WorldWideScience

Sample records for high temperature drying

  1. Apparatus for distilling dry solids. [high temperature

    Constant, M

    1873-09-09

    In the proposed system under the action of high temperature, the vapors commence to form, and on account of their density go toward the lower part of the retort, where they take the place of air; then they find the exit prepared for them and run out literally by their weight as they are formed and enter the coil where all that can are completely condensed into oil.

  2. High-temperature treatment for efficient drying of bread rye and reduction of fungal contaminants

    Kristensen, E.F.; Elmholt, S.; Thrane, Ulf

    2005-01-01

    on the grain. The aim of this study was to establish a drying regime that kills fungal propagules on rye without reducing its quality for baking. Special attention was paid to some important mycotoxin-producing species. As drying temperatures and retention time in the drum are essential, the drum drier must...... the grain was properly stored afterwards. At the same time a high quality for baking was maintained. The highest baking quality in rye was obtained at grain temperatures of about 62 degrees C and only at grain temperatures above 70 degrees C visual quality changes were detected. (c) 2005 Silsoe Research...

  3. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  4. High-temperature drying of 7/4 yellow-poplar flitches for S-D-R studs

    R. Sidney Boone; Robert R. Maeglin

    1980-01-01

    Yellow-poplar was dried as 7/4 flitches at high temperatures and subsequently ripped into studs to meet National Grading Rule Standards for STUD grade. The effects of growth stresses in these flitches from smaller logs appear to be minimized by this process. Dry bulb temperatures from 235° to 295° F were explored in five drying trials. Best results were by drying for...

  5. Crispy banana obtained by the combination of a high temperature and short time drying stage and a drying process

    K. Hofsetz

    2005-06-01

    Full Text Available The effect of the high temperature and short time (HTST drying stage was combined with an air drying process to produce crispness in bananas. The fruit was dehydrated in an air drier for five minutes at 70°C and then immediately set at a HTST stage (130, 140, 150°C and 9, 12, 15 minutes and then at 70°C until water activity (a w was around 0.300. Crispness was evaluated as a function of water activity, using sensory and texture analyses. Drying kinetics was evaluated using the empirical Lewis model. Crispy banana was obtained at 140°C-12min and 150°C-15min in the HTST stage, with a w = 0.345 and a w = 0.363, respectively. Analysis of the k parameter (Lewis model suggests that the initial moisture content of the samples effects this parameter, overcoming the HTST effect. Results showed a relationship between sensory crispness, instrumental texture and the HTST stage.

  6. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  7. Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane

    Jastrząb, Krzysztof

    2018-01-01

    One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.

  8. High-temperature treatment for efficient drying of bread rye and reduction of fungal contaminants

    Kristensen, E.F.; Elmholt, S.; Thrane, Ulf

    2005-01-01

    time of 10(.)5 min and a temperature of 64 degrees C killed 99% of the yeast propagules and 98% of the filamentous fungi. Moisture contents were reduced to about 12%. A similar drying regime in a supplementary trial reduced the number of P. verrucosum contaminated kernels from more than 70% to 12...

  9. HEAT TREATMENTS OF HIGH TEMPERATURE DRIED NORWAY SPRUCE BOARDS: SACCHARIDES AND FURFURALS IN SAPWOOD SURFACES

    Olov Karlsson,

    2012-02-01

    Full Text Available Carbohydrates that migrate to wood surfaces in sapwood during drying might influence properties such as mould susceptibility and colour. Sugars on the surface of Norway spruce boards during various heat treatments were studied. Samples (350mmx125mmx25mm were double-stacked, facing sapwood-side outwards, and dried at 110oC to a target moisture content (MC of 40%. Dried sub-samples (80 mm x 125 mm x 25 mm were stacked in a similar way and further heated at 110oC and at 130oC for 12, 24, and 36 hours, respectively. Glucose, fructose, and sucrose as well as 5-hydroxymethylfurfural (HMF and furfural in the sapwood surface layer of treated wood were analysed using HPLC (RI- and UV-detectors. Carbohydrates degraded to a lower extent at 110oC than at 130oC. Furfural and to a larger extent HMF increased with treatment period and temperature. Heat treatment led to a decrease in lightness and hue of the sapwood surface of sub-samples, while chroma increased somewhat. Furthermore, considerably faster degradation (within a few minutes of the carbohydrates on the surface of the dried spruce boards was observed when single sub-samples were conductively hot pressed at 200oC. Treatment period and initial MC influenced the presence of the carbohydrates in wood surface as well as colour change (Eab of the hot pressed sub-samples.

  10. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  11. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  12. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman

    2017-11-01

    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. MODEL OF A PROCESS FOR DRYING Eucalyptus spp AT HIGH TEMPERATURES

    P. C. C. PINHEIRO

    1998-12-01

    Full Text Available A mathematical model of a process for drying of Eucalyptus spp is presented. This model was based on fundamental heat and mass transfer equations and it was numerically solved using a segregated finite volume method. Software in the FORTRAN language was developed to solve the mathematical model. The kinetic parameters of drying for Eucalyptus spp were experimentally obtained by isothermal thermogravimetry (TG. The theoretical results generated using the mathematical model were validated by experimental data.

  14. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  15. Enrichment of pasta with faba bean does not impact glycemic or insulin response but can enhance satiety feeling and digestive comfort when dried at very high temperature.

    Greffeuille, Valérie; Marsset-Baglieri, Agnès; Molinari, Nicolas; Cassan, Denis; Sutra, Thibault; Avignon, Antoine; Micard, Valérie

    2015-09-01

    Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.

  16. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities

    Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta

    2017-01-01

    source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show...... and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat...

  17. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  18. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.

    Shemwell, B; Levendis, Y A; Simons, G A

    2001-01-01

    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300

  19. High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria - interactions of irradiance, exposure duration and high temperature

    Gauslaa, Y.; Solhaug, K.A.

    1999-01-01

    High-light damage in air-dry thalli of Lobaria pulmonaria were measured in the laboratory as reductions in maximal PSII efficiency (FV/FM) after a 48 h recovery in a hydrated state at low light to account for permanent damage. Thalli treated with the lowest light dose (90 mol photons m −2 ) recovered normal FV/FM-values with increasing irradiances (400–700 nm) up to 1000 µmol photons m −2 s −1 . Doubling this dose lowered the threshold level for damage from 1000 to 320 µmol photons m −2 s −1 , and reduced FV/FM at 1000 µmol photons m −2 s −1 by more than 50%. A second doubling of the dose to 360 mol photons m −2 caused damage at 200 µmol photons m −2 s −1 , and a nearly complete cessation of PSII efficiency occurred at 1000 µmol photons m −2 s −1 . No reciprocity of irradiance and duration of illumination for PSII function was found. The measured time-dependent decrease in FV/FM was remarkably similar for the naturally coupled, but artificially separated, light and temperature factors. Therefore, the damage of high light on desiccated L. pulmonaria seemed to be an additive effect of high irradiance and high temperatures. Air-dry thalli were highly heat susceptible, being affected already at temperatures around 40 °C. Logging operations in forests are likely to raise the solar radiation at remaining lichen sites to destructive levels. (author)

  20. Accelerated conventional temperature drying of 30mm thick rubberwood lumber

    Suthon Srivaro1,

    2008-07-01

    Full Text Available Lumber drying is the most energy and time consuming process within the rubberwood lumber industry. The aim ofthis study was to develop an effective drying schedule for rubberwood lumber by accelerating the moisture movement out oflumber without degrading the lumber during drying. The study explored the effect of dry bulb temperature (60oC, 75oC and90oC, steaming at the beginning of drying, predrying of lumber prior to drying, and top loading of lumber on the dryingcharacteristics and lumber quality (bow, crook, twist, end splitting and color of 30mm thick rubberwood lumber under thetarget EMC at 4% and air velocity of 4m/s. Accelerated conventional temperature drying of lumber at 90oC reduced thedrying time by ~50% from 117 hours to 54 hours but increased the energy consumption by 22% with respect to the conventionaltemperature drying at 60oC. The average activation energy for drying was 26 kJ/mol. Drying temperature had verylittle effect on quality of lumber after drying (bow, crook, twist, end splitting and color. Steaming at the beginning of dryingand predrying of lumber prior to drying reduced and increased the percentage of end splitting, respectively. A top load ofabout 300 kg/m2 slightly decreased twist. Drying at higher temperatures produced more casehardening within the lumber butconditioning at higher temperatures was more effective in releasing the residual stress generated by drying. After conditioningat high temperatures prong of less than 0.5° casehardening was obtained.

  1. Tolerância de sementes de linhagens de milho à alta temperatura de secagem Tolerance of corn lines seeds to high drying temperature

    Solange Carvalho Barrios Roveri José

    2004-10-01

    Full Text Available Cultivares tolerantes a altas temperaturas de secagem proporcionam redução no tempo de secagem, uma etapa crítica no sistema de produção de sementes de milho (Zea mays L.. Nesta pesquisa, foi avaliada a tolerância à alta temperatura de secagem de sementes de linhagens de milho, por meio de testes de germinação e vigor. As sementes foram colhidas manualmente em espigas com teor de água em torno de 35% e secas artificialmente à 45 C até atingirem 11% de teor de água. Em seguida, foram submetidas aos testes de primeira contagem e contagem final de germinação, envelhecimento acelerado, teste de frio sem solo e de condutividade elétrica. Houve diferenças significativas nos valores de germinação e vigor de sementes das diferentes linhagens, sendo então classificadas em tolerantes e intolerantes. Pelos resultados, conclui-se que a sensibilidade das sementes à injúria por secagem à alta temperatura é dependente da linhagem.High drying temperature tolerant cultivars provide a reduction in the drying period, a critical phase of the corn seeds (Zea mays L. production system. In this research the tolerance of corn lines seeds to high drying temperature was evaluated by the germination and vigor tests. Seeds were handpicked in ears with water content around 35% and dried artificially at 45ºC up to 11% water content. Then, the seeds were submitted to the first and final germination counting tests, accelerated aging, cold test without soil and electrical conductivity. There were significant differences in the germination and vigor values of seeds from different lines, being classified into tolerant and intolerant. The results permitted to conclude that sensitivity of seeds to high drying temperature injury depends on the lines.

  2. Effect of drying temperatures on the proximate composition and ...

    Results of the proximate composition showed that the nutritional qualities of the dried eggs were retained during drying thus the drying temperature did not affect the quality of eggs. The moisture contents of the dried whole egg, dried egg yolk and dried egg white at the different temperatures range from 6.25 -7.23%, ...

  3. MODELS OF HOURLY DRY BULB TEMPERATURE AND ...

    Hourly meteorological data of both dry bulb temperature and relative humidity for 18 locations in Nigeria for the period 1995 to 2009 were analysed to obtain the mean monthly average and monthly hourly average of each of the two meteorological variables for each month for each location. The difference between the ...

  4. High strength air-dried aerogels

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  5. Uranium peroxide precipitate drying temperature relationships

    Rodgers, C.; Dyck, B., E-mail: chick_rodgers@cameco.com [Cameco Corp., Saskatoon, SK (Canada)

    2010-07-01

    Cameco Corporation is in the process of revitalizing the mill at its Key Lake operation in northern Saskatchewan. The current Key Lake process employs ammonia stripping and ammonia precipitation. As part of the revitalization, the company is considering installing strong acid stripping in solvent extraction as used at its Rabbit Lake operation. This change would lead to using hydrogen peroxide for uranium precipitation. As part of the process evaluation, tests were carried out to study how changes in the temperature of an indirect fired dryer affected the properties of uranium peroxide [yellowcake] precipitate. This paper discusses the results of the test work, including the relationships between drying temperature and the following: (author)

  6. Influence of selected washing treatments and drying temperatures ...

    Influence of selected washing treatments and drying temperatures on ... with regard to the optimal retention of the crude protein and fat levels of the dried dagaa. ... are accessible to most of the households involved in dried fish processing.

  7. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  8. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  9. The Effect of Temperature and Drying Method on Drying Time and Color Quality of Mint

    H Bahmanpour

    2017-10-01

    Full Text Available Introduction Mint (Mentha spicata L. cbelongs to the Lamiaceae family, is an herbaceous, perennial, aromatic and medicinal plant that cultivated for its essential oils and spices. Since the essential oil is extracted from dried plant, choosing the appropriate drying method is essential for gaining high quality essential oil.Vacuum drying technology is an alternative to conventional drying methods and reported by many authors as an efficient method for improving the drying quality especially color characteristics. On the other side, solar dryers are also useful for saving time and energy. In this study the effect of two method of dryings including vacuum-infrared versus solar at three different conventional temperatures (30, 40 and 50°C on mint plant is evaluated while factorial experiment with randomized complete block is applied. Drying time as well as color characteristics areconsidered for evaluation of each method of drying. Materials and Methods Factorial experiment with randomized complete block was applied in order to evaluate the effect of drying methods (vacuum-infrared versus solar and temperature (30, 40 and 50°C on drying time and color characteristics of mint. The initially moisture content of mint leaves measured according to the standard ASABE S358.2 during 24 hours inside an oven at 104 °C. Drying the samples continued until the moisture content (which real time measured reached to 10% wet basis. The components of a vacuum dryer consisted of a cylindrical vacuum chamber (0.335 m3 and a vacuum pump (piston version. The temperature of the chamber was controlled using three infrared bulbs using on-off controller. Temperature and weight of the products registered real time using a data acquisition system. The components of a solar dryer were consisting of a solar collector and a temperature control system which was turning the exhaust fan on and off in order to maintain the specific temperature. A date acquisition system was

  10. Physical properties evaluation of roselle extract-egg white mixture under various drying temperatures

    Triyastuti, M. S.; Kumoro, A. C.; Djaeni, M.

    2017-03-01

    Roselle contains anthocyanin that is potential for food colorant. Occasionally, roselle extract is provided in dry powder prepared under high temperature. In this case, the anthocyanin color degrades due to the intervention of heat. The foammat drying with egg white is a potential method to speed up the drying process as well as minimize color degradation. This research aims to study the physical properties of roselle extract under foam mat drying. As indicators, the powder size and color intensity were observed. The result showed that at high temperatures, roselle powder under foam mat drying has the fine size with porous structure. However, at the higher the drying temperature the color retention decreased.

  11. Effect of dry density and temperature on the hydraulic conductivity of domestic compacted bentonite as a buffer material in the high level waste repository

    Cho, Won Jin; Chun, Kwan Sik; Lee, Jae Owan

    1999-02-01

    This study is intended to investigate the effect of dry density and temperature on the hydraulic conductivity of domestic calcium bentonite. The dry densities of bentonite are 1.4 Mg/m 3 , 1.6 Mg/m 3 and 1.6 Mg/m, and the temperatures are in the range of 20 dg C to 150 dg C. The hydraulic conductivities of compacted bentonite with dry densities higher than 1.4 Mg/m 3 are lower than 10 -1 1 m/s, and are low enough to inhibit the radionuclide release by advection through the buffer. The hydraulic conductivities at the temperature of 150 dg C increase up to about 1 order higher than those at 20 dg C. (author). 28 refs., 5 tabs., 20 figs

  12. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  13. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    Aguilar Tapia, Antonio

    2018-03-22

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  14. Effects of drying temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots

    Hada Masayu, I.,

    2017-08-01

    Full Text Available In this study, the effects of temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots were investigated to determine the optimum temperature for drying of this herb. The roots were subjected to drying temperatures of 40, 50, 60 and 70°C. The drying kinetics data indicated that the drying rate increased with increase in temperature but decreased with time. The drying process took place in the falling rate period. Three established thin layer drying models include Page, Midili and Logarithmic were employed to describe the drying process. The Midili model was found as the best fitting model in representing the process. The quality of the products was evaluated by comparing the content of its active compound, eurycomanone, quantified using an ultra performance liquid chromatography (UPLC. The fastest drying process was achieved at 70°C, but UPLC results showed that the product suffered at 18% reduction in eurycomanone content as compared to the control. Based on the findings of this work, the optimum drying temperature for E. longifolia roots is 60°C.

  15. Implications of drying temperature and humidity on the drying kinetics of seaweed

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  16. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    Aguilar Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-01-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal

  17. Low temperature fluidized wood chip drying with monoterpene analysis

    Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell

    2011-01-01

    This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.

  18. Effects of Different Temperatures for Drying Cervical Mucus Smear ...

    The effects of different room temperatures for drying cervical mucus on crystallisation of fern-tree patterns was determined using cervical mucus smears from 60 women undergoing investigation for infertility at the University of Benin Teaching Hospital. Cervical mucus smears were dried in the oven at 15, 20, 25, 30 and 35C ...

  19. Effect of Drying Temperature on Rosmarinic Acid and Sinensetin Concentration in Orthosiphon stamineus Herbal Leaves

    Abdullah, Sriyana; Razak Shaari, Abdul; Hajar Rukunudin, Ibni; Syarhabil Ahmad, Muhammad

    2018-03-01

    The objective of this work was to investigate the effects of drying temperature on the concentration of O rthosiphon stamineus biomarker compounds which were rosmarinic acid (RA) and sinensetin (SEN). The thin layer drying approach was used to dry O. stamineus leaves at various temperatures of 30, 40 and 50°C using a laboratory scale hot air dryer. The dried leaves were then extracted using 60% aqueous methanol prior to quantification. The RA and SEN concentrations in the dried leaves extracts were quantified by the high performance liquid chromatography. The concentration of RA for the dried leaves at 30 and 40°C were higher as compared to that of the fresh leaves. This may due to the response of the plant cells to abiotic stress. The concentration of RA also showed a significant reduction when the temperature was increased to 50°C. In contrast, the SEN concentration in O. stamineus dried leaf extract was lower than that of the fresh samples. The concentrations of SEN depicted insignificant effects by drying at 30 and 50°C, and the highest value was obtained in the samples dried at 40°C. Results showed that the drying process was found to affect the concentration of both compounds; therefore suitable drying conditions should be adopted to enhance the medicinal values of the plant species.

  20. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon.

    Lebow, Noelle K; DesRocher, Lisa D; Younce, Frank L; Zhu, Mei-Jun; Ross, Carolyn F; Smith, Denise M

    2017-12-01

    Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 μg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer preference. © 2017 Institute of Food Technologists®.

  1. Impact of applied ultrasonic power on the low temperature drying of apple.

    Santacatalina, J V; Contreras, M; Simal, S; Cárcel, J A; Garcia-Perez, J V

    2016-01-01

    Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8mm side) were dried (2m/s) at two different temperatures (10 and -10°C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power. At both temperatures, 10 and -10°C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at -10°C and 75 W). The ultrasonic power level did not significantly (pfruits, like apple, with only a mild impact on the quality of the dried product. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Corn Drying with Zeolite in The Fluidized Bed Dryer under Medium Temperature

    Mohamad Djaeni

    2013-08-01

    Full Text Available Drying is an important step to find high quality of corn. Based on Standard of National Industry, populer as SNI, number 01-3920-1995, the corn was well stored at moisture content 14% or below (wet basis. However, conventional corn drying dealed with in-efficient energy process and corn quality degradation. This research evaluated the performance of corn drying assisted by zeolite as moisture adsorbent. In this process, the zeolite and corn were placed in the dryer fluidized by warm air as drying medium under 40 - 50oC. The air evaporated water product from corn, and at same time the zeolite adsorbed moisture in air. So, the relative humidity of air in dryer can be kept low in which enhanced the driving force for drying. Beside that, the moisture adsoprtion by zeolite was exothermic process that can supply the energy for drying or keep the dryer temperature. Thus, the drying rate can be faster. This work foccussed to observe the effect of drying temperature, air velocity, and corn to zeolite ratio on drying time as well as corn quality. As indicators, the drying rate was estimated and the proxymates content such as protein, fat, and carbohydrate content were analyzed. The results showed that compared with conventional fluidised bed dryer, corn drying with zeolite, can speed up drying time as well as improving the constant of drying rate. In addition, the corn proximate nutrition content can be well retained. At operating temperature 40oC, air velocity 9 m.s-1, and zeolite to corn ratio 1:2, the drying time can be 60 minutes shorter compared to that without zeolite.

