface, raising concerns for properties conservation.

  15. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  16. Preservation of Minced Meats by Using Medium and High-doses Irradiation

    International Nuclear Information System (INIS)

    Hammad, A.A.I.; Swailam, H.M.H.; Taha, S.M.A.

    2003-01-01

    The effect of medium (2.5-10 kGy) dose irradiation and high(20-70 kGy) dose irradiation on the microbiological, chemical and organoleptic properties of minced meat samples was studied. It was found that irradiation dose of only 5 kGy greatly reduced all microbial counts and completely eliminated all non-spore forming pathogenic bacteria contaminated minced meat samples. Consequently this irradiation dose extended the refrigerated (3 degree ±1) storage life of these products for more than 8 weeks. This irradiation dose almost did not affect the chemical composition, particularly the main amino acids and main fatty acids of minced meat samples. Panelists could not differentiate between irradiated minced meat samples at this dose and unirradiated samples. High doses irradiation, i.e.40 and 70 kGy were sufficient and efficient in sterilization of minced meat samples and in obtaining long-stable minced meat products (Two years) at ambient temperature. These irradiation doses slightly reduced (not more than 7%) aspartic acid, glutamic acid, methionine and lysine of minced meat. It also decreased the relative percentage of total unsaturated fatty acids by not more than 17 % . These high irradiation doses caused loss of C 18:3 and C 20:1

  17. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  18. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  19. High-temperature geothermal cableheads

    Science.gov (United States)

    Coquat, J. A.; Eifert, R. W.

    1981-11-01

    Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.

  20. Existing and projected neutron sources and low-temperature irradiation facilities in Germany

    International Nuclear Information System (INIS)

    Boening, K.

    1984-01-01

    In this paper, a contribution given at the Kyoto University Research Reactor Institute to the temporal meeting on the design of the facilities for high flux, low temperature irradiation is summarized. The following five subjects were discussed. The project of modernizing the swimming pool type research reactor FRM with 4 MW power at Munich is to achieve relatively high thermal neutron flux, and an extremely compact core is designed. The existing low temperature irradiation facility (LTIF) of the FRM is the most powerful in the world, and has been successfully operated more than 20 years. The fast and thermal neutron fluxes are 2.9 x 10 13 and 3.5 x 10 13 /cm 2 sec, respectively. The experimental techniques in the LTIF of the FRM, such as a measuring cryostat, the mounting of irradiated samples and so on, are described. The installation of new LTIFs in connection with the projects of advanced neutron sources in Germany is likely to be made in the modernized FRM at Garching, in the spallation neutron source SNQ at KFA Juelich and so on. The interesting problems in fundamental and applied researches with LTIFs, and the unusual application of LTIFs are shown. (Kako, I.)

  1. Effect of low temperature reactor irradiation on organic insulators in superconducting magnets, (4)

    International Nuclear Information System (INIS)

    Kato, Teruo; Takamura, Saburo

    1983-01-01

    In order to study effects of irradiation at low temperature on insulating materials of superconducting magnets, flexural and impact tests are carried out at 4.2K without warmup after low temperature irradiation for several fiber reinforced plastics. The used materials are glass fiber reinforced epoxies and polyimide, and carbon fiber reinforced epoxies. After irradiation of 1.1 X 10 9 rad, the reduction in flexural strength of G-10 CR is about 70% and that of G-11 CR about 25%. No change are observed in strength of glass fiber reinforced polyimide by low temperature irradiation. Other kinds of glass fiber reinforced epoxies show a reduction in strength but the flexural strength of carbon fiber reinforced epoxies increases a small by irradiation. Irradiation effect of these materials on impact value is similar to that on flexural strength. (author)

  2. Experimental research on fresh mussel meat irradiated by high-dose electron beam

    International Nuclear Information System (INIS)

    Xiao Lin; Lu Ruifeng; Hu Huachao; Wang Chaoqi; Liu Yanna

    2011-01-01

    The sterilization storage of fresh mussel irradiated high-dose electron beam was studied. From the subjective assessment by the weighted average of the test and other determined parameters, it can be concluded that the flavor of fresh mussel meat sealed canned food irradiated by high-dose electron beam has not been significant affected, and various micro-organisms can be killed effectively, which means that the irradiated fresh mussel meat can be preserved for long-term at room temperature. Therefore the method might resolve the problems induced by traditional frozen preservation methods. (authors)

  3. Recent changes in solar irradiance and infrared irradiance related with air temperature and cloudiness at the King Sejong Station, Antarctica

    Science.gov (United States)

    Jung, Y.; Kim, J.; Cho, H.; Lee, B.

    2006-12-01

    The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.

  4. Auto-oscillations of temperature and defect density in impure crystals under irradiation

    International Nuclear Information System (INIS)

    Selishchev, P.A.; Sugakov, V.I.

    1990-01-01

    Appearance of auto-oscillations in temperature and defect density of impurity crystals under irradiation is studied. It is shown that at certain critical parameters stationary distribution of temperature and defect density of the sample irradiated becomes unstable as regards the formation of temporal dissipative structures: auto-oscillations of temperature and defect density. Critical parameters are determined (the rate of defect formation, temperature of crystal environment, etc.) and the frequency of appearing auto-oscillations, its dependence on irradiation conditions and crystal properties are found

  5. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  6. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  7. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  8. National Low-Temperature Neutron Irradiation Facility (NLTNIF). The status of development

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Young, F.W. Jr.

    1985-12-01

    In May 1983, the Department of Energy authorized the establishment of a National Low-Temperature Neutron Irradiation Facility (NLTNIF) at ORNL's Bulk Shielding Reactor (BSR). The NLTNIF, which will be available for qualified experiments at no cost to users, will provide a combination of high radiation intensities and special environmental and testing conditions that have not been previously available in the US. Since the DOE authorization, work has proceeded on the design and construction of the new facility without interruption. This report describes the present status of the development of the NLTNIF and the anticipated schedule for completion and performance testing. There is a table of the major specifications and capabilities and a schematic layout of the irradiation cryostate for design and dimensioning of test and experiment assemblies

  9. Theoretical and practical implications of the effects of temperature during irradiation and during pre- and post-irradiation storage on the response of thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Gail de Planque, E.

    1984-01-01

    Experiments have been conducted to determine the applicability of the Randall-Wilkins theory for describing the behavior of CaF 2 :Mn thermoluminescence dosimeters (Harshaw TLD-400 chips). Results were obtained for four different conditions: irradiation followed by storage, irradiation after storage, irradiation both preceded and followed by storage, and continuous simultaneous irradiation and storage. The experiments were performed for storage intervals of approximately 1, 2, 3, 5, 6 and 7 days at five different storage temperatures: -25, +20, +65, +150 and +175 0 C. The results indicate fading that is described not by the Randall-Wilkins theory but rather as a linear function of the logarithm of the storage time. While the results suggest that the trapping efficiency is independent of temperature, they do demonstrate a small decrease in TL response with storage time prior to irradiation which is independent of temperature and time (>17 hours) and hence probably not dosimetric in origin but perhaps optically related. Glow curve analyses support the concept of a band of traps rather than a single trap. The overall results are compared to other data available in the literature most of which is for room-temperature storage. These data, for storage periods ranging from minutes to one year, can also be described as a linear function of the logarithm of the storage time and are remarkably consistent when uniformly normalized. Although peripheral experiments revealed problems associated with self-irradiation as well as a decline in sensitivity with use, the stability experiment results verify the highly favorable stability properties of CaF 2 :Mn for widespread application

  10. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  11. Effect of irradiation temperature on the efficiency of introduction of multivacancy defects into n-Si crystals

    International Nuclear Information System (INIS)

    Pagava, T. A.

    2006-01-01

    The n-Si single crystals are studied in order to gain insight into the effect of the temperature of irradiation T irr on the defect-production process. The samples under study were irradiated with 2-MeV electrons in the range T irr = 20-400 deg. C. Irradiated crystals were annealed isochronously in the temperature range from 80 to 600 deg. C. Measurements were carried out by the Hall method in the temperature range from 77 to 300 K. It is shown that the efficiency of introduction of radiation defects with a high thermal stability (T ann ≥ 350 deg. C) attains a maximum at T irr = 150 deg. C. The observed effect is accounted for by formation of multivacancy defects PV 2 on the basis of ionized E centers and nonequilibrium vacancies

  12. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  13. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  14. High temperature superconductors and method

    International Nuclear Information System (INIS)

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  15. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  16. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  17. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  18. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    Science.gov (United States)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.

    2016-03-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.

  19. Irradiation experiments and materials testing capabilities in High Flux Reactor in Petten

    International Nuclear Information System (INIS)

    Luzginova, N.; Blagoeva, D.; Hegeman, H.; Van der Laan, J.