  3. Supersymmetry at high temperatures

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  4. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  5. High speed drying of saturated steam

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  6. [Microcontroller temperature regulator MPT110 for drying-sterilizing cabinets].

    Kostin, N N; Gavrishchuk, V I; Zelepukin, S A; Shkulepa, V M; Zharov, E N

    2002-01-01

    The paper describes a MPT-110 temperature microcontroller developed by the closed joint-stock company "OPLEKS" (Orel, Russia) and the results of comparative tests performed in the @IIICC-80 drying sterilizing cabinet. The use of the MPT-110 controller is shown to improve the quality of control and to shorten the times that is taken for the cabinet to reach the preset temperature point.

  7. Temperature processes at two sliding surfaces subjected to dry friction

    Půst, Ladislav; Pešek, Luděk; Cibulka, Jan; Bula, Vítězslav

    2012-01-01

    Roč. 63, 5/6 (2012), s. 277-292 ISSN 0039-2472 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : dry friction * vibration damping * experimental set * increase of temperature * lost energy Subject RIV: BI - Acoustics

  8. Effects of drying temperature on viability of macaw palm ( Acrocomia ...

    In response to a growing interest in improving seedling production of oilseed species (like macaw palm), a fruit drying protocol for facilitating seed extraction was proposed. This enabled the production of macaw palm seedlings, but the temperature most suitable for seed extraction without losing its physiological quality is ...

  9. Dry friction damping couple at high frequencies

    Půst, Ladislav; Pešek, Luděk; Košina, Jan; Radolfová, Alena

    2014-01-01

    Roč. 8, č. 1 (2014), s. 91-100 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : dry friction * damping * high frequencies Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/acm/article/view/239/265

  10. High temperature refrigerator

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  11. High-temperature superconductivity

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  12. Protocols for dry DNA storage and shipment at room temperature.

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-09-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica(®) DNAstable(®) plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at -20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica(®) provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica(®) at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at -20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  13. Highly efficient high temperature electrolysis

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  14. Influence of drying temperature on the chemical constituents of jaboticaba (Plinia Jaboticaba (Vell. Berg skin

    Ana Paula de C. Alves

    2014-09-01

    Full Text Available Jaboticaba is a fruit native to Brazil. Its skin represents up to 43% of the fruit and contains high levels of fiber, minerals and phenolic compounds. The use of the skin waste adds value to the fruit. However, one of the drawbacks of skin storage is the high water content, which requires drying processes to preserve the skin without leading to the loss of nutrients and antioxidants. The influence of different drying temperatures on the levels of nutrients and antioxidants was investigated. Jaboticaba (Plinia jaboticaba (Vell. Berg, genotype Sabará skins were lyophilized or dried at three temperatures (30, 45, and 60ºC, using food dryers. The skins were then ground, stored (protected from light and subjected to analysis of proximate composition, vitamin C, phytate, polyphenols, anthocyanins and antioxidant activity. The drying process had little effect on the proximate composition of the flour, presenting significant difference only for crude protein, fiber and non-nitrogenous extract. The greatest preservation of chemical constituents occurs in the lyophilized jaboticaba skins. Among the drying temperatures tested, however, the skins dried at 45 and60°C had more highly preserved nutritional substances and antioxidants.

  15. High temperature battery. Hochtemperaturbatterie

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  16. High temperature structural silicides

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  17. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    Christon, M.

    1994-01-01

    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air

  18. Unmanned Aerial System Aids Dry-season Stream Temperature Sensing

    Chung, M.; Detweiler, C.; Higgins, J.; Ore, J. P.; Dralle, D.; Thompson, S. E.

    2016-12-01

    In freshwater ecosystems, temperature affects biogeochemistry and ecology, and is thus a primary physical determinant of habitat quality. Measuring temperatures in spatially heterogeneous water bodies poses a serious challenge to researchers due to constraints associated with currently available methods: in situ loggers record temporally continuous temperature measurements but are limited to discrete spatial locations, while distributed temperature and remote sensing provide fine-resolution spatial measurements that are restricted to only two-dimensions (i.e. streambed and surface, respectively). Using a commercially available quadcopter equipped with a 6m cable and temperature-pressure sensor system, we measured stream temperatures at two confluences at the South Fork Eel River, where cold water inputs from the tributary to the mainstem create thermal refugia for juvenile salmonids during the dry season. As a mobile sensing platform, unmanned aerial systems (UAS) can facilitate quick and repeated sampling with minimal disturbance to the ecosystem, and their datasets can be interpolated to create a three-dimensional thermal map of a water body. The UAS-derived data was compared to data from in situ data loggers to evaluate whether the UAS is better able to capture fine-scale temperature dynamics at each confluence. The UAS has inherent limitations defined by battery life and flight times, as well as operational constraints related to maneuverability under wind and streamflow conditions. However, the platform is able to serve as an additional field tool for researchers to capture complex thermal structures in water bodies.

  19. High temperature reaction kinetics

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  20. High-temperature superconductivity

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  1. High temperature pipeline design

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  2. Experimental program to determine maximum temperatures for dry storage of spent fuel

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  3. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  4. High temperature oxidation behavior of ODS steels

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  5. High temperature storage loop :

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  6. Management of Surface Drying Temperature to Increase Antioxidant Capacity of Thyme Leaf Extracts (Thymus vulgaris L.)

    RODRIGUEZ CORTINA, JADER; Melo, E.C.; Mulet Pons, Antonio; Bon Corbín, José

    2014-01-01

    [EN] Thyme leaves are an important source of essential oils with antioxidant activity; these compounds are located in trichomes on the leaf surface. The drying conditions affect not only the drying time but also the antioxidant activity. In the literature, a drying temperature of 70 ºC appears to be the best for drying thyme leaves according to their antioxidant capacity. Considering drying periods at different temperature also could be quality beneficial. From these considerations, the goal ...

  7. High temperature niobium alloys

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  8. High Temperature Electrolysis

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  9. High temperature thermometric phosphors

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  10. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  11. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  12. Effect of temperature on continuous dry fermentation of swine manure.

    Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai

    2016-07-15

    Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High temperature materials characterization

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  14. High temperature materials

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  15. High temperature radioisotope capsule

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  16. High-temperature uncertainty

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  17. High Temperature Piezoelectric Drill

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  18. Sensitivities of dry season runoff to precipitation and temperature in southern Sierra Nevada streams

    Safeeq, M.; Hunsaker, C. T.; Bales, R. C.

    2016-12-01

    In a mediterranean climate, dry season runoff sustains water supply and supports aquatic habitat and other ecosystems. Precipitation and temperature directly, by regulating recharge and evapotranspiration (ET), and indirectly, by regulating amount and timing of snowmelt, control the dry season runoff in the Sierra Nevada. Here, we explored relative impacts of precipitation and temperature variability on dry season runoff using path analysis. Specific objectives include: (i) to quantify the direct and indirect impacts of precipitation and temperature on 7-day average minimum flow (Qmin) and (ii) to explore the role of preceding year Qmin on fall season runoff (QF). We used daily runoff, air temperature, precipitation, and snow water equivalent (SWE) over 2004-2015 for the ten catchments in the Kings River Experimental Watersheds. For path analysis model of Qmin, we defined annual precipitation and temperature as exogenous variables and peak SWE, day of snow disappearance, and Qmin as endogenous variables. For QF, we defined current year fall precipitation and preceding year Qmin as exogenous variables and current year QF as an endogenous variable. Path analysis results for Qmin show precipitation as a dominant driver when compared to temperature, peak SWE, and day of snow disappearance. However, in half of the catchments that are mostly located at higher elevations the impact of temperature on Qmin was either comparable or exceeded that of precipitation. This relatively high sensitivity of Qmin to air temperature in high elevation catchments is consistent with the earlier findings of increased ET in proportion to warming. The direct effects of peak SWE and day of snow disappearance on Qmin were limited, and indirect effects of temperature and precipitation via peak SWE and day of snow disappearance were not significant. The preceding year Qmin and fall precipitation showed comparable impacts on QF, indicating that the storage in the preceding year modulates current

  19. Research on the Effects of Drying Temperature on Nitrogen Detection of Different Soil Types by Near Infrared Sensors.

    Nie, Pengcheng; Dong, Tao; He, Yong; Xiao, Shupei

    2018-01-29

    Soil is a complicated system whose components and mechanisms are complex and difficult to be fully excavated and comprehended. Nitrogen is the key parameter supporting plant growth and development, and is the material basis of plant growth as well. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near infrared sensors are widely used for rapid detection of nutrients in soil. However, soil texture, soil moisture content and drying temperature all affect soil nitrogen detection using near infrared sensors. In order to investigate the effects of drying temperature on the nitrogen detection in black soil, loess and calcium soil, three kinds of soils were detected by near infrared sensors after 25 °C placement (ambient temperature), 50 °C drying (medium temperature), 80 °C drying (medium-high temperature) and 95 °C drying (high temperature). The successive projections algorithm based on multiple linear regression (SPA-MLR), partial least squares (PLS) and competitive adaptive reweighted squares (CARS) were used to model and analyze the spectral information of different soil types. The predictive abilities were assessed using the prediction correlation coefficients (R P ), the root mean squared error of prediction (RMSEP), and the residual predictive deviation (RPD). The results showed that the loess (R P = 0.9721, RMSEP = 0.067 g/kg, RPD = 4.34) and calcium soil (R P = 0.9588, RMSEP = 0.094 g/kg, RPD = 3.89) obtained the best prediction accuracy after 95 °C drying. The detection results of black soil (R P = 0.9486, RMSEP = 0.22 g/kg, RPD = 2.82) after 80 °C drying were the optimum. In conclusion, drying temperature does have an obvious influence on the detection of soil nitrogen by near infrared sensors, and the suitable drying temperature for different soil types was of great significance in enhancing the detection accuracy.

  20. High temperature materials and mechanisms

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  1. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  2. High temperature superconductors

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  3. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  4. Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L. essential oil

    José Luiz S. Carvalho Filho

    Full Text Available Ocimum basilicum L. essential oil with high concentration of linalool is valuable in international business. O. basilicum essential oil is widely used as seasoning and in cosmetic industry. To assure proper essential oil yield and quality, it is crucial to determine which environmental and processing factors are affecting its composition. The goal of our work is to evaluate the effects of harvesting time, temperature, and drying period on the yield and chemical composition of O. basilicum essential oil. Harvestings were performed 40 and 93 days after seedling transplantation. Harvesting performed at 8:00 h and 12:00 h provided higher essential oil yield. After five days drying, the concentration of linalool raised from 45.18% to 86.80%. O. basilicum should be harvested during morning and the biomass dried at 40ºC for five days to obtain linalool rich essential oil.

  5. High temperature interface superconductivity

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  6. Analysis of maizena drying system using temperature control based fuzzy logic method

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  7. Statistical Analysis of the Effects of Drying Temperature and Pretreatment on the Proximate Composition of Dried Matured Green Plantain (Musa Paradisiaca

    K.A. Yusuf

    2014-07-01

    Full Text Available Drying has been identified as the efficient means of ensuring continuous food supply to the growing population of any country and to enable the farmers produce more high quality marketable products. In this study, the effects of drying temperature and pretreatment on the quality of dried mature green plantain (Musa paradisiaca were studied using an electrically-powered cabinet dryer. The product was dried from an initial moisture content of 62% (w.b to a moisture content of 11.9% (w.b. A factorial experiment in a Randomized Complete Block Design (RCBD involving three levels of temperature (50, 60 and 70 0C; three levels of pretreatment (blanching, boiling and control and three replications were used. The quality analysis of the dried samples at different level of drying temperatures and pre-treatments was carried out for protein, fat, ash and fibre content and the data obtained were statistically analyzed using SPSS 16.0 software to determine the level of significance among the treatment factors on the dried samples. The protein, fat and fibre content decreased with increase in temperature but the ash content increased with increase in temperature. In pretreatments, control had the highest protein content of 4.27% at 60 0C, lowest fat content of 2.26% at 70 0 C and moderate fibre and ash contents of 0.68% and 1.82% respectively at 60 0C. Boiled sample also had the highest fat content of 4.27% at 50 0C, lowest fat content 2.26% at 70 0C and moderate fibre and ash contents of 0.88% and 1.73% respectively at 60 0C. lastly, blanched sample had the highest fat content of 4.11% at 50 0 C, lowest fat content 2.54% at 70 0C and moderate fibre and ash contents of 0.83% and 1.45% respectively at 60 0C.

  8. High temperature metallic recuperator

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  9. Effects of temperature on concrete cask in a dry storage facility for spent nuclear fuels

    Huang Weiqing; Wu Ruixian; Zheng Yukuan

    2011-01-01

    In the dry storage of spent nuclear fuels,concrete cask serves both as a shielding and a structural containment. The concrete in the storage facility is expected to endure the decay heat of the spent nuclear fuel during its service life. Thus, effects of the sustaining high temperature on concrete material need be evaluated for safety of the dry storage facility. In this paper, we report an experimental program aimed at investigating possible high temperature effects on properties of concrete, with emphasis on the mechanical stability, porosity,and crack-resisting ability of concrete mixes prepared using various amounts of Portland cement, fly ash, and blast furnace slag. The experimental results obtained from concrete specimens exposed to a temperature of 94 degree C for 90 days indicate that: (1) compressive strength of the concrete remains practically unchanged; (2) the ultrasonic pulse velocity, and dynamic modulus of elasticity of the concrete decrease in early stage of the high-temperature exposure,and gradually become stable with continuing exposure; (3) shrinkage of concrete mixes exhibits an increase in early stage of the exposure and does not decrease further with time; (4) concrete mixes containing pozzolanic materials,including fly ash and blast furnace slag, show better temperature-resisting characteristics than those using only Portland cement. (authors)

  10. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Temperature development and sterilization of red pine poles during CCA treatment, elevated temperature fixation and drying

    Cooper, P.; Albright, M.; Srinivasan, U.; Ung, A. [New Brunswick Univ., Fredericton, NB (Canada). Wood Science and Technology Centre

    2002-07-01

    The application of chromated copper arsenate (CCA) treatment and fixation and drying under the conditions of the study to large red pine poles left for an air seasoning period of 10 months in Quebec, Canada progressively reduced the number of micro-organisms present. A large number of microfungi isolations were effected before the treatment from the sapwood and heartwood of all poles and wood decay fungi on 8 selected poles from the 20 test poles. They originated from the sapwood zone. A reduction of approximately 50 per cent in the number of microfungi isolated from the sapwood was noted after the CCA treatment. In the case of 9 of 30 poles, basidiomycetes were isolated after treatment primarily from the untreated heartwood. There were a few instances where basidiomycetes were isolated from unpenetrated sapwood (wet pockets). Temperatures of 55 to 60 degrees Celsius were achieved under moderate temperature fixation schedules (20 hours) for approximately 5 hours at full sapwood depth. Only by the end of the schedule was a temperature of 55 degrees celsius achieved at the centre of the poles. Most of the microfungi were eliminated by this temperature regime. Trichoderma was eliminated, and only one isolation of basidiomycetes was left from the heartwood of one pole. Temperatures of 55 to 60 degrees Celsius were achieved in the wood core for 9 to 10 days during kiln drying. No basidiomycete isolations remained after this exposure. In several of the poles, there was evidence of Paecilomyces variotii, a thermo-tolerant species and a number of species of Penicillium moulds. It was concluded that there was a negligible probability of decay fungi surviving the sequence of processes as described, given the effectiveness of the fixation exposure and the higher wood temperatures sustained for longer periods. 16 refs., 5 tabs., 2 figs.

  12. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    Mehmet Koç

    2016-05-01

    Full Text Available Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transition temperature of sugar-rich products. This review gives information about the difficulties in drying of sugar-rich products via spray dryer, actions need to be taken against these difficulties and drying of sugar-rich honey and fruit juices with spray drying method.

  13. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  14. Advances in high temperature chemistry

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  15. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    Lee, Seung Moo; Won, Jaihyung; Yim, Soyoung; Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok; Byun, Dongjin

    2012-01-01

    thermal annealing of the high density, as-deposited a-C:H films. Furthermore, not only the density itself but also the variation of density with thermal annealing need to be elucidated in order to understand the dry etch properties of annealed a-C:H films. - Highlights: ► A-C:H(amorphous carbon) films are grown for using hard mask in dry etch process by plasma-enhanced chemical vapor deposition and annealed. ► Physical, chemical and mechanical properties of grown amorphous carbon films are changed by hydrogen and hydrocarbon contents, be determined by deposition and annealing temperature. ► Dry etch rate of a-C:H films is decreased and the film density increased through thermal annealing with high density, low hydrogen content, as-deposited film.

  16. High-Temperature Piezoelectric Sensing

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  17. High temperature superconductor accelerator magnets

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  18. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions

    Case, Sean; Gomez Muñoz, Beatriz; Magid, Jakob

    2016-01-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be o......Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood...

  19. Titania aerogel prepared by low temperature supercritical drying

    Štengl, Václav; Bakardjieva, Snejana; Šubrt, Jan; Szatmáry, Lórant

    2006-01-01

    Roč. 91, 1-3 (2006), s. 1-6 ISSN 1387-1811 R&D Projects: GA MŠk(CZ) 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : aerogels * titanium oxide * supercritical drying Subject RIV: CA - Inorganic Chemistry Impact factor: 2.796, year: 2006

  20. Drying shrinkage problems in high PI subgrade soils.

    2014-01-01

    The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...

  1. Effect of drying temperatures on starch-related functional and thermal properties of acorn flours.

    Correia, P R; Beirão-da-Costa, M L

    2011-03-01

    The application of starchy flours from different origins in food systems depends greatly on information about the chemical and functional properties of such food materials. Acorns are important forestry resources in the central and southern regions of Portugal. To preserve these fruits and to optimize their use, techniques like drying are needed. The effects of different drying temperatures on starch-related functional properties of acorn flours obtained from dried fruits of Quercus rotundifolia (QR) and Quercus suber (QS) were evaluated. Flours were characterized for amylose and resistant starch (RS) contents, swelling ability, and gelatinization properties. Drying temperature mainly affected amylose content and viscoamylographic properties. Amylograms of flours from fruits dried at 60 °C displayed higher consistency (2102 B.U. and 1560 B.U., respectively, for QR and QS). The transition temperatures and enthalpy were less affected by drying temperature, suggesting few modifications in starch structure during drying. QR flours presented different functional properties to those obtained from QS acorn flours. The effect of drying temperatures were more evident in QR.

  2. High temperature materials; Materiaux a hautes temperatures

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  3. High Temperature Superconductor Resonator Detectors

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  4. High Temperature Superconductor Machine Prototype

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  5. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  6. High-quality uniform dry transfer of graphene to polymers.

    Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G

    2012-01-11

    In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society

  7. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  8. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  9. models of hourly dry bulb temperature and relative humidity of key

    user

    3: Worst cases of MFE for Dry bulb temperature and Relative humidity. Fig. 4: Best cases of ... the Second Joint International Conference of. University of Ilorin, Ilorin, Nigeria and University ... Erbs, D. G., “Models and Applications for Weather.