    2011-01-01

    The text of publication follows: The High Flux Reactor (HFR) in Petten is a powerful multi-purpose research and materials testing reactor operating for about 280 Full Power Days per year. In combination with hot cells facilities, HFR provides irradiation and post-irradiation examination services requested by nuclear energy research and development programs, as well as by industry and research organizations. Using a variety of the custom developed irradiation devices and a large experience in executing irradiation experiments, the HFR is suitable for fuel, materials and components testing for different reactor types. Irradiation experiments carried out at the HFR are mainly focused on the understanding of the irradiation effects on materials; and providing databases for irradiation behavior of materials to feed into safety cases. The irradiation experiments and materials testing at the HFR include the following issues. First, materials irradiation to support the nuclear plant life extensions, for instance, characterization of the reactor pressure vessel stainless steel claddings to insure structural integrity of the vessel, as well as irradiation of the weld material coupons to neutron fluence levels that are representative for Light Water Reactors (LWR) internals applications. Secondly, development and qualification of the structural materials for next generation nuclear fission reactors as well as thermo-nuclear fusion machines. The main areas of interest are in both conventional stainless steel and advanced reduced activation steels and special alloys such as Ni-base alloys. For instance safety-relevant aspects of High Temperature Reactors (HTR) such as the integrity of fuel and structural materials with increasing neutron fluence at typical HTR operating conditions has been recently assessed. Thirdly, support of the fuel safety through several fuel irradiation experiments including testing of pre-irradiated LWR fuel rods containing UO 2 or MOX fuel. Fourthly

  20. The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances

    International Nuclear Information System (INIS)

    Barukčić, M.; Ćorluka, V.; Miklošević, K.

    2015-01-01

    Highlights: • The temperature and irradiance dependent model for the I–V curve estimation is presented. • The purely mathematical model based on the analysis of the I–V curve shape is presented. • The model includes the Gompertz function with temperature and irradiance dependent parameters. • The input data are extracted from the data sheet I–V curves. - Abstract: The temperature and irradiance dependent mathematical model for photovoltaic panel performances estimation is proposed in the paper. The base of the model is the mathematical function of the photovoltaic panel current–voltage curve. The model of the current–voltage curve is based on the sigmoid function with temperature and irradiance dependent parameters. The temperature and irradiance dependencies of the parameters are proposed in the form of analytic functions. The constant parameters are involved in the analytical functions. The constant parameters need to be estimated to get the temperature and irradiance dependent current–voltage curve. The mathematical model contains 12 constant parameters and they are estimated by using the evolutionary algorithm. The optimization problem is defined for this purpose. The optimization problem objective function is based on estimated and extracted (measured) current and voltage values. The current and voltage values are extracted from current–voltage curves given in datasheet of the photovoltaic panels. The new procedure for estimation of open circuit voltage value at any temperature and irradiance is proposed in the model. The performance of the proposed mathematical model is presented for three different photovoltaic panel technologies. The simulation results indicate that the proposed mathematical model is acceptable for estimation of temperature and irradiance dependent current–voltage curve and photovoltaic panel performances within temperature and irradiance ranges

  1. CdTe/CZT under high flux irradiation

    International Nuclear Information System (INIS)

    Strassburg, Matthias; Schroeter, Christian; Hackenschmied, Peter

    2011-01-01

    Direct converting quantum counting detectors based on cadmium telluride and cadmium zinc telluride have been investigated with respect to their properties under intense X-ray irradiation. To derive a detailed picture of the performance of such detectors, the influence of the electric field, the detector thickness, the temperature and the intensity of the X-ray irradiation was studied. The results are discussed in terms of the ''polarization'' phenomenon, a reduction of the electric field strength inside the detector due to immobile charge carriers accumulating during irradiation. Furthermore, the impact of Te-inclusions and -precipitates is presented.

  2. Study of temperature increase and optic depth penetration in photo irradiated human tissues

    International Nuclear Information System (INIS)

    Stolik, Suren; Delgado, Jose A.; Perez, Arllene M.; Anasagasti, Lorenzo

    2009-01-01

    Optical radiation is widely applied in the treatment and diagnosis of different pathologies. If the power density of the incident light is sufficiently high to induce a significant temperature rise in the irradiated tissue, then it is also needed the knowledge of the thermal properties of the tissue for a complete understanding of the therapeutic effects. The thermal penetration depth of several human tissues has been measured applying the diffusion approximation of the radiative transfer equation for the distribution of optical radiation. The method, the experimental setup and the results are presented and discussed. (Author)

  3. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  4. Capability for identification of gamma-irradiated bovine liver by new high sensitivity comet assay

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Toyoda, Masatake; Saito, Akiko; Ito, Hitoshi

    2000-01-01

    DNA in food will sustain damage by gamma radiation. The detection capability of the high sensitivity comet assay was studied using fluorescence-microscopy. Beef liver was irradiated at a range of 1 Gy to 8 kGy. Single cells were obtained from the irradiated liver, then analyzed by agaros-gel electrophoresis. The pH of the buffer for electrophoresis was pH 13, which is generally utilized for sensitive detection of DNA damage. The pattern formed by DNA was visualized by staining with ethidium bromide. The resulting comets were evaluated with a scale we developed, and Influence Scores were calculated based on the Tice method. It is possible to detect irradiation damage to beef liver at 10 Gy. Together with Influence Score, histogram of comet type is used for detection of irradiation. We elucidated those histograms were useful for distinguishing damage caused by irradiation from that of others. DNA damage can be caused not only by irradiation, but also by the other treatments. Therefore, the respective influences of freezing, preservation, irradiating temperature, atmosphere of irradiation, cooking, and homogenizing devices were also examined. This new comet assay will be a useful method of detecting DNA damage to identify irradiated foods. (author)

  5. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  6. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  7. Container floor at high temperatures

    International Nuclear Information System (INIS)

    Reutler, H.; Klapperich, H.J.; Mueller-Frank, U.

    1978-01-01

    The invention describes a floor for container which is stressed at high, changing temperatures and is intended for use in gas-cooled nuclear reactors. Due to the downward cooling gas flow in these types of reactor, the reactor floor is subjected to considerable dimensional changes during switching on and off. In the heating stage, the whole graphite structure of the reactor core and floor expands. In order to avoid arising constraining forces, sufficiently large expansion spaces must be allowed for furthermore restoring forces must be present to close the gaps again in the cooling phase. These restoring forces must be permanently present to prevent loosening of the core cuits amongst one another and thus uncontrollable relative movement. Spring elements are not suitable due to fast fatigue as a result of high temperatures and radiation exposure. It is suggested to have the floor elements supported on rollers whose rolling planes are downwards inclined to a fixed point for support. The construction is described in detail by means of drawings. (GL) [de

  8. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  9. Irradiation creep at temperatures of 400 degrees C and below for application to near-term fusion devices

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Gibson, L.T.; Mansur, L.K.

    1996-01-01

    To study irradiation creep at 400 degrees C and below, a series of six austenitic stainless steels and two ferritic alloys was irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor; and, after an atomic displacement level of 7.4 dpa, the specimens were moved to the High Flux Isotope Reactor for the remainder of the 19 dpa accumulated. Irradiation temperatures of 60, 200, 330, and 400 degrees C were studied with internally pressurized tubes of type 316 stainless steel, PCA, HT 9, and a series of four laboratory heats of: Fe-13.5Cr-15Ni, Fe-13.5Cr-35Ni, Fe-1 3.5Cr-1 W-0.18Ti, and Fe-16Cr. At 330 degrees C, irradiation creep was shown to be linear in fluence and stress. There was little or no effect of cold-work on creep under these conditions at all temperatures investigated. The HT9 demonstrated a large deviation from linearity at high stress levels, and a minimum in irradiation creep with increasing stress was observed in the Fe-Cr-Ni ternary alloys

  10. Surface damage of 316 stainless steel irradiated with 4He+ to high doses

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1978-01-01

    Surface blistering of niobium by implantation with helium ions in the 9 to 15 keV range was investigated. The apparent disappearance of blisters at sufficiently high doses was believed to be an equilibrium effect. To determine whether high temperature annealing causes the equilibrium condition, stainless steel-316 samples were irradiated at a constant 450 0 C. Results are presented

  11. Damage structure of gallium arsenide irradiated in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Loretto, D.; Loretto, M.H.

    1989-01-01

    Semi-insulating undoped gallium arsenide has been irradiated in a high-voltage electron microscope between room temperature and about 500 0 C for doses of up to 5 x 10 22 electrons cm -2 at 1 MeV. Room-temperature irradiation produces small (less than 5 nm) damage clusters. As the temperature of the irradiation is increased, the size of these clusters increases, until at about 300 0 C a high density of dislocation loops can be resolved. The dislocation loops, 20 nm or less in diameter, which are produced at about 500 0 C have been analysed in a bright field using a two-beam inside-outside method which minimises the tilt necessary between micrographs. It is concluded that the loops are an interstitial perfect-edge type with a Burgers vector of (a/2) . (author)

  12. Effects of temperature and irradiance level on carbohydrate content and keeping quality of Christmas begonia (Begonia x cheimantha Everett)

    International Nuclear Information System (INIS)

    Fjeld, T.