  10. Effect of Drying Temperature on Iron Fischer-Tropsch Catalysts Prepared by Solvent Deficient Precipitation

    Michael K. Albretsen

    2017-01-01

    Full Text Available A novel solvent deficient precipitation (SDP method to produce nanoparticles was studied for its potential in Fischer-Tropsch synthesis (FTS catalysis. Using Fe(NO33·9H2O as the iron-containing precursor, this method produces ferrihydrite particles which are then dried, calcined, reduced, and carbidized to form the active catalytic phase for FTS. Six different drying profiles, including final drying temperatures ranging between 80 and 150°C, were used to investigate the effect of ammonium nitrate (AN, a major by-product of reaction between Fe(NO33·9H2O and NH4HCO3 in the SDP method. Since AN has two phase-transitions within this range of drying temperatures, three different AN phases can exist during the drying of the catalyst precursors. These AN phases, along with physical changes occurring during the phase transitions, may affect the pore structure and the agglomeration of ferrihydrite crystallites, suggesting possible reasons for the observed differences in catalytic performance. Catalysts dried at 130°C showed the highest FTS rate and the lowest methane selectivity. In general, better catalytic performance is related to the AN phase present during drying as follows: phase III > phase II > phase I. However, within each AN phase, lower drying temperatures led to better catalytic properties.

  11. Effects of Temperature and Slice Thickness on Drying Kinetics of Pumpkin Slices

    Kongdej LIMPAIBOON

    2011-01-01

    Dried pumpkin slice is an alternative crisp food product. In this study, the effects of temperature and slice thickness on the drying characteristics of pumpkin were studied in a lab-scale tray dryer, using hot air temperatures of 55, 60 and 65 °C and 2, 3 and 4 mm slice thickness at a constant air velocity of 1.5 m/s. The initial moisture content of the pumpkin samples was 900.5 % (wb). The drying process was carried out until the final moisture content of product was 100.5 % (wb). The resul...

  12. Pipeline drying using dehumidified air with low dew point temperature

    Ahmed, Syed Younus; Gandhidasan, P.; Al-Farayedhi, A.A. [King Fahd Univ. of Petroleum and Minerals, Mechanical Engineering Dept., Dhahran (Saudi Arabia)

    1998-05-01

    The presence of humidity may be detrimental to the operation of pipelines transporting natural gas or other petroleum products. In particular conditions water solidifies or reacts chemically with hydrocarbons, forming hydrates. Such crystalline substances may cause obstruction of the lines and damage the equipment of the relevant facilities. A procedure for predicting the performance of drying a pipeline using dehumidified air with a low dew point is described in this paper. The mathematical model estimates the time required for the complete removal of moisture in the pipeline for the given operating conditions with simplified assumptions. The governing equations are solved analytically as well as numerically and the results are briefly discussed in the paper. (Author)

  13. Advanced High Temperature Structural Seals

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  14. Effect of Drying Temperature on the Chemical Properties and Diffusivity of belimbi (averrhoa belimbi)

    Shahari, N.; Jamil, N.; Rasmani, K. A.; Nursabrina

    2015-09-01

    In recent years, many dried fruit products have been developed in response to a strong demand by the customer. This type of fruit has a different composition and hence different moisture diffusivity (D). During drying, Fick's Law of diffusion, which describes the movement of liquid water was used to calculate this diffusivity. However diffusivity has strong effects on the material drying characteristics and these must be determined. In this paper, Fick's Law of diffusion with different kinds of boundary conditions was solve using separation of variable (SOV). In order to get the value of D, results obtained using SOV will be compared with the results from the drying of belimbi at temperature of 40°C, 50°C and 60°C. Although the results show that variation in the values of diffusivity for different temperatures is relatively small, but the variation in the total time required for drying is significantly bigger: between 3-7 hours. Its shown that diffusivity is an important measurement and should be considered in the modeling of the drying process. The chemical properties of belimbi slices in terms of vitamin C, total ash and antioxidant activity with different air temperatures and pretreatment were also investigated. Higher drying temperatures gives less drying time, a lower vitamin C and antioxidant activity but a greater total of ash, whilst pre-treatment can increased vitamin C and antioxidant activity. The results show that pre-treatment and the drying temperature are important variables to improve mass and heat transfer, as well as the belimbi chemical properties.

  15. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  16. HIGH TEMPERATURE POLYMER FUEL CELLS

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  17. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Honores, Carolina; Moraga, Nelson O

    2016-03-01

    Stevia leaves are usually used in dried state and undergo the inevitable effect of drying process that changes the quality characteristics of the final product. The aim of this study was to assess temperature effect on Stevia leaves through analysis of relevant bioactive components, antioxidant capacity and content of natural sweeteners and minerals. The drying process was performed in a convective dryer at constant temperatures ranging from 30 to 80 °C. Vitamin C was determined in the leaves and as expected showed a decrease during drying proportional to temperature. Phenolics and flavonoids were also determined and were found to increase during drying below 50 °C. Antioxidant activity was determined by DPPH and ORAC assays, and the latter showed the highest value at 40 °C, with a better correlation with the phenolics and flavonoids content. The content of eight natural sweeteners found in Stevia leaves was also determined and an increase in the content of seven of the sweeteners, excluding steviol bioside, was found at drying temperature up to 50 °C. At temperatures between 60 and 80 °C the increase in sweeteners content was not significant. Stevia leaves proved to be an excellent source of antioxidants and natural sweeteners.

  18. Influence of changes in humidity on dry temperature in GPS RO climatologies

    J. Danzer

    2014-09-01

    Full Text Available Radio occultation (RO data are increasingly used in climate research. Accurate phase (change measurements of Global Positioning System (GPS signals are the basis for the retrieval of near-vertical profiles of bending angle, microwave refractivity, density, pressure, and temperature. If temperature is calculated from observed refractivity with the assumption that water vapor is zero, the product is called "dry temperature", which is commonly used to study earth's atmosphere, e.g., when analyzing temperature trends due to global warming. Dry temperature is a useful quantity, since it does not need additional background information in its retrieval. However, it can only be safely used as proxy for physical temperature, where moisture is negligible. The altitude region above which water vapor does not play a dominant role anymore, depends primarily on latitude and season. In this study we first investigated the influence of water vapor on dry temperature RO profiles. Hence, we analyzed the maximum altitude down to which monthly mean dry temperature profiles can be regarded as being equivalent to physical temperature. This was done by examining dry temperature to physical temperature differences of monthly mean analysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF, studied from 2006 until 2010. We introduced cutoff criteria, where maximum temperature differences of −0.1, −0.05, and −0.02 K were allowed (dry temperature is always lower than physical temperature, and computed the corresponding altitudes. As an example, a temperature difference of −0.05 K in the tropics was found at an altitude of about 14 km, while at higher northern latitudes in winter it was found at an altitude of about 9–10 km, in summer at about 11 km. Furthermore, regarding climate change, we expect an increase of absolute humidity in the atmosphere. This possible trend in water vapor could yield a wrongly interpreted dry temperature trend

  19. Changes in duration of dry and wet spells associated with air temperatures in Russia

    Ye, Hengchun

    2018-03-01

    This study uses daily precipitation records from 517 Russian stations (1966-2010) to examine the relationships between continuous dry and wet day duration and surface air temperature for all four seasons. The study found that both mean and extreme durations of dry periods increase with air temperature at about 7.0% (0.24 day/°C) and 7.7% (0.86 day/°C) respectively, while those of wet periods decrease at about 1.3% (-0.02 day/°C) and 2.2% (-0.10 day/°C) respectively averaged over the entire study region during summer. An increase in the duration of dry periods with higher air temperature is also found in other seasons at locations with a mean seasonal air temperature of about -5 °C or higher. Opposite relationships of shorter durations of dry periods and longer wet periods associated with higher air temperature are observed over the northern part of the study region in winter. The changes in durations of both dry and wet periods have significant correlations with the changes in total dry and wet days but are about 2.5 times higher for dry periods and 0.5 times lower for wet periods. The study also found that locations with longer durations of dry periods experience faster rates of increase in air temperature, suggesting the likelihood of exacerbating drought severity in drier and/or warmer locations for all seasons.

  20. High Temperature Materials Laboratory (HTML)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  1. High temperature divertor plasma operation

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  2. High temperature high vacuum creep testing facilities

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  3. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  4. High temperature corrosion of metals

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  5. High temperature electronic gain device

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  6. RPC operation at high temperature

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  7. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    Ohm, Tae-In, E-mail: tiohm1@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Chae, Jong-Seong; Lim, Kwang-Soo [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Moon, Seung-Hyun [Waste Energy Research Center, Korea Institute of Energy Research, Jang-dong Yusung-gu, Daejeon 305-343 (Korea, Republic of)

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  8. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-01-01

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  9. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  10. HIgh Temperature Photocatalysis over Semiconductors

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  11. High temperature thermoelectric energy conversion

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  12. Distribution of temperature and moisture content fields in a rectangular beet pulp particle during convection drying

    A. N. Ostrikov

    2018-01-01

    Full Text Available The mathematical model describing distribution of fields of temperatures and moisture contents in a particle of a squared beet press at convective drying is given. As the initial equations the differential equations of material and thermal balances in which transfer of warmth and weight is caused by phase transformations have been accepted. The algorithm of the numerical solution of a non-stationary regional problem of heat conductivity with variable heat and mass transfer coefficients of the dried-up product, boundary and entry conditions and also phase transition with mobile limit of the section of phases is developed for the solution of mathematical model. At the same time the initial system of the equations is given to a dimensionless look. For the solution of a problem of non-stationary heat conductivity the zone method of calculation of temperature fields when drying a beet press is used. Process of drying broke into some time intervals. Within each interval geometrical form of a particle, its density, heatphysical and mass-exchanged characteristics; initial distribution of temperature and moisture content on particle volume and also density of a mass and thermal stream with the evaporated moisture are constant. The zone method of the solution of a problem of the non-stationary three-dimensional equation of heat conductivity for a parallelepiped taking into account internal sources of warmth has been checked on experimental data of stationary drying of a beet press with use of basic data. For realization of a zone method dependences of change of the linear size of a particle of a beet press on spatial coordinate x and its moisture content in the course of drying are received. At constant values of moisture content and the sizes of the party of the dried-up particle on each step the method of a machine experiment has found the current values of coefficient of phase transformation on condition of the maximum rapprochement of settlement and

  13. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  14. High Temperature Transparent Furnace Development

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  15. INTERDEPENDENCE BETWEEN DRY DAYS AND TEMPERATURE OF SYLHET REGION: CORRELATION ANALYSIS

    Syed Mustakim Ali Shah

    2016-01-01

    Full Text Available Climate change can have profound impact on weather conditions around the world such as heavy rainfall, drought, global warming and so on. Understanding and predicting these natural variations is now a key research challenge for disaster-prone country like Bangladesh. This study focuses on the north eastern part of Bangladesh which is a hilly region, plays an important role in the ecological balance of the country along with socio-economic development. Present study analyses the behavior of maximum temperature and dry days using different statistical tools. Pearson’s correlation matrix and Man-Kendall’s tau are used to correlate monthly dry days with monthly maximum temperature, and also their annual trend. A moderate correlation was found mostly in dry summer months. In addition, a positive trend was observed in Man Kendall’s trend test of yearly temperature which might be an indication of global warming in this region.

  16. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  17. "Green" High-Temperature Polymers

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  18. High-temperature metallography setup

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  19. High temperature corrosion in gasifiers

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  20. High temperature creep of vanadium

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  1. Evaluation of high temperature capacitor dielectrics

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  2. Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

    Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol

    2012-01-01

    In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341

  3. Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media

    N. Poomsa-ad; K. Deejing; L. Wiset

    2011-01-01

    This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio o...

  4. Application of high voltage electric field (HVEF) drying technology in potato chips

    Bai, Yaxiang; Shi, Hua; Yang, Yaxin

    2013-01-01

    In order to improve the drying efficiency and qualities of vegetable by high voltage electric field (HVEF), potato chips as a representative of vegetable was dried using a high voltage electric drying systems at 20°C. The shrinkage rate, water absorption and rehydration ratio of dried potato chips were measured. The results indicated that the drying rate of potato chips was significantly improved in the high voltage electric drying systems. The shrinkage rate of potato chips dried by high voltage electric field was 1.1% lower than that by oven drying method. And the rehydration rate of high voltage electric field was 24.6% higher than that by oven drying method. High voltage electric field drying is very advantageous and can be used as a substitute for traditional drying method.

  5. Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?

    Tegelberg, Riitta; Virjamo, Virpi; Julkunen-Tiitto, Riitta

    2018-03-09

    In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical composition remains unaltered and large number of samples can be treated efficiently. To study if a fast dry-air drying provides an efficient pre-treatment method for quantitative analyses of phenolics. Dry-air drying of mature leaves was done in a drying room equipped with dehumifier (10% relative humidity, room temperature) and results were compared to freeze-drying or freeze-drying after pre-freezing in liquid nitrogen. The quantities of methanol-soluble phenolics of Betula pendula Roth, Betula pubescens Ehrh., Salix myrsinifolia Salisb., Picea abies L. Karsten and Pinus sylvestris L. were analysed with HPLC and condensed tannins were analysed using the acid-butanol test. In deciduous tree leaves (Betula, Salix), the yield of most of the phenolic compounds was equal or higher in samples dried in dry-air room than the yield from freeze-dried samples. In Picea abies needles, however, dry-air drying caused severe reductions in picein, stilbenes, condensed tannin and (+)-catechin concentrations compared to freeze-drying. In Pinus sylvestris highest yields of neolignans but lowest yields of acetylated flavonoids were obtained from samples freeze-dried after pre-freezing. Results show that dry-air drying provides effective pre-treatment method for quantifying the soluble phenolics for deciduous tree leaves, but when analysing coniferous species, the different responses between structural classes of phenolics should be taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Bioindicator demonstrates high persistence of sulfentrazone in dry soil

    Renato Coradello Lourenço

    2015-09-01

    Full Text Available In sugarcane crop areas, the application of preemergence herbicides with long residual effect in the soil has been frequently necessary. The herbicide persistence in the soil must be high especially because of applications during the dry season of the year, after sugarcane harvest. This study aimed at estimating the sulfentrazone persistence and dissipation in dry soil using bioindicator. Five experiments were carried out, divided into two phases. In the first phase, three dose-response curves were adjusted to select the best bioindicator to be adopted in the second phase. Niger was adopted due to its lower sensibility to sulfentrazone. In the second phase, a new dose-response curve was carried out, with six doses of sulfentrazone, in order to standardize the bioindicator sensibility to sulfentrazone. At the end, another experiment with six periods of sulfentrazone persistence in dry clay soil was developed. Persistence periods were: 182, 154, 125, 98 and 30 days. The bioindicator was seeded at the application day in treated plots and control. In this experiment, the sulfentrazone dose applied was 800 g ha-1. Niger was considered a good species to estimate the sulfentrazone persistence in dry soil. The sulfentrazone phytotoxic activity was identified up to 182 days after application, and its average dissipation rate was 2.15 g ha-1 day-1, with half-life higher than 182 days.

  7. High-temperature plasma physics

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  8. High-Temperature Vibration Damper

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  9. Containment of high temperature plasmas

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  10. Chemistry of high temperature superconductors

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  11. Properties of high temperature SQUIDS

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  12. High temperature component life assessment

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  13. Vase life and rehydration capacity of dry-stored gladiolus flowers at low temperature

    Lucas Cavalcante da Costa

    Full Text Available ABSTRACT: Normally, it is not recommended the conditioning of gladiolus stems in water during storage or transport. Hydration of petals may accelerate flower opening, even at a low temperature, which compromises quality at marketing moment. However, for this species, neither the effect of prolonged dry cold storage nor its behavior when transferred to water at room temperature has been evaluated. The present study aimed to evaluate the vase life and the rehydration capacity of gladiolus flowers ( Gladiolus grandiflora Hort. after dry storage at low temperature. Flower stems of cultivars Blue Frost, Gold Field, Traderhorn, and Jester were dry-stored at a temperature of 5 ± 1 ºC and relative humidity of 85% for 12, 24, 36, and 48h. Control stems remained always in deionized water. After storage, they were returned to the water at room temperature and evaluated for vase life (adopting the discard criterion when 50% of the basal flowers displayed loss of color and wilting, fresh weight change (%, water uptake rate and transpiration rate, as well as relative water content of the petals (%. In dry cold storage conditions, for up to 36h, the vase life was not affected although incomplete rehydration of the flowers. Rehydration capacity of the stem is linked to the staggered opening of flowers along the inflorescence.

  14. Water loss at normal enamel histological points during air drying at room temperature.

    De Medeiros, R C G; De Lima, T A S; Gouveia, C R; De Sousa, F B

    2013-06-01

    This in vitro study aimed to quantify water loss at histological points in ground sections of normal enamel during air drying at room temperature (25°C) and relative humidity of 50%. From each of 10 ground sections of erupted permanent human normal enamel, three histological points (n = 30) located at 100, 300 and 500 μm from enamel surface and along a transversal following prisms paths were characterized regarding the mineral, organic and water volumes. Water loss during air drying was from 0 to 48 h. Drying occurred with both falling and constant-drying rates, and drying stabilization times (Teq ) ranged from 0.5 to 11 h with a mean 0.26 (±0.12)% weight loss. In some samples (n = 5; 15 points), Teq increased as a function of the distance from the enamel surface, and drying occurred at an apparent diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹. Our data provide evidence of air drying resulting in air replacing enamel's loosely bound water in prisms sheaths following a unidirectional water diffusion rate of 3.47 × 10⁻⁸ cm² s⁻¹ (from the original enamel surface inward), not necessarily resulting in water evaporating directly into air, with important implications for transport processes and optical and mechanical properties. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  15. Talisia esculenta seed quality in function of drying temperatures and times

    Edson Almeida Cardoso

    2015-02-01

    Full Text Available Talisia esculenta Radlk is a species of the Sapindaceae family native to the Amazon region. Its fruits are principally obtained by collecting in natura; its propagation is by seeds, which are of the recalcitrant type, with low longevity and sensitivity to dehydration. We evaluated the effects of different drying times and temperatures on T. esculenta seeds. The seeds were dried in a forced-air oven at 40, 45, and 50°C for periods of 0, 6, 12, 24, 30, and36 hours, using four replications of 25 seeds each. Tests were conducted to determine seed quality: moisture contents, emergence percentage, first counts, emergence speed index and the length and dry weight of the seedlings. The data was submitted to analysis of variance and polynomial regression, at a 5% level of probability. T. esculenta seeds should be dried at 40 or 45°C for no more than six hours for best initial seedling growth.

  16. High temperature fusion reactor design

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  17. High Temperature, High Power Piezoelectric Composite Transducers

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  18. High speed dry machining of MMCs with diamond tools

    Collins, J.L.

    2001-01-01

    The increasing use of metal matrix composites (MMCs) has raised new issues in their machining. Industrial demands for higher speed and dry machining of MMCs with improved component production to closer tolerances have driven the development of new tool materials. In particular, the wear characteristics of synthetic diamond tooling satisfy many of the requirements imposed in cutting these highly abrasive workpieces. The use of diamond tool materials, such as polycrystalline diamond (PCD), has resulted in tool life improvements which, allied with environmental considerations, show great potential for the development of dry cutting. This paper explores the wear characteristics of PCD, which is highly suited to the dry machining of particulate silicon carbide MMCs. Also, two further diamond tool materials are evaluated - chemical vapor deposition (CVD) thick layer diamond and synthetic single crystal diamond. Their suitability for the efficient machining of high volume fraction MMC materials is shown and their potential impact an the subsequent acceptance and integration of MMCs into engineering components is discussed. (author)

  19. Glass transition temperature of dried lens tissue pretreated with trehalose, maltose, or cyclic tetrasaccharide.

    Kawata, Tetsuhiro; Matsuo, Toshihiko; Uchida, Tetsuya

    2014-01-01

    Glass transition temperature is a main indicator for amorphous polymers and biological macromolecules as materials, and would be a key for understanding the role of trehalose in protecting proteins and cells against desiccation. In this study, we measured the glass transition temperature by differential scanning calorimetry of dried lens tissues as a model of a whole biological tissue to know the effect of pretreatment by trehalose and other sugars. Isolated porcine lenses were incubated with saline, 100 or 1000 mM concentration of trehalose, maltose, or cyclic tetrasaccharide dissolved in saline at room temperature for 150 minutes. The solutions were removed and all samples were dried at room temperature in a desiccator until no weight change. The dried tissues were ground into powder and placed in a measuring pan for differential scanning calorimetry. The glass transition temperature of the dried lens tissues, as a mean and standard deviation, was 63.0 ± 6.4°C (n = 3) with saline pretreatment; 53.0 ± 0.8°C and 56.3 ± 2.7°C (n = 3), respectively, with 100 and 1000 mM trehalose pretreatment; 56.0 ± 1.6°C and 55.8 ± 1.1°C (n = 3), respectively, with 100 and 1000 mM maltose pretreatment; 60.0 ± 8.8°C and 59.2 ± 6.3°C (n = 3), respectively, with 100 and 1000 mM cyclic tetrasaccharide pretreatment. The glass transition temperature appeared lower, although not significantly, with trehalose and maltose pretreatments than with saline and cyclic tetrasaccharide pretreatments (P > 0.05, Kruskal-Wallis test). The glass transition temperature of the dried lens tissues with trehalose pretreatment appeared more noticeable on the thermogram, compared with other pretreatments. The glass transition temperature was measured for the first time in the dried lens tissues as an example of a whole biological tissue and might provide a basis for tissue preservation in the dried condition.

  20. Effect of the temperature on the spray drying of Roselle extracts (Hibiscus sabdariffa L.).

    Gonzalez-Palomares, Salvador; Estarrón-Espinosa, Mirna; Gómez-Leyva, Juan Florencio; Andrade-González, Isaac

    2009-03-01

    The effect of the drying temperature on the volatile components and sensory acceptance of the Roselle (Hibiscus sabdariffa) extract in powder was investigated. The Roselle extraction was carried out by maceration with 7 L of 30% ethanol (v/v), 560 g of fresh Roselle calyces for 168 h. The Roselle extracts were spray dried at different temperatures 150, 160, 170, 180, 190, 200 and 210 degrees C, giving different outlet values about yield and final moisture. The volatile compounds in Roselle extract and dried samples were performed using needles of solid phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS HP-5890). Twenty volatile compounds were identified in the extracts among them terpenoids, esters, hydrocarbons and aldehydes. Fourteen volatile compounds were identified in the powder sample, but only ten were present in the Roselle extract. This indicates that some compounds were lost and some others were generated due to a degradation process. An acceptability sensory analysis showed that the best powder sample was the Roselle extract dehydrated using temperature between 190 degrees C and 200 degrees C (pRoselle extracts ranging from 3.4 to 3.9. It was concluded that the spray drying temperature of the Roselle extracts has an effect on the volatile compounds losses.

  1. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    Zhang, Xuming; Cha, Min

    2013-01-01

    and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while

  2. Summary: High Temperature Downhole Motor

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  3. NSTX High Temperature Sensor Systems

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  4. Development of high temperature turbine

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  5. High temperature structural sandwich panels

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  6. Ceramics for high temperature applications

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  7. High-temperature geothermal cableheads

    Coquat, J. A.; Eifert, R. W.

    1981-11-01

    Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.

  8. Effects of Varying CDS, Drying and Cooling Temperatures on Glass Transition Temperature of DDGS

    Distillers dried grains with solubles (DDGS), a co product of the corn-based fuel ethanol industry, is used widely as an animal feed. Due to increased demand for DDGS in livestock markets it has become essential to transport DDGS over long distances. Flowability problems in DDGS, due to particle cak...

  9. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  10. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  11. Sealed glass coating of high temperature ceramic superconductors

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  12. High temperature PEM fuel cells

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  13. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  14. An assessment of temperature history on concrete silo dry storage system for CANDU spent fuel

    Lee, Dong-Gyu; Sung, Nak-Hoon; Park, Jea-Ho; Chung, Sung-Hwan

    2016-01-01

    Highlights: • We performed thermal analysis to predict the temperature distribution in the concrete silo. • Thermal analysis of the concrete silo was based on CFD code. • Temperature distribution and history for storage period was presented. • Thermal analysis results and test results agreed well. • The correlations can predict the maximum fuel temperature over storage period. - Abstract: Concrete silo is a dry storage system for spent fuel generated from CANDU reactors. The silo is designed to remove passively the decay heat from spent fuel, as well as to secure the integrity of spent fuel during storage period. Dominant heat transfer mechanisms must be characterized and validated for the thermal analysis model of the silo, and the temperature history along storage period could be determined by using the validated thermal analysis model. Heat transfer characteristics on the interior and exterior of fuel basket in the silo were assessed to determine the temperature history of silo, which is necessary for evaluating the long-term degradation behavior of CANDU spent fuel stored in the silo. Also a methodology to evaluate the temperature history during dry storage period was proposed in this study. A CFD model of fuel basket including fuel bundles was suggested and temperature difference correlation between fuel bundles and silo’s internal member, as a function of decay heat of fuel basket considering natural convection and radiation heat transfer, was deduced. Temperature difference between silo’s internal cavity and ambient air was determined by using a concept of thermal resistance, which was validated by CFD analysis. Fuel temperature was expressed as a function of ambient temperature and decay heat of fuel basket in the correlation, and fuel temperature along storage period was determined. Therefore, it could be used to assess the degradation behavior of spent fuel by applying the degradation mechanism expressed as a function of spent fuel

  15. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes

    Zhenjiang, Zhou; Plauborg, Finn; Kristensen, Kristian

    2017-01-01

    while N rate varied from 0 to 180 kg ha−1. Statistical analysis using mixed modelling detected two clear features: Both temperature and N supply were important factors for dry matter production. Higher temperatures were associated with decreased dry matter production mainly through its negative effect...... on radiation use efficiency (RUE) when comparing inter-annual variation in dry matter production. The loss of tuber dry matter was c. 10% per °C, which is higher than estimated in previous studies. Specifically, compared to mean air temperature from end of tuber initiation to maturity, mean air temperature...... from emergence to end of tuber initiation was more important for dry matter production. N supply promoted dry matter production (p

  16. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review.

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2018-01-10

    Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.

  17. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Tuorto, Steven J; Brown, Chris M; Bidle, Kay D; McGuinness, Lora R; Kerkhof, Lee J

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  18. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  19. Passivation of high temperature superconductors

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  20. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  1. High temperature superconductors and method

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  2. Shape and size of jatropha beans (Jatropha curcas L. during drying at different temperatures

    Valdiney Cambuy Siqueira

    2013-12-01

    Full Text Available This study was carried out to study the physical properties of the jatropha beans over the drying under six air conditions, based on measurements of roundness, sphericity, volume, superficial area, projected area and surface/volume ratio. Jatropha beans with moisture content around 0.61 (decimal d.b. were subjected to thin-layer drying in oven with forced-air circulation under six temperature conditions (36, 45, 60, 75, 90 and 105 °C and relative humidity of 31.7; 19.6; 9.4; 4.8; 2.6 and 1.5% respectively, until reaching the moisture content of 0.11 ± 0.006 (decimal d. b.. The results showed that the necessary time for jatropha beans to reach the moisture content of 0.11 ± 0.006 (decimal d.b. were 1.5; 2.25; 3.0; 4.75; 6.75 and 12.0 h for the drying temperatures of 105, 90, 75, 60, 45 and 36 °C, respectively; and the reduction in the moisture content as well as the drying conditions promoted changes in the shape and reduced the size of the jatropha beans.

  3. Modern high-temperature superconductivity

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  4. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  5. Hydrothermal Liquefaction of Dried Distillers Grains with solubles: A reaction temperature study

    Mørup, Anders; Christensen, Per Runge; Aarup, David Friis

    2012-01-01

    provides rapid heating of biomass feeds and the option of performing multiple sequential repetitions. This bypasses long, uncontrollable temperature gradients and unintended changes in the reaction chemistry. The product, a crude bio-oil, was characterized in terms of yield, elemental composition......The effect of the reaction temperature on hydrothermal liquefaction of dried distillers grains with solubles (DDGS) was investigated using a novel stop-flow reactor system at varying temperatures (300–400 °C), fixed pressure (250 bar), and fixed reaction time (15 min). The stop-flow reactor......, and chemical composition. Higher reaction temperatures resulted in improved bio-oil yields, less char formation, and higher heating values of the bio-oil. A supercritical reaction temperature of 400 °C was found to produce bio-oil in the highest yields and of the best quality....

  6. Studies of high temperature superconductors

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  7. High temperature superconductor current leads

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  8. Container floor at high temperatures

    Reutler, H.; Klapperich, H.J.; Mueller-Frank, U.

    1978-01-01

    The invention describes a floor for container which is stressed at high, changing temperatures and is intended for use in gas-cooled nuclear reactors. Due to the downward cooling gas flow in these types of reactor, the reactor floor is subjected to considerable dimensional changes during switching on and off. In the heating stage, the whole graphite structure of the reactor core and floor expands. In order to avoid arising constraining forces, sufficiently large expansion spaces must be allowed for furthermore restoring forces must be present to close the gaps again in the cooling phase. These restoring forces must be permanently present to prevent loosening of the core cuits amongst one another and thus uncontrollable relative movement. Spring elements are not suitable due to fast fatigue as a result of high temperatures and radiation exposure. It is suggested to have the floor elements supported on rollers whose rolling planes are downwards inclined to a fixed point for support. The construction is described in detail by means of drawings. (GL) [de

  9. High Temperature Radio Frequency Loads

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  10. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  11. Development of Bioclimatic Design Tool for Oman Using Dry Bulb and Dew Point Temperatures Open Database

    Nasser Al-Azri

    2017-06-01

    Full Text Available Bioclimatic charts are used by engineers and architects in implementing passive cooling systems and architectural optimization with respect to natural air conditioning. Conventionally, the development of these charts is based on the availability of typical meteorological year which requires a record of meteorological data that are rarely available in sufficient amounts. Bioclimatic charts in Oman were developed earlier by the authors for limited locations based on the available typical meteorological years. Using dry bulb and dew point temperatures only, bioclimatic charts are developed for Adam, Buraimi, Ibra, Muscat, Nizwa, Rustaq, Saiq, Salalah, Suhar and Sur. These charts are better representative of bioclimatic trends since their development is mainly based on the relevant parameters, namely dry bulb temperature and dew point.

  12. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  13. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  14. High concentration agglomerate dynamics at high temperatures.

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  15. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  16. Numerical predictions of dry oxidation of iron and low-carbon steel at moderately elevated temperatures

    Henshall, G.A.

    1996-11-01

    Wrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is possible at the moderately elevated temperatures expected at the container surface (323-533 K or 50-260 C). Numerical predictions of dry oxidation damage were made based on experimental data for iron and low-carbon steel and parabolic oxidation theory. The Forward Euler method was implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Thus, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel

  17. High Temperature Superconductor Accelerator Magnets

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  18. The high-temperature reactor

    Kirchner, U.

    1991-01-01

    The book deals with the development of the German high-temperature reactor (pebble-bed), the design of a prototype plant and its (at least provisional) shut-down in 1989. While there is a lot of material on the HTR's competitor, the fast breeder, literature is very incomplete on HTRs. The author describes HTR's history as a development which was characterised by structural divergencies but not effectively steered and monitored. There was no project-oriented 'community' such as there was for the fast breeder. Also, the new technology was difficult to control there were situations where no one quite knew what was going on. The technical conditions however were not taken as facts but as a basis for interpretation, wishes and reservations. The HTR gives an opportunity to consider the conditions under which large technical projects can be carried out today. (orig.) [de

  19. High temperature industrial heat pumps

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  20. Faraday imaging at high temperatures

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  1. Faraday imaging at high temperatures

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  2. Effects of drying methods on the low temperature reactivity of Victorian brown coal to oxygen

    Unal, S.; Wood, D.G.; Harris, I.J. (University of Marmara, Istanbul (Turkey). Ataturk Faculty of Education, Division of Science Education)

    1992-02-01

    The effects of air drying and thermal dewatering on the low temperature oxygen reactivity of Victorian brown coal have been investigated in the temperature range 35-55{degree}C and at 100 kPa oxygen pressure using coal samples ground to {lt} 100 mesh. An attempt has also been made to relate the low temperature oxygen reactivity of the coal to its free radical concentration as measured prior to oxidation. Two rate models, the Schmidt and Winmill models, have been adapted to include the initial free radical concentration of the coal samples as the drying method sensitivity parameter in lieu of the concentration of oxygen-reactive sites in the coal material. The experimental results show that air drying, which reduces the free radical concentration of the coal, causes a decline in its oxygen reactivity whereas thermal dewatering, which causes an increase in the free radical concentration of the coal, enhances its oxygen reactivity. Air drying does not affect the distribution of the consumed oxygen in the oxidation products. A difference is observed in the case of the thermally dewatered coal samples. The correlation of the two rate models adopted is considered equally satisfactory. However, only the values obtained for the two activation energies in the Winmill model reflect the changes caused by thermal dewatering in the oxidation pattern of the coal. The activation energy values obtained from the two models are within the range of those quoted in the literature for the abstraction of hydrogen from various arene structures by free radicals. 35 refs., 10 figs., 8 tabs.

  3. Ocular surface temperature in patients with evaporative and aqueous-deficient dry eyes: a thermographic approach.

    Matteoli, S; Favuzza, E; Mazzantini, L; Aragona, P; Cappelli, S; Corvi, A; Mencucci, R

    2017-07-26

    In recent decades infrared thermography (IRT) has facilitated accurate quantitative measurements of the ocular surface temperature (OST), applying a non-invasive procedure. The objective of this work was to develop a procedure based on IRT, which allows characterizing of the cooling of the ocular surface of patients suffering from dry eye syndrome, and distinguishing among patients suffering from aqueous deficient dry eye (ADDE) and evaporative dry eyes (EDE). All patients examined (34 females and 4 males, 23-84 years) were divided into two groups according to their Schirmer I result (⩽ 7 mm for ADDE and  >  7 mm for EDE), and the OST was recorded for 7 s at 30 Hz. For each acquisition, the temperatures of the central cornea (CC) as well as those of both temporal and nasal canthi were investigated. Findings showed that the maximum temperature variation (up to 0.75  ±  0.29 °C) was at the CC for both groups. Furthermore, patients suffering from EDE tended to have a higher initial OST than those with ADDE, explained by the greater quantity of the tear film, evenly distributed over the entire ocular surface, keeping the OST higher initially. Results also showed that EDE patients had an average cooling rate higher than those suffering from ADDE, confirming the excessive evaporation of the tear film. Ocular thermography paves the way to become an effective tool for differentiating between the two different etiologies of dry eye syndrome.

  4. High temperature incineration. Densification of granules from high temperature incineration

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  5. Microstructure, composition and performance of PVD coatings designed for successful dry high speed milling

    Muenz, W.-D.; Lembke, M.I.; Lewis, D.B.; Smith, I.J.

    2001-01-01

    Dry high speed machining (HSM), particularly dry high speed milling, demands hard coatings, which exhibit high toughness, high oxidation resistance, a limited amount of residual stress and excellent adhesion to the cemented carbide (CC) substrate. These requirements are met by TiAICrYN coatings grown by the combined cathodic arc/unbalanced magnetron deposition method. Fully sufficient adhesion is achieved by ion implantation of Cr into the CC prior deposition. Residual stress is controlled by an Y - free base layer; high oxidation resistance is provided by an Y - containing 3 μm thick hard coating with 29 GPa hardness and a residual stress well below -7 GPa. Under the influence of temperatures above 800 o C, Y segregates along the columns of TiAIN and plugs the in/out diffusion of elements. A top layer of Y - containing oxynitride reduces the friction against the work piece material (0.9 to 0.65). Cutting tools coated as such may be used for dry milling up to 25 k rpm in steels HRC > 60. (author)

  6. Bioactive Compounds of Chamber-Dried Blueberries at Controlled Temperature and Wines Obtained from Them

    Juan Martin-Gomez

    2017-01-01

    Full Text Available The effects of chamber drying under controlled temperature and moisture conditions and fermentation process on blueberry juices to obtain three wines were studied in this work. Drying was carried out with a view to increase the sugar content and obtain wines with an ethanol content similar to a commercial grape wine or to obtain sweet wines. Analyses included color parameters; browning index; and anthocyanin, flavonols, flavan-3-ol derivatives, and tannin concentrations, as well as vitamin C concentration and antioxidant activity. Based on the results, drying increases color and the concentration of anthocyanins and tannins most probably by the effect of dehydration of the berries and diffusion of the colored compounds from the skin to the pulp due to the structural alterations in their skin. In addition, drying decreases flavonols, flavan-3-ol derivatives, and vitamin C concentrations. The browning index, anthocyanins, and tannins decreased with the fermentation time, and vitamin C was constant with the fermentation time. The sensory analysis showed that the wines with the best sensory characteristics were those with residual sugar, partial fermented wines 1 and 2.

  7. Enhanced high energy efficient steam drying of algae

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  8. High Temperature Superconducting Underground Cable

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  9. High-temperature axion potential

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  10. Creep of high temperature composites

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  11. Dry-cleaning with high-pressure carbon dioxide

    Van Roosmalen, M.J.E.

    2003-01-01

    Dry-cleaning is a process for removing soils and stains from fabrics and garments which uses a non-aqueous solvent with detergent added. The currently most used dry-cleaning solvent is perchloroethylene (PER), which is toxic, environmentally harmful and suspected to be carcinogenic. Carbon dioxide

  12. High Temperature Chemistry at NASA: Hot Topics

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  13. High temperature vapors science and technology

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  14. Evaluation of high temperature pressure sensors

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  15. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  16. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    Zhang, Xuming; Cha, Min Suk

    2013-01-01

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297–773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH 4 and CO 2 , while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. (paper)

  17. Electric breakdown of high polymer insulating materials at cryogenic temperature

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  18. High rate dry etching of InGaZnO by BCl3/O2 plasma

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  19. High temperature turbine engine structure

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  20. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  1. Drying of brick as a function of heat flows and analysis of moisture and temperature distributions

    Svendsen, Sv Aa Højgaard; Rudbeck, Claus Christian; Bunch-Nielsen, Tommy

    1997-01-01

    In order to investigate the driving mechanisms for frost damages in brickwork, laboratory tests has been performed on a test brick wall. These test include monitoring of temperature and moisture distribution in the wall as function of the influence of driving rain, wind speed and solar radiation....... After the initial tests the surface of the wall was treated with mortar and a new series of test was performed. The wall with and without treatment performed almost equal during the influence of driving rain, and during the later drying phase, the difference was equally small....

  2. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes

    Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz

    2018-04-01

    Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.

  3. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH_4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  4. Responses of young tea (Camellia sinensis) clones to drought and temperature. II. Dry matter production and partitioning

    Burgess, P.J.; Carr, M.K.V.