    1992-01-01

    The carbohydrate content and keeping quality of Christmas begonia were determined in a factorial experiment in which the plants were subjected to irradiance levels of 15, 30 and 60 μmol m −2 s −1 and to temperature levels of 15, 18 and 21°C for the last part of the growing period. This period lasted from 11 to 24 days depending on irradiance level and temperature. The contents of sucrose, glucose and starch were determined at the marketing stage. The keeping quality of the plants was determined after 3 weeks in a simulated interior climate. Increase in temperature and irradiance level both enhanced the development of flowers during the later part of the growing period. The temperature did not have any effect on plant quality at the marketing stage nor on the carbohydrate content, but high temperature caused an increase in flower stem height after 3 weeks in interior climate. Increase in irradiance level caused a significant increase in the content of starch at the marketing stage. Percent increase in new flowers during the interior holding period was highly correlated with the contents of sucrose and starch in the inflorescences and with the content of starch in the leaves. A large starch pool in the inflorescences and in the leaves at the marketing stage reduced the abscission rate during the interior holding period. (author)

  13. Low temperature electron beam irradiation effects on the lactate dehydrogenase activity

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Oproiu, C.; Popescu, Alina; Hategan, Dora; Morariu, V. V.

    1998-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range 0-400 Gy at 20 deg. C, -3 deg. C and -196 deg. C on the global enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed a monoexponential decrease in the enzymatic activity of irradiated LDH at all irradiation temperatures independently of direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 deg. C drastically influences the results. Our data suggest that freeze-thawing in two steps down to -196 deg. C make LDH insensitive to irradiation, while one step freeze-thawing procedure results in a gradual activity loss with increasing dose irradiation. This data can be interpreted in terms of different conformational changes during the particular freeze-thawing process. (authors)

  14. Batch scale storage of sprouting foods by irradiation combined with natural low temperature; pt. 2

    International Nuclear Information System (INIS)

    Byun, M.W.; Lee, C.H.; Cho, H.O.; Kwon, J.H.; Yang, H.S.

    1982-01-01

    Two varieties of potatoes, Irish cobbler and Shimabara stored for seven and nine months respectively by irradiation combined with natural low temperature (year-round temperature change: 2-17degC) on a batch scale were investigated on the suitability for processing of potato chip. Nine months after storage, irradiated potatoes (Irish cobbler) tended to maintain somewhat better texture and sensory quality than untreated in potatoe chip processing. Peel rate, closely related to potato chip yield, of untreated potatoes were 20-25% higher than those of irradiated and Agtron color determination of potato chip from both irradiated were commercially acceptable. Preservation of potatoes by irradiation combined with natural low temperature was evaluated as an alternative method of the supply for raw materials of potato chip processing in the off-season in Korea. (Author)

  15. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  16. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  17. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  18. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  19. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  20. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Songqin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China); Gao, Michael C. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR, 97321 (United States); AECOM, P.O. Box 1959, Albany, OR, 97321 (United States); Yang, Tengfei [State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, 100871 (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996 (United States); Zhang, Yong, E-mail: drzhangy@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-11-15

    The microstructures of Al{sub x}CoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  1. Effect of irradiation on fresh-keeping of strawberry stored at room temperature

    International Nuclear Information System (INIS)

    Zhao Yongfu; Xie Zongchuan; Lu Zhaoxin

    1999-01-01

    The fresh keeping period of strawberry irradiated with 4.0 kGy dose and stored at room temperature was prolonged to 6 days. Further experiment showed that the irradiation treatment decreased the number of mold in strawberry by two orders of magnitude, inhibited the strawberry fruit respiration and water loss, therefore, improved the effect of strawberry fresh-keeping

  2. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  3. A theoretical model of accelerated irradiation creep at low temperatures by transient interstitial absorption

    International Nuclear Information System (INIS)

    Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.

    1990-01-01

    A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200 degree C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100 degree C is about 100 dpa. At 550 degree C this transient is over by 10 -8 dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350 degree C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment

  4. Super ODS steels R and D for fuel cladding on next generation nuclear systems. 8) Ion irradiation effects at elevated temperatures

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kasada, Ryuta; Kimura, Akihiko; Inoue, Masaki; Okuda, Takanari; Abe, Fujio; Ohnuki, Somei; Fujisawa, Toshiharu

    2009-01-01

    The Super ODS steels, having excellent high-temperature strength and highly corrosion resistant, are considered to increase the energy efficiency by higher temperature operation and extend the lifetime of next generation nuclear systems. High-temperature strength of the ODS steels strongly depends on the dispersion of oxide particles, therefore, the irradiation effect on the dispersed oxides is critical in the material development. In the present research, ion irradiation experiments were employed to investigate microstructural stability under the irradiation environment at elevated temperatures. Ion irradiation experiments were performed with 6.4 MeV Fe ions irradiated at 650degC up to a nominal displacement damage of 60 dpa. Microstructural investigation was carried out using TEM and EDX. No significant change of grains and grain boundaries was observed by TEM investigation after the ion irradiation. Main oxide particles in the 16Cr-4Al-0.1Ti (SOC-1) ODS steel were (Y, Al) complex oxides. (Y, Ti) complex oxides were in 16Cr-0.1Ti (SOC-5) and 15.5Cr-2W-0.1Ti (SOCP-3). (Y, Zr) complex oxides were in 15.5Cr-4Al-0.6Zr (SOCP-1). No significant modification of these complex oxides was detected after the ion irradiation up to 60 dpa at 650degC. The stable complex oxides are considered to keep highly microstructural stability of the Super ODS steels under the irradiation environments. (author)

  5. The high-temperature reactor

    International Nuclear Information System (INIS)

    Kirchner, U.

    1991-01-01

    The book deals with the development of the German high-temperature reactor (pebble-bed), the design of a prototype plant and its (at least provisional) shut-down in 1989. While there is a lot of material on the HTR's competitor, the fast breeder, literature is very incomplete on HTRs. The author describes HTR's history as a development which was characterised by structural divergencies but not effectively steered and monitored. There was no project-oriented 'community' such as there was for the fast breeder. Also, the new technology was difficult to control there were situations where no one quite knew what was going on. The technical conditions however were not taken as facts but as a basis for interpretation, wishes and reservations. The HTR gives an opportunity to consider the conditions under which large technical projects can be carried out today. (orig.) [de

  6. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  7. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  8. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  9. Electron beam irradiation, oxygen, and temperature effects on nucleotide degradation in stored aquaculture hybrid striped bass fillets

    International Nuclear Information System (INIS)

    Karahadian, C.; Brannan, R.G.; Heath, J.L.

    1997-01-01

    Skinless fillets from commercially-grown aquaculture hybrid striped bass (Morone saxatilis x M. chrysops) were electron beam-irradiated in the presence of air or vacuum-packaged and stored at 4C and -20C for 14 days. A mean low dose level of 2.0 or 3.0 kGy (+/- 0.5 kGy) and high dose level of 20 kGy (+/- 4 kGy) were used for irradiated samples. Hypoxanthine (Hx) concentrations, Ki-values ([(INO + Hx)/(IMP + INO + Hx)] x 100), and H-values ([(Hx)/(IMP + INO + Hx)] x 100) indicated that irradiation did not influence the rate of nucleotide degradation compared with nonirradiated controls at either refrigerated or frozen temperatures. Vacuum packaging or freezing of stored samples resulted in lower H-values and Hx contents compared with nonirradiated controls regardless of irradiation treatment

  10. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  11. A low temperature cryostat with a refrigerator for studying electron-irradiation effects on solids, 2

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Shono, Yoshihiko

    1978-01-01

    A convenient cryostat with a small cryogenic refrigerator for studying electron-irradiation effects on solids is reported. The lowest temperature at the sample room is about 10 K or less. In a temperature region below 80 K, the sample temperature can be controlled within 0.05 K. (auth.)

  12. Effects of irradiation and isochronal anneal temperature on hole and electron trapping in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Shaneyfelt, M.R.; Riewe, L.C.; Flament, O.; Paillet, P.; Leray, J.L.

    1998-02-01

    Capacitance-voltage and thermally-stimulated-current techniques are used to estimate trapped hole and electron densities in MOS oxides as functions of irradiation and isochronal anneal temperature. Trapped-charge annealing and compensation effects are discussed

  13. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  14. Microstructural examination of 12% Cr martensitic stainless steel after irradiation at elevated temperatures in FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Hsu, Chen-Yih; Gelles, D.S.; Lechtenberg, T.A.

    1986-06-01

    A remelted 12% Cr martensitic stainless steel (HT-9) has been examined by transmission electron microscopy before and after irradiation in the Materials Open Test Assembly (MOTA) of the Fast Flux Test Facility (FFTF). The irradiation temperatures were 365,420, 520, and 600 degree C with the fluences as high as 7.3 x 10 22 n/cm 2 (E > 0.1 MeV) or 34 dpa. The extracted precipitates from each specimen were identified using x-ray microanalysis and selected area diffraction. The precipitates in the unirradiated condition were primarily M 23 C 6 carbides, which formed at martensite lath and prior austenite grain boundaries. During irradiation at elevated temperatures, small amounts of other phases formed, which were tentatively identified as the chromium-rich α', the nickel-silicon rich G-phase, and the intermetallic Chi phase. Irradiation-induced voids were observed only in specimens irradiated at 420 degree C to a dose of 34 dpa; no voids were found for specimens irradiated at 365, 520, and 600 degree C (∼11, ∼34, and ∼34 dpa). These results are not in agreement with previous experiments in that voids have not been reported in this alloy at relatively high fluence level (∼67 dpa) following irradiation in another fast-spectrum reactor (EBR.II). This is, however, the first observation following FFTF irradiation. The present results indicate that cavities can form in HT-9 at modest fluence levels even without significant generation of helium. Hence, the cavity formation in this class of ferritic alloys is not simply caused by helium generation but rather more complex mechanisms. 12 refs., 2 figs., 3 tabs

  15. High temperature ductility of austenitic alloys exposed to thermal neutrons

    International Nuclear Information System (INIS)

    Watanabe, K.; Kondo, T.; Ogawa, Y.