    1996-01-01

    The physiological basis for differences in yields from well-watered and draughted plants of four contrasting clones of tea was studied in terms of light interception, dry matter production and partitioning at a high altitude site in Southern Tanzania where there are marked seasonal variations in rainfall and temperature. The plant dry weights, including roots, were measured eight months after field planting and subsequently at intervals of three to four months, corresponding to the different seasons, during the following two years. Fully irrigated plants of one clone (S15/10) were also harvested after four years in the field. Clones differed in the rates of canopy spread and hence in their capacity to intercept solar radiation. The ‘radiation use efficiency’ (the net total dry matter production per unit of intercepted short-wave radiation) was similar for the four well-watered clones and ranged from 0.40 to 0.66 g MJ −1 , which corresponds closely to values reported for other woody tropical plants. A 16-week drought treatment imposed two years after planting reduced the mean light interception of the four clones by about 25% and the mean radiation use efficiency by 78% to 0.09 g MJ −1 . Clone S15/10, a cultivar from Kenya which produces large yields, partitioned a greater proportion of dry matter to leaves and harvested shoots than the other clones, and correspondingly less to large structural roots. This resulted in a maximum harvest index of 24%, substantially greater than other values reported in the literature. There were seasonal differences in partitioning, with more dry matter being diverted to roots and less to shoots during the cool season. Although the drought treatments had no significant effect on root growth, the amount of dry matter partitioned to leaves, stems and harvested shoots declined by 80–95%. The roots of all four clones extended in depth at similar rates (about 2 mm d −1 ), those of Clone S15/10 reaching 2.8m after four years

  5. Development of high efficiency ventilation bag actuated dry powder inhalers.

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-04-25

    New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 μm of 65-85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of Processing Temperature on Color Properties of Dry-Cured Hams Made without Nitrite

    Giovanni Parolari

    2016-04-01

    Full Text Available Dry cured hams were investigated for their ability to develop red color even at low temperature (3–4 °C and in the absence of added nitrites; results were compared with those obtained from nitrite-free hams made at conventional warm maturing temperatures. Colorimetric parameters (L*, a*, b*, and hue and concentration of the main pigments Zn protoporphyrin IX (ZnPP and heme were measured at three stages of preparation (six, nine, and 12 months, showing that red color was successfully formed at low temperatures, though at a slower rate and less intensively than under warm conditions. Major differences in the pattern of color development were found with the two processing temperatures. While the typical features of an enzyme-dependent mechanism, with a progressive drop in enzyme activity paralleling the synthesis of Zn protoporphyrin IX, were observed at warm temperatures, the same did not occur in cold-made hams, where the enzyme activity was almost unchanged throughout the process. These results, along with data from a descriptive sensory analysis, are supportive of a non-enzymatic mechanism leading to ZnPP (hence the red color under cold conditions, with an estimated three-month delay compared with nitrite-free hams manufactured in a warm maturing regimen.

  7. Effects of Processing Temperature on Color Properties of Dry-Cured Hams Made without Nitrite.

    Parolari, Giovanni; Aguzzoni, Agnese; Toscani, Tania

    2016-04-29

    Dry cured hams were investigated for their ability to develop red color even at low temperature (3-4 °C) and in the absence of added nitrites; results were compared with those obtained from nitrite-free hams made at conventional warm maturing temperatures. Colorimetric parameters (L*, a*, b*, and hue) and concentration of the main pigments Zn protoporphyrin IX (ZnPP) and heme were measured at three stages of preparation (six, nine, and 12 months), showing that red color was successfully formed at low temperatures, though at a slower rate and less intensively than under warm conditions. Major differences in the pattern of color development were found with the two processing temperatures. While the typical features of an enzyme-dependent mechanism, with a progressive drop in enzyme activity paralleling the synthesis of Zn protoporphyrin IX, were observed at warm temperatures, the same did not occur in cold-made hams, where the enzyme activity was almost unchanged throughout the process. These results, along with data from a descriptive sensory analysis, are supportive of a non-enzymatic mechanism leading to ZnPP (hence the red color) under cold conditions, with an estimated three-month delay compared with nitrite-free hams manufactured in a warm maturing regimen.

  8. Effects of Processing Temperature on Color Properties of Dry-Cured Hams Made without Nitrite

    Parolari, Giovanni; Aguzzoni, Agnese; Toscani, Tania

    2016-01-01

    Dry cured hams were investigated for their ability to develop red color even at low temperature (3–4 °C) and in the absence of added nitrites; results were compared with those obtained from nitrite-free hams made at conventional warm maturing temperatures. Colorimetric parameters (L*, a*, b*, and hue) and concentration of the main pigments Zn protoporphyrin IX (ZnPP) and heme were measured at three stages of preparation (six, nine, and 12 months), showing that red color was successfully formed at low temperatures, though at a slower rate and less intensively than under warm conditions. Major differences in the pattern of color development were found with the two processing temperatures. While the typical features of an enzyme-dependent mechanism, with a progressive drop in enzyme activity paralleling the synthesis of Zn protoporphyrin IX, were observed at warm temperatures, the same did not occur in cold-made hams, where the enzyme activity was almost unchanged throughout the process. These results, along with data from a descriptive sensory analysis, are supportive of a non-enzymatic mechanism leading to ZnPP (hence the red color) under cold conditions, with an estimated three-month delay compared with nitrite-free hams manufactured in a warm maturing regimen. PMID:28231128

  9. High temperature water chemistry monitoring

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  10. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-01-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressur...

  11. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    Sreerangappa, Ramesh; Debecker, Damien P.; 13th European Congress on Catalysis – EuropaCat 2017

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced by one-pot spray dried route, and are characterized by various physico-chemical methods. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The catalyst does not leach and showed good reusability up to three cycles.

  12. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  13. Effect of Hot Water Blanching Time and Drying Temperature on the Thin Layer Drying Kinetics of and Anthocyanin Degradation in Black Carrot (Daucus carota L. Shreds

    Umar Garba

    2015-01-01

    Full Text Available This study was conducted to investigate the eff ect of blanching treatment (98 °C for 3 and 6 min and air drying temperature of 40, 50 and 60 °C on the thin layer drying characteristics such as drying time, drying rate constant, effective moisture diffusivity and activation energy, as well as on anthocyanin content of black carrot shreds. It was observed that drying temperature aff ected the drying rate but blanching did not have an eff ect on drying time. Three thin layer drying models, i.e. Page, Lewis and Henderson-Pabis were evaluated. The goodness of these models was evaluated based on the coefficient of determination (R2, root mean square error, reduced chi square (χ2 and standard error. Page model showed the best fit to the drying data. The effective diffusivity ranges of 1.4·10–9 to 2.6·10–9 m2/s, 1.3·10–9 to 2.1·10–9 m2/s and 1.5·10–9 to 2.2·10–9 m2/s aft er 3 or 6 min of blanching and control samples respectively were calculated using Fick’s second law. The activation energy of 37.5, 26.0 and 34.6 kJ/(mol·K of the control samples and samples blanched for 3 or 6 min respectively was determined from the Arrhenius plot. The blanching treatment affected the anthocyanin content to a great extent. The anthocyanin content of (231.7±2.9 and (278.8±7.8 mg per 100 g was recorded in samples blanched for 3 and 6 min and then dried at 60 °C, and (153.0±4.3 and (247.0±5.5 mg per 100 g was recorded at 40 °C as compared to the control of (580.1±1.3 at 60 °C and (466.7±1.1 mg per 100 g at 40 °C.

  14. Tolerance of corn lines seeds to high drying temperature

    José, Solange Carvalho Barrios Roveri; Pinho, Édila Vilela de Resende Von; Pinho, Renzo Garcia Von; Silveira, César Martoreli da

    2004-01-01

    Cultivares tolerantes a altas temperaturas de secagem proporcionam redução no tempo de secagem, uma etapa crítica no sistema de produção de sementes de milho (Zea mays L.). Nesta pesquisa, foi avaliada a tolerância à alta temperatura de secagem de sementes de linhagens de milho, por meio de testes de germinação e vigor. As sementes foram colhidas manualmente em espigas com teor de água em torno de 35% e secas artificialmente à 45 C até atingirem 11% de teor de água. Em seguida, foram submetid...

  15. High temperature soldering of graphite

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  16. Resonance integral calculations for high temperature reactors

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  17. Hot nuclei: high temperatures, high angular momenta

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  18. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels

    Stahnke, Marie Louise Heller

    1995-01-01

    Sausages with added Staphylococcus xylosus were fermented at different temperatures and with different added levels of salt, glucose, nitrite, nitrate and Pediococcus pentosaceus in accordance with a six factor fractional design. The odour of the sausages was evaluated by a quantitative descriptive...... tested using multiple linear regression and analysis of variance. The study showed that salami odour was more pronounced in sausages fermented at low temperature than in sausages fermented at high temperature and added nitrite, glucose and P. pentosaceus. High temperature sausages had a more sour...

  19. Deep Trek High Temperature Electronics Project

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  20. Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.).

    Vega-Gálvez, Antonio; Zura-Bravo, Liliana; Lemus-Mondaca, Roberto; Martinez-Monzó, Javier; Quispe-Fuentes, Issis; Puente, Luis; Di Scala, Karina

    2015-04-01

    The effects of air drying temperature on dietary fibre, texture and microstructure of the Cape gooseberry fruits during convective dehydration in the range of 50-90 ºC were investigated. The ratio of insoluble dietary fibre to soluble dietary fibre was higher than 7:1 for all dehydrated samples. At 50 ºC tissue structure damage was evidenced leading to the maximum water holding capacity (47.4 ± 2.8 g retained water/100 g water) and the lowest rehydration ratio (1.15 ± 0.06 g absorbed water/g d.m.). Texture analysis showed effects of drying temperatures on TPA parameters. Changes in microstructure tissue were also observed at the studied drying temperatures. Hot air drying technology leads not only to fruit preservation but also increases and adds value to Cape gooseberry, an asset to develop new functional products.

  1. Theoretical and Experimental Evaluation of the Temperature Distribution in a Dry Type Air Core Smoothing Reactor of HVDC Station

    Yu Wang

    2017-05-01

    Full Text Available The outdoor ultra-high voltage (UHV dry-type air-core smoothing reactors (DASR of High Voltage Direct Current systems are equipped with a rain cover and an acoustic enclosure. To study the convective heat transfer between the DASR and the surrounding air, this paper presents a coupled model of the temperature and fluid field based on the structural features and cooling manner. The resistive losses of encapsulations calculated by finite element method (FEM were used as heat sources in the thermal analysis. The steady fluid and thermal field of the 3-D reactor model were solved by the finite volume method (FVM, and the temperature distribution characteristics of the reactor were obtained. Subsequently, the axial and radial temperature distributions of encapsulation were investigated separately. Finally, an optical fiber temperature measurement scheme was used for an UHV DASR under natural convection conditions. Comparative analysis showed that the simulation results are in good agreement with the experimental data, which verifies the rationality and accuracy of the numerical calculation. These results can serve as a reference for the optimal design and maintenance of UHV DASRs.

  2. Preparation and characterization of a nickel/alumina composite membrane for high temperature hydrogen separation. Application in a membrane reactor for the dry reforming of methane; De la synthese d'une membrane composite nikel/ceramique permselective a l'hydrogene au reacteur membranaire. Application au reformage du methane

    Haag, St.

    2003-11-01

    The objective of this work was to develop composite inorganic membranes based on nickel or palladium supported on a porous ceramic for high temperature hydrogen separation. These membranes were used in a membrane reactor for the dry reforming of methane in order to shift the chemical equilibrium towards the production of hydrogen and carbon monoxide. The metal layers were deposited on a tubular alumina support by electroless plating. The Ni and the Pd layers are 1 micron thick. The hydrogen permeation tests were done for high temperatures. The Pd/ceramic membrane is permselective to hydrogen and the H{sub 2}/N{sub 2} separation factor (single gas) is 60 at 400 deg C with a transmembrane pressure difference of 1 bar. With a gas mixture, the H{sub 2}/N{sub 2} separation factor is 13. This membrane is not completely dense and the transport mechanism of hydrogen through the Pd layer is mixed: solution-diffusion through the metal bulk and surface diffusion through the defects of the film. However, an embrittlement of the palladium layer under hydrogen atmosphere was observed at 500 deg C. The Ni/ceramic membrane is stable until 600 deg C, its permselectivity to hydrogen increases with the temperature. The use of a sweep gas can provide a H{sub 2}/N{sub 2} separation factor (mixture) of about 25. The main diffusion mechanism is surface diffusion through the pores. Both membranes are not catalytic. Thus, some catalysts composed of nickel and cobalt supported on MgO, SiO{sub 2} or Al{sub 2}O{sub 3} were prepared. These systems allow to reach theoretical limits of conversion calculated for a conventional fixed bed reactor. In the membrane reactor, an enhancement of the methane conversion (15-20%) is observed with both membranes due the selective removal of hydrogen during the reaction. The Ni/ceramic membrane more stable, more permeable and as selective as the palladium one is a brand new material for high temperature hydrogen separation. (author)

  3. Ambient Dried Aerogels

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  4. High temperature alloys and ceramic heat exchanger

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  5. High-temperature peridotites - lithospheric or asthenospheric?

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  6. Irradiation in combination with low temperature storage for preservation of semi-dried mango and longan

    Noomhorm, A.; Karki, D.B.; Rao, M.S.

    1996-01-01

    Semi dried mango (30% m.c.) and longan (16% m.c.) packed in low density polyethylene were irradiated at doses of 0, 2, 4, 6 and 8 kGy using Cobalt-60 and stored at 14 degree C and 30 degree C. Irradiation had no significant effect (p > 0.05) on acidity, total and reducing sugars, total carotenes, vitamin C content and sensory quality of the product. An irradiation dose of 2 kGy was sufficient to prevent the growth of microorganisms but a high dose of 8 kGy failed to reduce the viable yeast-mold count to neutrality. Irradiation of semi-dried mango and longan at a minimum dose of 2 kGy and subsequent storage at 14 degree C prolonged the shelf life without significant changes in quality

  7. Irradiation in combination with low temperature storage for preservation of semi-dried mango and longan

    Noomhorm, A; Karki, D B; Rao, M S [Agricultural and Food Engineering Program, School of Environment, Resources and Development, Asian Institute of Technology, Bangkok (Thailand)

    1996-12-01

    Semi dried mango (30% m.c.) and longan (16% m.c.) packed in low density polyethylene were irradiated at doses of 0, 2, 4, 6 and 8 kGy using Cobalt-60 and stored at 14 degree C and 30 degree C. Irradiation had no significant effect (p > 0.05) on acidity, total and reducing sugars, total carotenes, vitamin C content and sensory quality of the product. An irradiation dose of 2 kGy was sufficient to prevent the growth of microorganisms but a high dose of 8 kGy failed to reduce the viable yeast-mold count to neutrality. Irradiation of semi-dried mango and longan at a minimum dose of 2 kGy and subsequent storage at 14 degree C prolonged the shelf life without significant changes in quality

  8. Parameter study of temperature distribution in a work-piece during dry hyperbaric GTA-welding

    Fulfs, H.

    1989-01-01

    In a sensitivity study the influence of initial and boundary welding parameters upon the spatial and temporal temperature distribution in a work-piece during dry hyperbaric GTA-welding is investigated. It will be shown that at constant arc current a variation of pressure (1-60 bar), arc length (3-10 mm), welding speed (1-2.5 mm/s) or the initial temperature (20-200deg C) of the work-piece to some extend significantly influences the size of melt and heat affected zone as well as the maximum temperature and cooling behaviour of the work-piece; compared to this no mentionable effects of shielding gas temperature (20-300deg C) or flow rate (10-500 dm N 3 /min) on the thermal condition of the work-piece can be recognized. The discovered relationships have been approximated by simple correlations, which can be used for parameter optimization and process control. (orig.) With 33 figs., 4 tabs [de

  9. Effects of Drying Temperature on Flavonoids Extraction Rate from Young Stems and Leaves of Two Cassava Varieties

    WANG Ding-mei

    2017-01-01

    Full Text Available To improve flavonoids resources utilization level of young cassava stems and leaves, using cassava varieties SC09 and SC205 as ob jects, investigated the effect of different drying temperatures(40~120℃on the flavonoids extraction rate(FERand their stability in 120 d storage period after drying, explored a right drying storage method for postharvest young cassava stems and leaves. The research showed that total FER rised first, and then fell and rised again with the increase of drying temperature. During 40~80℃, the total FER was obviously in fluenced by variety and temperature, but only temperature was main factor affecting total FER during 90~120℃. Extract degree of flavonoids include rutin, amentoflavone or catechin, kaempferol, hesperidin, quercetin minished in order; the effect of cassava variety on the extraction rate of catechin and hesperidin was greater than that of drying temperature, but that contrary to other 4 flavonoids. Variety and temperature had a maximum impact respectively on catechin and rutin extraction rates. Whereas both of variety and temperature had a minimum impact on kaempferol extraction rate. FER reached higher levels of 1.42%and 1.53% respectively in SC09 after 120℃drying and SC205 after 110℃drying, and had best stability during 120 d storage period. The extraction rate of hesperidin increased after drying storage, and that of other 5 ingredients were changing with different varieties and temperatures; the coefficient variation(CV=1.03%~6.86%of kaempferol was minimum and its stability was best; extraction rates of rutin and kaempferol in SC205 after 110℃drying were maximum, whose increasing rates were 44.89%and 7.27%respectively with a small separate degree(CV were 6.94%, 4.59%and good extraction stability. Maximum in creasing rates of catechin, amentoflavone, quercetin and hesperidin were 211.60%,17.60%,186.39% and 538.08% respectively. However,their stabilities of extraction efficiency were poor

  10. THE PRODUCTION OF BREADFRUIT FLOUR: EFFECT OF HEATER TEMPERATURE TO THE DRYING RATE AND TIME OF THE BREADFRUIT

    Denni Kartika Sari

    2017-06-01

    Full Text Available The composition of mineral and vitamin from breadfruit is particularly known of having benefits compared to rice which is a main source of carbohydrate consumed by societies. The process of drying is one of the factors that affects foodstuffs quality. The aim of this research was to provide an understanding of drying phenomena from data experiment and discover the influence of drying air temperature to breadfruit drying time and rates. This research was conducted in several stages which are material preparation (breadfruit by through downsizing process, then weigh the material (breadfruit once every 5 minutes on each drying air temperature variations (50 ºC, 60 oC, 70 oC, and 80 oC. The research were conducted using breadfruit with the best drying time which is obtained at 60 0C for 100 minutes. The lowest water content obtained was 0.4%, while the highest drying rate was 0.00144 Kg2/m2.s at 80 ºC of temperature.

  11. High temperature phase equilibria and phase diagrams

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  12. Development of High Temperature Solid Lubricant Coatings

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...

  13. Advances in high temperature chemistry 1

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  14. High temperature mechanical properties of iron aluminides

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  15. The Effects of Organic Manures, Soil Cover and Drying Temperature on Some Growth and Phytochemical Characteristics of Calendula officinalis

    Lamia Vojodi Mehrabani

    2017-01-01

    Full Text Available Two separate experiments were conducted to evaluate the effects of some pre and post -harvest treatments on growth characteristics of Calendula officinalis. The first experiment as RCBD with three replication studied the effects of organic fertilizers as vermicompost, cow and poultry manure with control plus soil cover (plastic white and black. Organic manure application +mulch had positive effects on flower fresh weight. The greatest amount for chlorophyll b content was recorded in vermicompost + black plastic cover. In the second experiment, the effects of nutrition with organic manure +soil cover and post-harvest flower drying temperature (natural drying in shade condition and oven drying at 40 and 60 0C as a factorial based on RCBD were evaluated. The highest methanolic extract amount and total anthocyanin content were recorded with vermicompost + black cover + natural drying. For essential oil content and carotenoids gross amount poultry manure + black cover and drying at 60 0C was the preferred treatments. The highest recorded data for total flavonoids was traced in vermicompot and cow manure with white cover at natural drying condition. For total phenolics content, cow manure + black cover at 40 0C used for drying was selected as the treatment of choice. Also, vermicompost+ black mulch and natural drying were nice treatment combinations for the highest total phenolics content. In total, all the treatment applied i.e. organic manures, soil covers and drying methods at varying levels and combinations had suitable effectiveness on the growth characteristics and phytochemicals content of Calendula officinalis.

  16. Investigations into High Temperature Components and Packaging

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  17. High temperature humidity sensing materials

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  18. Spin Hall magnetoresistance at high temperatures

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  19. Nuclear fuels for very high temperature applications

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  20. Corrosion Resistant Coatings for High Temperature Applications

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  1. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  2. Effects of Temperature on Chronic Trapezius Myofascial Pain Syndrome during Dry Needling Therapy

    Gang Wang

    2014-01-01

    Full Text Available The purpose of this study was to investigate the effects of temperature on chronic trapezius myofascial pain syndrome during dry needling therapy. Sixty patients were randomized into two groups of dry needling (DN alone (group A and DN combined with heat therapy group (group B. Each patient was treated once and the therapeutic effect was assessed by the visual analogue scale (VAS, pressure pain threshold (PPT, and the 36-item short form health survey (SF-36 at seven days, one month, and three months after treatment. Evaluation based on VAS and PPT showed that the pain of patients in groups A and B was significantly (P<0.05 relieved at seven days, one month, and three months after treatment Compared to before treatment. There was significantly (P<0.05 less pain in group B than group A at one and three months after treatment. The SF-36 evaluation demonstrated that the physical condition of patients in both groups showed significant (P<0.05 improvement at one month and three months after treatment than before treatment. Our study suggests that both DN and DN heating therapy were effective in the treatment of trapezius MPS, and that DN heating therapy had better long-term effects than DN therapy.

  3. Aspects of high temperature superconductivity

    Deutscher, G.

    1989-01-01

    We present some remarks on special features that distinguish the phenomenology of the new high T c oxides from that of the conventional superconductors. They include a measurable width of the critical region and a high sensitivity to crystallographic defects. A consistent Landau Ginsburg interpretation is possible, with a short coherence length <15 A and a penetration depth <900 A. The latter is somewhat smaller than the currently accepted value, and implies a broad band scheme

  4. Optimization of Chitosan Drying Temperature on The Quality and Quantity of Edible Film

    Sri Wahyuni, Endah; Arifan, Fahmi

    2018-02-01

    Edible film is a thin layer (biodegradable) used to coat food and can be eaten. In addition edible film serves as a vapor transfer inhibitor, inhibits gas exchange, prevents aroma loss, prevents fat transfer, improves physical characteristics, and as an additive carrier. Edible film made of cassava starch, glycerol and chitosan. Cassava starch is used as raw material because it contains 80% starch. Glycerol serves as a plasticizer and chitosan serves to form films and membranes well. The purpose of this research is to know the characteristic test of edible film by using ANOVA analysis, where the variable of drying of the oven is temperature (70°C, 80°C, 90°C) and time for 3 hours and variables change chitosan (2 gr, 3 gr, 4 gr). The result of this research was obtained the most optimum for water content and water resistance in temperature variable 80 °C and chitosan 4 gr. The best edible films and bubbles on temperature variables are 80 °C and chitosan 4 gr.

  5. Borehole Stability in High-Temperature Formations

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  6. Scale hierarchy in high-temperature QCD

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  7. Fusion blanket high-temperature heat transfer

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  8. Quantum electrodynamics at high temperature. 2

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  9. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    Sreerangappa, Ramesh; Debecker, Damien P.

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced from an aqueous solution, by a one-pot spray drying route. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The new catalyst does not leach and is recyclable. NaAlO2 microspheres outcompete commercially available NaAlO2 as well as o...

  10. Theory of high temperature superconductivity

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  11. High temperature resistant cermet and ceramic compositions

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  12. High Temperature Electrostrictive Ceramics, Phase I

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  13. High temperature solar selective coatings

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  14. Effect of temperature on a free energy and equilibrium constants during dry flue gas desulphurisation chemical reactions

    Kuburović Miloš

    2002-01-01

    Full Text Available During dry flue gas desulphurisation (FGD dry particles of reagents are inserted (injected in the stream of flue gas, where they bond SO2. As reagents, the most often are used compounds of calcium (CaCO3, CaO or Ca(OH2. Knowledge of free energy and equilibrium constants of chemical reactions during dry FGD is necessary for understanding of influence of flue gas temperature to course of these chemical reactions as well as to SO2 bonding from flue gases.

  15. High Speed Finish Turning of Inconel 718 Using PCBN Tools under Dry Conditions

    José Luis Cantero

    2018-03-01

    Full Text Available Inconel 718 is a superalloy, considered one of the least machinable materials. Tools must withstand a high level of temperatures and pressures in a very localized area, the abrasiveness of the hard carbides contained in the Inconel 718 microstructure and the adhesion tendency during its machining. Mechanical properties along with the low thermal conductivity become an important issue for the tool wear. The finishing operations for Inconel 718 are usually performed after solution heat treatment and age hardening of the material to give the superalloy a higher level of hardness. Carbide tools, cutting fluid (at normal or high pressures and low cutting speed are the main recommendations for finish turning of Inconel 718. However, dry machining is preferable to the use of cutting fluids, because of its lower environmental impact and cost. Previous research has concluded that the elimination of cutting fluid in these processes is feasible when using hard carbide tools. Recent development of new PCBN (Polycrystalline Cubic Boron Nitride grades for cutting tools with higher tenacity has allowed the application of these tool grades in the finishing operations of Inconel 718. This work studies the performance of commercial PCBN tools from four different tool manufacturers as well as an additional grade with equivalent performance during finish turning of Inconel 718 under dry conditions. Wear tests were carried out with different cutting conditions, determining the evolution of machining forces, surface roughness and tool wear. It is concluded that it is not industrially viable the high-speed finishing of Inconel 718 in a dry environment.

  16. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  17. Recrystallization of high temperature superconductors

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  18. Start-up of a sequential dry anaerobic digestion of paunch under psychrophilic and mesophilic temperatures.

    Nkemka, Valentine Nkongndem; Hao, Xiying

    2018-04-01

    The present laboratory study evaluated the sequential leach bed dry anaerobic digestion (DAD) of paunch under psychrophilic (22°C) and mesophilic (40°C) temperatures. Three leach bed reactors were operated under the mesophilic temperature in sequence at a solid retention time (SRT) of 40d with a new batch started 27d into the run of the previous one. A total of six batches were operated for 135d. The results showed that the mesophilic DAD of paunch was efficient, reaching methane yields of 126.9-212.1mLg -1 volatile solid (VS) and a VS reduction of 32.9-55.5%. The average daily methane production rate increased from 334.3mLd -1 to 571.4mLd -1 and 825.7mLd -1 when one, two and three leach bed reactors were in operation, respectively. The psychrophilic DAD of paunch was operated under a SRT of 100d and a total of three batches were performed in sequence for 300d with each batch starting after completion of the previous one. Improvements in the methane yield from 93.9 to 107.3 and 148.3mLg -1 VS and VS reductions of 24.8, 30.2 and 38.6% were obtained in the consecutive runs, indicating the adaptation of anaerobic microbes from mesophilic to psychrophilic temperatures. In addition, it took three runs for anaerobic microbes to reduce the volatile fatty acid accumulation observed in the first and second trials. This study demonstrates the potential of renewable energy recovery from paunch under psychrophilic and mesophilic temperatures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  20. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  1. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2018-04-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  2. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.

    Lao, Fei; Giusti, M Monica

    2017-07-15

    Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata fruit extract obtained by subcritical water extraction

    Susanti, R. F.; Christianto, G.

    2016-01-01

    Physalis angulata or ceplukan is medicinal herb, which grows naturally in Indonesia. It has been used in traditional medicine to treat several diseases. It is also reported to have antimycobacterial, antileukemic, antipyretic. In this research, Pysalis angulata fruit was investigated for its antioxidant capacity. In order to avoid the toxic organic solvent commonly used in conventional extraction, subcritical water extraction method was used. During drying, filler which is inert was added to the extract. It can absorb water and change the oily and sticky form of extract to powder form. The effects of filler types, concentrations and drying temperatures were investigated to the antioxidant quality covering total phenol, flavonoid and antioxidant activity. The results showed that total phenol, flavonoid and antioxidant activity were improved by addition of filler because the drying time was shorter compared to extract without filler. Filler absorbs water and protects extract from exposure to heat during drying. The combination between high temperature and shorter drying time are beneficial to protect the antioxidant in extract. The type of fillers investigation showed that aerosil gave better performance compared to Microcrystalline Celullose (MCC).

  4. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system

    Sekine, Yasushi; Furukawa, Naotsugu; Matsukata, Masahiko; Kikuchi, Eiichi, E-mail: ysekine@waseda.jp [Department of Applied Chemistry, Waseda University, 65-301, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2011-07-13

    Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523 K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C{sub 2} hydrocarbon without coke formation at a ratio of CO{sub 2}/C{sub fuel} = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523 K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

  5. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    Mehmet Koç; Figen Kaymak-Ertekin

    2016-01-01

    Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity) and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transiti...

  6. Application of High Temperature Superconductors to Accelerators

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  7. Ultra-high temperature direct propulsion

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  8. Dry re-forming of methane to synthesis gas over lignite semicokes catalyst at high pressure

    Fengbo Guo

    2016-11-01

    Full Text Available Dry re-forming of methane has been carried out in a high temperature–pressure reactor at different pressures, using Hongce lignite semicokes catalyst. The results show that CH4 and CO2 conversions are decreased as the reaction pressure increased, but both of them kept basically stable when the reaction pressure is between 0.3 and 1 MPa. The comparison shows that the effects of the temperature and the flow of reactant gas on dry re-forming of methane are consistent with between high pressure and atmospheric pressure. The ratio of CO/H2 decreased as the ratio of CH4/CO2 increased, yet the value of CO/H2 is always more than 1 at different pressures. Hongce lignite semicokes catalyst is characterized by FTIR, XRD, SEM and BET, and the analysis results reveled that the physical specific adsorption peak of CO2 at 2350 cm−1 is strengthened significantly at different pressures, the micropore area and volume of Hongce lignite semicokes reduced form 40.2 m2  g−1 and 0.019 cm3  g−1 to 34.9 m2  g−1 and 0.017 cm3  g−1, respectively. Hongce lignite semicokes catalyst exhibited better activity and stability within 0.3–1 MPa range.

  9. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  10. Mapping the depth to ice-cemented ground in the high elevation Dry Valleys, Antarctica

    Marinova, M.; McKay, C. P.; Heldmann, J. L.; Davila, A. F.; Andersen, D. T.; Jackson, A.; Lacelle, D.; Paulsen, G.; Pollard, W. H.; Zacny, K.

    2011-12-01

    The high elevation Dry Valleys of Antarctica provide a unique location for the study of permafrost distribution and stability. In particular, the extremely arid and cold conditions preclude the presence of liquid water, and the exchange of water between the ice-cemented ground and the atmosphere is through vapour transport (diffusion). In addition, the low atmospheric humidity results in the desiccation of the subsurface, forming a dry permafrost layer (i.e., cryotic soils which are dry and not ice-cemented). Weather data suggests that subsurface ice is unstable under current climatic conditions. Yet we do find ice-cemented ground in these valleys. This contradiction provides insight into energy balance modeling, vapour transport, and additional climate effects which stabilize subsurface ice. To study the driving factors in the stability and distribution of ice-cemented ground, we have extensively mapped the depth to ice-cemented ground in University Valley (1730 m; 77°S 51.8', 160°E 43'), and three neighbouring valleys in the Beacon Valley area. We measured the depth to ice-cemented ground at 15-40 locations per valley by digging soil pits and drilling until ice was reached; for each location 3-5 measurements within a ~1 m2 area were averaged (see figure). This high-resolution mapping of the depth to ice-cemented ground provides new insight on the distribution and stability of subsurface ice, and shows significant variability in the depth to ground ice within each valley. We are combining data from mapping the depth to ice-cemented ground with year-round, in situ measurements of the atmospheric and subsurface conditions, such as temperature, humidity, wind, and light, to model the local stability of ice-cemented ground. We are using this dataset to examine the effects of slopes, shading, and soil properties, as well as the suggested importance of snow recurrence, to better understand diffusion-controlled subsurface ice stability.

  11. Pulsed high-density plasmas for advanced dry etching processes

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier

    2012-01-01

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  12. Sandia_HighTemperatureComponentEvaluation_2015

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  13. Materials corrosion and protection at high temperatures

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  14. Tomate longa vida desidratado em diferentes temperaturas de secagem = Drying of tomato at different temperatures

    Aurélio Vinicius Borsato

    2007-01-01

    Full Text Available A demanda no consumo de tomate desidratado cresceu nos últimos anos,principalmente pela justificativa de que o tomate contém substâncias bioativas. A pesquisa realizada objetivou avaliar três condições de secagem (80oC; 100oC; 100oC por 3h seguida de 80oC, aplicadas ao tomate longa vida cv. Carmem para obtenção de produto desidratadocom umidade residual projetada para 60% do seu peso. Foi usado um secador de pouca capacidade, contendo circulação forçada de ar e cinco bandejas. Os tomates frescos, fatiados e inteiros, renderam em peso de produto desidratado 12,2-13,6% e 7,5-8,5%, respectivamente. O tratamento que aplicou a temperatura de 100ºC por 3h seguida de 80ºCpor 4h e 24min, com a porta fechada do secador, resultou em produto desidratado de boa aparência e sem nenhuma fatia queimada, por isso foi o recomendado para a secagem de fatias de tomate longa vida a cv. Carmem.The demand for the consumption of dried tomatoes has grown in recent years, especially under the justification that tomatoes contain allegedly healthy bioactive substances. The research aimed to evaluatethree drying conditions (80oC; 100oC; 100oC for 3h followed by 80oC applied to cv. Carmem long-life tomatoes in order to obtain a dehydrated product with a projected residual humidity of 60% in weight. A small-capacity dryer was used, equipped with forcedaircirculation and five trays. The fresh tomatoes, both sliced and whole, yielded 12.2-13.6% and 7.5-8.5% in weight of dehydrated product, respectively. The treatment consisting in the application of a temperature of 100ºC for 3h followed by 80ºC for 4h and 24min, with the door of the dryer closed, resulted in a dehydrated product with good appearance and without any burned slices; therefore, it was recommended for drying cv. Carmem long-life tomato slices.

  15. High temperature thermometric phosphors for use in a temperature sensor

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. Viscoelastic creep of high-temperature concrete

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  17. High temperature tests for graphite materials

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  18. Noninvasive Dry Eye Assessment Using High-Technology Ophthalmic Examination Devices.

    Yamaguchi, Masahiko; Sakane, Yuri; Kamao, Tomoyuki; Zheng, Xiaodong; Goto, Tomoko; Shiraishi, Atsushi; Ohashi, Yuichi

    2016-11-01

    Recently, the number of dry eye cases has dramatically increased. Thus, it is important that easy screening, exact diagnoses, and suitable treatments be available. We developed 3 original and noninvasive assessments for this disorder. First, a DR-1 dry eye monitor was used to determine the tear meniscus height quantitatively by capturing a tear meniscus digital image that was analyzed by Meniscus Processor software. The DR-1 meniscus height value significantly correlated with the fluorescein meniscus height (r = 0.06, Bland-Altman analysis). At a cutoff value of 0.22 mm, sensitivity of the dry eye diagnosis was 84.1% with 90.9% specificity. Second, the Tear Stability Analysis System was used to quantitatively measure tear film stability using a topographic modeling system corneal shape analysis device. Tear film stability was objectively and quantitatively evaluated every second during sustained eye openings. The Tear Stability Analysis System is currently installed in an RT-7000 autorefractometer and topographer to automate the diagnosis of dry eye. Third, the Ocular Surface Thermographer uses ophthalmic thermography for diagnosis. The decrease in ocular surface temperature in dry eyes was significantly greater than that in normal eyes (P eye opening. Decreased corneal temperature correlated significantly with the tear film breakup time (r = 0.572; P dry eye, sensitivity was 0.83 and specificity was 0.80 after 10 seconds. This article describes the details and potential of these 3 noninvasive dry eye assessment systems.

  19. [Influence of an elevation of the temperature of water on the digestibility of dry matter, nitrogen and energy of food distributed to the rainbow trout (Salmo gairdneri Rich)].

    Choubert, G; Fauconneau, B; Luquet, P

    1982-01-01

    Rainbow trout adapted to a water temperature of 10 degrees C were subjected to an abrupt rise in temperature (from 10 to 18 degrees C) in a 24-h period. Fish maintained in recirculated water were fed to satiation twice a day and their feed intakes were recorded. Changes in dry matter, nitrogen and energy digestibility were measured each day at 10 degrees C and during the course of acclimatation to 18 degrees C. Low water temperature (10 degrees C) was characterized by a feed intake of 1.84 g (DM)/fish/day; digestibility values were as follows: dry matter 62.15 p. 100, nitrogen 86.91 p. 100, energy 70.60 p. 100. High water temperature (18 degrees C) was characterized by a feed intake of 3.75 g (DM)/fish/day; digestibility values were as follows: dry matter 66.08 p. 100, nitrogen 89.57 p. 100, energy 73.52 p. 100. The daily patterns in digestibility were affected by the rise in temperature. The digestibility values were stabilized by day 7 after the positive thermal shock.

  20. Symposium on high temperature and materials chemistry

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  1. Symposium on high temperature and materials chemistry

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  2. Design of Temperature Measurement System on the Drying Process of Madura Tobacco Leaves

    Wardana, Humadillah Kurniadi; Endarko, Endarko

    2015-01-01

    The quality of dried chopped leaves of tobacco is an important factor. The present work developed an oven for drying process to measure and evalute on drying shrinkage characteristic of choped leaves Madura tobacco. The oven has three racks for analyzing and monitoring the rate of drying shrinkage of Madura tobacco. Every rack has a different amount of chopped leaves as follows: 120 g on top rack, 100 g for middle rack and 80 g for bottom rack. Rate of drying shrinkage was analyzed for 20 min...

  3. High-temperature materials and structural ceramics

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  4. On high temperature strength of carbon steels

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  5. EFFECT OF TEMPERATURE ON THE PHYSICAL CHANGES AND DRYING KINETICS IN PLUM (Prunus domestica L. POŽEGAČA VARIETY

    Miloš Nikolić

    2011-09-01

    Full Text Available In this study, drying kinetics of autochthonous variety Požegača plum was examined in a laboratory dryer at three temperatures. The whole plum fruits, together with the kernels were subjected to the drying process. The effect of drying has been examined at temperatures of 55, 60 and 75 °C, with a constant air velocity of 1.1 m s-1. The corresponding experimental results were tested using six nonlinear regression models. Coefficient of determination (R2, standard regression error (SSE, model correlation coeficient (Vy, as well as the maximum absolute error (ΔY showed that the logaritmic model was in good agreement with the experimental data obtained. During drying of plums, the effective diffusivity was found to be between 5.6×10-9 for 55 °C and 8.9×10-9 m2s-1 at 75 °C, respectively. The physical characteristics of fresh (length 39.64 mm and width 29.15 mm and dried (length 37.52 mm and width 22.85 mm plum fruit were determined. Finally, by chemical analysis, the contents of micro-and macro-elements (Fe, Mn, Cu, B and N, F, K, Ca, Mg and S in the skin and flesh of the dried product, prunes, has been established.

  6. Design manual. [High temperature heat pump for heat recovery system

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  7. High temperature brazing of reactor materials

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  8. Technology development for high temperature logging tools

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  9. High Temperature Superconductor Bolometers for Planetary Science

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  10. Some theories of high temperature superconductivity

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  11. Panel report on high temperature ceramics

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  12. Novel High Temperature Strain Gauge, Phase I

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  13. High temperature superconductors and other superfluids

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  14. PLA recycling by hydrolysis at high temperature

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  15. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Faris A J Al-Doghachi

    Full Text Available A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  16. Close-Spaced High Temperature Knudsen Flow.

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  17. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  18. Melt processed high-temperature superconductors

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  19. High Temperature, Wireless Seismometer Sensor for Venus

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  20. High temperature microscope (1961); Microscopie a haute temperature (1961)

    Rousseau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-06-15

    The purpose of this work is the realization of an apparatus for observation of radioactive metallic samples at high temperature and low pressure. The operating conditions are as follows: to limit oxidation of the metal, pressure of about 10{sup -6} mm of Hg is maintained in the furnace. In case the oxidation of the sample would be too important, on ultra vacuum. device could be used; working temperatures range between room temperature and 1200 deg. C; furnace temperature is regulated; observation is done ever in polarized light or interference contrast; to insure protection of the operator, the apparatus is placed in a glove-box. With that apparatus, we have observed the {alpha}{yields}{beta}, {beta}{yields}{gamma} transformations of uranium. A movie has been done. (author) [French] Le but de ce travail est la realisation d'une appareillage permettant l'observation a chaud et sous vide d'echantillons metalliques radioactifs. Cet appareillage fonctionne dans les conditions suivantes: l'echantillon est chauffe sous une pression de l'ordre de 10{sup -6} mm de mercure afin de limiter l'oxydation du materiau examine. L'utilisation eventuelle d'un groupe de pompage pour ultra vide est prevue; l'echantillon peut etre porte a une temperature comprise entre quelques degres et 1200 deg. C; la temperature du four est regulee; l'observation s'effectue soit en lumiere polarisee soit en contraste interferentiel; l'appareil est dipose dans une boite a gants afin d'assurer la protection de l'operateur contre les poussieres radioactives; Les transformations {alpha}{yields}{beta}, {beta}{yields}{gamma} de l'uranium ont ete observees. Un film a ete realise. (auteur)

  1. High-temperature granulites and supercontinents

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  2. High-entropy alloys as high-temperature thermoelectric materials

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  3. High-T/sub c/ oxide superconductors prepared by spray-drying method

    Nakamura, N.; Nakano, T.; Goth, S.; Shimotomai, M.

    1988-01-01

    A spray-drying method has been worked out to prepare the superconducting oxide YBa/sub 2/Cu/sub 3/O/sub x/ by using aqueous solution of acetates of the component metals. Spray-dried powders have shown to be very reactive and full calcination has been easily attained at 900 0 C for 12 hrs. The density of the ceramics sintered at 950 0 C for 12 hrs has reached a value of 98% of the theoretical density. The resistivity of the spray-dry processed sample is 150μΩ-cm at the onset temperature and the residual resistivity extrapolated to O K is almost zero. It is also found that degradation of the superconducting state by application of magnetic field is much improved for the spray-dry processed samples

  4. Effect of Storage Temperature on the Stability of Spray Dried Bacteriophage Powders.

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Nguyen, An; Gengenbach, Thomas; Carter, Elizabeth A; Carrigy, Nicholas B; Wang, Hui; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2018-02-24

    This study aimed to assess the robustness of using a spray drying approach and formulation design in producing inhalable phage powders. Two types of Pseudomonas phages, PEV2 (Podovirus) and PEV40 (Myovirus) in two formulations containing different amounts of trehalose (70% and 60%) and leucine (30% and 40%) were studied. Most of the surface of the produced powders was found to be covered in crystalline leucine. The powders were stored at 4°C and 20 °C under vacuum. The phage stability and in vitro aerosol performance of the phage powders were examined on the day of production and after 1, 3 and 12 months of storage. A minor titer loss during production was observed for both phages (0.2 - 0.8 log 10 pfu/ml). The storage stability of the produced phage powders was found to be phage and formulation dependent. No further reduction in titer occurred for PEV2 powders stored at 4 °C across the study. The formulation containing 30% leucine maintained the viability of PEV2 at 20 °C, while the formulation containing 40% leucine gradually lost titer over time with a storage reduction of ∼0.9 log 10 pfu/ml measured after 12 months. In comparison, the PEV40 phage powders generally had a ∼ 0.5 log 10 pfu/ml loss upon storage regardless of temperature. When aerosolized, the total in vitro lung doses of PEV2 were of the order of 10 7 pfu, except the formulation containing 40% leucine stored at 20 °C which had a lower lung dose. The PEV40 powders also had lung doses of 10 6 - 10 7 pfu. The results demonstrate that spray dried Myoviridae and Podoviridae phage in a simple formulation of leucine and trehalose can be successfully stored for one year at 4 °C and 20 °C with vacuum packaging. Copyright © 2018. Published by Elsevier B.V.

  5. High-temperature superconducting conductors and cables

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  6. High-temperature bulk acoustic wave sensors

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  7. High-temperature bulk acoustic wave sensors

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  8. Drying shrinkage problems in high-plastic clay soils in Oklahoma.

    2013-08-01

    Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...

  9. Ion filter for high temperature cleaning

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  10. High temperature phase transitions without infrared divergences

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  11. High temperature estimation through computer vision

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  12. Applications of high-temperature superconductivity

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  13. Modeling of concrete response at high temperature

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  14. Raman spectroscopy in high temperature chemistry

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  15. Raman spectroscopy in high temperature chemistry

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  16. Preservation of fruits and vegetables using solar dryers. A comparative study for solar and natural drying of grapes, figs, tomatoes and onions. IV. temperature measurements, calculating the generated energy and dryer efficiency during drying

    Sehery, A.A.; Gallali, Y.M.; Shoshan, H.

    2000-01-01

    This study has taken four axis, first, design and construction of the dryer, secondly, microbial load determination, thirdly, chemical and sensory evaluation data. The results of these three parts were published earlier at the International Congress on Application of Solar and Renewable Energy, Food Science and Technology and World Renewable Energy Congress V, Cairo, Egypt, 1992, 1996 and Florence, Italy, 1998, respectively. The whole study was oriented towards comparing the solar (three modes, direct, indirect, and mixed) and natural drying. The fourth part of the study is dealing with some parameters affecting drying as temperature measurement, calculating the generated energy and the dryer efficiency during drying periods. Drying temperature is considered the most important factor in the drying operation, since the accuracy of temperature measurement gives the correct results and right indication for the approval of these scientific methods in the drying operation and the design of solar dryers. In this project, we depended on temperature measurements at different points by means of thermocouples fixed in the heat collector and the drying chamber. The average temperature outside the dryer ranged from 21-41 degree C. That of the heat collector were 40-75 degree C and those of the drying chamber were in the range of 40-73 degree C. The radiation measurements calculated depending on the results recorded by the solar center instruments from 5/8/95 - 16/10/95. The thermal energy existing from the heat collector to the drying chamber during the drying period was measured using the equation of Holland. From the investigation results, we can conclude that in all trials, solar drying was a more efficient method for drying all samples of fruits and vegetables, especially for grapes, figs and onion. Grapes dried using mixed mode from 83 % to 30 % moisture in 4 days at an average temperature of 55 degree C while natural drying reduced the moisture to 57% for the same period

  17. Biodegradability of poly(butylene succinate-co-butylene adipate) (PBSA) controlled by temperature during the dried-gel process

    Yamazaki, Hana; Maeda, Tomoki; Hotta, Atsushi

    Currently there is a growing interest in biodegradable plastics that can be readily degraded into H2O and CO2. Among them, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the mechanically attractive materials that can be biodegraded by surrounding water molecules and microorganisms after the disposal of the plastics. In order to expand the use of PBSA, the proper and effective control of the biodegradability of PBSA should be realized. In this work, the dried-gel process of the PBSA was carefully studied considering the temperature of the process. Three different types of dried PBSA gels were prepared at three different gel-process temperatures. From the biodegradability testing by immersing the PBSA samples in NaOH aq., it was found that the percentage of the weight loss of the PBSA was increased, indicating that the biodegradability was enhanced as the gel preparation temperature became lower. In fact, smaller spherocrystals were observed in PBSA dried at cooler temperature, studied by the scanning electron microscopy (SEM). It was therefore concluded that the microstructures of PBSA could be well controlled by changing the gel preparation temperatures for the precise control of the biodegradability of PBSA. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  18. Exposure to organic solvents used in dry cleaning reduces low and high level visual function.

    Ingrid Astrid Jiménez Barbosa

    significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners.Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance.

  19. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-10-01

    This paper is focused on the use of an innovative Process Analytical Technology for the fast design and optimization of freeze-drying cycles for pharmaceuticals. The tool is based on a soft-sensor, a device that uses the experimental measure of product temperature during freeze-drying, a mathematical model of the process, and the Extended Kalman Filter algorithm to estimate the sublimation flux, the residual amount of ice in the vial, and some model parameters (heat and mass transfer coefficients). The accuracy of the estimations provided by the soft-sensor has been shown using as test case aqueous solutions containing different excipients (sucrose, polyvinylpyrrolidone), processed at various operating conditions, pointing out that the soft-sensor allows a fast estimation of model parameters and product dynamics without involving expensive hardware or time consuming analysis. The possibility of using the soft-sensor to calculate in-line (or off-line) the design space of the primary drying phase is here presented and discussed. Results evidences that by this way, it is possible to identify the values of the heating fluid temperature that maintain product temperature below the limit value, as well as the operating conditions that maximize the sublimation flux. Various experiments have been carried out to test the effectiveness of the proposed approach for a fast design of the cycle, evidencing that drying time can be significantly reduced, without impairing product quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Potentialities of high temperature reactors (HTR)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  1. High temperature superconductivity the road to higher critical temperature

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  2. High transition temperature superconducting integrated circuit

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  3. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  4. Brazing, high temperature brazing and diffusion welding

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  5. Materials for high-temperature fuel cells

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  6. Initial stages of high temperature metal oxidation

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  7. High temperature giant dipole and isoscalar resonances

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  8. Temperature and humidity response in the curing and drying process for Burley tobacco

    Edilson Daniel Gomez-Herrera

    2016-12-01

    Full Text Available This paper present the methodology development used for characterization and implementation of a control and automation of a camera for curing and drying of Burley tobacco, done with the purpose of analyzing its three stages: yellowing, color fixing and drying.As first step, the paper gives to know the process that is important for air curing of Burley tobacco. As second step, analysis of heating and humidification of system is presented, for determinate the most adequate control system for maintenance the ideal conditions for curing and drying of Burley. Results are presented through figures and tables.

  9. High temperature experiment for accelerator inertial fusion

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  10. High temperature reactors for cogeneration applications

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  11. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  12. High-Temperature Shape Memory Polymers

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  13. HTGR fuel behavior at very high temperature

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  14. Positron annihilation studies on high temperature superconductors

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  15. Bimodular high temperature planar oxygen gas sensor

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  16. High Performance Walls in Hot-Dry Climates

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dakin, Bill [National Renewable Energy Lab. (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  17. High temperature and high pressure equation of state of gold

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  18. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  19. High Temperature Materials Interim Data Qualification Report

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  20. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  1. Measurement and Comparison of Glass Transition and Sticky Point Temperatures for DDGS as Affected by CDS and Drying Temperature Levels

    Distillers dried grains with solubles (DDGS) is the main coproduct of the fuel ethanol industry; and has significantly impacted the livestock feeds market in recent years. It must often be transported over long distances to meet market demands both domestically and internationally. Particle agglome...

  2. Dynamics of Gauge Fields at High Temperature

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  3. High temperature oxidation resistant cermet compositions

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  4. Dense high-temperature plasma transport processes

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  5. Nuclear and quark matter at high temperature

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  6. The discovery of high temperature superconductivity

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  7. The discovery of high temperature superconductivity

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  8. High temperature applications of nuclear energy

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  9. Potential applications of high temperature helium

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  10. HYFIRE: fusion-high temperature electrolysis system

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  11. High Temperature Corrosion in Biomass Incineration Plants

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  12. Thermoelastic properties of minerals at high temperature

    In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as ...

  13. Theory of high temperature plasmas. Final report

    Davidson, R.C.; Liu, C.S.

    1977-01-01

    This is a report on the technical progress in our analytic studies of high-temperature fusion plasmas. We also emphasize that the research summarized here makes extensive use of computational methods and therefore forms a strong interface with our numerical modeling program which is discussed later in the report

  14. High Performance Walls in Hot-Dry Climates

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  15. Rapid isolation of high molecular weight DNA from single dried ...

    ANAND

    For studying genetic diversity in populations of predatory coccinellid, Cryptolaemus montrouzieri. Mulsant (Coccinellidae: Coleoptera), our attempts to isolate high quality DNA from individual adult beetle using several previously reported protocols and even modifications were quite unsuccessful as the insect size was small ...

  16. Nuclear shell effects at high temperatures

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  17. High temperature reactor safety and environment

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  18. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  19. High-pressure-high-temperature treatment of natural diamonds

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  20. New Waste Calciner High Temperature Operation

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  1. A high temperature reactor for ship propulsion

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  2. Experience with high-temperature filtration of incinerator flue gases

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  3. High temperature superconductors applications in telecommunications

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  4. High temperature superconductors applications in telecommunications

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  5. Sodium immersible high temperature microphone design description

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  6. High-Performance Ducts in Hot-Dry Climates

    Hoeschele, Marc [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chitwood, Rick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weitzel, Elizabeth [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-30

    Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy’s Zero Energy Ready Home program and California’s proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be installed within conditioned space or that other measures be taken to provide similar improvements in delivery effectiveness (DE). Pacific Gas & Electric Company commissioned a study to evaluate ducts in conditioned space and high-performance attics (HPAs) in support of the proposed codes and standards enhancements included in California’s 2016 Title 24 Residential Energy Efficiency Standards. The goal was to work with a select group of builders to design and install high-performance duct (HPD) systems, such as ducts in conditioned space (DCS), in one or more of their homes and to obtain test data to verify the improvement in DE compared to standard practice. Davis Energy Group (DEG) helped select the builders and led a team that provided information about HPD strategies to them. DEG also observed the construction process, completed testing, and collected cost data.

  7. High temperature aircraft research furnace facilities

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  8. High-Temperature Graphite/Phenolic Composite

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  9. The metallurgy of high temperature alloys

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  10. High temperature sensors for exhaust diagnosis

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  11. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    Dai, Liang-Che, E-mail: lcdai@iner.gov.tw; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-12-15

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  12. Short-term pressure and temperature MSLB response analyses for large dry containment of the Maanshan nuclear power station

    Dai, Liang-Che; Chen, Yen-Shu; Yuann, Yng-Ruey

    2014-01-01

    Highlights: • The GOTHIC code is used for the PWR dry containment pressure and temperature analysis. • Boundary conditions are hot standby and 102% power main steam line break accidents. • Containment pressure and temperature responses of GOTHIC are similar with FSAR. • The capability of the developed model to perform licensing calculation is assessed. - Abstract: Units 1 and 2 of the Maanshan nuclear power station are the typical Westinghouse three-loop PWR (pressurized water reactor) with large dry containments. In this study, the containment analysis program GOTHIC is adopted for the dry containment pressure and temperature analysis. Free air space and sump of the PWR dry containment are individually modeled as control volumes. The containment spray system and fan cooler unit are also considered in the GOTHIC model. The blowdown mass and energy data of the main steam line break (hot standby condition and various reactor thermal power levels) are tabulated in the Maanshan Final Safety Analysis Report (FSAR) 6.2 which could be used as the boundary conditions for the containment model. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR results. In this study, hot standby and 102% reactor thermal power main steam line break accidents are selected. The calculated peak containment pressure is 323.50 kPag (46.92 psig) for hot standby MSLB, which is a little higher than the FSAR value of 311.92 kPag (45.24 psig). But it is still below the design value of 413.69 kPag (60 psig). The calculated peak vapor temperature inside the containment is 187.0 °C (368.59 F) for 102% reactor thermal power MSLB, which is lower than the FSAR result of 194.42 °C (381.95 F). The effects of the containment spray system and fan cooler units could be clearly observed in the GOTHIC analysis. The calculated containment pressure and temperature behaviors of the selected cases are in good agreement with the FSAR

  13. Quality and Antioxidant Activity of Buckwheat-Based Cookies Designed for a Raw Food Vegan Diet as Affected by Moderate Drying Temperature.

    Brožková, Iveta; Dvořáková, Veronika; Michálková, Kateřina; Červenka, Libor; Velichová, Helena

    2016-12-01

    Buckwheat cookies with various ingredients for raw food vegan diet are usually prepared by soaking them in water at ambient temperature followed by drying at moderate temperature. The aim of this study was to examine the temperature effect on the microbiological quality, antioxidant properties and oxidative stability of lipids of final dried samples. The mixture of ingredients was soaked for 20 h in distilled water, and then cookies were formed and dried in air-forced oven at constant temperature in the range from 40 to 60 °C. Total viable counts, fungi, yeasts, coliform and aerobic spore-forming bacteria counts were evaluated in dried samples and were found to decrease during drying at 50 and 60 °C. Antioxidant activity was determined by DPPH and ABTS assays, and the former showed the highest value at 40 °C. Superoxide dismutase activity was also higher at 40 °C in comparison with that at 60 °C. The percentage of lipid peroxidation inhibition increased with the increase in drying temperature until 4th day of incubation. While peroxide value was significantly higher in samples dried at 40 °C, TBARS values did not show significant changes during the drying process. The results of this study suggest that drying buckwheat-based cookies at 40 °C retained their good antioxidant properties but represent a potentially serious microbial hazard.

  14. High Temperature Fluoride Salt Test Loop

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  15. Thermoelectric properties by high temperature annealing

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  16. High temperature superconductivity and cold fusion

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  17. Positron annihilation studies on high temperature superconductors

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  18. High temperature ceramic-tubed reformer

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  19. Toroidal microinstability studies of high temperature tokamaks

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  20. High temperature deformation of silicon steel

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  1. High temperature deformation of silicon steel

    Rodríguez-Calvillo, Pablo; Houbaert, Yvan; Petrov, Roumen; Kestens, Leo; Colás, Rafael

    2012-01-01

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s −1 with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 °C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 °C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the γ-fibre tends to disappear and the α-fibre to increase towards the higher temperature range. -- Highlights: ► The plastic deformation of a silicon containing steel is studied by plane strain compression. ► Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. ► Texture, by EBSD, is revealed to be similar in either type of grains.

  2. Energy storage via high temperature superconductivity (SMES)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  3. Gasification of high ash, high ash fusion temperature bituminous coals

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  4. Application of high temperature superconductors for fusion

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  5. Computer code validation by high temperature chemistry

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  6. Deformation of high-temperature superconductors

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  7. High temperature cogeneration with thermionic burners

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  8. Medium Deep High Temperature Heat Storage

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  9. High temperature cogeneration with thermionic burners

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  10. The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming

    Song, Sang-Hoon; Son, Ju-Hee; Budiman, Anatta Wahyu; Choi, Myoung-Jae; Chang, Tae-Sun; Shin, Chae-Ho

    2014-01-01

    The carbon dioxide dry reforming of methane (CDR) reaction could be thermodynamically favored in the range of 800 to 1,000 .deg. C. However, the catalyst in this reaction should be avoided at the calcination temperature over 800 .deg. C since strong metal support interaction (SMSI) in this temperature range can decrease activity due to loss of active sites. Therefore, we focused on optimizing the temperature of pretreatment and a comparison of surface characterization results for CDR. Results related to metal sintering over support, re-dispersion by changing of particle size of metal-support, and strong metal support interaction were observed and confirmed in this work. In our conclusion, optimum calcination temperature for a preparation of catalyst was proposed that 400 .deg. C showed a higher and more stable catalytic activity without changing of support characteristics

  11. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  12. Mechanical properties of concrete for power reactor at high temperatures

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  13. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  14. High temperature gas cooled nuclear reactor

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  15. Atomic processes in high temperature plasmas

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  16. Metallic Membranes for High Temperature Hydrogen Separation

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  17. High temperature superconducting YBCO microwave filters

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  18. Refractiry metal monocrystals in high temperature thermometry

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  19. Preparation of silver doped high temperature superconductors

    Stavek, Jiri; Zapletal, Vladimir

    1989-01-01

    High temperature superconductors were prepared by the controlled double-jet precipitation to manipulate the chemical composition, composition gradients, average grain size, grain size distribution, and other factors which contribute to the actual properties and performance of HTSC. The cations (Y-Ba-Cu or Bi-Pb-Ca-Sr-Cu) and oxalic anions solutions were simultaneously separately introduced to the crystallizer with a stirred solution of gelatin under conditions where the temperature, excess of oxalic anions in solution, pH, reactant addition rate, and other reaction conditions were tightly controlled to prepare the high sinterability powder. To increase the sinterability of submicron particles of produced precursor, the silver ions were introduced at the end of the controlled double-jet precipitation. This approach improves the electrical and mechanical properties of produced HTSC specimens. The controlled double jet precipitation provides a viable technique for preparation of oxide superconductors and the process is amenable for scaling up

  20. High Temperature Phenomena in Shock Waves

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  1. Optimization of instant powdered chicken feet broth’s drying temperature and time on pilot plant scale production

    Hidayati, N.; Widyaningsih, T. D.

    2018-03-01

    Chicken feet by-product of chicken industries amounted to approximately 65,894 tons/year commonly used as broths. These by-products are potentially produced into an instant form as an anti-inflammatory functional food on industrial scale. Therefore, it is necessary to optimize the critical parameters of the drying process. The aim of this study was to determine the optimum temperature and time of instant powdered chicken feet broth’s drying on pilot plant scale, to find out product’s comparison of the laboratory and pilot plant scale, and to assess financial feasibility of the business plan. The optimization of pilot plant scale’s research prepared and designed with Response Surface Methodology-Central Composite Design. The optimized factors were powdered broth’s drying temperature (55°C, 60°C, 65°C) and time (10 minutes, 11 minutes, 12 minutes) with the response observed were water and chondroitin sulphate content. The optimum condition obtained was drying process with temperature of 60.85°C for 10,05 minutes resulting in 1.90 ± 0.02% moisture content, 32.48 ± 0.28% protein content, 12.05 ± 0.80% fat content, 28.92 ± 0.09 % ash content, 24.64 ± 0.52% carbohydrate content, 1.26 ± 0.05% glucosamine content, 0.99 ± 0.23% chondroitin sulphate content, 50.87 ± 1.00% solubility, 8.59 ± 0.19% water vapour absorption, 0.37% levels of free fatty acid, 13.66 ± 4.49% peroxide number, lightness of 60.33 ± 1.24, yellowness of 3.83 ± 0.26 and redness of 21.77 ± 0.42. Financial analysis concluded that this business project was feasible to run.

  2. High Temperature Studies of La-Monazite

    2004-07-01

    Hay, E. Boakeye, M. D. Petry, Y. Berta, K. Von Lehmden, and J. Welch, " 5 A. Meldrum , L. A. Boatner, and R. C. Ewing, "Electron-Irradiation-Induced... Meldrum , L. A. Boatner, and R. C. Ewing, "A Comparison of Radiation Alumina-based Fiber for High Temperature Composite Reinforcement," Ceram. Eng... acid . The processing included procedures that allowed the La/P ratio to be controlled to be very close to the stoichiometric value of unity (within less

  3. Passivation Of High-Temperature Superconductors

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  4. High Temperature Perforating System for Geothermal Applications

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  5. Intermetallic-Based High-Temperature Materials

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  6. The modular high temperature gas cooled reactor

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  7. Establishment of Harrop, High-Temperature Viscometer

    Schumacher, R.F.

    1999-11-05

    This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

  8. Internal modes in high-temperature plasmas

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  9. High pressure-temperature processing as an alternative for preserving basil

    Krebbers, B.; Matser, A.; Koets, M.; Bartels, P.; Berg, van den R.

    2002-01-01

    In this study the effect of sterilisation by high pressure (HP) on the quality of basil was compared to conventional processing techniques. By means of freezing, or blanching followed by drying, microbial reduction of spores was maximal one-log. Pulsed HP-temperature treatment yielded a reduction of

  10. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Tae-il; Kim, Kwang Su; Yi, Hoon; Jeong, Hoon Eui; Yoo, Pil J; Pang, Changhyun

    2015-01-01

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests. (paper)

  11. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating

    Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....

  12. High-temperature flaw assessment procedure

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  13. Diagnosing dry eye with dynamic-area high-speed videokeratoscopy

    Alonso-Caneiro, David; Turuwhenua, Jason; Iskander, D. Robert; Collins, Michael J.

    2011-07-01

    Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area high-speed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring's regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion, this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.

  14. Elasticity of fluorite at high temperatures

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  15. High temperature aqueous stress corrosion testing device

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  16. Structural relationships in high temperature superconductors

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  17. High temperature measurement of water vapor absorption

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. Effect of temperature on water diffusion during rehydration of sun-dried red pepper ( Capsicum annuum L.)

    Demiray, Engin; Tulek, Yahya

    2017-05-01

    Rehydration, which is a complex process aimed at the restoration of raw material properties when dried material comes in contact with water. In the present research, studies were conducted to probe the kinetics of rehydration of sun-dried red peppers. The kinetics associated with rehydrating sun-dried red peppers was studied at three different temperatures (25, 35 and 45 °C). To describe the rehydration kinetics, four different models, Peleg's, Weibull, first order and exponential association, were considered. Between these four models proposed Weibull model gave a better fit for all rehydration conditions applied. The effective moisture diffusivity values of red peppers increased as water rehydration temperature increased. The values of the effective moisture diffusivity of red peppers were in the range 1.37 × 10-9-1.48 × 10-9 m2 s-1. On the other hand, the activation energy for rehydration kinetic was also calculated using Arrhenius equation and found as 3.17 kJ mol-1.

  19. High-temperature helium-loop facility

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  20. Weak links in high critical temperature superconductors

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  1. Weak links in high critical temperature superconductors

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  2. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.

    Reyes-García, C; Mejia-Chang, M; Griffiths, H

    2012-02-01

    • Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  3. High-temperature brushless DC motor controller

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  4. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  5. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  6. High temperature measurement by noise thermometry

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  7. Development of Very High Temperature Reactor Technology

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  8. High Pressure and Temperature Effects in Polymers

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  9. Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method

    Musabbikhah, Saptoadi, H.; Subarmono, Wibisono, M. A.

    2016-03-01

    Fossil fuel still dominates the needs of energy in Indonesia for the past few years. The increasing scarcity of oil and gas from non-renewable materials results in an energy crisis. This condition turns to be a serious problem for society which demands immediate solution. One effort which can be taken to overcome this problem is the utilization and processing of biomass as renewable energy by means of carbonization. Thus, it can be used as qualified raw material for production of briquette. In this research, coconut shell is used as carbonized waste. The research aims at improving the quality of coconut shell as the material for making briquettes as cheap and eco-friendly renewable energy. At the end, it is expected to decrease dependence on oil and gas. The research variables are drying temperature and time, carbonization time and temperature. The dependent variable is calorific value of the coconut shell. The method used in this research is Taguchi Method. The result of the research shows thus variables, have a significant contribution on the increase of coconut shell's calorific value. It is proven that the higher thus variables are higher calorific value. Before carbonization, the average calorific value of coconut shell reaches 4,667 call/g, and a significant increase is notable after the carbonization. The optimization is parameter setting of A2B3C3D3, which means that the drying temperature is 105 °C, the drying time is 24 hours, the carbonization temperature is 650 °C and carbonization time is 120 minutes. The average calorific value is approximately 7,744 cal/g. Therefore, the increase of the coconut shell's calorific value after the carbonization is 3,077 cal/g or approximately 60 %. The charcoal of carbonized coconut shell has met the requirement of SNI, thus it can be used as raw material in making briquette which can eventually be used as cheap and environmental friendly fuel.

  10. High temperature resistive phase transition in A15 high temperature superconductors

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  11. Retention of metabolized antimony, cobalt, iodine, mercury, selenium and zinc in various tissues of the rat following freeze-drying and oven-drying at different temperatures

    Iyengar, G.V.; Kasperek, K.; Feinendegen, L.E.

    1977-01-01

    Loss of Sb, Co, I, Hg, Se, and Zn during freeze-drying and oven-drying at 80 0 C, 105 0 C, and 120 0 C were studied in rat tissues that contained metabolized radioactive isotopes. No loss was observed for any of the 6 elements on freeze-drying. However, tissue-specific differences were observed in many cases for the elements Hg, Se, I, and Sb on oven-drying. Although the losses were statistically significant, they remained in most cases between 2 and 10%, with the exception of Hg at 120 0 C, where the losses in some of the tissues were unpredictable. With respect to urine, freeze-drying and oven-drying at 80 0 C were found to be relatively safe for the elements Hg and I. At 105 0 C and above, serious loss of Hg was observed. For Se only freeze-drying was found to be safe

  12. Permanent magnets composed of high temperature superconductors

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  13. Operational Modelling of High Temperature Electrolysis (HTE)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  14. Creep resistant high temperature martensitic steel

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  15. Materials for advanced high temperature reactors

    Graham, L.W.

    1976-01-01

    The results recently obtained from the Dragon program are presented to illustrate materials behavior: (a) effect of temperature on oxidation and carburisation in HTR helium (variation in oxide depth and in C content of AISI 321 after 5000 hours in HTR helium; effect of temperature on surface scale formation in the γ' strengthened alloys Nimonic 80A and 713LC); (b) effect of alloy composition on oxidation and carburisation behavior (influence of Nb and Ti on the corrosion of austenitic steels; influence of Ti and Al in IN-102; weight gain of cast high Ni alloys); (c) effect of environment on creep strength (results of tests for hastelloy X, grade I inconel 625, grade II inconel 625 and inconel 617 in He and air between 750 and 800 0 C)

  16. High Temperature Polymer Electrolyte Fuel Cells

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  17. FY16 ASME High Temperature Code Activities

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  18. Creep resistant high temperature martensitic steel

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  19. Application of process analytical technology for monitoring freeze-drying of an amorphous protein formulation: use of complementary tools for real-time product temperature measurements and endpoint detection.

    Schneid, Stefan C; Johnson, Robert E; Lewis, Lavinia M; Stärtzel, Peter; Gieseler, Henning

    2015-05-01

    Process analytical technology (PAT) and quality by design have gained importance in all areas of pharmaceutical development and manufacturing. One important method for monitoring of critical product attributes and process optimization in laboratory scale freeze-drying is manometric temperature measurement (MTM). A drawback of this innovative technology is that problems are encountered when processing high-concentrated amorphous materials, particularly protein formulations. In this study, a model solution of bovine serum albumin and sucrose was lyophilized at both conservative and aggressive primary drying conditions. Different temperature sensors were employed to monitor product temperatures. The residual moisture content at primary drying endpoints as indicated by temperature sensors and batch PAT methods was quantified from extracted sample vials. The data from temperature probes were then used to recalculate critical product parameters, and the results were compared with MTM data. The drying endpoints indicated by the temperature sensors were not suitable for endpoint indication, in contrast to the batch methods endpoints. The accuracy of MTM Pice data was found to be influenced by water reabsorption. Recalculation of Rp and Pice values based on data from temperature sensors and weighed vials was possible. Overall, extensive information about critical product parameters could be obtained using data from complementary PAT tools. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  1. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  2. High-temperature superconductors make major progress

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  3. High temperature creep-fatigue design

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  4. High temperature creep-fatigue design

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  5. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  6. Investigation of gadolinium monophosphide at high temperatures

    Gordienko, S.P.; Gol'nik, V.F.; Mironov, K.E.

    1982-01-01

    Gadolinium monophosphide has been studied in vacuum at high temperatures using mass-spectrometric, chemical, X-ray phase and derivatographical analyses. It is established that gadolinium monophosphide at 2080-2465 K dissociates into atomic gadolinium, phosphorus and, P 2 molecules. According to Vant-Hoff and Gibbs-Helmholtz equations standard enthalpy of atomization ΔHsub(at) deg (298)=1027.3 kJ/mol and of formation ΔHsub(f) deg (298)=313.8 kJ/mol of gadolinium monophosphide are determined

  7. Encapsulation of high temperature molten salts

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  8. High Temperature Materials Laboratory third annual report

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  9. Experimental needs of high temperature concrete

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370 0 C for operating reactor conditions and to about 900 0 C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs

  10. Modeling forces in high-temperature superconductors

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  11. Multichannel euv spectroscopy of high temperature plasmas

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  12. High-temperature superconducting current leads

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  13. The moon as a high temperature condensate.

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  14. Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature.

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2016-06-01

    Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment. © 2016 Institute of Food Technologists®

  15. Thermal conductivity in high critical temperature superconductors

    Castello, D.J.

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the

  16. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic

  17. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process

    Hou, Q.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Three-dimensional degradable porous polymeric structures with high porosities (93-98%) and well-interconnected pore networks have been prepared by freeze-drying polymer solutions in the presence of a leachable template followed by leaching of the template. Templates of the pore network were prepared

  18. Practical ultrasonic transducers for high-temperature applications using bismuth titanate and Ceramabind 830

    Xu, Janet L.; Batista, Caio F. G.; Tittmann, Bernhard R.

    2018-04-01

    Structural health monitoring of large valve bodies in high-temperature environments such as power plants faces several limitations: commercial transducers are not rated for such high temperatures, gel couplants will evaporate, and measurements cannot be made in-situ. To solve this, we have furthered the work of Ledford in applying a practical transducer in liquid form which hardens and air dries directly onto the substrate. The transducer material is a piezoceramic film composed of bismuth titanate and a high-temperature binding agent, Ceramabind 830. The effects of several fabrication conditions were studied to optimize transducer performance and ensure repeatability. These fabrication conditions include humidity, binder ratio, water ratio, substrate roughness, and film thickness. The final product is stable for both reactive and non-reactive substrates, has a quick fabrication time, and has an operating temperature up to the Curie temperature of BIT, 650°C, well beyond the safe operating temperature of PZT (150°C).

  19. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  20. Pre-rigor temperature and the relationship between lamb tenderisation, free water production, bound water and dry matter.

    Devine, Carrick; Wells, Robyn; Lowe, Tim; Waller, John

    2014-01-01

    The M. longissimus from lambs electrically stimulated at 15 min post-mortem were removed after grading, wrapped in polythene film and held at 4 (n=6), 7 (n=6), 15 (n=6, n=8) and 35°C (n=6), until rigor mortis then aged at 15°C for 0, 4, 24 and 72 h post-rigor. Centrifuged free water increased exponentially, and bound water, dry matter and shear force decreased exponentially over time. Decreases in shear force and increases in free water were closely related (r(2)=0.52) and were unaffected by pre-rigor temperatures. © 2013.

  1. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  2. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  3. High point for CERN and high-temperature superconductors

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  4. Low temperature drying. A case study; Niedertemperatur-Trocknung. Eine Fallstudie

    Arauzo, Ivan; Permuy, Diana [STC Sistemas de Transferencia de Calor, S.A., Castellon (Spain)

    2012-07-01

    Incorporating waste treatment processes in systems in which residual energy can be utilized is one of the best residue management alternatives. With an LHV of between 2000 and 4500 kcal/kg, efficiently dried sewage sludge can be used as standard fuel, thereby reducing primary energy consumption and the CO{sub 2} quota. (orig.) [German] Abfallbehandlungsverfahren in Anlagen zur Restenergierueckgewinnung sind eine der besten Reststoffentsorgungsoptionen. Effizient getrockneter Klaerschlamm mit einem unteren Heizwert (Hu) von 2000-4500 kcal/kg kann als Standardbrennstoff eingesetzt werden und zur Verminderung von Primaerenergieverbraeuchen und CO{sub 2}-Emissionen beitragen.

  5. Archaeal Viruses from High-Temperature Environments.

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  6. Archaeal Viruses from High-Temperature Environments

    Jacob H. Munson-McGee

    2018-02-01

    Full Text Available Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  7. Apparatus for accurately measuring high temperatures

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  8. Thermomechanics of composite structures under high temperatures

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  9. Materials for advanced high temperature reactors

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  10. High-temperature flaw assessment procedure

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  11. High temperature embrittlement of metals by helium

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  12. Critical fields in high temperature superconductors

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  13. Zircaloy behaviour in high temperature irradiated water

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  14. Thermally Dried Ink-Jet Process for 6,13-Bis(triisopropylsilylethynyl)-Pentacene for High Mobility and High Uniformity on a Large Area Substrate

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-05-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 °C without any “coffee stain”. The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192×150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44±0.08 cm2·V-1·s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 °C in this case) during drying of the droplets.

  15. Thermally dried ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene for high mobility and high uniformity on a large area substrate

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-01-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 degrees C without any "coffee stain". The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192 x 150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44 +/- 0.08 cm2.V-1.s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 degrees C in this case) during drying of the droplets.

  16. Viability of L. casei during fermentation in soymilk and freeze-dried soymilk; effect of cryoprotectant, rehydration and storage temperature

    Kristina Mladenovska

    2005-12-01

    Full Text Available The aim of the work was to investigate the behaviour of L. casei and the effect of sorbitol on its viability during fermentation in soymilk drink. Values for pH, ranging from 6.82 to 3.42 in the soymilk drink without sorbitol and from 6.74 to 3.41 in the drink with sorbitol were noted during 72 h of fermentation at 25oC. The corresponding values for titratable acidity ranged from 0.071% to 0.758% and from 0.073% to 0.761%, respectively. Soymilk was found to support the growth of L. casei with improvement in viability for 0.24 log at the end of fermentation when sorbitol was added. Survival of L. casei and the effectiveness of sorbitol in improving viability during freeze-drying, subsequent rehydration and during a 5-week period of storage under different temperatures were also investigated. After freeze-drying, L. casei exhibited a survival percent of approximately 46%. Sorbitol improved the viability of L. casei by 0.51 log immediately after freeze-drying and by 1.30 log and 0.47 log during five weeks of storage at 25oC and 4oC, respectively. Further study revealed that the freeze-dried fermented soymilk rehydrated at 45oC was optimum for the recovery of L. casei with improvement in recovery for 0.68 log when sorbitol was added. A higher percent of survival was noted when the dried soymilk was stored at 4oC than at 25oC with improved viability at the end of 5 weeks storage for approximately 6 log for drinks with and without sorbitol. Fermented dried soymilk with sorbitol afforded significant tolerance of L. casei to acid stress. Generally, a stable probiotic diary product was prepared in which the concentration of L. casei remained above therapeutic level of 107 cfu/ml.

  17. Emission spectroscopy of highly ionized high-temperature plasma jets

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  18. Ground temperatures in ice-cemented ground at Linnaeus Terrace, Dry Valleys, Antarctica, Version 1

    National Aeronautics and Space Administration — Soil temperatures were measured with Campbell 107 soil thermistors. Thermistors were placed at 0, 17, 23 (just above the ice-cemented permafrost) and 40 cm depth. To...

  19. Sensory profiling of Dalmatian dry-cured ham under different temperature conditions

    Zlatko Janječić

    2010-01-01

    Full Text Available To investigate the influence of the Dalmatian ham processing conditions on weight loss and sensory characteristics, 20 hams were processed following different temperature conditions during salting and ripening. For that purpose, hams were evaluated using quantitative descriptive analysis. The weight loss was higher and all sensory traits except presence of tyrosine and phenylalanine crystals were higher rated for hams processed at higher temperatures. The most significant (P<0.0001 influence of temperature was established on subcutaneous fat color, muscle color and presence of tyrosine and phenylalanine, whereas no influence was established on appearance, marbling, flavor and melting. This concludes that there is overall significant effect of higher temperature on sensory characteristics most likely due to the more intense proteolysis and lipolysis.

  20. Ceramic membranes for high temperature hydrogen separation

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.