    1982-01-01

    Loss of high temperature ductility due to thermal neutron irradiation was examined by slow strain rate test in vacuum up to 1000 0 C. The results on two heats of Hastelloy alloy X with different boron contents were analyzed with respect to the influence of the temperatures of irradiation and tensile tests, neutron fluence and the associated helium production due to nuclear transmutation reaction. The loss of ductility was enhanced by increasing either temperature or neutron fluence. Simple extrapolations yielded the estimated threshold fluence and the end-of-life ductility values at 900 and 1000 0 C in case where the materials were used in near-core regions of VHTR. The observed relationship between Ni content and the ductility loss has suggested a potential utilization of Fe-based alloys for seathing of the neutron absorber materials

  16. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  17. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  18. Electron-trapping probability in natural dosemeters as a function of irradiation temperature

    DEFF Research Database (Denmark)

    Wallinga, J.; Murray, A.S.; Wintle, A.G.

    2002-01-01

    The electron-trapping probability in OSL traps as a function of irradiation temperature is investigated for sedimentary quartz and feldspar. A dependency was found for both minerals; this phenomenon could give rise to errors in dose estimation when the irradiation temperature used in laboratory...... procedures is different from that in the natural environment. No evidence was found for the existence of shallow trap saturation effects that Could give rise to a dose-rate dependency of electron trapping....

  19. Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing

    International Nuclear Information System (INIS)

    Gow, J P D; Smith, P H; Hall, D J; Holland, A D; Murray, N J; Pool, P

    2015-01-01

    A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at −35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 10 8 protons · cm −2 . The CCD236 is a large area (4.4 cm 2 ) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation

  20. Effect Of Irradiation Temperature and Dose On Mechanical Properties And Fracture Characteristics Of Cu//SS Joints For ITER

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Peacock, A.; Roedig, M.; Linke, J.; Gervash, A.; Barabash, V.

    2007-01-01

    Full text of publication follows: By now, a number of technologies have been proposed for the production of Cu//SS joints for ITER, such as brazing, friction welding, HIP and cast-copper-to-steel (CC). The two last-mentioned technologies ensure sufficiently high mechanical properties and a high joint quality, when unirradiated. The data, however, on mechanical characteristics of irradiated of Cu//SS HIP joints are limited. In this paper, the authors present the results of investigations into the mechanical characteristics after irradiation of GlidCopAl25/316L(N) and Cu-Cr-Zr/316L(N)-type joints produced by the HIP and CC technologies. Specimens of the joints were irradiated in the RBT-6 reactor in the dose range of 10 -3 - 10 -1 dpa at T irr = 200 deg. C and 300 deg. C. The tensile stress-strain curves for irradiated and unirradiated joint specimens show deformation processes occurring in both the Cu and SS parts of the specimens. Irradiation at T irr = 200 deg. C causes strengthening of the joints specimens (by about 100 MPa at the maximum dose). The uniform elongation drops from 8% in the initial state to 2-3 %. But the total elongation remains at a relatively high level of ∼ 7%. Irradiation at T irr = 300 deg. C causes a slight strengthening of the joints specimens (∼30 MPa). The uniform elongation remains unchanged at ∼ 7%. The total elongation also maintains a relatively high level of ∼9-13%. SEM investigations revealed that fracture occurs only in the copper part of the irradiated specimens, and ductile trans-crystalline fracture predominates in the joints. 3D finite element analysis of the tensile test indicates that the concentration of stresses and deformations in the copper layer adjacent to the joint line is responsible for this typical failure of the irradiated joints specimens. Comparison of the behavior of the joints irradiated at T irr = 200 deg. C and 300 deg. C indicate an increased embrittlement at lower irradiation temperatures. At a

  1. Thermoluminescence of KCl:Eu2+ under ultraviolet irradiation at different temperatures

    International Nuclear Information System (INIS)

    Aguirre de Carcer, I.; Jaque, F.; Rowlands, A.P.; Townsend, P.D.

    1998-01-01

    The thermoluminescence of KCl:Eu 2+ ultraviolet irradiated samples has been studied at different temperatures with the aim of optimising its solar dosimetric characteristics. This was achieved by recording with a dosimeter -10 deg. C. Ultraviolet light (254 nm) irradiation under these conditions produces a high TL peak at 90 deg. C which is linear with exposure time over at least four orders of magnitude. The TL emission spectra of KCl:Eu 2+ under UV irradiation have been analysed to reveal component bands at 2.86 eV, 2.97 eV, 3.02 eV, 3.07 eV, 3.14 eV and 3.26 eV that corresponds to divalent europium impurity sites. The new peak at 3.26 eV (297 nm) had not reported before but it has to be considered in order to match the experimental TL emission. A model for the defect site of this new emission is discussed

  2. Improving ion irradiated high Tc Josephson junctions by annealing: The role of vacancy-interstitial annihilation

    International Nuclear Information System (INIS)

    Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.

    2007-01-01

    The authors have studied the annealing effect in the transport properties of high T c Josephson junctions (JJs) made by ion irradiation. Low temperature annealing (80 deg. C) increases the JJ coupling temperature (T J ) and the I c R n product, where I c is the critical current and R n the normal resistance. They have found that the spread in JJ characteristics can be reduced by sufficient long annealing times, increasing the reproducibility of ion irradiated Josephson junctions. The characteristic annealing time and the evolution of the spread in the JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one

  3. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Science.gov (United States)

    Petrie, Christian M.; Koyanagi, Takaaki; McDuffee, Joel L.; Deck, Christian P.; Katoh, Yutai; Terrani, Kurt A.

    2017-08-01

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300-350 °C under a representative high heat flux (∼0.66 MW/m2) during one cycle of irradiation in an un-instrumented ;rabbit; capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. The success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  4. Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deck, Christian P. [General Atomics, San Diego, CA (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-04

    The purpose of this work is to design an irradiation vehicle for testing silicon carbide (SiC) fiber-reinforced SiC matrix composite cladding materials under conditions representative of a light water reactor in order to validate thermo-mechanical models of stress states in these materials due to irradiation swelling and differential thermal expansion. The design allows for a constant tube outer surface temperature in the range of 300–350 °C under a representative high heat flux (~0.66 MW/m2) during one cycle of irradiation in an un-instrumented “rabbit” capsule in the High Flux Isotope Reactor. An engineered aluminum foil was developed to absorb the expansion of the cladding tubes, due to irradiation swelling, without changing the thermal resistance of the gap between the cladding and irradiation capsule. Finite-element analyses of the capsule were performed, and the models used to calculate thermal contact resistance were validated by out-of-pile testing and post-irradiation examination of the foils and passive SiC thermometry. Six irradiated cladding tubes (both monoliths and composites) were irradiated and subsequently disassembled in a hot cell. The calculated temperatures of passive SiC thermometry inside the capsules showed good agreement with temperatures measured post-irradiation, with two calculated temperatures falling within 10 °C of experimental measurements. Furthermore, the success of this design could lead to new opportunities for irradiation applications with materials that suffer from irradiation swelling, creep, or other dimensional changes that can affect the specimen temperature during irradiation.

  5. The dependence of thermoluminescence sensitivity upon the temperature of irradiation in meteorites and in terrestrial apatites

    International Nuclear Information System (INIS)

    Durrani, S.A.; Al-Khalifa, I.J.M.

    1990-01-01

    Measurements are reported on the TL sensitivity (i.e. TL glow output per unit γ ray test dose) of meteoritic specimens as well as terrestrial fluor- and chlor-apatites, as a function of irradiation temperature (T irr ). The irradiation temperatures ranged from liquid nitrogen to room temperature (77 - 293 K). A kilocurie 60 Co γ ray source was used to deliver test doses of 400 Gy (40 krad) and 40 (4 krad) to the various samples. A strong dependence of the TL sensitivity upon the temperature of irradiation was noted in the case of Kirin meteorite: its TL sensitivity (for the 493 K readout peak) decreased by a factor of ∼ 2 when T irr rose from liquid nitrogen (77 K) to dry ice in acetone (197 K) temperature, in the case of both 400 Gy and 40 Gy γ ray doses. In the case of the Antarctic meteorite specimen (ALHA 77182.13), there was a smaller effect, viz. a fall of ∼ 14% in the TL output corresponding to dry ice and higher irradiating temperatures as compared to the 77 K irradiation. For chlorapatite, the TL sensitivity decreased monotonically with increasing temperature for both the 563 K and the 448 K glow peaks. For the fluorapatite, the effect of reduced response was observed only between -17 0 C (256 K) and room temperature (293 K). Both the theoretical and the practical implications of these observations are discussed. (author)

  6. Batch scale strength of garlic by irradiation combined with natural low temperature

    International Nuclear Information System (INIS)

    Cho, H.O.; Kwon, J.H.; Byun, M.W.

    1984-01-01

    An attempt was made on the development of a commercial scale storage method of garlic by irradiation. Irradiated garlics with 50, 100 and 150 Gy were stored at natural low temperature storage room (12±6°C, 75-85% RH) and the physicochemical properties during the 10 months storage were investigated. The unirradiated garlic was mostly sprouted after 8 months storage, whereas the sprouting of all irradiated groups was completely inhibited until 10 months storage, The rotting rate and weigh loss of garlic after 10 months storage were reduced by 25 to 54% at 100 Gy irradiation compared with those of an unirradiated group. The moisture content remained relatively constant during the whole storage period. The total sugar content was increased with storage period. Ascorbic acid content was also decreased until 8 months storage but its content was rapidly increased along with sprouting. Garlic was marketable after 10 months storage by 100 Gy irradiation combined with natural low temperature. (author)

  7. High-water-base hydraulic fluid-irradiation experiments

    International Nuclear Information System (INIS)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10 6 Gy (10 8 rad) are expected

  8. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  9. High-water-base hydraulic fluid-irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.C.; Meacham, S.A.

    1981-10-01

    A remote system for shearing spent nuclear fuel assemblies is being designed under the direction of the Consolidated Fuel Reprocessing Program (CFRP). The design incorporates a dual hydraulic fluid actuation system in which only one of the fluids, a high-water-base (HWBF), would be exposed to ionizing radiation and radioactive contamination. A commercially available synthetic, solution-type HWBF was selected as the reference. Single-sample irradiation experiments were conducted with three commercial fluids over a range of irradiation exposures. The physical and chemical properties of the irradiated HWBFs were analyzed and compared with unirradiated samples. In general, the results of the analyses showed increasing degradation of fluid properties with increasing irradiation dose. The results also indicated that a synthetic solution-type HWBF would perform satisfactorily in the remote shear system where irradiation doses up to 10/sup 6/ Gy (10/sup 8/ rad) are expected.

  10. Freely-migrating-defect production during irradiation at elevated temperatures

    Science.gov (United States)

    Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.

    1988-12-01

    Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.

  11. Deep level centers in electron-irradiated silicon crystals doped with copper at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    The effect of bombardment with energetic particles on the deep-level spectrum of copper-contaminated silicon wafers is studied by space charge spectroscopy methods. The p-type FZ-Si wafers were doped with copper in the temperature range of 645-750 C and then irradiated with the 10{sup 15} cm{sup -2} fluence of 5 MeV electrons at room temperature. Only the mobile Cu{sub i} species and the Cu{sub PL} centers are detected in significant concentrations in the non-irradiated Cu-doped wafers. The properties of the irradiated samples are found to qualitatively depend on the copper in-diffusion temperature T{sub diff}. For T{sub diff} > 700 C, the irradiation partially reduces the Cu{sub i} concentration and introduces additional Cu{sub PL} centers while no standard radiation defects are detected. If T{sub diff} was below ∝700 C, the irradiation totally removes the mobile Cu{sub i} species. Instead, the standard radiation defects and their complexes with copper appear in the deep-level spectrum. A model for the defects reaction scheme during the irradiation is derived and discussed. DLTS spectrum of the Cu-contaminated and then irradiated silicon qualitatively depends on the copper in-diffusion temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Colon mucosal cells after high-dose fractional irradiation

    International Nuclear Information System (INIS)

    Zorc-Pleskovic, R.; Vraspir-Porenta, O.; Petrovic, D.; Zorc, M.; Pleskovic, L.

    2000-01-01

    The aim of this study was to investigate histological and stereological changes in cryptal enterocytes, mucosal lymphocytes and mast cells 10 days after irradiation. For experimental model, 24 Beagle dogs 1-2 years old were used. Twelve dogs were irradiated 20 days with 32 Gy over the whole pelvis and tail. Another 12 dogs represented a control group. For the detection of apoptosis, the TUNEL technique was used. Histological and stereological analyses were performed using a Wild sampling microscope M 1000. In the irradiated group, volume density (P < 0.01), numerical density (P < 0.05) and average volume of lymphocytes (P < 0.001) were significantly lower than in the nonirradiated group. Numerical areal density of mast cells in the irradiated group was also significantly lower (P < 0.05). Volume density (P < 0.001) and average volume of mast cells (P < 0.001) were significantly higher in the irradiated group. The results of our experiments show that irradiation causes injury and loss of lymphocytes and mast cells in the colon mucosa. Apoptosis was detected in enterocytes and lymphocytes in the irradiated group and in nonirradiated group in equal numbers (2.5 ± 0.3 vs. 2.3 ± 0.3; ns.), suggesting that 10 days after high-dose irradiation, the cell loss is not due to apoptosis. (author)

  13. New diffusion mechanism for high temperature diffusion in solids

    International Nuclear Information System (INIS)

    Doan, N.V.; Adda, Y.

    1986-09-01

    A new atomic transport mechanism in solids at high temperatures has been discovered by Molecular Dynamics computer simulation. It can be described as a ring sequence of atomic replacements induced by unstable Frenkel pairs. This transport process takes place without stable defects, the atomic migration occurring indeed by simultaneous creation and migration of unstable defects. Starting from the analysis of this mechanism in different solids at high temperature (CaF 2 , Na, Ar) and in irradiated copper by subthreshold collisions, we discuss the role of this mechanism on various diffusion controlled phenomena and also on the atomic processes of defect creation

  14. Development of a Low Temperature Irradiation Capsule for Research Reactor Materials

    International Nuclear Information System (INIS)

    Choo, Kee Nam; Cho, Man Soon; Lee, Cheol Yong; Yang, Sung Woo; Shin, Yoon Taek; Park, Seng Jae; Kang, Suk Hoon; Kang, Young Hwan; Park, Sang Jun

    2013-01-01

    A new capsule design was prepared and tested at HANARO for a neutron irradiation of core materials of research reactors as a part of the research reactor development project. Irradiation testing of the materials including graphite, beryllium, and zircaloy-4 that are supposed to be used as core materials in research reactors was required for irradiation at up to 8 reactor operation cycles at low temperature (<100 .deg. C). Therefore, three instrumented capsules were designed and fabricated for an evaluation of the neutron irradiation properties of the core materials (Graphite, Be, Zircaloy-4) of research reactors. The capsules were first designed and fabricated to irradiate materials at low temperature (<100 .deg. C) for a long cycle of 8 irradiation cycles at HANARO. Therefore, the safety of the new designed capsule should be fully checked before irradiation testing. Out-pile performance and endurance testing before HANARO irradiation testing was performed using a capsule under a 110% condition of a reactor coolant flow amount. The structural integrity of the capsule was analyzed in terms of a vibration-induced fatigue cracking of a rod tip of the capsule that is suspected to be the most vulnerable part of a capsule. Another two capsules were irradiated at HANARO for 4 cycles, and one capsule was transferred to a hot cell to examine the integrity of the rod tip of the capsule. After confirming the soundness of the 4 cycle-irradiated capsule, the remaining capsule was irradiated at up to 8 cycles at HANARO. Based on the structural integrity analysis of the capsule, an improved capsule design will be suggested for a longer irradiation test at HANARO

  15. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  16. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  17. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  18. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    International Nuclear Information System (INIS)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan; Li, Guo-Hua; Chen, Xiao-Ping; Zheng, Jian-Hui

    2013-01-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe

  19. Ultraviolet irradiation and gradient temperature assisted autolysis for protein recovery from shrimp head waste.

    Science.gov (United States)

    Cao, Wenhong; Tan, Caiyun; Zhan, Xiaojian; Li, Huiyi; Zhang, Chaohua

    2014-12-01

    A novel autolysis method using ultraviolet (UV) irradiation and gradient temperature was investigated to efficiently recover proteins from the head of the shrimp Penaeus vannamei. The proteolytic activity of shrimp head subjected to 30W UV irradiation for 20 min was increased by 62%, compared with that of untreated samples. After irradiation, the enzymes remained active across a wide range of temperatures (45-60°C) and pH (7-10). An orthogonal design was used to optimize autolysis condition. After 5h autolysis, protein recovery from the UV-heat treated samples was up to 92.1%. These results indicate the potential of using UV irradiation in combination with gradient temperatures to improve recovery of proteins from shrimp head waste. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Effect of incubation temperatures for inactivation of Escherichia coli and related bacteria after gamma-irradiation

    International Nuclear Information System (INIS)

    Nakauma, Makoto; Ito, Hitoshi; Tada, Mikiro

    2000-01-01

    Irradiated fresh meat or fishery products have been expected to store and distribute under refrigerated temperature below 10degC. From previous reports, growth of coliform bacteria in these products were suppressed by gamma-irradiation below expected doses obtained at 30-37degC. This research was performed to observe the irradiation effect on the inactivation of Escherichia coli and related bacteria at different incubation temperatures of 10-40degC on plate agar after irradiation. From this study, D10 values of all strains decreased 17- 45% at 10degC compared with maximum D10 values at 30- 40degC. Radiation sensitivities were related to the ability to grow at low temperatures in which psychrotrophic type E. coli A4-1 indicated most sensitive to radiation, next of Salmonella enteritidis YK-2, E. coli S2, B4 whereas most resistant at Enterobacter agglomerans K3-1. (author)

  1. Effect of incubation temperatures for inactivation of Escherichia coli and related bacteria after gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakauma, Makoto; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tada, Mikiro [Okayama Univ. (Japan). Faculty of Agriculture

    2000-09-01

    Irradiated fresh meat or fishery products have been expected to store and distribute under refrigerated temperature below 10degC. From previous reports, growth of coliform bacteria in these products were suppressed by gamma-irradiation below expected doses obtained at 30-37degC. This research was performed to observe the irradiation effect on the inactivation of Escherichia coli and related bacteria at different incubation temperatures of 10-40degC on plate agar after irradiation. From this study, D10 values of all strains decreased 17- 45% at 10degC compared with maximum D10 values at 30- 40degC. Radiation sensitivities were related to the ability to grow at low temperatures in which psychrotrophic type E. coli A4-1 indicated most sensitive to radiation, next of Salmonella enteritidis YK-2, E. coli S2, B4 whereas most resistant at Enterobacter agglomerans K3-1. (author)

  2. Experimental study on the temperature conditions for rod and plane irradiators with 60Co source

    International Nuclear Information System (INIS)

    Stepanov, G.D.; Osipov, V.B.; Sarapkin, I.I.; Chizhikov, V.A.

    1977-01-01

    The formation of a temperature field of rod and flat 60 Co irradiators has been studied. The experiments are carried out on a gamma installation. It has been shown that for a stationary operating mode the maximum cassette temperature (when the cassette contains a 60 Co source) is 148 deg C at maximum permissible temperature of 250 deg C. When ampoules containing the sources with maximum activity (640 Ci) are loaded into cassettes they have the temperature of 184 deg C. The reciprocal screening influence of rod irradiators gives the temperature rise of 8-10 deg in each element. The irradiators under study reach a stationary thermal operating mode in 150 min after the sources are elevated to the operating position

  3. Prediction of the brittle-ductile transition temperature shift, from irradiation experiments obtained in France

    International Nuclear Information System (INIS)

    Miannay, D.; Dussarte, D.; Soulat, P.

    1988-10-01

    In integrety - evaluation studies of the nuclear-reactor vessel, the toughness of component materials is given by a reference curve, which represents the lowest level of the toughness possible values, as a function of the temperature. Its temperature-scale position is given by the null ductility temperature. In non-irradiated conditions, the temperature of the vessel materials is experimentally obtained. To take into account the irradiation effect, a shift of this temperature, given by the correlations where chemical composition and neutronic dose are included, is considered. Up to date correlations, settled for materials brittler than those applied in the French program, are called in question again. A correlation between results obtained in France since 1973, for base metals and welded joints is given. The behavior of CHOOZ vessel, under irradiation conditions, is discussed [fr

  4. Effects of High-Energy Proton-Beam Irradiation on the Magnetic Properties of ZnO Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Kue; Kwon, Hyeok-Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are still many problem for the application due to its unstable magnetism state and too small magnetization values. Here we investigate magnetic properties of ZnO nanorods after high-energy proton-beam irradiation. Electron spin resonance (ESR) measurement on temperature was made to identify intrinsic or extrinsic defects as well as to observe magnetic ordering after irradiation. Understanding the effects of proton beam irradiation on magnetic behavior may help to shed light on the mechanism responsible for the magnetic ordering in this material. We have investigated proton-beam irradiation effects on the magnetic properties of ZnO nanorods. After irradiation a broad ESR line is observed, indicating emergence of ferromagnetic ordering up to room temperature. In M-H curve, stronger coercive field is observed after irradiation.

  5. Programmed temperature control of capsule in irradiation test with personal computer at JMTR

    International Nuclear Information System (INIS)

    Saito, H.; Uramoto, T.; Fukushima, M.; Obata, M.; Suzuki, S.; Nakazaki, C.; Tanaka, I.

    1992-01-01

    The capsule irradiation facility is one of various equipments employed at the Japan Materials Testing Reactor (JMTR). The capsule facility has been used in irradiation tests of both nuclear fuels and materials. The capsule to be irradiated consists of the specimen, the outer tube and inner tube with a annular space between them. The temperature of the specimen is controlled by varying the degree of pressure (below the atmospheric pressure) of He gas in the annular space (vacuum-controlled). Beside this, in another system the temperature of the specimen is controlled with electric heaters mounted around the specimen (heater-controlled). The use of personal computer in the capsule facility has led to the development of a versatile temperature control system at the JMTR. Features of this newly-developed temperature control system lie in the following: the temperature control mode for a operation period can be preset prior to the operation; and the vacuum-controlled irradiation facility can be used in cooperation with the heater-controlled. The introduction of personal computer has brought in automatic heat-up and cool-down operations of the capsule, setting aside the hand-operated jobs which had been conducted by the operators. As a result of this, the various requirements seeking a higher accuracy and efficiency in the irradiation can be met by fully exploiting the capabilities incorporated into the facility which allow the cyclic or delicate changes in the temperature. This paper deals with a capsule temperature control system with personal computer. (author)

  6. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    Science.gov (United States)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  7. High temperature mass spectrometry for thermodynamic study of radioactive materials

    International Nuclear Information System (INIS)

    Pattoret, Andre; Philippot, Joseph; Pesme, Olivier.

    1983-01-01

    Thermodynamic properties and evaporation kinetics are essential data to evaluate the nuclear fuel behaviour under accidental conditions. High temperature mass spectrometry appears as a valuable method to set up a such assessment. However, because of size, complexity and radioactivity of the irradiated samples, important improvements of the classical method are required. The device built in CEN/FAR to overcome these problems is described; performances and possible applications out of the nuclear safety field are presented [fr

  8. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  9. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  10. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  11. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  12. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  13. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  14. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  15. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  16. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  17. Defects in low temperature electron irradiated InP

    International Nuclear Information System (INIS)

    Suski, J.; Bourgoin, J.

    1984-01-01

    n and p-InP has been irradiated at 25K with 1MeV electrons and the created defects were studied by deep level transient spectroscopy (DLTS) in the range 25K-400K. In n-InP, four traps are directly observed, with low introduction rates except for one. They anneal in three stages, and four new centers of still lower concentration appear after 70 0 C heat treatment. In p-InP, two dominant traps stable up to approx.= 400K with introduction rates close to the theoretical ones, which might be primary defects are found, while another one is clearly a secondary defect likely associated to Zn dopant. At least two of the low concentration irradiation induced electron traps, created between 25K and 100K are also secondary defects, which implies a mobility of some primary defects down to 100K at least. (author)

  18. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  19. The effect of irradiation temperatures between ambient and 80 deg. C on the response of alanine dosimeters

    DEFF Research Database (Denmark)

    Sharpe, P.H.G.; Miller, Arne; Sephton, J.P.

    2009-01-01

    dosimeters at temperatures up to 80 °C and doses up to 70 kGy. Data have been obtained for both 60Co and electron beam irradiations and the effect of temperature on the stability of the radiation-induced signal has also been investigated. At temperatures above 50 °C the irradiation temperature coefficient...

  20. Electron migration in hydrated biopolymers following pulsed irradiation at low temperatures

    International Nuclear Information System (INIS)

    Lith, D. van.

    1987-01-01

    Charge migration in biopolymer-water mixtures and the effect of water concentration on the charge migration is investigated by measuring the electrical conductivity and the light emission with the pulse radiolysis technique. A preliminary account of the microwave conductivity observed in hydrated DNA and collagen at low temperature after pulsed irradiation is given. The results show that when hydrated DNA or collagen are irradiated at low temperatures, conductivity transients with microsecond lifetime are observed. It is tentatively concluded that these transients are due to the highly mobile dry electron. The effect of water concentration on mobility, lifetime and migration distance of the electron is discussed. The effect of additives to the hydrated systems on the behaviour of the electron is described. It is shown that the observed effects of the additives confirm the earlier conclusions that the dry electron is the species responsible for the radiation induced conductivity. The water concentration in the DNA- and collagen-systems could be varied only between zero and approximately fifty percent, due to inhomogeneities which occur at higher water concentrations. Experiments on gelatin, a biopolymer which forms homogeneous samples with levels of hydration varying from almost zero to 100% water (ice) are described. Both the radiation induced and the dark microwave conductivity have been studied as a function of water content. Preliminary results of a study of the light emission from pulse irradiated DNA-water mixtures are reported in an attempt to establish a relation between the observed electron migration and the formation of excited states via charge neutralization. (Auth.)

  1. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  2. Postmastectomy irradiation in high-risk breast cancer patients

    International Nuclear Information System (INIS)

    Overgaard, M.; Juul Christensen, J.; Johansen, H.; Nybo-Rasmussen, A.; Brincker, H.; Kooy, P. van der; Frederiksen, P.L.; Laursen, F.; Panduro, J.; Soerensen, N.E.; Gadeberg, C.C.; Hjelm-Hansen, M.; Overgaard, J.; West Andersen, K.; Zedeler, K.

    1988-01-01

    All pre- and postmenopausal high-risk breast cancer patients in the protocols DBCG 77 of the Danish Breast Cancer Cooperative Group received postmastectomy irradiation before randomization to either adjuvant systemic therapy or no such treatment. The actuarial loco-regional recurrence rate at 9 years was 6-17%, with the lowest rate in patients who also received additional adjuvant chemotherapy or tamoxifen. In a subsequent study (DBCG 82) the role of postmastectomy irradiation together with systemic treatment was evaluated in high-risk patients. Pre- and menopausal patients were randomized to postmastectomy irradiation+CMF (cyclophosphamide, methotrexate, 5-fluorouracil), CMF alone or CMF+TAM (tamoxifen). Postmenopausal patients were randomized to postmastectomy irradiation+TAM, TAM or CMF+TAM. At 4 years the loco-regional recurrence rate was significantly lower in the irradiated patients (5-7% vs. 23-33%). Further, disease-free survival was significantly improved in both pre- and postmenopausal irradiated patients compared with those who had only systemic treatment. At present, there are no significant differences between survival in the treatment groups. Thus, adjuvant systemic treatment alone (chemotherapy and/or tamoxifen) did not prevent loco-regional recurrences in high-risk patients after mastectomy and axillary lymph node sampling. However, a longer observation time is necessary to evaluate the consequence of primary optimal loco-regional tumour control in high-risk breast cancer patients with respect to survival. (orig.)

  3. Effect of blending temperature on the mechanical properties of PVC/ENR blend upon irradiation

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    Poly (vinyl chloride) / epoxidized natural rubber blends were prepared with a Brabender plasticorder at 140, 150, 160, 170 and 180 degree C mixing temperatures. They were mixed at 50 rpm rotor speed for 10 min. The blends were irradiated with doses ranging from 0-200 kGy. Changes in tensile strength, modulus at 100% elongation, gel fraction and damping properties (tan δ) of the blends with increasing mixing temperatures and irradiation doses were investigated. In general, it was observed that the mixing temperature is important in maximizing the positive effect of irradiation. Results revealed that a readily miscible blend enjoy maximum benefit from irradiation meanwhile irradiation impart miscibility to a partially miscible PVC/ENR blend. The enhancement in blend properties is believed to be attributed by the irradiation-induced crosslinking along with irradiation-induced interaction between the polymers. The radiation-induced degradation found to be prominent at higher doses for blend that has undergone excessive thermal degradation. However evidence did not reveal the specific nature of radiation-induced reaction responsible for the improved interactions of the blends. (author)

  4. Batch scale storage of sprouting foods by irradiation combined with natural low temperature; pt. 1

    International Nuclear Information System (INIS)

    Cho, H.O.; Kwon, J.H.; Yang, H.S.; Byun, M.W.; Lee, C.H.

    1982-01-01

    In order to develop the commercial storage method of potatoes by irradiation combined with natural low temperature, two varieties of potatoes, Irish cobbler and Shimabara were stored at natural low temperature storage room (450x650x250cm; year round temperature change, 2-17 degC; 70-85% R.H.) on a batch scale followed by irradiation with optimum dose level. Irish cobbler and Shimabara were 100% sprouted after 3 months storage in control, whereas in 15Krad irradiated group, sprouting was completely inhibited at Irish cobbler for 9 months storage, and at Shimabara for 12 months. The extent of loss due to rot attack after 9 months storage was 6% in control, 6-8% in 10-15Krad irradiated group at Irish cobbler and weight loss was 16.5% in control, 5.1-5.6% in irradiated group, whereas rotting rate of Shimabara after 12 months storage was 100% in control, 15% in irradiated group and the weight loss of its was 12.6% in control, 7.3-7.4% in irradiated group. The moisture content in whole storage period of two varieties were 72-82% without remarkable changes. The total sugar and ascorbic acid contents were slightly decreased according to the dose increase and elapse of storage period, whereas reducing sugar content was increased. Irish cobbler was 90% markrtable after 9 months storage and 85% in Shimabara after 12 months storage. (Author)

  5. Thermal analysis on the specimens for low irradiation temperature below 100degC in the HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Kim, Bong-Goo; Lee, Byung-Chul; Kim, Tae-Kyu [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    A capsule has been used for an irradiation test of various nuclear materials in the research reactor, HANARO. As a part of the research reactor development project with a plate type fuel, the irradiation tests of beryllium, zircaloy-4 and graphite materials using the capsule will be carried out to obtain the mechanical characteristics at low temperatures below 100degC with 30 MW reactor power. In this study, in order to obtain the preliminary design data of the capsule with various specimens and the temperature of specimens, a thermal analysis is performed by using an ANSYS program. The finite element models for the cross section of the capsule containing the specimen are generated, and the temperatures are evaluated. The analysis results show that most specimens meet the irradiation target temperature. However, some canned graphite specimens have a slightly high temperature, and the gap size has a significant effect on the specimen temperature. Based on those results a detailed design and analysis of the capsule will be completed this year. (author)

  6. Quantitative analysis of the gas evolved from high polymers in γ-irradiation

    International Nuclear Information System (INIS)

    Arakawa, Kazuo; Hayakawa, Naohiro; Kuriyama, Isamu

    1977-09-01

    Polymers are used as insulator of cables in nuclear-reactor radiation field. To estimate the evolution of gases when irradiated, total gas yield and composition were measured for variety of polymers. Samples were irradiated at room temperature in vacuo with 60 Co-γ rays. For ethylene propylene rubber (EPR), irradiation in high-temperature steam was also made. Composition of the gas was determined with a mass spectrometer. G-value of the total gaseous product was 3.2 to 3.4 for low-density polyethylene (LDPE) and 2.5 to 2.7 for high-density polyethylene (HDPE). In both polyethylene, hydrogen gas predominated. When an anti-radiation oil was added to LDPE, gas evolution was reduced drastically. For chloro-sulfonated PE (Hypalon), SO 2 gas was one of the major products even when the polymer contained only about 1% of sulfonyl groups. G-value of the total gas for EPR irradiated in high-temperature steam was 3.1, regardless of the temperature. (auth.)

  7. An exponential model equation for thiamin loss in irradiated ground pork as a function of dose and temperature of irradiation

    Science.gov (United States)

    Fox, J. B.; Thayer, D. W.; Phillips, J. G.

    The effect of low dose γ-irradiation on the thiamin content of ground pork was studied in the range of 0-14 kGy at 2°C and at radiation doses from 0.5 to 7 kGy at temperatures -20, 10, 0, 10 and 20°C. The detailed study at 2°C showed that loss of thiamin was exponential down to 0kGy. An exponential expression was derived for the effect of radiation dose and temperature of irradiation on thiamin loss, and compared with a previously derived general linear expression. Both models were accurate depictions of the data, but the exponential expression showed a significant decrease in the rate of loss between 0 and -10°C. This is the range over which water in meat freezes, the decrease being due to the immobolization of reactive radiolytic products of water in ice crystals.

  8. Pre-Irradiation Chemotherapy in High Risk Medulloblastoma

    International Nuclear Information System (INIS)

    Abd-El-Aal, H.

    2006-01-01

    Rationale: The present study evaluates the effect of pre-irradiation chemotherapy in pediatric patients with high risk medulloblastoma. Twenty-four (24) pediatric patients attended the pediatric unit of Kasr-EI-Aini Center of Radiation Oncology and Nuclear Medicine (NEMROCK) from January 2000 to January 2003. Patients and Methods: Our patients were 13 boys and II girls aged 3-12 years with a median of 6.5 years. According to Chang staging system 6 cases had T2, 14 cases had T3 A and 4 cases had T3 B, 20 cases were M0, 3 cases were M I and I case was M2. All patients were treated by initial surgery, 2 cycles of pre-irradiation chemotherapy followed by craniospinal radiation then by 4 cycles of post-radiation chemotherapy. Results: Fifteen out of the 20 patients with M0 had objective response (10CR + 5PR) and no one had disease progression after pre-irradiation chemotherapy. Among 4 patients with M0 disease, 2 patients had PR and 2 had S.D. There was no disease progression among patients who received pre-irradiation chemotherapy. The 3-year overall survival and 3-year progression-free survival; (PFS) were 50% and 51 %, respectively, Myelosuppression was the main toxic effect observed during pre-irradiation chemotherapy; however, there was no delay or interruption of craniospinal irradiation. Conclusion: Pre-irradiation chemotherapy is effective in high risk medulloblastoma and is associated with acceptable side effects. The delay in craniospinal irradiation (CSI) for about 5 weeks to receive 2 courses of chemotherapy will not significantly increase disease progression. Multiple cycles of post-irradiation chemotherapy can be given safely after C51. A larger number of patients and longer follow-up is needed to confirm the results

  9. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  10. Characteristics of heat shrinkable high density polyethylene crosslinked by γ-irradiation

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang

    2001-01-01

    The effects of γ-irradiation on the crosslinking of high density polyethylene (HDPE) was investigated for the purpose of obtaining a suitable formulation for heat shrinkable materials. In this study the HDPE specimens were prepared by blending with cross linking agents and pressed into a 0.2 mm sheet at 180 .deg. C. γ-irradiation was conducted at 40 to 100 kGy in nitrogen. The heat shrinkable property and thermal mechanical property of the HDPE sheets have been investigated. It was found that the degree of crosslinking of the irradiated HDPE samples were increased with irradiation dose. Compared with the HDPE containing triallylisocyanurate, the HDPE containing trimethlol propane triacrylate shows a slight increase in crosslinking density. The heat transformation and dimension change of HDPE decreased with increasing radiation dose. The heat shrinkage of the samples increased with increasing annealing temperatures. The thermal resistance of HDPE increased upon the crosslinking of HDPE

  11. UV irradiation analysis of complementation between, and replication of, RNA-negative temperature-sensitivie mutants of Newcastle disease virus

    International Nuclear Information System (INIS)

    Peeples, M.E.; Bratt, M.A.

    1982-01-01

    Random uv irradiation-induced lesions destroy the infectivity of Newcastle disease virus (NDV) by blocking downstream transcription from the single viral promoter. The nucleocapsid-associated polypeptides most likely to be involved in RNA synthesis are located at the extreme ends of the genome: NP and P are promoter proximal genes, and L is the most distal gene. We attempted to order the two temperature-sensitive (ts) RNA-negative (RNA-) mutant groups of NDV by determining the uv target sizes for the complementing abilities of mutants A1 and E1. After uv irradiation, E1 was unable to complement A1, a result compatible with the A mutation lying in the L gene. In contrast, after uv irradiation A1 was able to complement E1 for both virus production and viral protein synthesis, with a target size most consistent with the E mutation lying in the P gene. UV-irradiated virus was unable to replicate as indicated by its absence in the yields of multiply infected cells, either as infectious virus or as particles with complementing activity. After irradiation, ts mutant B1ΔP, with a non-ts mutation affecting the electrophoretic mobility of the P protein, complemented E1 in a manner similar to A1, but it did not amplify the expression of ΔP in infected cells. This too is consistent with irradiated virus being unable to replicate despite the presence of the components needed for replication of E1. At high uv doses, A1 was able to complement E1 in a different, uv-resistant manner, probably by direct donation of input polypeptides. Multiplicity reactivation has previously been observed at high-multiplicity infection by uv-irradiated paramyxoviruses. In this case, virions which are noninfectious because they lack a protein component may be activated by a protein from irradiated virions

  12. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  13. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  14. Displacement rate and temperature equivalence in stochastic cluster dynamics simulations of irradiated pure α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Aaron [Sandia National Laboratories, Albuquerque, 87185 NM (United States); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, 30332 GA (United States); Muntifering, Brittany [Sandia National Laboratories, Albuquerque, 87185 NM (United States); Northwestern University, Chicago, 60208 IL (United States); Dingreville, Rémi; Hattar, Khalid [Sandia National Laboratories, Albuquerque, 87185 NM (United States); Capolungo, Laurent, E-mail: laurent@lanl.gov [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, 30332 GA (United States); Material Science and Technology Division, MST-8, Los Alamos National Laboratory, Los Alamos, 87545 NM (United States)

    2016-11-15

    Charged particle irradiation is a frequently used experimental tool to study damage accumulation in metals expected during neutron irradiation. Understanding the correspondence between displacement rate and temperature during such studies is one of several factors that must be taken into account in order to design experiments that produce equivalent damage accumulation to neutron damage conditions. In this study, spatially resolved stochastic cluster dynamics (SRSCD) is used to simulate damage evolution in α-Fe and find displacement rate/temperature pairs under ‘target’ and ‘proxy’ conditions for which the local distribution of vacancies and vacancy clusters is the same as a function of displacement damage. The SRSCD methodology is chosen for this study due to its computational efficiency and ability to simulate damage accumulation in spatially inhomogeneous materials such as thin films. Results are presented for Frenkel pair irradiation and displacement cascade damage in thin films and bulk α-Fe. Holding all other material and irradiation conditions constant, temperature adjustments are shown to successfully make up for changes in displacement rate such that defect concentrations and cluster sizes remain relatively constant. The methodology presented in this study allows for a first-order prediction of the temperature at which ion irradiation experiments (‘proxy’ conditions) should take place in order to approximate neutron irradiation (‘target’ conditions).

  15. Irradiation and annealing effects of deuteron irradiated NbTi and V3Ga multifilamentary composite wires at low temperature

    International Nuclear Information System (INIS)

    Seibt, E.

    1975-01-01

    To study the effects of low-temperature irradiation on technological type II-superconductors, NbTi and V 3 Ga multifilamentary composite wires, the critical current I/sub c/ and transition temperature T/sub c/ were measured before and after irradiation with 50-MeV deuterons at 10 and 15 0 K, respectively. While the irradiation effects on I/sub c/ and T/sub c/ of NbTi are substantially unaffected, the V 3 Ga wires undergo a reduction in I/sub c/ of about 50 percent and T/sub c/ decreases from 14.7 +- 0.1 0 K to 12.3 +- 0.1 0 K at a total deuteron flux of 2.6 x 10 17 cm -2 . Annealing experiments at room temperature and 100 0 C show only a small recovery of the superconducting properties up to 15 percent. The field dependence of the volume pinning force densities P/sub V/ was determined and the results are shown to be consistent with a qualitative dynamic pinning model

  16. Efficiency of radical yield in alkylthymine and alkyluracil by high-LET irradiation

    International Nuclear Information System (INIS)

    Nakagawa, Seiko; Ohta, Nobuaki; Murakami, Takeshi

    2010-01-01

    Penthylthymines and hexyl-, nonyl-, and decyl- uracils were irradiated by C-ion (3.5 GeV) and γ-ray at 77 K. ESR spectra were measured to study radiation induced radicals in the temperature range from 108 to 273 K. A dihydro-5-yl (5-yl) radical formed by H addition to C6 carbon and a secondary alkyl radical by C-H bond fission at the second carbon from the end of the alkyl group were produced at 108 K. A dihydrouracil-6-yl (6-yl) radical formed by H addition to C5 carbon increased with increasing temperature for alkyluracils. The spectral feature obtained by C-ion irradiation was coincident with that by γ-irradiation. Total radical yields increased by alkylation and with increasing the length of alkyl chain. Yields of both 5-yl and secondary alkyl radicals irradiated by C-ion were less than those by γ-ray for penthylthymines and hexyluracil. On the contrary, radical yields were almost the same between ion and γ-ray irradiation for nonyl- and decyl-uracil. Mechanism of radical formation and effect of high-LET irradiation were discussed.

  17. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    International Nuclear Information System (INIS)

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  18. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  19. The Trends In Temperature And Solar Irradiance For Zaria, North

    African Journals Online (AJOL)

    Dogara et al.

    ... when the temperature rises, the alcohol expands past the index, which stays in position; so that at the end of the day, the minimum temperature corresponds to the upper or right side of the index (Landis, 2009). Figure 2: A Typical Outdoor Minima-Maxima Thermometer. Principle of Operation. The ideal gas law states that.

  20. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    Science.gov (United States)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  1. Change in physical properties of high density isotropic graphites irradiated in the ''JOYO'' fast reactor

    International Nuclear Information System (INIS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-01-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor ''JOYO'' to fluences from 2.11 to 2.86x10 26 n/m 2 (E>0.1 MeV) at temperatures from 549 to 597 C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens. (orig.)

  2. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  3. Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Gilbert, E.R.

    1976-04-01

    Irradiation creep studies with pressurized tubes of 20 percent cold worked Type 316 stainless steel were conducted in EBR-2. Results showed that as atom displacements are extended above 5 dpa and temperatures are increased above 375 0 C, the irradiation induced creep rate increases with both increasing atom displacements and increasing temperature. The stress exponent for irradiation induced creep remained near unity. Irradiation-induced effective creep strains up to 1.8 percent were observed without specimen failure. 13 figures

  4. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  5. Results and future plans for the innovative basic research on high temperature engineering

    International Nuclear Information System (INIS)

    2001-05-01

    The High Temperature Engineering Test Reactor (HTTR) is under the rise-to-power stage at the Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). This reactor is aimed not only at establishment of the infrastructural technology on high temperature gas-cooled reactor and its upgrading, but also at promotion of the innovative basic research on high temperature engineering. The research is a series of innovative high-temperature irradiation studies, making the best use of the characteristic of the HTTR that it provides a very wide irradiation space at high temperatures. The JAERI has been conducting preliminary tests of the innovative research since 1994, in collaboration with universities and other research institutes, in the fields of 1) new materials development, 2) high temperature radiation chemistry and fusion-related research, and 3) high temperature irradiation techniques and other nuclear research. The HTTR Utilization Research Committee has been examining the results and methodology of the preliminary tests and the future plans, as well as examining the preparatory arrangements of facilities for the HTTR irradiation and post-irradiation examinations. This report presents a summary of results of the preliminary tests and preparatory arrangements for about seven years, together with an outline of the future plans. (author)

  6. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: