WorldWideScience

Sample records for high temperature behaviour

  1. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  2. High temperature flow behaviour of SiC reinforced lithium

    Indian Academy of Sciences (India)

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline ...

  3. Corrosion behaviour of high temperature alloys in impure helium environments

    International Nuclear Information System (INIS)

    Shindo, Masami; Quadakkers, W.J.; Schuster, H.

    1986-01-01

    Corrosion tests with Ni-base high temperature alloys were carried out at 900 and 950 0 C in simulated high temperature reactor helium environments. It is shown that the carburization and decarburization behaviour is strongly affected by the Cr and Ti(Al) contents of the alloys. In carburizing environments, additions of Ti, alone or in combination with Al, significantly improve the carburization resistance. In oxidizing environment, the alloys with high Cr and Al(Ti) contents are the most resistant against decarburization. In this environment alloys with additions of Ti and Al show poor oxidation resistance. The experimental results obtained are compared with a recently developed theory describing corrosion of high temperature alloys in high temperature reactor helium environments. (orig.)

  4. The real gas behaviour of helium as a cooling medium for high-temperature reactors

    International Nuclear Information System (INIS)

    Hewing, G.

    1977-01-01

    The article describes the influence of the real gas behaviour on the variables of state for the helium gas and the effects on the design of high-temperature reactor plants. After explaining the basic equations for describing variables and changes of state of the real gas, the real and ideal gas behaviour is analysed. Finally, the influence of the real gas behaviour on the design of high-temperature reactors in one- and two-cycle plants is investigated. (orig.) [de

  5. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  6. Open questions in the magnetic behaviour of high-temperature superconductors

    International Nuclear Information System (INIS)

    Cohen, L.F.; Jensen, Henrik Jeldtoft

    1997-01-01

    A principally experimental review of vortex behaviour in high-temperature superconductors is presented. The reader is first introduced to the basic concepts needed to understand the magnetic properties of type II superconductors. The concepts of vortex melting, the vortex glass, vortex creep, etc are also discussed briefly. The bulk part of the review relates the theoretical predictions proposed for the vortex system in high temperature superconductors to experimental findings. The review ends with an attempt to direct the reader to those areas which still require further clarification. (author)

  7. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  8. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  9. Characterisation of material behaviour in high temperature aqueous environments by means of electrochemical techniques

    International Nuclear Information System (INIS)

    Bojinov, M.; Laitinen, T.; Maekelae, K.; Sirkiae, P.; Beverskog, B.

    1998-01-01

    Electrochemical measurements in solutions simulating power plant coolants are complicated by the low conductivity of the water, especially in the case of boiling water reactor (BWR) environments. To be able to obtain useful information also in BWR conditions, electrochemical techniques based on a thin-layer electrode arrangement are introduced. This arrangement makes it possible to perform voltammetric and electrochemical impedance measurements in high-temperature water with a room temperature conductivity (κ) as low as 0.1 μScm -1 . A combination of these results with those obtained by means of measuring the resistance of the surface film using the contact electric resistance (CER) technique facilitates versatile characterisation of oxide film behaviour. Examples are given on impedance and CER measurements of the oxide films formed on AISI 316 stainless steel in high temperature high purity (κ -1 ) water and on OX18H10T stainless steel in VVER water. Correlations between temperature, hydrogen and oxygen content of the solution and the oxide behaviour are discussed. (author)

  10. Modelling of the high temperature behaviour of metallic materials

    International Nuclear Information System (INIS)

    Mohr, R.

    1999-01-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of a chromium steel and an intermetallic titanium aluminide alloy. (orig.)

  11. Influence of the mix parameters and microstructure on the behaviour of concrete at high temperature

    International Nuclear Information System (INIS)

    Kanema, M.; Noumowe, A.; Gallias, J.-L.; Cabrillac, R.

    2005-01-01

    Concrete is used in structures likely to be exposed to high temperature. Data on the behaviour of concrete at high temperature are necessary to design buildings and other civil engineering structures in order to resist under accidental conditions (fire) or particular conditions of service (storage of radioactive waste). The present experimental study was carried out on the behaviour of five concretes containing the same nature and quantity of aggregates and presenting different water/cement ratios. Concrete specimens were submitted to heating-cooling cycles whose maximum temperatures were 150, 300, 450 and 600 degree C. Measurements of compressive and tensile strength, modulus of elasticity and permeability were carried out on cylindrical specimens before and after heating-cooling cycles. The results showed the influence of concrete mix parameters on the residual properties and the dehydration of the cement paste matrix, the evolution of the permeability and thermal stability of concrete when it is subjected to high temperature. (authors)

  12. High temperature oxidation behaviour of mullite coated C/C composites in air

    International Nuclear Information System (INIS)

    Fritze, H.; Borchardt, G.; Weber, S.; Scherrer, S.; Weiss, R.

    1997-01-01

    Based on thermogravimetric measurements on Si-SiC-mullite coated C/C material the temperature dependence of the overall rate constant is interpreted in the temperature range 400 C 1400 C), however, the oxidation behaviour of SiC limits long term application. In this temperature range, additional outer mullite coatings produced by pulsed laser deposition improve the oxidation behaviour. (orig.)

  13. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    Science.gov (United States)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  14. The role of water in the behaviour of concretes at high temperature

    International Nuclear Information System (INIS)

    Feraille-Fresnet, A.

    2000-01-01

    Since 1996, three fires have been counted in tunnels in Europe. During each of these accidents. the temperature reached by the structure has been estimated between 800 deg C and 1200 deg C. Beside these spectacular accidental situations, there are many other situations in which concrete structures are submitted to high temperatures during their regular use. Several research work has been undertaken for a better understanding of the behaviour of concrete submitted to high temperatures and the physical phenomena involved. This PhD Thesis takes down as part of this research work and develops, more particularly, the role of water in the material submitted to heating up to high temperatures. At first, we are interested in the role of water inside a material crack, during heating. We have established an original analytical solution giving the liquid-vapour repartition and the stress intensity factor, as functions of crack's length, water molecules contained in the inner of the crack and temperature. Then, we are able to study the crack stability. In the second part, we propose to approach the studied phenomena using the non saturated porous media theory. We present a thermo-hydro-chemical model which permits to describe the concrete behaviour under thermal loading. The material microstructure is defined using a 'porosimetric surface'. Each pore is characterised by two radii: the pore radius and the access radius into the pore. With this description, the zone of pores saturated by liquid is a state variable. We also introduce the concept of kinetic dehydration, clearly lighted by experimental studies. An hypothesis of erosion of the solid phase by dehydration permits to link the evolution of microstructure and of the zone of pores saturated by liquid to the mass of water created by dehydration. (author)

  15. Modelling the behaviour of 210Po in high temperature processes

    International Nuclear Information System (INIS)

    Mora, J.C.; Robles, B.; Corbacho, J.A.; Gasco, Catalina; Gazquez, M.J.

    2011-01-01

    In several Naturally Occurring Radioactive Material (NORM) industries, relatively high temperatures are used as part of their industrial processes. In coal combustion, as occur in other high temperature processes, an increase of the activity concentration of every natural radioisotope is produced both, in residues and by-products. An additional increase can be observed in the activity concentration of radionuclides of elements with low boiling point. This work is centred in the increase of polonium, more precisely in its radioisotope Po-210, present in the natural chains, and with a half-life long enough to be considered for radiation protection purposes. This additional increase appears mainly in the residual particles that are suspended in the flue gases: the fly-ashes. Besides, scales, with a high concentration of this radioisotope, were observed. These scales are produced on surfaces with a temperature lower than the boiling point of the chemical element. Both, the accumulation in particles and the production of scales are attributed to condensation effects. When effective doses for the public and the workers are evaluated, taking into account these increases in activity concentrations, the use of theoretical models is necessary. In this work a theoretical description of those effects is presented. Moreover, a verification of the predictions of the model was performed by comparing them with measurements carried on in coal-fired power plants. The same description here presented is applicable in general to the behaviour of Po-210 in other NORM industries where high temperature processes involving raw materials are used, as can be ceramic, cement production, tiles production or steel processing.

  16. Corrosion behaviour of Alloy 800 in high temperature aqueous solutions: Electrochemical studies

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Villegas, M.; Alvarez, M.G.

    1996-01-01

    The anodic behaviour and passivity breakdown of Alloy 800 in aqueous solutions of sodium chloride, sodium sulphate and sodium bicarbonate were studied by electrochemical techniques in the temperature range from 60 C to 280 C. The pitting resistance and pitting morphology of the alloy in chloride plus sulphate and chloride plus bicarbonate mixtures, at 60 C and 280 C, were also examined. Increasing bicarbonate or sulphate additions to chloride solutions shift the characteristic pitting potential of Alloy 800 to higher values, both at low and high temperatures. Changes in pitting morphology were observed in sulphate containing solutions while the morphology of the attack found in bicarbonate containing solutions was similar to that in pure chloride solutions. Finally, no localized or substantial generalized corrosion was detected in pure sulphate or bicarbonate solutions at any temperature. (orig.)

  17. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  18. Thermodynamic behaviour of ruthenium at high temperatures

    International Nuclear Information System (INIS)

    Garisto, F.

    1988-01-01

    Thermodynamic equilibrium calculations are used to determine the chemical speciation of ruthenium under postulated reactor accident conditions. The speciation of ruthenium is determined for various values of temperature, pressure, oxygen partial pressure and ruthenium concentration. The importance of these variables, in particular the oxygen partial pressure, in determining the volatility of ruthenium is clearly demonstrated in this report. Reliable thermodynamic data are required to determine the behaviour of ruthenium using equilibrium calculations. Therefore, it was necessary to compile a thermodynamic database for the ruthenium species that can be formed under reactor accident conditions. The origin of the thermodynamic data for the ruthenium species included in our calculations is discussed in detail in Appendix A. 23 refs

  19. High strain fatigue behaviour of a high-temperature, low-alloyed forging steel subject to a servicelike loading history

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Rieth, P.

    1979-01-01

    A test plan was developed for selected cases of service-like long-time high strain load of a heated surface of massive components, which includes service-like anisothermic high strain tests with pressure-strain in the start-up phase and pull-strain in the shutdown phase, comparable isothermal tests at the highest cycle temperature, and finally tests with 'packaged' high strain and creep strain periods, which should enable long-time-tests with only short use of the large-scale high-strain-test-technique. The tests started on the melts of the high-temperature steel 28 Cr Mo NiV 4 9 have reached a longest tests time of nearly 1000 at a maximum temperature of 525 0 C. On the basis of there results, the carrying-out of 'packaged' long-time high strain tests with short creep strain periods seem to be a good way of determining the long-time high-strain behaviour of this steel under service-like strain cycles. (orig./RW) 891 RW/orig.- 892 RKD [de

  20. Mechanical behaviour of aluminium matrix composites with particles in high temperature

    International Nuclear Information System (INIS)

    Amigo, V.; Salvador, M. D.; Ferrer, C.; Costa d, C. E.; Busquets, D.

    2001-01-01

    The aluminium matrix composites materials reinforced by ceramic particles can be elaborated by powder metallurgy techniques, with extrusion processes. These can provide new materials, with a better mechanical behaviour and moreover when we need those properties at higher temperatures. Aluminium alloy reinforced composites with silicon nitride particles by powder extrusion process was done. Their mechanical properties were characterised at room and elevated temperatures. (Author) 28 refs

  1. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  2. Elucidation of the origins of transport behaviour and quantum oscillations in high temperature superconducting cuprates

    International Nuclear Information System (INIS)

    Wilson, John A

    2009-01-01

    A detailed exposition is given of recent transport and 'quantum oscillation' results from high temperature superconducting (HTSC) systems covering the full carrier range from overdoped to underdoped material. This now very extensive and high quality data set is here interpreted within the framework developed by the author of local pairs and boson-fermion resonance, arising in the context of negative- U behaviour within an inhomogeneous electronic environment. The strong inhomogeneity comes with the mixed-valence condition of these materials, which when underdoped lie in close proximity to the Mott-Anderson transition. The observed intense scattering is presented as resulting from pair formation and from electron-boson collisions in the resonant crossover circumstance. The high level of scattering carries the systems to incoherence in the pseudogapped state, p c (= 0.183). In a high magnetic field the striped partition of the inhomogeneous charge distribution becomes much strengthened and regularized. Magnetization and resistance oscillations, of period dictated by the favoured positioning of the fluxon array within the real space environment of the diagonal 2D charge striping array, are demonstrated to be responsible for the recently reported behaviour hitherto widely attributed to the quantum oscillation response of a much more standard Fermi liquid condition. A detailed analysis embracing all the experimental data serves to reveal that in the given conditions of very high field, low temperature, 2D-striped, underdoped, d-wave superconducting, HTSC material the flux quantum becomes doubled to h/e.

  3. Temperature limits trail following behaviour through pheromone decay in ants

    Science.gov (United States)

    van Oudenhove, Louise; Billoir, Elise; Boulay, Raphaël; Bernstein, Carlos; Cerdá, Xim

    2011-12-01

    In Mediterranean habitats, temperature affects both ant foraging behaviour and community structure. Many studies have shown that dominant species often forage at lower temperature than subordinates. Yet, the factors that constrain dominant species foraging activity in hot environments are still elusive. We used the dominant ant Tapinoma nigerrimum as a model species to test the hypothesis that high temperatures hinder trail following behaviour by accelerating pheromone degradation. First, field observations showed that high temperatures (> 30°C) reduce the foraging activity of T. nigerrimum independently of the daily and seasonal rhythms of this species. Second, we isolated the effect of high temperatures on pheromone trail efficacy from its effect on worker physiology. A marked substrate was heated during 10 min (five temperature treatments from 25°C to 60°C), cooled down to 25°C, and offered in a test choice to workers. At hot temperature treatments (>40°C), workers did not discriminate the previously marked substrate. High temperatures appeared therefore to accelerate pheromone degradation. Third, we assessed the pheromone decay dynamics by a mechanistic model fitted with Bayesian inference. The model predicted ant choice through the evolution of pheromone concentration on trails as a function of both temperature and time since pheromone deposition. Overall, our results highlighted that the effect of high temperatures on recruitment intensity was partly due to pheromone evaporation. In the Mediterranean ant communities, this might affect dominant species relying on chemical recruitment, more than subordinate ant species, less dependent on chemical communication and less sensitive to high temperatures.

  4. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  5. Contribution of thermodynamics in the understanding of the physico-chemical behaviour of fuels at high temperature

    International Nuclear Information System (INIS)

    Gueneau, C.; Chatain, S.; Gosse, S.; Dumas, J.C.; Defoort, F.

    2006-01-01

    The thermodynamic approach for studying the physico-chemical behaviour of nuclear fuels at high temperature is presented. For instance is shown how the thermodynamic study of the uranium-oxygen-zirconium-iron system has contributed to improve the understanding of the scenario considered in studies on serious accidents for PWR reactors. Concerning the fuels of the future high temperature reactors, has been developed a thermodynamic data base 'fuelbase' (U-Pu-O-C-N-Si-Zr-Ti-Mo-Cr) using the Calphad method in parallel with experimental studies. In the framework of the studies on high temperature reactors, experimental works on the study of the interaction between the uranium dioxide and graphite are presented. This interaction leads to the formation of gaseous CO and CO 2 which can potentially be prejudicial to the thermomechanical resistance of the fuel in reactor. In this framework, the thermodynamic properties of the uranium-oxygen-carbon system are studied. (O.M.)

  6. Analysis and description of the long-term creep behaviour of high-temperature gas turbine materials

    International Nuclear Information System (INIS)

    Bartsch, H.

    1985-01-01

    On a series of standard high-temperature gas turbine materials, creep tests were accomplished with the aim to obtain improved data on the long-term creep behaviour. The tests were carried out in the range of the main application temperatures of the materials and in the range of low stresses and elongations similar to operation conditions. They lasted about 5000 to 16000 h at maximum. At all important temperatures additional annealing tests lasting up to about 10000 h were carried out for the determination of a material-induced structure contraction. Thermal tension tests were effected for the description of elastoplastic short-time behaviour. As typical selection of materials the nickel investment casting alloys IN-738 LC, IN-939 and Udimet 500 for industrial turbine blades, IN-100 for aviation turbine blades and IN-713 C for integrally cast wheels of exhaust gas turbochargers were investigated, and also the nickel forge alloy Inconel 718 for industrial and aviation turbine disks and Nimonic 101 for industrial turbine blades and finally the cobalt alloy FSC 414 for guide blades and heat accumulation segments of industrial gas turbines. The creep tests were started on long-period individual creep testing machines with high strain measuring accuracy and economically continued on long-period multispecimen creep testing machines with long duration of test. The test results of this mixed test method were first subjected to a conventional evaluation in logarithmic time yield and creep diagrams which besides creep strength curves provided creep stress limit curves down to 0.2% residual strain. (orig./MM) [de

  7. Improving the high performance concrete (HPC behaviour in high temperatures

    Directory of Open Access Journals (Sweden)

    Cattelan Antocheves De Lima, R.

    2003-12-01

    Full Text Available High performance concrete (HPC is an interesting material that has been long attracting the interest from the scientific and technical community, due to the clear advantages obtained in terms of mechanical strength and durability. Given these better characteristics, HFC, in its various forms, has been gradually replacing normal strength concrete, especially in structures exposed to severe environments. However, the veiy dense microstructure and low permeability typical of HPC can result in explosive spalling under certain thermal and mechanical conditions, such as when concrete is subject to rapid temperature rises, during a f¡re. This behaviour is caused by the build-up of internal water pressure, in the pore structure, during heating, and by stresses originating from thermal deformation gradients. Although there are still a limited number of experimental programs in this area, some researchers have reported that the addition of polypropylene fibers to HPC is a suitable way to avoid explosive spalling under f re conditions. This change in behavior is derived from the fact that polypropylene fibers melt in high temperatures and leave a pathway for heated gas to escape the concrete matrix, therefore allowing the outward migration of water vapor and resulting in the reduction of interned pore pressure. The present research investigates the behavior of high performance concrete on high temperatures, especially when polypropylene fibers are added to the mix.

    El hormigón de alta resistencia (HAR es un material de gran interés para la comunidad científica y técnica, debido a las claras ventajas obtenidas en término de resistencia mecánica y durabilidad. A causa de estas características, el HAR, en sus diversas formas, en algunas aplicaciones está reemplazando gradualmente al hormigón de resistencia normal, especialmente en estructuras expuestas a ambientes severos. Sin embargo, la microestructura muy densa y la baja permeabilidad t

  8. A Fine Grain, High Mn Steel with Excellent Cryogenic Temperature Properties and Corresponding Constitutive Behaviour

    Directory of Open Access Journals (Sweden)

    Yuhui Wang

    2018-02-01

    Full Text Available A Fe-34.5 wt % Mn-0.04 wt % C ultra-high Mn steel with a fully recrystallised fine-grained structure was produced by cold rolling and subsequent annealing. The steel exhibited excellent cryogenic temperature properties with enhanced work hardening rate, high tensile strength, and high uniform elongation. In order to capture the unique mechanical behaviour, a constitutive model within finite strain plasticity framework based on Hill-type yield function was established with standard Armstrong-Frederick type isotropic hardening. In particular, the evolution of isotropic hardening was determined by the content of martensite; thus, a relationship between model parameters and martensite content is built explicitly.

  9. High temperature corrosion behaviour of a new Ni-30Fe-10Ar-Cr-alloy

    International Nuclear Information System (INIS)

    Kloewer, J.; Sauthoff, G.

    1997-01-01

    The high temperature corrosion behaviour of a new duplex nickel-base alloy containing about 30 mass% iron, 10 mass% aluminium and 8 mass% chromium was determined in both air and hot process gases containing methane/hydrogen, sulphur dioxide and hydrogen sulphide, respectively. It was found that the corrosion resistance against carburisation, sulphidation and oxidation was excellent due to the formation of a dense, protective alumina scale. The adherence of the alumina scale was increased by an addition of 0.1 mass% hafnium. The concentration of chromium was found to have a remarkable impact on the oxidation and high temperature corrosion resistance. Alloys without chromium showed increased corrosion rates in both air and sulphur-containing gas atmospheres due to the initial formation of nickel oxides. In sulphidising SO 2 -and H 2 S- containing gases at least 4 mass% chromium are required to stabilise the formation of alumina and to prevent the formation of nickel/sulphur compounds. (orig.)

  10. New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

    Science.gov (United States)

    Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.

    2018-01-01

    The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.

  11. Low temperature behaviour of elastomers in seals; Tieftemperaturverhalten von Elastomeren im Dichtungseinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Jaunich, Matthias

    2012-04-25

    Elastomeric seals are of high importance as machine parts and construction elements, but in spite of this the low temperature limit for the use of a seal was not fully understood. Hence, the required safety relevant evaluation of the lowest acceptable operating seal temperature is difficult. Therefore the presented work was aimed to understand the temperature dependent material behaviour of representative elastomers and to conclude from this knowledge the low temperature limit down to which such seals could safely fulfil the desired requirements. Starting with the published statement that a seal can safely work below its glass transition temperature the influence of the glass-rubber-transition was investigated. At first the glass-rubber-transition temperatures of the selected elastomers were determined applying several techniques to allow a comparison with the behaviour of the seals during component tests. Furthermore a new method to characterise the low temperature behaviour of elastomers was developed that emulates the key features of the standardised compression set test used for seal materials. In comparison to the standardized test this new method allows a much faster measurement that can be automatically performed. Using a model based data analysis an extrapolation of the results to different temperatures can be performed and therefore the necessary measuring expenditure can be additionally reduced. For the temperature dependent characterisation of the failure process of real seals a measurement setup was designed and the materials behaviour was investigated. By use of the results of all applied characterisation techniques the observed dependence of the failure temperature on the degree of compression could be explained for the investigated seals under static load. Additionally information about the behaviour of such seals under dynamic load could be gained from the time dependent material behaviour by use of the time temperature superposition relationship

  12. High temperature behaviour of self-consolidating concrete

    International Nuclear Information System (INIS)

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-01-01

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  13. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments

    International Nuclear Information System (INIS)

    Gaffard, V.

    2004-12-01

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  14. High temperature tribological behaviour of carbon based (B{sub 4}C and DLC) coatings in sliding contact with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gharam, A. Abou, E-mail: abougha@uwindsor.c [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada); Lukitsch, M.J.; Balogh, M.P. [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, 30500 Mound Road, Warren, MI 48090-9055 (United States); Alpas, A.T. [Mechanical Automotive and Materials Engineering Department, University of Windsor, Windsor, ON, N9B3P4 (Canada)

    2010-12-30

    Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B{sub 4}C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B{sub 4}C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 {sup o}C. Experimental results have shown that the 319 Al/B{sub 4}C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B{sub 4}C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 {sup o}C. This was followed by an abrupt increase to 0.6 at 400 {sup o}C. The deterioration of friction behaviour at T > 200 {sup o}C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.

  15. Experimental and numerical study of the high temperature mechanical behaviour of the MoTiC cermets

    International Nuclear Information System (INIS)

    Cedat, Denis

    2006-01-01

    In this work, in order to study the mechanical behaviour of Mo-TiC cermets, compression tests have been carried out on different compositions as well as on different temperatures on the composition (MoTiC 25at% ) which will be extruded. The main results show that: 1)the increase of the (TiC) ceramic rate in the cermet increases the rupture stress but decreases the rupture resistance of this material. Moreover, a transition of behaviour seems to be observed for a critical TiC rate (MoTiC 25at% ), this transition seems to be due to the percolation of the ceramic particles. 2)the behaviour of the MoTiC 25at% cermet is brittle at ambient temperature and begins to have a plastic deformation at 300 C. Thus, the rupture stress decreases proportionally to the increase of the temperature whereas the rupture deformation increases. (O.M.)

  16. Temperature effect on the behaviour of engineered clay barriers

    International Nuclear Information System (INIS)

    Tang, A.M.

    2005-11-01

    The present work deals with the thermo-hydro-mechanical behaviour of compacted swelling clay used for engineered barriers in high-level radioactive repositories. The MX80 bentonite was chosen for this work. Firstly, an experimental work on the thermal conductivity of the compacted bentonite was performed. The results evidenced the effects of dry density, water content, volumetric fraction of soil components, microstructure, and mineralogy. This experimental work gave rise to the proposition of a theoretical model for estimate the thermal conductivity of compacted bentonites. Secondly, after a calibration of suction generated by saturated saline solution in function of temperature, water retention curves were determined at different temperatures. The experimental results showed a decrease of the water retention capacity of soil after heating. A simple model based on the interfacial tension air-water was formulated to simulate this effect. Thirdly, a new isotropic cell enabling a simultaneous control of suction, temperature and mechanical stress was developed. With this new cell, an experimental work on the thermo-mechanical behaviour of the unsaturated compacted bentonite was performed. Finally, a constitutive model was developed for simulate the thermo-hydro-mechanical behaviours obtained experimentally. (author)

  17. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    Chomette, S.

    2009-11-01

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M 6 C). Most of this precipitates are evenly distributed in the materials. Few M 23 C 6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M 23 C 6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  18. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  19. Low-temperature behaviour of the Kob-Andersen binary mixture

    International Nuclear Information System (INIS)

    Ashwin S S; Sastry, Srikanth

    2003-01-01

    The dynamical behaviours of glass-forming liquids have been analysed extensively via computer simulations of model liquids, among which the Kob-Andersen binary Lennard-Jones mixture has been a widely studied system. Typically, studies of this model have been restricted to temperatures above the mode coupling temperature. Preliminary results concerning the dynamics of the Kob-Andersen binary mixture are presented at temperatures that extend below the mode coupling temperature, along with properties of the local energy minima sampled. These results show that a crossover in the dynamics occurs alongside changes in the properties of the inherent structures sampled. Furthermore, a crossover is observed from non-Arrhenius behaviour of the diffusivity above the mode coupling temperature to Arrhenius behaviour at lower temperatures

  20. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  1. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A

    2007-12-15

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  2. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  3. Effect of temperature on volume change behaviour of statically compacted kaolin clay

    Directory of Open Access Journals (Sweden)

    Ileme Ogechi

    2016-01-01

    Full Text Available Several soils are subjected to high temperature due to the environment where they are located or activities around them. For instance, upper layer of soils in tropical regions, soils around geothermal structures, clay barriers around nuclear waste repository systems. Numerous studies have pointed out that high temperature affects the hydro-mechanical properties of soils. Notwithstanding already existing studies, the influence of temperature on soils is still a challenge, as most of these studies are soil specific and cannot be inferred as the behaviour of all soils. This paper presents an experimental study on the influence of temperature on the volume change behaviour of statically compacted kaolin clay. Compacted samples were tested at varying temperatures using a suction controlled oedometer cell. The influence of temperature on the magnitude of volumetric strain occurring during mechanical and thermal loading was investigated. The study showed that an increase in temperature increased the magnitude of volumetric strain of the soil on loading. Additionally, the results presented in the light of LC curve showed that an increase in temperature resulted in the contraction and a change in the position of the LC curve.

  4. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  5. Low-temperature behaviour of the engine oil

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2013-01-01

    Full Text Available The behaviour of engine oil is very important. In this paper has been evaluated temperature dependence kinematic viscosity of engine oils in the low temperatures. Five different commercially distributed engine oils (primarily intended for automobile engines with viscosity class 0W–40, 5W–40, 10W–40, 15W–40, and 20W–40 have been evaluated. The temperature dependence kinematic viscosity has been observed in the range of temperature from −15 °C to 15 °C (for all oils. Considerable temperature dependence kinematic viscosity was found and demonstrated in case of all samples, which is in accordance with theoretical assumptions and literature data. Mathematical models have been developed and tested. Temperature dependence dynamic viscosity has been modeled using a polynomials 3rd and 4th degree. The proposed models can be used for prediction of flow behaviour of oils. With monitoring and evaluating we can prevent technical and economic losses.

  6. Plastic behaviour of zircoloy-4 sheets in function of the temperature

    International Nuclear Information System (INIS)

    Ordonez, S.; Marxsen, A.; Pochettino, A.; Vedoya, P.

    1988-01-01

    In order to the knowledge of plastic deformation mechanisms in Zry-4 thin sheets at high temperature and the effects that the interaction sample-oxidizing atmosphere induces on these mechanisms, a systematic study of the mechanical behaviour of the material in the temperature range 400 ' 0 C and under different oxidations contitions is present. (author) [pt

  7. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

    Science.gov (United States)

    Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D

    2013-03-01

    Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.

  8. Behaviour of polar crystals at low temperatures

    International Nuclear Information System (INIS)

    Drozhdin, S.N.; Novik, V.K.; Gavrilova, N.D.; Koptsik, V.A.; Popova, T.V.

    1975-01-01

    Temperature dependencies of pyrocoefficient for a wide class of various pyroactive crystals in the temperature range from 4,2 to 300 deg K were investigated. The problems to be solved were: to confirm a conclusion on the pyrocoefficient γsup(sigma) tending to zero at T → 0; to compare experimental data with conclusions of existing theories; to reveal specific features in the behaviour of both linear pyroelectrics and segnetoelectrics at low temperatures. The behaviour of the total pyrocoefficient for all crystals obeys the regularity γsup(sigma) → 0 at T → O. In the range of low temperatures the pyrocoefficient varies by the power law: γsup(sigma) approximately Tsup(α). For the majority of crystals studied α is close to 3. CdS, BeO, ZiNbO 3 and other crystals were studied

  9. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    Science.gov (United States)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  10. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  11. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni

    2003-06-01

    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  12. Plasticity in behavioural responses and resistance to temperature stress in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    2015-01-01

    , at the stressful high temperature Spanish flies flew the furthest and Danish flies the shortest distance. Neither body size nor wing loading affected flight performance, although flies with narrower wings tended to fly further (wing shape effect). Swiss flies were most active in terms of locomotor activity......Organisms can respond to and cope with stressful environments in a number of ways including behavioural, morphological and physiological adjustments. To understand the role of behavioural traits in thermal adaptations we compared heat resistance, locomotor (walking and flying) activity, flight...... performance and morphology of three European populations of Musca domestica (Diptera: Muscidae) originating from different thermal conditions (Spain, Switzerland and Denmark) at benign and stressful high temperatures. Spanish flies showed greater heat resistance than Swiss and Danish flies. Similarly...

  13. High temperature behaviour of copper and silver in presence of gaseous carbon and of chlorine-water vapor mixtures

    International Nuclear Information System (INIS)

    Beloucif, Luisa

    1986-01-01

    This research thesis reports the study of the effects of gaseous chlorine, in various conditions, on two metals, copper and silver, the chlorides of which can be precisely characterized and dosed by using different methods. After an overview of different aspects of corrosion of metals by halogens, and of copper and silver behaviour in chloride environment, the author reports and discusses results of tests performed in dry chlorine at high temperature, and the establishment of temperature-pressure semi-thermodynamic diagrams. The next part reports and discusses tests performed in a controlled atmosphere in presence of humidity. For all these tests, the author notably comments and discusses the nature of formed products, sample aspect, reaction progress, and influence of temperature or humidity

  14. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  15. Leaching behaviour of bottom ash from RDF high-temperature gasification plants

    International Nuclear Information System (INIS)

    Gori, M.; Pifferi, L.; Sirini, P.

    2011-01-01

    This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions. Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2. In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni. Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.

  16. Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr

    International Nuclear Information System (INIS)

    Sánchez-López, J.C.; Contreras, A.; Domínguez-Meister, S.; García-Luis, A.; Brizuela, M.

    2014-01-01

    The tribological properties of CrAlN, CrAlYN and CrAlZrN coatings deposited by direct current reactive magnetron sputtering are studied by means of pin-on-disc experiments at room temperature, 300, 500 and 650 °C using alumina balls as counterparts. The influence of the metallic composition (Al, Y and Zr) on the friction, wear properties and oxidation resistance is studied by means of scanning electron microscopy, energy dispersive X-ray analysis and Raman analysis of the contact region after the friction tests. The results obtained allow us to classify the tribological behaviour of the CrAl(Y,Zr)N coatings into three groups according to the nature of the dopant and aluminium content. The sliding wear mechanism is characterized by the formation of an overcoat rich in chromium and aluminium oxides whose particular composition is determined by the initial chemical characteristics of the coating and the testing temperature. The fraction of Cr 2 O 3 becomes more significant as the Al content decreases and the temperature increases. The addition of Y, and particularly Zr, favours the preferential formation of Cr 2 O 3 versus CrO 2 leading to a reduction of friction and wear of the counterpart. Conversely, the tribological behaviour of pure CrAlN coatings is characterized by higher friction but lower film wear rates as a result of higher hardness and major presence of aluminium oxides on the coating surface. - Highlights: • Comparative tribological study at high temperature of CrAlN, CrAlYN and CrAlZrN films • Fraction of Cr 2 O 3 raises as the Al content decreases and the temperature increases. • Zr doping favours lower and steady friction coefficient due to higher Cr 2 O 3 formation. • Sliding wear mechanism becomes predominantly abrasive as the Al content increases. • Excellent tribological performance of CrAlN doped with low Y contents (≈ 2 at.%)

  17. Effect of temperature and strain rate on the compressive behaviour of supramolecular polyurethane

    Directory of Open Access Journals (Sweden)

    Tang Xuegang

    2015-01-01

    Full Text Available Supramolecular polyurethanes (SPUs possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics. A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.

  18. High temperature mechanical behaviour of glass-ceramics in the YSiAlON and ErSiAlON systems

    Energy Technology Data Exchange (ETDEWEB)

    Bondanini, A.; Massouras, G.; Besson, J.L. [ENSCI, Limoges (France). SPCTS

    2002-07-01

    The high temperature mechanical behaviour of oxynitride glass-ceramics in the YSiAlON and ErSiAlON systems was studied in the 950-1150 C temperature range under compressive stresses ranging from 20 to 100 MPa. The parent glass had a composition of 35 Y(or Er)-45 Si-20 Al-83 O-17 N in equivalent percent. Starting from these glasses, glass-ceramics were prepared using a two stage heat treatment: nucleation at the optimum nucleation temperature followed by crystal growth at 1050, 1150 or 1250 C. The two parent glasses had similar viscosities, with that of the Er-glass being slightly less than that of the Y-glass. After the devitrification treatment at 1050 C, B-phase (M{sub 2}SiAlO{sub 5}N) was the only crystalline phase formed in both systems. The creep behaviour was similar for the yttrium and the erbium materials. It was characterised by a long transient stage, due to the viscoelastic response of the residual glass, with recovered strain after unloading decreasing as loading time increased. The creep resistance was compared to that of the parent glasses in terms of apparent viscosity. The crystallisation of 75% of the glass resulted in an increase in viscosity such that a temperature some 100 C higher showed the same viscosity value. After heat treatment at 1150 C, the phase assemblage in the yttrium material changed with the formation of wollastonite and partial conversion of B-phase into Iw-phase. The apparent viscosity was 2 orders of magnitude higher than that of the samples heat treated at 1050 C and no strain recovery was observed upon unloading. In contrast, the erbium materials retained the same microstructure as after the heat treatment at 1050{sup b}C and there was no difference in the creep behaviour of the samples heat treated at 1050 or 1150 C. After a crystallisation treatment at 1250 C of the yttrium parent glass, the glass-ceramic consisted of yttrium aluminium garnet, N-apatite and {beta}-Y{sub 2}Si{sub 2}O{sub 7} and showed excellent creep

  19. Room and high temperature deformation behaviour of a forged Fe–15Al–5Nb alloy with a reinforcing dispersion of equiaxed Laves phase particles

    International Nuclear Information System (INIS)

    Morris, D.G.; Muñoz-Morris, M.A.

    2012-01-01

    Highlights: ► Forged Fe–15%Al–5%Nb has a composite structure of soft matrix with equiaxed Laves phase particles. ► The material shows good strength with excellent ductility at room temperature. ► Good creep strength is maintained to 700 °C. ► The coarse composite microstructure ensures good long term stability at high temperatures. ► High temperature strength depends on load sharing between phases and microstructural refinement. - Abstract: The cast-in network of continuous Laves phase in a Fe–15%Al–5%Nb alloy has been converted to a dispersion of coarse Laves phase particles by high temperature forging, and the room temperature and high temperature deformation behaviour examined. The material shows good room temperature tensile ductility and good creep strength at temperatures up to 700 °C. The good high temperature strength is explained by the refinement of substructure by the dispersion of Laves phase particles and load and strain partitioning between the stiff and hard phase and the softer matrix. The relatively coarse microstructure is expected to be highly stable against coarsening at high temperatures, which should allow retention of creep properties even for long exposure times.

  20. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  1. Decay rate of the false vacuum at high temperatures

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1986-01-01

    We investigate, within the semiclassical approach, the high temperature behaviour of the decay rate (Γ) of the metastable vacuum in Field Theory. We exhibit some exactly soluble (1+1) and (3+1) dimensional examples and develop a formal expression for γ in the high temperature limit. (Author) [pt

  2. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  3. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  4. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    CERN Document Server

    Scapin, Martina; Carra, Federico; Peroni, Lorenzo

    2015-01-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10−3 and 103 s−1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on...

  5. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  6. Temperature effect on the poro-mechanical or hydraulic behaviour of a carbonated rock and a mortar: experimental studies

    International Nuclear Information System (INIS)

    Lion, M.

    2004-07-01

    The main objective of this study is to evaluate the temperature effect on the hydraulic and poro-mechanical behaviour of a limestone. Many experimental tests (porosity and permeability measurements, uniaxial and hydrostatic compressions tests) were carried out in order to study the thermal treatments effect and so the thermal microcracking effect on rock behaviour. Moreover, an experimental device for permeability measurements under high temperatures (until 200 C) was realized. This experimental device permitted to study the permeability variation of the limestone under thermal stresses. Finally, the behaviour of cementitious materials was studied; the temperature effect on the permeability of a mortar was examined. (author)

  7. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    Science.gov (United States)

    Aktaa, J.; Lerch, M.

    2006-07-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 °C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 ( R is the load ratio with R = Fmin/ Fmax where Fmin and Fmax are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature.

  8. Correlation between microstructure and the creep behaviour at high temperature of Alloy 800 H

    International Nuclear Information System (INIS)

    Spiradek, K.; Degischer, H.P.; Lahodny, H.

    1989-01-01

    A systematic metallographic study was performed to identify the nature of the microstructural changes occurring during high temperature creep deformation of Alloy 800 H. Creep tests were carried out at 800 deg. C under constant load conditions corresponding to the initial stresses between 25 and 80 MPa. Some tests were interrupted after certain elongations to provide the samples for electron microscopy. Emphasis was put on the creep periods relevant to design where only a few per cent of deformation are tolerable. The influence of the initial material conditions on the creep behaviour was examined. Variations of the initial microstructures were achieved by different solution treatments (980/1250) deg. C, preageing at 800 deg. C (0/6400) h and cold deformation up to 10% followed by ageing at 800 deg. C. The results of the microstructural examinations were correlated with the creep curves that provide a basis for identification of the creep mechanisms operating at the test conditions. (author). 14 refs, 17 figs

  9. Behaviors of SiC fibers at high temperature

    International Nuclear Information System (INIS)

    Colin, C.; Falanga, V.; Gelebart, L.

    2010-01-01

    On the one hand, considering the improvements of mechanical and thermal behaviours of the last generation of SiC fibers (Hi-Nicalon S, Tyranno SA3); on the other hand, regarding physical and chemical properties and stability under irradiation, SiC/SiC composites are potential candidates for nuclear applications in advanced fission and fusion reactors. CEA must characterize and optimize these composites before their uses in reactors. In order to study this material, CEA is developing a multi-scale approach by modelling from fibers to bulk composite specimen: fibres behaviours must be well known in first. Thus, CEA developed a specific tensile test device on single fibers at high temperature, named MecaSiC. Using this device, we have already characterized the thermoelastic and thermoelectric behaviours of SiC fibers. Additional results about the plastic properties at high temperatures were also obtained. Indeed, we performed tensile tests between 1200 degrees C up to 1700 degrees C to characterize this plastic behaviour. Some thermal annealing, up to 3 hours at 1700 degrees C, had been also performed. Furthermore, we compare the mechanical behaviours with the thermal evolution of the electric resistivity of these SiC fibers. Soon, MecaSiC will be coupled to a new charged particle accelerator. Thus, in this configuration, we will be able to study in-situ irradiation effects on fibre behaviours, as swelling or creep for example

  10. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  11. Temperature effect on the behaviour of engineered clay barriers; Effet de la temperature sur le comportement des barrieres de confinement

    Energy Technology Data Exchange (ETDEWEB)

    Tang, A.M

    2005-11-15

    The present work deals with the thermo-hydro-mechanical behaviour of compacted swelling clay used for engineered barriers in high-level radioactive repositories. The MX80 bentonite was chosen for this work. Firstly, an experimental work on the thermal conductivity of the compacted bentonite was performed. The results evidenced the effects of dry density, water content, volumetric fraction of soil components, microstructure, and mineralogy. This experimental work gave rise to the proposition of a theoretical model for estimate the thermal conductivity of compacted bentonites. Secondly, after a calibration of suction generated by saturated saline solution in function of temperature, water retention curves were determined at different temperatures. The experimental results showed a decrease of the water retention capacity of soil after heating. A simple model based on the interfacial tension air-water was formulated to simulate this effect. Thirdly, a new isotropic cell enabling a simultaneous control of suction, temperature and mechanical stress was developed. With this new cell, an experimental work on the thermo-mechanical behaviour of the unsaturated compacted bentonite was performed. Finally, a constitutive model was developed for simulate the thermo-hydro-mechanical behaviours obtained experimentally. (author)

  12. Temperature and heat effects on polyethylene behaviour in the presence of imperfections

    Directory of Open Access Journals (Sweden)

    Murariu Alin Constantin

    2016-01-01

    Full Text Available This paper highlights the changes of polyethylene behaviour during various loading rate as well as the influence of test temperature on the material characteristics. Passive infrared thermography (IRT method and a high speed infrared camera were used to observe the temperature changes of the sample surface during the tests. The experimental program was carried out on samples taken from PE80 polyethylene gas pipes with simulated imperfections with bilateral V-notch, U-notch and central hole. Samples have been tensile tested (TT and the results are correlated with the temperature distribution of the samples surface.

  13. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  14. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  15. Near-threshold fatigue crack behaviour in EUROFER 97 at different temperatures

    International Nuclear Information System (INIS)

    Aktaa, J.; Lerch, M.

    2006-01-01

    The fatigue crack behaviour in EUROFER 97 was investigated at room temperature (RT), 300, 500 and 550 deg. C for the assessment of cracks in first wall structures built from EUROFER 97 of future fusion reactors. For this purpose, fatigue crack growth tests were performed using CT specimens with two R-ratios, R = 0.1 and R = 0.5 (R is the load ratio with R = F min /F max where F min and F max are the minimum and maximum applied loads within a cycle, respectively). Hence, fatigue crack threshold, fatigue crack growth behaviour in the near-threshold range and their dependences on temperature and R-ratio were determined and described using an analytical formula. The fatigue crack threshold showed a monotonous dependence on temperature which is for R = 0.5 insignificantly small. The fatigue crack growth behaviour exhibited for R = 0.1 a non-monotonous dependence on temperature which is explained by the decrease of yield stress and the increase of creep damage with increasing temperature

  16. Shell colour, temperature, (micro)habitat structure and predator pressure affect the behaviour of Cepaea nemoralis

    Science.gov (United States)

    Rosin, Zuzanna M.; Kwieciński, Zbigniew; Lesicki, Andrzej; Skórka, Piotr; Kobak, Jarosław; Szymańska, Anna; Osiejuk, Tomasz S.; Kałuski, Tomasz; Jaskulska, Monika; Tryjanowski, Piotr

    2018-06-01

    Although shell colour polymorphism of the land snail Cepaea nemoralis is a well-known phenomenon, proximate and ultimate factors driving its evolution remain uncertain. Polymorphic species show variation in behavioural responses to selective forces. Therefore, we estimated effects of various environmental factors (temperature, humidity, food availability, (micro)habitat structure and predatory pressure) on behavioural response (frequency of locomotion, climbing and hiding) of C. nemoralis morphs, in experimental and natural conditions. In the experimental part of study, the frequency of locomotion was negatively affected by temperature and the presence of food and positively influenced by the presence of light. Morphs significantly differed in behavioural responses to environmental variability. Pink mid-banded and yellow five-banded morphs climbed less often and hide in shelter more often than yellow and pink unbanded individuals when temperature was low and food was absent. Snails fed most often at moderate temperature compared to low and high temperatures. Field investigations partially confirmed differences among morphs in frequency of climbing, but not in terms of probability of hiding in sheltered sites. In natural colonies, temperature and (micro)habitat structure significantly affected frequency of climbing as well as hiding in shelter. Snails more often hid in sheltered sites where thrushes preyed on Cepaea. Tendency of unbanded morphs to climb trees may have evolved under avian predatory pressure as thrushes forage on a ground. Tendency of banded morphs to hide in sheltered sites may reflect prey preferences for cryptic background. The results implicate that differential behaviour of C. nemoralis morphs compensate for their morphological and physiological limitations of adaptation to habitat.

  17. High temperature behaviour of E110G and E110 fuel claddings in various mixtures of steam and air

    International Nuclear Information System (INIS)

    Perez-Feró, Erzsébet; Novotny, Tamás; Horváth, Márta; Kunstár, Mihály; Vér, Nóra; Hózer, Zoltán

    2014-01-01

    Experiments with sponge base E110G and the traditional E110 were carried out to compare the oxidation kinetics of these alloys in steam, in hydrogen rich steam, in steam-air and in air atmosphere and to study the effect of hydrogen- and nitrogen-containing environment on the oxidation. The effect of oxidizing atmosphere on the mechanical behaviour of the claddings was also investigated. The new and the traditional types of cladding rings were oxidised at high temperature (600°C – 1200°C). Oxidation of both alloys in steam-air mixture and in air atmosphere resulted in faster oxidation kinetics compared to steam. In many cases bumpy, porous oxide layer have been found. The presence of hydrogen in the steam atmosphere had no significant effect on the oxidation kinetics. Comparing the two alloys, more favourable behaviour of oxidised E110G was observed regarding the oxidation kinetics, breakaway oxidation and load bearing capability in all cases. (author)

  18. A contribution to the question of creep and relaxation of concrete under high temperatures

    International Nuclear Information System (INIS)

    Schneider, U.

    1979-01-01

    It was initially shown that, in dealing with the high temperature problem, it is expedient to distinguish certain material properties in terms of isothermal and non-isothermal conditions. A general equation of state could be derived to describe the key question complex relating to deformation behaviour of concrete under high temperatures. For the case of an isothermal temperature load under 100 0 C numerous measurement results are available from the literature. The creep behaviour of light and normal concrete up to 450 0 C was investigated and discussed. Pre-storage, concrete utilization, inelastic deformation and the influence of conditions of stress in the heat-up phase on high-temperature creep were treated. It could be shown on the basis of numerous evaluations and computer studies that also under high temperature conditions the creep behaviour of concrete is best described in terms of exponential functions. Preliminary experimental results on creep behaviour under transient temperature conditions have already been published within the framework of the sub-project ''fire properties of components''. These results, together with new measurement values have been subjected to theoretical analysis. The creep functions (phi-functions) for light and normal concrete developed for the transient temperature state constitute an important part of this work. Various suggestions have been made for criteria of failure for concrete at high tempratures. For the transient state a critical concrete temperature can be specified. Investigations on rates of deformation at the time of failure have shown that a so-called high level and low level is possible. The question of high temperature relaxation of conrete was studied both experimentally and theoretically. The constraining force problem was considered in detail in this research for comparison purposes since it offers a number of possibilities for new approaches and solutions particularly from a theoretical viewpoint. (orig

  19. Influence of the chemical composition and the fabrication process on the behaviour of high temperature oxidation of Fe-Cr-Al alloys

    International Nuclear Information System (INIS)

    Clemendot, F.; Arnoldi, F.; Cerede, J.B.; Dionnet, B.; Nardou, F.; Duysen, J.C. van

    1993-01-01

    The oxidation behaviour of four industrial Fe-Cr-Al alloys was studied. Two of them were Fe-Cr-Al alloys fabricated either by melting or by powder metallurgy. The two other ones were Fe-Cr-Al-Y alloys either produced by melting or by mechanical alloying. On these alloys, we determined oxidation kinetics and observed the morphology of the oxide layer after isothermal and cyclic exposures from 1000 C up to 1300 C. The beneficial effect of yttrium on the adherence of oxide layers was confirmed. The powder metallurgy fabrication route does not improve the oxidation resistance of yttrium-free alloys. On the other hand, the association of the powder metallurgy and the addition of yttrium allow the manufacturing of alloys which present an excellent behaviour to high temperature oxidation. (orig.)

  20. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  1. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature

    International Nuclear Information System (INIS)

    Zheng, Wenzhong; Li, Haiyan; Wang, Ying

    2012-01-01

    Highlights: ► We complete the high temperature test and compression test of RPC after 20–900 °C. ► The presence of steel fiber and polypropylene fiber can prevent RPC from spalling. ► Compressive strength increases first and then decreases with elevated temperatures. ► Microstructure deterioration is the root cause of macro-properties recession. ► Equations to express the compressive strength change with temperature are proposed. -- Abstract: This study focuses on the compressive properties and microstructures of reactive powder concrete (RPC) mixed with steel fiber and polypropylene fiber after exposure to 20–900 °C. The volume dosage of steel fiber and polypropylene fiber is (2%, 0.1%), (2%, 0.2%) and (1%, 0.2%). The effects of heating temperature, fiber content and specimen size on the compressive properties are analyzed. The microstructures of RPC exposed to different high temperatures are studied by scanning electron microscope (SEM). The results indicate that the compressive strength of hybrid fiber-reinforced RPC increases at first, then decreases with the increasing temperature, and the basic reason for the degradation of macro-mechanical properties is the deterioration of RPC microstructure. Based on the experimental results, equations to express the relationships of the compressive strength with the heating temperatures are established. Compared with normal-strength and high-strength concrete, the hybrid fiber-reinforced RPC has excellent capacity in resistance to high temperature.

  2. Electrochemical investigations of high-Tc superconductors - low-temperature electrochemistry

    International Nuclear Information System (INIS)

    Lorenz, W.J.

    1992-01-01

    This research report presents a summary of results obtained by electrochemical investigations of high-Tc superconductors at room temperature and below the critical temperature (Tc). The studies were to reveal the behaviour of the ceramic superconducting materials at the interface between superconductor and ionic conductor. (MM) With 4 tabs., 8 figs [de

  3. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  4. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  5. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  6. Recent advances in design procedures for high temperature plant

    International Nuclear Information System (INIS)

    1988-01-01

    Thirteen papers cover several aspects of design for high temperature plant. These include design codes, computerized structural analysis and mechanical properties of materials at high temperatures. Seven papers are relevant for fast reactors and these are indexed separately. These cover shakedown design, design codes for thin shells subjected to cyclic thermal loading, the inelastic behaviour of stainless steels and creep and crack propagation in reactor structures under stresses caused by thermal cycling loading. (author)

  7. Inheritance of nesting behaviour across natural environmental variation in a turtle with temperature-dependent sex determination.

    Science.gov (United States)

    McGaugh, Suzanne E; Schwanz, Lisa E; Bowden, Rachel M; Gonzalez, Julie E; Janzen, Fredric J

    2010-04-22

    Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour must be heritable. We estimated the field heritability of two key components of nesting behaviour in a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination by applying the 'animal model' to a pedigree reconstructed from genotype data. We obtained estimates of low to non-detectable heritability using repeated records across all environments. We then determined environment-specific heritability by grouping records with similar temperatures for the winter preceding the nesting season, a variable known to be highly associated with our two traits of interest, nest vegetation cover and Julian date of nesting. The heritability estimates of nest vegetation cover and Julian date of nesting were qualitatively highest and significant, or nearly so, after hot winters. Additive genetic variance for these traits was not detectable after cold winters. Our analysis suggests that the potential for evolutionary change of nesting behaviour may be dependent on the thermal conditions of the preceding winter, a season that is predicted to be especially subject to climate change.

  8. First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ′-strengthened Co–Al–W superalloys

    International Nuclear Information System (INIS)

    Klein, L.; Zendegani, A.; Palumbo, M.; Fries, S.G.; Virtanen, S.

    2014-01-01

    Highlights: • Thermodynamic modelling of the oxidation behaviour of a novel Co-base superalloy. • Calculated oxide layer sequence is in good agreement with formed oxide scales. • Prediction of an optimised alloy composition with increased phase stability. • Prediction of the influence of oxygen partial pressure on Al 2 O 3 formation. - Abstract: In the present work, thermodynamic modelling of the high temperature oxidation behaviour of a γ′-strengthened Co-base superalloy is presented. The ternary Co–9Al–9W alloy (values in at%) was isothermally oxidised for 500 h at 800 and 900 °C in air. Results reveal that the calculated oxide layer sequence (Thermo-Calc, TCNI6) is in good agreement with the formed oxide scales on the alloy surface. Furthermore, prediction of the influence of oxygen partial pressure on Al 2 O 3 formation is presented. The modelling results indicate pathways for alloy development or possible pre-oxidation surface treatments for improved oxidation resistance of the material

  9. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    OpenAIRE

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  10. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik

    2011-01-01

    temperature proton exchange membrane (PEM) steam electrolysers. Steady-state voltammetry was used in combination with scanning electron microscopy and energy-dispersive X-ray spectroscopy to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis...

  11. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  12. High temperature internal friction in α-zirconium

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Sprungman, K.W.

    1981-03-01

    The high temperature internal friction spectrum of α-Zr is resolved into five peaks, P 0 to P 4 , in addition to a background, B, that increases exponentially with the temperature. P 0 is attributed to the thermally assisted unpinning of dislocations from oxygen interstitial pinning points. P 1 is caused by the longitudinal redistribution of the same pinning points in the dislocation core, while P 2 is caused by the transverse core diffusion of these pinning points. Both P 0 and P 1 give rise to characteristic peaks of internal friction as a function of strain amplitude. The ratio of the modulus defect to the internal friction at the peak position is 0.5 in the case of unpinning, and significantly greater than 0.5 in the case of longitudinal core diffusion. A behavioural phase diagram or map is constructed to interpret the complex non-linear behaviour occurring in the temperature-strain amplitude plane in the regions where P 0 , P 1 and P 2 overlap. (author)

  13. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The effect of processing route on strain-controlled low cycle fatigue (LCF) life of binary ..... the once regarding close control of composition, control and reproduction of ... inverse effect of temperature on fatigue life seen in tests conducted in air.

  14. Behaviour of neutron moderator materials at high temperatures in CASTOR registered -casks: qualification and assessment

    International Nuclear Information System (INIS)

    Krietsch, T.; Wolff, D.; Knopp, U.; Brocke, H.D.

    2004-01-01

    The Federal Institute for Materials Research and Testing (BAM) is the responsible German authority for the assessment of mechanical and thermal designs of transport and storage casks for radioactive materials. BAM checks up the proofs of the applicants in their safety reports and assesses the conformity to the Regulations for the Safe Transport of Radioactive Material. One applicant is the Gesellschaft fuer Nuklear-Behaelter mbH (GNB) with a new generation of transport and storage casks of CASTOR registered -design. GNB typically uses ultra high molecular weight Polyethylene (UHMW-PE) for the moderation of free neutrons. Rods made of UHMW-PE are positioned in axial bore holes in the wall of the cask and plates of UHMW-PE are in free spaces between primary and secondary lid and between the bottom of the cask and an outer plate (Figure 1). Because of the heat generated by the radioactive inventory and because of a strained spring at the bottom of every bore hole, UHMW-PE is subjected to permanent thermal and mechanical loads as well as loads from gamma and neutron radiation. UHMW-PE has been used under routine- and normal conditions of transport for maximum temperatures up to 130 C. For new generations of CASTOR registered -design maximum temperatures will be increased up to 160 C. That means a permanent use of UHMW-PE at temperatures within and above the melting region of the crystallites. In this paper, some results of special investigations for the proofs of usability of UHMW-PE at temperatures up to 160 C under real conditions of transport and storage in CASTOR registered -casks are given. For that, investigations on temperature dependent expansion behaviour under laboratory conditions as well as in large scale experiments, especially in the case of multiple heating and cooling, were done. Besides, geometrical creep strength for long-term loading by temperatures and pressures with regard to the chemical and physical stability properties of UHMW-PE above the

  15. The Effect of Increased Temperature on Flowering Behaviour of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A. Koocheki

    2011-01-01

    Full Text Available Abstract Flowering in saffron requires a period of incubation at high temperatures for flower differentiation followed by a period of low temperatures for flower emergence. Global warming could adversely affect the flowering of saffron because of its high sensitivity to temperature. Flowering behaviour of saffron in response to rising temperature was studied in an experiment conducted in controlled environment. Corms with identical sizes were collected form green or fully withered field grown plants and sown in plastic pots. Pots were incubated in 25, 27 and 30 °C for 70, 90 and 120 days. By the end of each incubation period, pots incubated in 25, 27 and 30 °C were transferred to 17, 19 and 21 °C, respectively. Days to flowering, development rate and growth characteristics of saffron were measured in alternative temperature regimes of 25/17, 27/19 and 30/21 °C in combination with 3 incubation periods and in 3 replications. The results indicated that increasing incubation temperature up to 27 °C had no significant effects on saffron flowering behaviour however, no flower was appeared from corms incubated in 30°C. Increased duration of incubation period had adverse effects on flower emergence and corms incubated for 120 days were only flowered in 27/19 °C temperature regime. The optimal flowering response and the highest number of vegetative buds was obtained when 90 days incubation period at 27 °C was followed by a period for flower emergence at 17°C. Corms lifted from green or withered plants showed similar response to temperature regimes and incubation periods. However, in average duration of sowing to flowering was 5 days longer in corms lifted from green plants. Comparing the results of this research with daily temperature in the main saffron production areas of Khorasan provinces showed that increasing mean daily temperature by 2 °C during summer and autumn results in a considerable delay in flowering of saffron.

  16. Experimental Investigation of the Fracture Behaviour of Reinforced Ultra High Strength Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Aarup, B.

    the structural behaviour of a very high strength cement based material with and without steel fibres is investigated. A simple structural geometry has been tested, namely a beam subjected to three point bending. The results shows that the increase of ductility of the material also gives a more ductile behaviour......In the last fifteen years new types of cement based materials have been developed in Denmark at the Aalborg Portland Cement Factory. These types of new materials are characterized by very high strength even when mixed at room temperature and using conventional mixing techniques. In this paper...

  17. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  18. Temperature behaviour of photoluminescence and electron-beam-induced current recombination behaviour of extended defects in solar grade silicon

    CERN Document Server

    Arguirov, T; Kittler, M; Reif, J

    2002-01-01

    The temperature dependence of D-band and band-to-band (BB) luminescence was measured in EFG samples between 80 K and room temperature for defects/dislocations presenting different amounts of contamination. The contamination density was estimated from the temperature behaviour of the electron-beam-induced current contrast, ranging between about 10 sup 4 and 10 sup 6 impurities cm sup - sup 1 dislocation length. The D1 line became already visible at room temperature but its intensity was found to exhibit a maximum at about 150 K. D2, D3 and D4 start to show up at about 250, 190 and 170 K, respectively, and increase their intensities upon lowering temperature. At room temperature the width of the D1 line is broad and becomes narrower upon lowering the temperature. D2 shows the opposite behaviour. The intensities of D1 and D2 were observed to show strong variations across the sample, whereas this was not observed for the pair D4/D3. In particular, the origin of the lines D1 and D2 is still far from being understo...

  19. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Verdier (1996) explored the effect of SiC particulate rein- forcements in oxynitride glasses. Like in silicate compo- sites, non-Newtonian behaviour was observed in oxynitride glasses but instead of shear thinning they observed shear thickening. This was attributed to change in composition of grain boundary glass coupled ...

  20. Behaviour of HTGR coated fuel particles at high-temperature tests

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Lyutikov, R.A.; Kurbakov, S.D.; Repnikov, V.M.; Khromonozhkin, V.V.; Soloviyov, G.I.

    1990-01-01

    At the temperature range 1200-2600 deg. C prereactor tests of TRISO fuel particles on the base of UO 2 , UC x O y and UO 2 +2Al 2 O 3 . SiO 2 kernels, and also fuel particle models with ZrC kernels were performed. Isothermal annealings carried out at temperatures of 1400-2600 deg. C, thermogradient ones at 1200-2200 deg. C (Δ T = 200-1200 deg. C/cm). It is shown that at heating to 2200 deg. C integrity of fuel particles is limited by different thermal expansion of PyC and SiC coatings, and also by thermal dissociation of SiC. At higher temperatures the failure is caused by development of high pressures within weakened fuel particles. It is found that uranium migration from alloyed fuel (UC x O y , UO 2 +2Al 2 O 3 .SiO 2 ) in the process of annealing is higher than that from UO 2 . (author)

  1. Temperature dependence of high-resolution resonant photoemission spectra of CeSi

    International Nuclear Information System (INIS)

    Mimura, Kojiro; Noguchi, Satoru; Suzuki, Mitsuharu; Higashiguchi, Mitsuharu; Shimada, Kenya; Ichikawa, Kouichi; Taguchi, Yukihiro; Namatame, Hirofumi; Taniguchi, Masaki; Aita, Osamu

    2005-01-01

    High-resolution Ce 4d-4f resonant photoemission spectra near the Fermi level of CeSi with the Neel temperature of 5.9K have been measured at temperatures from 5.6 to 200K, in order to investigate the competition between the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction and the Kondo effect. As temperature is decreasing down to 30K, the intensity due to the Ce 4f 5/2 1 final state increases because of the evolution of the heavy Fermion behaviour caused by the Kondo effect. The intensity, however, decreases gradually from 30 to 5.6K. This indicates that the heavy Fermion behaviour is strongly suppressed by the anti-ferromagnetic ordering due to the RKKY interaction

  2. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  3. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  4. High temperature corrosion behaviour of Ti-46.6Al-1.4Mn-2Mo in environments of low oxygen and high sulphur potentials at 750 and 900 C

    International Nuclear Information System (INIS)

    Du, H.L.; Datta, P.K.; Hwang, S.K.

    1997-01-01

    In this paper, the oxidation and sulphidation behaviour of a TiAl-based intermetallic, Ti-46.6Al-1.4Mn-2Mo (at%) with duplex and laminar microstructures, was investigated in environments of H 2 /H 2 S/H 2 O at 750 and 900 C. The corrosion kinetics of the intermetallic were determined by means of discontinuous gravimetry and the as-received and exposed samples were characterised using SEM, EDX and XRD. The weight gain/time data in the oxygen and sulphur containing environment used indicated parabolic kinetics with Kp∝10 -12 g 2 /cm 4 /s at 750 C and cubic kinetics at 900 C. The increase in exposure temperature did not significantly change the corrosion behaviour of the materials. The material showed the development of a multilayered scale consisting of an outermost TiO 2 layer beneath which an Al 2 O 3 layer existed: the formation of MnS and Al 2 S 3 was observed to occur between the oxide layers and substrate. This paper will discuss the significance of these results and consider the mechanisms responsible for degradation of this type of intermetallics in high sulphur and low oxygen environment with reference to their limit of temperature tolerance. (orig.)

  5. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  6. The influence of elevated temperature transformation and mechanical properties of a precipitation hardening martensitic stainless steel on its wear behaviour

    International Nuclear Information System (INIS)

    Smith, A.F.

    1989-11-01

    Self wear tests of a martensitic stainless steel in CO 2 in the temperature range 20-300degC showed transitional behaviour at 20 and 300degC. In the mid temperature range a severe wear rate of ∼ 2 x 10 -13 m 3 /Nm persisted for sliding distances up to 2000 m. A possible explanation was that while strain induced transformation of retained austenite at low temperatures provided a sufficiently hardened substrate that allowed inelastic rather than plastic interactions this did not occur at 200degC. Tests were carried out to determine the temperature above which strain no longer transformed austenite into martensite. Although a martensite start temperature of ∼ 150degC was found for the present steel the presence of only ∼ 10% retained austenite in the ''as heat treated'' material suggests that its transformation to martensite at 200degC would not materially affect the extent of subsurface hardening. It is proposed that a surface reaction plays a role in transition behaviour. At 300degC the reaction product is an oxide but at room temperature it is possibly a carbonate. The stability of the carbonate decreases with temperature thus giving an intermediate temperature range where metal/metal contacts prevail leading to the persistent high wear behaviour. (author)

  7. Leaching of biomass from semi-natural grasslands – Effects on chemical composition and ash high-temperature behaviour

    International Nuclear Information System (INIS)

    Tonn, Bettina; Thumm, Ulrich; Lewandowski, Iris; Claupein, Wilhelm

    2012-01-01

    Combustion of biodiversity-rich semi-natural grassland biomass no longer needed for forage allows nature conservation to be combined with bioenergy production. Natural leaching by rainfall during the period between biomass harvest and collection can reduce the content of elements detrimental for the combustion of grassland biomass. This study assesses the influence of biomass characteristics on leaching efficiency and the potential effects of leaching on ash melting behaviour and elemental release. Grassland biomass harvested from five sites at two harvest dates was leached at two intensities. Low-temperature ash was heated to 700, 800, 900 and 1000 °C respectively and classified into four ash fusion classes. Ash mass loss was determined as a measure of high-temperature elemental release. Weather data were used to calculate the frequency of weather conditions favourable to on-field leaching. K and Cl were leached most strongly and were reduced by 30 and 45% respectively by a leaching treatment corresponding to 30–40 mm of rain. The effects of site and harvest date on leaching efficiency were significant but small. Ash melting behaviour and elemental release between 700 and 900 °C were favourably influenced by leaching. The K/(Ca + Mg) and Si/ash ratios were related to increased ash melting. In this respect, semi-natural grassland biomass differs from other, less Ca-rich, herbaceous biofuels. Even if suitable weather conditions are not occurring frequently at the study sites, on-field leaching can offer an additional low-cost, on-farm strategy option for farmers and nature conservation agencies to improve biomass quality of nature conservation grasslands for combustion. -- Graphical abstract: Highlights: ► Combustion of biomass from biodiversity-rich nature conservation grassland. ► Leaching by rain during the field period reduces K and Cl concentrations. ► Increasing K/(Ca + Mg) and decreasing (K + Ca + Mg)/ash ratios increase ash melting. ► Leaching

  8. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures

    DEFF Research Database (Denmark)

    Pearson, Hamish; Gabbitas, Brian; Ormarsson, Sigurdur

    2012-01-01

    that moisture and temperature can play a significant role in reducing stress during drying, regardless of the drying time. Properties of wood, such as tensile elastic information at elevated temperatures, are important for mechanical design, distortion modelling and understanding the fundamental behaviour...

  9. The effects of temperature and strain rate on the dynamic flow behaviour of different steels

    International Nuclear Information System (INIS)

    Lee, W.-S.; Liu, C.-Y.

    2006-01-01

    A compressive type split-Hopkinson pressure bar is utilized to compare the impact plastic behaviour of three steels with different levels of carbon content. S15C low carbon steel, S50C medium alloy heat treatable steel (abbreviated hereafter to medium carbon steel) and SKS93 tool steel with a high carbon and low alloy content (abbreviated hereafter to high carbon steel) are tested under strain rates ranging from 1.1 x 10 3 s -1 to 5.5 x 10 3 s -1 and temperatures ranging from 25 to 800 deg. C. The effects of the carbon content, strain rate and temperature on the mechanical responses of the three steels are evaluated. The microstructures of the impacted specimens are studied using a transmission electron microscope (TEM). It is found that an increased carbon content enhances the dynamic flow resistance of the three steels. Additionally, the flow stress increases with strain and strain rate in every case. A thermal softening effect is identified in the plastic behaviour of the three steels. The activation energy, ΔG * , varies as a function of the strain rate and temperature, but is apparently insensitive to the carbon content level. The present study identifies maximum ΔG * values of 58 kJ/mol for the S15C low carbon steel, 54.9 kJ/mol for the S50C medium carbon steel, and 56.4 kJ/mol for the SKS93 high carbon steel. A Zerilli-Armstrong BCC constitutive model with appropriate coefficients is applied to describe the high strain rate plastic behaviours of the S15C, S50C and SKS93 steels. The errors between the calculated stress and the measured stress are found to be less than 5%. The microstructural observations reveal that the dislocation density and the degree of dislocation tangling increase with increasing strain rate in all three steels. Additionally, the TEM observations indicate that a higher strain rate reduces the size of the dislocation cells. The annihilation of dislocations occurs more readily at elevated temperatures. The square root of the dislocation

  10. Thermal insulation of the high-temperature helium-cooled reactors

    International Nuclear Information System (INIS)

    Kharlamov, A.G.; Grebennik, V.N.

    1979-01-01

    Unlike the well-known thermal insulation methods, development of high-temperature helium reactors (HTGR) raises quite new problems. To understand these problems, it is necessary to consider behaviour of thermal insulation inside the helium circuit of HTGR and requirements imposed on it. Substantiation of these requirements is given in the presented paper

  11. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  12. Corrosion behaviour of construction materials for high temperature water electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.; Petruchina, I.; Christensen, E.; Bjerrum, N.J.; Tomas-Garcya, A.L. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemistry, Materials Science Group

    2010-07-01

    This presentation reported on a study in which the feasibility of using different corrosion resistant stainless steels as a possible metallic bipolar plate and construction material was evaluated in terms of corrosion resistance under conditions corresponding to the conditions in high temperature proton exchange membrane (PEM) water electrolysers (HTPEMWE). PEM water electrolysis technology has been touted as an effective alternative to more conventional alkaline water electrolysis. Although the energy efficiency of this technology can be increased considerably at temperatures above 100 degrees C, this increases the demands to all the used materials with respect to corrosion stability and thermal stability. In this study, Ni-based alloys as well as titanium and tantalum samples were exposed to anodic polarization in 85 per cent phosphoric acid electrolyte solution. Tests were performed at 80 and 120 degrees C to determine the dependence of corrosion speed and working temperature. Platinum and gold plates were also tested for a comparative evaluation. Steady-state voltammetry was used along with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Titanium showed the poorest corrosion resistance, while Ni-based alloys showed the highest corrosion resistance, with Inconel R 625 being the most promising alloy for the bipolar plate of an HTPEMWE. 3 refs., 1 tab., 2 figs.

  13. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  14. Tensile behaviour at room and high temperatures of novel metal matrix composites based on hyper eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Valer, J.; Rodriguez, J.M.; Urcola, J.J.

    1997-01-01

    This work shows the improvement obtained on tensile stress at room and high temperatures of hyper eutectic Al-Si alloys. These alloys are produced by a combination of spray-forming, extrusion and thixoforming process, in comparison with conventional casting alloys.Al-25% Si-5%Cu. Al-25%Si-5%Cu-2%Mg and Al-30%Si-5%Cu alloys have been studied relating their microstructural parameters with tensile stress obtained and comparing them with conventional Al-20%Si. Al-36%Si and Al-50%Si alloys. Al-25%Si-5%Cu alloy-was tested before and after semi-solid forming, in order to distinguish the different behaviour of this alloy due to the different microstructure. The properties obtained with these alloys were also related to Al-SiC composites formed by similar processes. (Author) 20 refs

  15. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  16. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  17. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  18. Optimization of tribological behaviour on Al- coconut shell ash composite at elevated temperature

    Science.gov (United States)

    Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.

    2018-02-01

    In this study, determine the tribological behaviour of composite at elevated temperature i.e. 50 - 150 °C. The aluminium matrix composite (AMC) are prepared with compo casting route by volume of reinforcement of coconut shell ash (CSA) such as 5, 10 and 15%. Mechanical properties of composite has enhances with increasing volume of CSA. This study details to optimization of wear behaviour of composite at elevated temperatures. The influencing parameters such as temperature, sliding velocity and sliding distance are considered. The outcome response is wear rate (mm3/m) and coefficient of friction. The experiments are designed based on Taguchi [L9] array. All the experiments are considered as constant load of 10N. Analysis of variance (ANOVA) revealed that temperature is highest influencing factor followed by sliding velocity and sliding distance. Similarly, sliding velocity is most influencing factor followed by temperature and distance on coefficient of friction (COF). Finally, corroborates analytical and regression equation values by confirmation test.

  19. Genetic variablilities of body temperature and resting behaviour in ...

    African Journals Online (AJOL)

    This implies that neither progeny nor generation had effect on body temperature. The Alpha strain exhibited more resting behaviour than did the exotic and the pure native types. Majority of the birds rested in the afternoon at 2.00 pm. This could be attributed to the fact that at 2.00 pm the weather is hot and birds search for a ...

  20. Ambient growth of highly oriented Cu{sub 2}S dendrites of superior thermoelectric behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mulla, Rafiq; Rabinal, M.K., E-mail: mkrabinal@yahoo.com

    2017-03-01

    Highlights: • A simple and ambient route to synthesize highly oriented dendrites of copper sulfide is proposed. • Remarkable enhancement is observed in Seebeck coefficient by room temperature, solution phase doping. • High thermoelectric power factor is observed at room temperature, indicating promising behaviour. - Abstract: Low-cost, non-toxic and efficient material is an urgent need for the thermoelectric energy conversion. Here, a rapid and ambient chemical route has been developed to grow dense and highly oriented dendrites of copper sulfide (Cu{sub 2}S) on copper substrate in a very simple approach, these films are uniform and covered with dense nanosheets. Room temperature solution doping of copper ions is carried out to improve thermoelectric performance. The Seebeck coefficient increased from ∼100 to 415 μV K{sup −1} with a slight decrease in electrical conductivity, this gives a high power factor (S{sup 2}σ) of about ∼400 μW m{sup −1} K{sup −2}. The improved thermoelectric properties in these films are accounted for resonant energy level doping and high phonon scattering. Such films with improved thermoelectric behaviour can be promising materials for energy conversion. The earth abundant, low cost, non toxic with a good thermoelectric property makes copper sulfide as a promising thermoelectric material for future applications.

  1. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  2. Development and optimization of a high temperature coupling system thermoanalyzer/mass spectrometer

    International Nuclear Information System (INIS)

    Jagdfeld, H.J.

    1983-11-01

    The development of a high temperature coupling system was accomplished to carry out thermodynamic investigations during glass melting to solidify highly radioactive fission products into glass at a temperature up to 1200 0 C. The actual problem consisted of the fact that the gas species evaporating from the melter have to pass without condensation or without change of their composition a multistage pressure reducing system to enter the analysator unit of the mass spectrometer in the high vacuum. With the systems, offered at present, this is only possible up to approximately 450 0 C. The development of a new high temperature coupling included investigations of the gas dynamics, raw materials and thermic behaviour. (orig./EF) [de

  3. Cadmium and high temperature effects on brain and behaviour of Lymantria dispar L. caterpillars originating from polluted and less-polluted forests.

    Science.gov (United States)

    Perić-Mataruga, Vesna; Petković, Branka; Ilijin, Larisa; Mrdaković, Marija; Dronjak Čučaković, Slađana; Todorović, Dajana; Vlahović, Milena

    2017-10-01

    Insects brain as a part of nervous system is the first-line of fast stress response that integrate stress signals to regulate all aspects of insect physiology and behaviour. The cadmium (Cd) bioaccumulation factor (BF), activity of the neurotoxicity biomarker acetylcholinesterase (AChE), dopamine content, expression and amount of Hsp70 in the brain and locomotor activity were evaluated in the 4th instar of Lymantria dispar L. caterpillars fed a Cd supplemented diet and reared in an optimal temperature regime (23 °C) and/or exposed to high temperature (28 °C). The insects originated from two forests, one close to "Nikola Tesla" thermoelectric power plant, Obrenovac (polluted population), and the other Kosmaj mountain (less-polluted population, far from any industrial region). The Cd BF was higher in the less-polluted than in the polluted population especially at the high ambient temperature. AChE activity and dopamine content were changed in the brains of L. dispar from both populations in the same manner. Hsp70 concentration in caterpillar brains showed opposite trends, a decrease in the less-polluted and an increase in the polluted population. Locomotor activity was modified in both Lymantria dispar populations, but the pattern of changes depended on the stressors and their combined effect. ACh activity and dopamine content are sensitive parameters to Cd exposure, regardless of pollutant experience, and might be promising biomarkers in monitoring forest ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  5. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yoshiyuki, Kaji; Yamamoto, Masahiro; Tsukada, Takashi

    2012-09-01

    To understand the stress corrosion cracking (SCC) behaviour of austenitic stainless steels (SSs) in the boiling water reactor (BWR) coolant environment, it is significant to investigate the effect of hydrogen peroxide (H 2 O 2 ) produced by the radiolysis of water on SCC under the various water chemistry and operational conditions. At the start-up or shut-down periods, for example, the conditions of radiation and temperature on the structural materials are different from those during the plant normal operation, and may be influencing on SCC behaviour. Therefore, the effect of temperature on SCC in high temperature water injected with H 2 O 2 was evaluated by SCC propagation test at the present study. Oxide films on the metal surface in crack were examined and the thermal equilibrium diagram was calculated to estimate the environmental situation in the crack. On the thermally sensitized type 304 SS, crack growth tests were conducted in high temperature water injected with H 2 O 2 to simulate water radiolysis in the core. Small CT type specimens with a width of 15.5 mm and thickness of 6.2 mm were machined from the sensitized SS. SCC growth tests were conducted in high temperature water injected with 100 ppb H 2 O 2 at 453 and 561 K. To minimize H 2 O 2 decomposition by a contact with metal surface of autoclave, the CT specimen was isolated from inner surface of the autoclave by the inner modules made of polytetrafluoroethylene (PTFE), and PTFE lining was also used for the inner surface of inlet and sampling tubes. Base on the measurement of sampled water, it was confirmed that 80-90 % of injected H 2 O 2 remained around the CT specimen in autoclave. Constant load at initial K levels of 11-20 MPam 1/2 was applied to the CT specimens during crack growth tests. After crack growth tests, CT specimens were split into two pieces on the plane of crack propagation. Scanning electron microscope (SEM) examination and laser Raman spectroscopy for outer oxide layer of oxide

  6. Crystal layered structure and superconducting high-Tc behaviour of the mercurocuprates

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; Kuzemskaya, I.G.; Cheglokov, A.A.

    1998-10-01

    The high-T c superconducting behaviour of the mercurocuprate family HgBa 2 Ca n-1 Cu n O 2n+2+δ was analyzed from the point of view of their layered crystal structure. A dependence of superconducting critical temperature for different members of mercurocuprate family was studied in terms of phenomenological model of layered superconductors. The redistribution of charge was taken into account. This leads to an observable nonmonotonic ''bell''-shaped dependence of T c (n) with a maximum at n=3 and provides a quantitative explanation of the experiments. It was shown that the correlations between the copper valence, lattice parameters, extra oxygen contents and number of layers are essential factors for the physical behaviour and HTSC characterization of the mercurocuprates. (author)

  7. The high temperature oxidation behaviour of austenitic stainless steels

    International Nuclear Information System (INIS)

    Hales, R.

    1977-04-01

    High temperature annealing in a dynamic vacuum has been utilised to induce the growth of duplex oxide over the whole surface of stainless steel specimens. It is found that duplex oxide grows at a rate which does not obey a simple power law. The oxidation kinetics and oxide morphology have also been studied for a series of ternary austenitic alloys which cover a range of composition between 5 and 20% chromium. A model has been developed to describe the formation of duplex oxide and the subsequent formation of a 'healing layer' which virtually causes the oxidation process to stop. This phase tends to form at grain boundaries and a relationship has been derived for the reaction kinetics which relates the reaction rate with grain size of the substrate. (author)

  8. Effect of different ions on the anodic behaviour of alloy 800 chloride solutions at high temperature

    International Nuclear Information System (INIS)

    Lafont, C.J.; Alvarez, M.G.

    1993-01-01

    The anodic behaviour and passivity breakdown of alloy 800 in sodium bicarbonate and sodium phosphate aqueous solutions were studied in the temperature range from 100 degrees C to 280 degrees C by means of electrochemical techniques. The effect of phosphate or bicarbonate additions on the pitting susceptibility and pitting morphology of the alloy in chloride solutions was also examined. Experiments were performed in the following solutions: 0.1M NaHCO 3 , at 100 degrees C, 200 degrees C, 280 degrees C; 0.06M NaH 2 PO 4 + 0.04M Na 2 HPO 4 , at 100 degrees C, 200 degrees C and 280 degrees C, and 0.1M NaCl with different additions of bicarbonate ion (0.02M, 0.05M and 0.1M) and phosphate ion (0.01M, 0.05M and 0.1M) at 100 degrees C and 280 degrees C. The anodic polarization curves of alloy 800 in deaerated 0.1M NaHCO 3 and 0.06M NaH 2 PO 4 + 0.04M Na 2 HPO 4 solutions exhibited a similar shape at all the tested temperatures. No localized or generalized corrosion was detected on the metallic surface after polarization. The results obtained in chloride plus bicarbonate and chloride plus phosphate mixtures showed that the pitting potential of alloy 800 in chloride solutions was increased by the presence of bicarbonate or phosphate ions. In those solutions where the inhibitor concentration in the mixture is equal or higher than the chloride concentration , the behaviour of the alloy is similar to the one observed in the absence of chlorides. Changes in pitting morphology were found in phosphate containing solutions, while the pits found in bicarbonate containing solutions were similar to those formed in pure chloride solutions. (author). 3 refs., 4 figs

  9. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish ( Cheilodipterus quinquelineatus)

    Science.gov (United States)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam; Steffensen, John F.; Rummer, Jodie L.

    2015-12-01

    As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature ( T pref), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish ( Cheilodipterus quinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25 °C, approximating summer average temperatures in the wild. However, 32 °C fish moved more frequently to correct their thermal environment than 28 °C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns.

  10. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    Science.gov (United States)

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of

  11. Temperature effect on the poro-mechanical or hydraulic behaviour of a carbonated rock and a mortar: experimental studies; Influence de la temperature sur le comportement poromecanique ou hydraulique d'une roche carbonatee et d'un mortier: etudes experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Lion, M

    2004-07-15

    The main objective of this study is to evaluate the temperature effect on the hydraulic and poro-mechanical behaviour of a limestone. Many experimental tests (porosity and permeability measurements, uniaxial and hydrostatic compressions tests) were carried out in order to study the thermal treatments effect and so the thermal microcracking effect on rock behaviour. Moreover, an experimental device for permeability measurements under high temperatures (until 200 C) was realized. This experimental device permitted to study the permeability variation of the limestone under thermal stresses. Finally, the behaviour of cementitious materials was studied; the temperature effect on the permeability of a mortar was examined. (author)

  12. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  13. Thermodynamic behaviour of tellurium at high temperatures

    International Nuclear Information System (INIS)

    Garisto, F.

    1992-09-01

    Thermodynamic calculations are used to determine the chemical speciation of tellurium in the primary heat transport system under postulated reactor accident conditions. The speciation of tellurium is determined for various values of the temperature, oxygen partial pressure, tellurium concentration and Cs/Te ratio. The effects of the Zircaloy cladding and/or cesium on tellurium speciation and volatility are of particular interest in this report. (Author) (37 refs., 14 figs., 4 tabs.)

  14. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  15. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  16. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments; Etude experimentale et modelisation, du comportement, de l'endommagement et de la rupture en fluage a haute temperature de joint soudes en acier 9Cr1Mo-NbV

    Energy Technology Data Exchange (ETDEWEB)

    Gaffard, V

    2004-12-15

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  17. Influence of phase transformations on the mechanical behaviour of refractory ceramics at high temperature

    International Nuclear Information System (INIS)

    Schmitt, N.; Poirier, J.

    2009-01-01

    Refractories used at high temperature are subjected to high chemical and mechanical stresses. The mastery of their microstructure as well as the phase changes occurring in service is essential to ensure resistance to wear and failure of refractory linings. Great progress has been made: combining efficient techniques for the investigation of the microstructure with powerful numerical tools (thermochemical and thermo-mechanical computations) provides information (e.g., degradation mechanisms) that cannot be obtained directly. Also multi-physical and multi-scale models developing materials with high-performance for higher temperature and with longer lifetime. In this paper, through several examples we show some interactions between the mechanical behavior and the microstructure transformations of refractory ceramics. The tools developed to characterize their microstructure change in situ (e.g., at high temperature) and to identify their kinetics are described. Some methodologies and tools developed in recent years, today, provide a better understanding of in-service behavior of refractories while identifying the critical material and process parameters likely to increase life-time. (authors)

  18. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  19. High temperature microplasticity of fine-grained ceramics

    International Nuclear Information System (INIS)

    Lakki, A.; Schaller, R.

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short range motion of lattice defects, such as dislocations and grain boundaries. The energy loss (''mechanical loss'') associated with such motion can be measured by using the technique of mechanical spectroscopy. Moreover, at the onset of plasticity (''microplasticity''), long range irrecoverable motion of defects contributes to additional mechanical loss. Mechanical loss spectra may then give an insight into mechanisms operating at the transition between anelastic and plastic deformation. As an illustration, the spectra of three fine-grained ceramics (Si 3 N 4 , ZrO 2 , Al 2 O 3 ) are presented. In all cases, anelastic relaxation phenomena (peak and background) have been observed at high temperature (> 1200 K), bearing a close relation with creep behaviour. Their analysis permits to distinguish between different types of microstructrual elements: bulk regions of amorphous intergranular phase at triple points, grain boundaries separated by a thin glassy film and ''clean'' grain boundaries. (orig.)

  20. Relationships between individual behaviour and morphometry under different experimental conditions of temperature and feeding in glass eels (Anguilla anguilla

    Directory of Open Access Journals (Sweden)

    A. Bardonnet

    2008-01-01

    Full Text Available After Anguilla anguilla larvae reach the European coast, metamorphosing glass eels exhibit an estuarine migration phase and can potentially colonize the continental area. Associated behaviours to upstream movement in estuary and river basin differ strongly: passive tidal transport in estuary, active swimming beyond the upstream tidal limit. Moreover, the migratory behaviour may shift towards a density-dependent dispersal beyond this limit. A positive relationship has previously been established between glass eels’ body condition and migratory behaviour in estuary and also higher in the river basin. An experiment was settled to test for the density-dependent versus migratory behaviour under controlled conditions. The relationships between some behaviours (swimming, grouping, feeding, and aggressiveness and body condition was investigated at the individual level. Two controlled factors were crossed, leading to four combinations of high and low levels of food and temperature. The high level of food led to a lesser loss in body condition. Swimming activity was positively related to initial body condition and loss in body condition, but these two variables were not related to aggressiveness. We conclude that the density-dependent dispersal hypothesis was not reinforced by these present results.

  1. Relationships between individual behaviour and morphometry under different experimental conditions of temperature and feeding in glass eels (Anguilla anguilla

    Directory of Open Access Journals (Sweden)

    Bardonnet A.

    2009-02-01

    Full Text Available After Anguilla anguilla larvae reach the European coast, metamorphosing glass eels exhibit an estuarine migration phase and can potentially colonize the continental area. Associated behaviours to upstream movement in estuary and river basin differ strongly: passive tidal transport in estuary, active swimming beyond the upstream tidal limit. Moreover, the migratory behaviour may shift towards a density-dependent dispersal beyond this limit. A positive relationship has previously been established between glass eels’ body condition and migratory behaviour in estuary and also higher in the river basin. An experiment was settled to test for the density-dependent versus migratory behaviour under controlled conditions. The relationships between some behaviours (swimming, grouping, feeding, and aggressiveness and body condition was investigated at the individual level. Two controlled factors were crossed, leading to four combinations of high and low levels of food and temperature. The high level of food led to a lesser loss in body condition. Swimming activity was positively related to initial body condition and loss in body condition, but these two variables were not related to aggressiveness. We conclude that the density-dependent dispersal hypothesis was not reinforced by these present results.

  2. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    International Nuclear Information System (INIS)

    Ye, W.M.; Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G.; Cui, Y.J.

    2012-01-01

    Highlights: ► Heating induced volumetric change of GMZ01 bentonite depends on suction. ► Suction has significant influence on compressibility. ► Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 °C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 × 10 −4 °C −1 ; (2) with increasing suction, the elastic compressibility κ and the plastic compressibility λ(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility λ(s) slightly decreases and the yield surface tends to shrink.

  3. Geomechanical behaviour of boom clay under ambient and elevated temperature conditions

    International Nuclear Information System (INIS)

    Neerdael, B.; Beaufays, R.; Buyens, M.; Bruyn, D. de; Voet, M.

    1992-01-01

    This research is focused upon in-situ investigations related to the (thermo-) mechanical behaviour of clay. Three main items are covered in this research area: Stress measurements around the underground research facility for radioactive waste disposal using hydraulical stress monitoring stations; detection of micro-fractures in the clay host, mainly using geophysical seismic techniques; long term mechanical behaviour of clay (this last item, studied by ANDRA at Mol, is not described in this paper). The stress monitoring stations appear to be more reliable in getting relative pressure variations with time rather than absolute values of stress, even after studying and improving the characteristics of the surrounding grout. The seismic techniques used to appear to be sensitive and accurate enough for detecting induced fracturation in the clay host, even for the low temperature. This is also in agreement with bench-scale experiments on clay samples intended to quantify the influence of both temperature and consolidation on the velocity. 10 refs., 80 figs., 3 tabs

  4. High-temperature oxidation behaviour of Ti 3 Si (1–)

    Indian Academy of Sciences (India)

    ... oxidation behaviour of material is assumed to obey a three-step parabolic rate law at 1100°C and 1200°C. The calculated activation energy of isothermal oxidation is 101.43 kJ.mol-1. The oxide layers consisted of a mass of -Al2O3 and little TiO2 and SiO2 are observed on Ti3SiC2 as a dense and adhesive protect scale.

  5. THE EFFECT OF HIGH TEMPERATURES ON CONCRETE INCORPORATING ULTRAFINE SILICA AND POLYPROPYLENE FIBERS

    Directory of Open Access Journals (Sweden)

    M. Benkaddour

    2016-05-01

    Full Text Available In recent years, lots of studies have attempted to examine the possible causes for the thermal instability of ordinary concrete and high performance. However, we still do not know the exact terms of phenomena taking place during exposure to high temperature and the technological solutions that exist (polypropylene fibres, thermal reported are not always well controlled.In this work, several concrete formulations have been tested and multi-scale observation of high-temperature behavior of ordinary concrete (compressive strength of 48 MPa and HPC (compressive strength 75 MPa were adopted. On the scale of the material, the identification of trends with temperature data such as porosity and particularly the mechanical properties allow us to better understand the behaviour of concrete at high temperature differential thermal analysis have been also made.

  6. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  7. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system

    International Nuclear Information System (INIS)

    Zhang, Caizhi; Yu, Tao; Yi, Jun; Liu, Zhitao; Raj, Kamal Abdul Rasheedj; Xia, Lingchao; Tu, Zhengkai; Chan, Siew Hwa

    2016-01-01

    Highlights: • Heating-up and cooling-down processes of HT-PEMFC are the mainly interested topics. • Dynamic behaviours, power and energy demand of the heating and cooling was studied. • Hybrid system based on LiFeYPO_4 battery for heating and cooling is built and tested. • The concept of combining different heating sources together is recommended. - Abstract: One key issue pertaining to the cold-start of High temperature PEM fuel cell (HT-PEMFC) is the requirement of high amount of thermal energy for heating up the stack to a temperature of 120 °C or above before it can generate electricity. Furthermore, cooling down the stack to a certain temperature (e.g. 50 °C) is necessary before stopping. In this study, the dynamic behaviours, power and energy demand of a 6 kW liquid cooled HT-PEMFC stack during heating-up, operation and cooling-down were investigated experimentally. The dynamic behaviours of fuel cell under heating-up and cooling-down processes are the mainly interested topics. Then a hybridisation of HT-PEMFC with Li-ion battery to demonstrate the synergistic effect on dynamic behaviour was conducted and validated for its feasibility. At last, the concept of combining different heating sources together is analysed to reduce the heating time of the HT-PEMFC as well.

  8. Problems in use and security of measurement of high temperature strain gages at various temperature limits up to 10000C

    International Nuclear Information System (INIS)

    Ziegler, K.

    1982-01-01

    The examples given show the quality and use of manufacturers' data for a series of behaviour criteria for strain gages in the high temperature region. These results should not only be regarded critically. The manufacturer must appreciate that the very costly programme of investigations on the users' side represents a product development for large parts for the manufacturer of the strain gauges. It would therefore be desirable if these considerations were to initiate investigations on the manufacturer's part, in order to clear up the problematic are of the use of strain gages in the high temperature field, in order to provide the customer with more reliable and better strain gage characteristics for very expensive high temperature strain measurements. (orig.) [de

  9. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre.

    Science.gov (United States)

    Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J

    2009-08-01

    The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

  10. Experimental characterization and modelling of UO2 mechanical behaviour at high temperatures and high strain rates

    International Nuclear Information System (INIS)

    Salvo, Maxime

    2014-01-01

    The aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO 2 ) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1/s) and high temperatures (1000 C - 2500 C). Two types of UO 2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm/min corresponding to strain rates of 10 -4 - 10 -1 /s) and temperatures (1100 C - 1350 C - 1550 C et 1700 C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100 C - 1700 C) and strain rates (10 -9 /s - 10 -1 /s). Finally, a constitutive law called L3F was developed for UO 2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations. (author) [fr

  11. Too Hot to Sleep? Sleep Behaviour and Surface Body Temperature of Wahlberg’s Epauletted Fruit Bat

    Science.gov (United States)

    Downs, Colleen T.; Awuah, Adwoa; Jordaan, Maryna; Magagula, Londiwe; Mkhize, Truth; Paine, Christine; Raymond-Bourret, Esmaella; Hart, Lorinda A.

    2015-01-01

    The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg’s epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios. PMID:25775371

  12. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  13. Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature

    International Nuclear Information System (INIS)

    Díez-Pascual, Ana M.; Naffakh, Mohammed

    2013-01-01

    The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS 2 ) nanoparticles was investigated. The IF-WS 2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle–matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS 2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring's equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS 2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers. - Graphical abstract: Display Omitted - Highlights: • The thermal and mechanical behaviour of iPP/IF-WS 2 nanocomposites was studied. • Low IF-WS 2 contents provide a good balance between stiffness, strength and toughness. • Their tensile behaviour is sensitive to the strain rate and temperature. • The nanocomposites exhibit superior thermal conductivity and flame retardancy than iPP. • The benefits of using IF-WS 2 compared

  14. High temperature alloys for the primary circuit of a prototype nuclear process heat plant

    International Nuclear Information System (INIS)

    Ennis, P.J.; Schuster, H.

    1979-01-01

    As part of a comprehensive materials test programme for the High Temperature Reactor Project 'Prototype Plant for Nuclear Process Heat' (PNP), high temperature alloys are being investigated for primary circuit components operating at temperatures above 750 0 C. On the basis of important material parameters, in particular corrosion behaviour and mechanical properties in primary coolant helium, the potential of candidate alloys is discussed. By comparing specific PNP materials data with the requirements of PNP and those of conventional plant, the implications for the materials programme and component design are given. (orig.)

  15. Electrical behaviour of strontium-doped lanthanum manganite interfaces

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Jacobsen, Torben

    2005-01-01

    The contact resistance of strontium-doped lanthanum manganite (LSM) contact pairs is investigated by polarisation analysis at different temperatures and atmospheres. The ceramic contacts have a high contact resistance, and strongly nonlinear current–voltage behaviour is observed at low temperatur....... The nonlinear behaviour is ascribed to the presence of energy barriers at the contact interface. Generally, point contacts showed a more linear behaviour than plane contact interfaces....

  16. Extended exposure to elevated temperature affects escape response behaviour in coral reef fishes

    Directory of Open Access Journals (Sweden)

    Donald T. Warren

    2017-08-01

    Full Text Available The threat of predation, and the prey’s response, are important drivers of community dynamics. Yet environmental temperature can have a significant effect on predation avoidance techniques such as fast-start performance observed in marine fishes. While it is known that temperature increases can influence performance and behaviour in the short-term, little is known about how species respond to extended exposure during development. We produced a startle response in two species of damselfish, the lemon damsel Pomacentrus moluccensis, and the Ambon damselfish Pomacentrus amboinensis, by the repeated use of a drop stimulus. We show that the length of thermal exposure of juveniles to elevated temperature significantly affects this escape responses. Short-term (4d exposure to warmer temperature affected directionality and responsiveness for both species. After long-term (90d exposure, only P. moluccensis showed beneficial plasticity, with directionality returning to control levels. Responsiveness also decreased in both species, possibly to compensate for higher temperatures. There was no effect of temperature or length of exposure on latency to react, maximum swimming speed, or escape distance suggesting that the physical ability to escape was maintained. Evidence suggests that elevated temperature may impact some fish species through its effect on the behavioural responses while under threat rather than having a direct influence on their physical ability to perform an effective escape response.

  17. Platform for high temperature materials (PHiTEM)

    International Nuclear Information System (INIS)

    Baluc, N.; Hoffelner, W.; Michler, J.

    2007-01-01

    Advanced energy power systems like Generation IV fission reactors, thermonuclear fusion reactors, solar thermal/solar chemical reactors, gas turbines and coal gasification systems require materials that can operate at high temperatures in extreme environments: irradiation, corrosion, unidirectional and cyclic loads. On the path to development of new and adequate high temperature materials, understanding of damage formation and evolution and of damage effects is indispensable. Damage of materials in components takes place on different time and length scales. Component failure is usually a macroscopic event. Macroscopic material properties and their changes with time (e.g., hardening, creep embrittlement, corrosion) are determined by the micro- to nano-properties of the material. The multi scale is an ambitious and challenging attempt to take these facts into consideration by developing an unified model of the material behaviour. This requires, however, dedicated tools to test and analyse materials on different scales. The platform for high temperatures materials is being set up within the framework of collaboration between the EPFL, the PSI and the EMPA. It has three main goals: 1) Establish a platform that allows the multi scale characterization of relationships between microstructure and mechanical properties of advanced, high temperature materials, with a focus on irradiated, i.e. radioactive, materials, by combining the use of a focused ion beam and a nano indentation device with multi scale modelling and simulations. 2) Use the methods developed and the results gained for existing materials for developing improved high temperature materials to be used in advanced and sustainable future energy power plants. 3) Become an attractive partner for industry by providing a wide knowledge base, flexibility in answering technical questions and skills to better understand damage in already existing plants and to support development of new products at the industrial scale

  18. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Ye, W.M., E-mail: ye_tju@tongji.edu.cn [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); United Research Center for Urban Environment and Sustainable Development, The Ministry of Education, Shanghai 200092 (China); Zhang, Y.W.; Chen, B.; Zheng, Z.J.; Chen, Y.G. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Cui, Y.J. [Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092 (China); Ecole des Ponts ParisTech, UR Navier/CERMES 77455 (France)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Heating induced volumetric change of GMZ01 bentonite depends on suction. Black-Right-Pointing-Pointer Suction has significant influence on compressibility. Black-Right-Pointing-Pointer Temperature has slight influence on compressibility. - Abstract: In this paper, an oedometer with suction and temperature control was developed. Mechanical compaction tests have been performed on the highly compacted GMZ01 bentonite, which has been recognized as potential buffer/backfill material for construction of Chinese high-level radioactive waste (HLW) geological repository, under conditions of suction ranging from 0 to 110 MPa, temperature from 20 to 80 Degree-Sign C and vertical pressure from 0.1 to 80 MPa. Based on the test results, suction and temperature effects on compressibility parameters are investigated. Results reveal that: (1) at high suctions, heating induced an expansion, while contraction is induced by heating at low suctions. The thermal expansion coefficient of GMZ01 bentonite measured is 1 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}; (2) with increasing suction, the elastic compressibility {kappa} and the plastic compressibility {lambda}(s) of the highly compacted GMZ01 bentonite decrease, while the pre-consolidation pressure increases markedly; (3) with increasing temperature, the elastic compressibility of compacted GMZ01 bentonite changes insignificantly, while the plastic compressibility {lambda}(s) slightly decreases and the yield surface tends to shrink.

  19. Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bettles, C.J. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton 3800, Vic. (Australia); CAST CRC, CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton 3169, Vic. (Australia)], E-mail: colleen.bettles@eng.monash.edu.au; Gibson, M.A. [CAST CRC, CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Clayton 3169, Vic. (Australia); Zhu, S.M. [CAST CRC, Department of Materials Engineering, Monash University, Clayton 3800, Vic. (Australia)

    2009-04-15

    AM-SC1 is a heat treatable magnesium alloy that has been specifically developed to achieve the elevated temperature strength and creep properties necessary for engine block applications. This paper describes the interrelationship between the microstructure and the mechanical properties of AM-SC1. The compressive and tensile strengths are relatively insensitive to temperature up to and including 450 K and the tensile yield behaviour deviates from a standard Hall-Petch relationship at grain sizes below 200 {mu}m. The microstructural features contributing to the creep resistance are both inter- and intra-granular in nature and are on length scales from nanometers to micrometers. The creep behaviour at 423 K and 450 K is diffusion controlled, with any contribution from the grain boundaries being negligible.

  20. The sectional size effect on the deformation behaviour of Inconel 718 at different temperatures

    Directory of Open Access Journals (Sweden)

    Zhao R.

    2015-01-01

    Full Text Available Inconel 718, as a multiphase super-alloy, is widely used in aeronautics and astronautics industries. In this field, a modified Hall-Petch equation was used to describe the grain size effect on the deformation behaviour of Inconel 718 sheet in uniaxial tension test. There is a piecewise linearity in the σ-d−1 curve: With the thickness t is a constant, the slope changes obviously after a critical t/d ratio, which increases with strain. Moreover, the influence on sectional curve caused by temperature is also an interesting issue. To address that, the sectionalized curve was fitted at different strains and temperatures, and the phenomena of grain size effect in piecewise curve at different temperatures were further explained. A surface model of Inconel 718 was proposed to explain the intrinsic mechanism of different slopes. The research provided an in-depth understanding of the size effect on the deformation behaviour of Inconel 718 at different hot working temperatures.

  1. Behaviour of a cement stone with chemical additions under short high temperature effects

    International Nuclear Information System (INIS)

    Falikman, V.R.; Veselova, V.I.; Ershov, V.Yu.; Muzalevskij, L.P.

    1987-01-01

    The purpose of the paper is to investigate the influence of different chemical additions used in NPP construction on thermal stability of a cement stone under short- and high-temperature effects. S-3 and dihydroxyphenyl utilized as peptizing agents for increase of placeability of concrete mixtures as well as sodium nitrite utilized as an antifreezing addition at conccreting at low temperatures are used as additions. The investigations were conducted in the 0-900 deg C temperature range divided into 4 ranges. Shrinkage and mass losses of specimens were determined. The obtained data show that specimens with additions are subjected to smaller shrinkage and mass losses as compared with specimens without additions. The highest positive effect is attained in portland cements with active mineral additions

  2. Influence of hydrogen and temperature on the mechanical behaviour in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Lamani, Emil; Jouinot, Patrice

    2003-01-01

    The mechanical behaviour of an austenitic stainless steel has been studied in this work, by means of two techniques: disk pressure embrittlement test (French standard NF E 29-723) and special biaxial tensile test. Specimens for both techniques are embedded disks, loaded by a continuously increasing gas pressure until rupture. Tests have been performed at various temperatures, between 18 o C and 655 o C, with loading speeds from 0.06 to 7 MPa/min. Their main results have been recorded as relationships between gas pressure and specimen deflection until its burst or cracking. Other observations (fracture, microstructure, etc.) are performed to assess the structural evolution with the temperature. The influence of hydrogen is evaluated by the comparison of the rupture parameters of specimens tested similarly under helium and hydrogen. The embrittlement index, E.I is determined as the ratio of the rupture pressures under helium and hydrogen taking into account also the effects of the loading speed and the gas purity. It has been noticed that the mechanical behaviour of the steel is strongly influenced by the apparition of a second phase in the austenitic structure: the deformation induced martensite, α, which presence is identified by microscopic observations and X-ray diffraction. At room temperature, the steel presents a relatively high sensitivity to the hydrogen embrittlement (2.20 ≤ E.I ≤ 2.40), while, with the temperature increasing, together with the reduction of the martensitic transformation, it was observed a rapid diminution of this sensitivity. Obtained results allow to define the performance of this steel for thin walls applications, as it is the case of expansions bellows in the chemical industry. (Original)

  3. Behaviour of high O/U fuel

    International Nuclear Information System (INIS)

    Davies, J.H.; Hoshi, E.V.; Zimmerman, D.L.

    2000-01-01

    Full text: The effect of increased fuel oxygen potential on fuel behaviour has been studied by fabricating and irradiating urania fuel with an average O/U ratio of 2.05. The fuel was fabricated by re-sintering standard urania pellets in a controlled oxygen potential environment and irradiated in a segmented rod bundle in a U.S. BWR. Preirradiation ceramographic characterization of the pellets revealed the well-known Widmanstaetten precipitation of U-409 platelets in the UO 2 matrix. The high O/U fuel pellets were clad in Zircaloy-2 and irradiated to over 20 GWd/MT. Ramp tests were performed in a test reactor and detailed postirradiation examinations of both ramped and nonramped rods have been performed. The cladding inner surface condition, fission gas release and swelling behavior of high O/U fuel have been characterized and compared with standard UO 2 pellets. Although fuel microstructural features in ramp-tested high O/U fuel showed evidence of higher fuel temperatures and/or enhanced transport processes, fission gas release to the fuel rod free space was less than for similarly tested standard UO 2 fuel. However, fuel swelling and cladding strains were significantly greater. In spite of high cladding strains, PCI crack propagation was inhibited in the high O/U fuel I rods. Evidence is presented that the crystallographically oriented etch features often noted in peripheral regions of high burnup fuels are not an indication of higher oxides of uranium. (author)

  4. High temperature experiments on a 4 tons UF6 container TENERIFE program

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  5. Influence of Temperature on AA6014 Alloy Tribological Behaviour in Stamping Operations

    International Nuclear Information System (INIS)

    Sgarabotto, F.; Ghiotti, A.; Bruschi, S.

    2011-01-01

    The evaluation of the tribological characteristics at the metal blank-tool interface during sheet metal working operations is usually carried out by accurately reproducing the mechanical and kinematical parameters occurring during the real process. The high rate production characterizing the industrial processes can induce significant temperature increase in both the blank and the dies during deformation. With respect to this aspect, among the other process conditions, an accurate tribological characterization should take into account the influence of the temperature variations at the blank and the dies. In the present paper, a novel apparatus to investigate the tribological conditions during sheet metal working processes is presented. In addition to the control of mechanical (i.e. normal pressure) and kinematic parameters (i.e. sliding speed, sliding length), the developed testing machine permits to reproduce the thermal fields and monitor the thermal conditions of the sheet and tool materials. Experiments were carried out on aluminium alloy sheets between 20 deg. and 200thinsp; deg. C by using both coated and uncoated dies. It is proved that the temperature influences the tribological behaviour, especially when coated dies are utilized.

  6. Investigations of anticipated transients without scram (ATWS) for the high temperature reactor

    International Nuclear Information System (INIS)

    Heckhoff, H.D.

    1981-10-01

    In this study anticipated transients without scram (ATWS) are investigated for the high temperature reactor, especially for the thorium high temperature reactor (THTR) 300 MWe as an example. It is shown that the two ATWS 'feedwater flow reduction from full power' and 'positive reactivity insertion of 1 mNile/s from 40 per cent power' are the most important transients for the THTR. The additional load caused by the ATWS can be reduced sufficiently by some small modifications of the afterheat removal system. Supplementary precautions are not necessary. In the last part of this study some possibilities to improve the behaviour of the power plant are shown with regard to high temperature reactors of the future, the partial scram as well as some modifications of heating and cooling of the steam generator. (orig.) [de

  7. Experimental on moisture migration and pore pressure formation of concrete members subjected to high temperature

    International Nuclear Information System (INIS)

    Nagao, Kakuhiro; Nakane, Sunao

    1993-01-01

    The experimental studies concerning temperature, moisture migration, and pore pressure of mass concrete mock-up specimens heated up to high temperature at 110degC to 600degC, were performed, so as to correctly estimate the moisture migration behaviour of concrete members subjected to high temperature, which is considered significantly influenced on physical properties of concrete. As a results, it is confirmed that the moisture migration behavior of concrete members can be explained by temperature and pore pressure, and indicate the characteristics both sealed condition (dissipation of moisture is prevented) and unsealed condition (dissipation of moisture occur). (author)

  8. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  9. Creep and low cycles fatigue behaviour of inconel 617 and alloy 800H in the temperature range 1073-1223

    International Nuclear Information System (INIS)

    Yun, H.M.

    1984-01-01

    The creep rupture properties of high temperature alloys are being determined as part of the materials programme for the development of the high temperature, gas-cooled reactor (HTGR) as a source of nuclear process heat, especially for the gasification of lignite and coal. INCOLOY 800H AND INCONEL 617 have been tested in the temperature range from 1073 K to 1223 K in air as well as in helium with HTGR specific impurities. The static and dynamic creep behaviour of INCONEL 617 have been determined in constant load creep tests, relaxation tests and stress reduction tests. The results have been interpreted using the internal stress on the applied stress and test temperature was determined. In a few experiments the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. (Author)

  10. High temperature tribological performance of CrAlYN/CrN nanoscale multilayer coatings deposited on ?-TiAl

    OpenAIRE

    Walker, J.C.; Ross, I.M.; Reinhard, C.; Rainforth, W.M.; Hovsepian, P.Eh.

    2009-01-01

    This paper details the effect of temperature on the frictional behaviour of highly novel CrAlYN/CrN multilayer coatings, deposited by High Power Impulse Magnetron Sputtering (HIPIMS) on a Titanium Aluminide alloy used as fan blade material in the aerospace and a turbo-charger wheel in the automotive industries. The work was the first to discover the high temperature oxide 'glaze' layer formation which occurred on CrN multilayer-type coatings at higher temperatures and has received significant...

  11. Advances on study of temperature effects on hydro-mechanical behaviour of densely compacted bentonite

    International Nuclear Information System (INIS)

    Ye Weimin; Wan Min; Chen Bao; Liu Yuemiao; Cui Yujun

    2008-01-01

    During the operation of a multiple-barrier geological repository, bentonite that works as a buffer/fill material of an artificial barrier will suffer complex coupling effects of thermal (T), hydrological (H), mechanical (M) process, which comes from heat of the nuclear waste radiation, mechanical stress from parent rock mass and seepage action of groundwater. The scientific results show that temperature has influence on the water retention, saturated permeability, swelling pressure, swelling strain and thermal strain of compacted bentonite. As a whole, the research about GMZ (Gao Miaozi) bentonite, which may potentially be chose as Chinese buffer/backfill material for high radioactive nuclear waste disposal, has a long way to go compare to developed contraries. Based on comprehensive laboratory tests and advanced theoretical framework, both of the study on behaviour of compacted GMZ bentonite under HTM coupling conditions, and the establishment of a constitutive relation for prediction of behaviour of compacted bentonite under multi-field coupling conditions are important in theoretic and practical way. (authors)

  12. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  13. Risk-taking behaviour of Cape Peninsula high-school students. Part ...

    African Journals Online (AJOL)

    In this study, risk-taking behaviour of Cape Peninsula high-school students was investigated. Suicidal behaviour, cigarette smoking, alcohol consumption, drug use, road-related behaviour, violent behaviour and sexual behaviour were included. This article, the first in a series, describes the rationale and methodology of the ...

  14. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  15. Does magnesium compromise the high temperature process ability of novel biodegradable and bioresorbables PLLA/Mg composites?

    International Nuclear Information System (INIS)

    Cifuentes, S. C.; Benavemente, R.; Gonzalez-Carrasco, J. L.

    2014-01-01

    This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate. (Author)

  16. Does magnesium compromise the high temperature process ability of novel biodegradable and bioresorbables PLLA/Mg composites?

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, S. C.; Benavemente, R.; Gonzalez-Carrasco, J. L.

    2014-10-01

    This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate. (Author)

  17. Behaviour of coupling constants at high temperature in supersymmetric theories

    International Nuclear Information System (INIS)

    Swee Ping Chia.

    1986-04-01

    An analysis is presented of the temperature dependence of the coupling constants using the improved one-loop approximation in the Wess-Zumino model and the supersymmetric O(N) model. It is found that all the coupling constants, both bosonic (Φ 4 type) and Yukawa, approach constant nonzero values as T→∞. The asymptotic values of the bosonic couplings are slightly smaller than the corresponding zero-temperature values, and those of the Yukawa couplings are the same as the zero-temperature values. (author)

  18. Iron-free moving coil high temperature displacement transducer

    Energy Technology Data Exchange (ETDEWEB)

    Grindrod, A

    1976-07-01

    A unique, iron free, moving coil linear displacement transducer system is described, which is suitable for continuously monitoring linear movements, at varying temperatures up to 750/sup 0/C, in operational nuclear reactors. Although this device has been primarily developed for Advanced Gas Cooled Reactor Systems, it also has uses where long term measurements on conventional high temperature plant are required. Furthermore it could be particularly useful in material creep laboratories where precise linear changes in specimen length need to be monitored at elevated temperatures, over several years. Since individual transducer installations demand specific mounting arrangements to suit particular component geometries, evaluations have been made only on standard operational modules or capsules which are designed for containment in a range of housing or fixtures to suit particular applications. The behaviour of these devices has been studied at temperatures up to 750/sup 0/C for periods of over 10,000 h. An evaluation is also included of a commercially designed sensor assembly employing the same principle, for monitoring the boiler-shield wall movement at Hinkley Point 'B' AGR Station.

  19. Modelling of behaviour of metals at high strain rates

    OpenAIRE

    Panov, Vili

    2006-01-01

    The aim of the work presented in this thesis was to produce the improvement of the existing simulation tools used for the analysis of materials and structures, which are dynamically loaded and subjected to the different levels of temperatures and strain rates. The main objective of this work was development of tools for modelling of strain rate and temperature dependant behaviour of aluminium alloys, typical for aerospace structures with pronounced orthotropic properties, and their implementa...

  20. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  1. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    Science.gov (United States)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  2. InAlN high electron mobility transistor Ti/Al/Ni/Au Ohmic contact optimisation assisted by in-situ high temperature transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, M. D.; Parbrook, P. J.; O'Mahony, D.; Conroy, M.; Schmidt, M.

    2015-01-01

    This paper correlates the micro-structural and electrical characteristics associated with annealing of metallic multi-layers typically used in the formation of Ohmic contacts to InAlN high electron mobility transistors. The multi-layers comprised Ti/Al/Ni/Au and were annealed via rapid thermal processing at temperatures up to 925 °C with electrical current-voltage analysis establishing the onset of Ohmic (linear IV) behaviour at 750–800 °C. In-situ temperature dependent transmission electron microscopy established that metallic diffusion and inter-mixing were initiated near a temperature of 500 °C. Around 800 °C, inter-diffusion of the metal and semiconductor (nitride) was observed, correlating with the onset of Ohmic electrical behaviour. The sheet resistance associated with the InAlN/AlN/GaN interface is highly sensitive to the anneal temperature, with the range depending on the Ti layer thickness. The relationship between contact resistivity and measurement temperature follow that predicted by thermionic field emission for contacts annealed below 850 °C, but deviated above this due to excessive metal-semiconductor inter-diffusion

  3. Preventive effect on spalling of UFC using jute fiber at high temperature

    Directory of Open Access Journals (Sweden)

    Ozawa M.

    2013-09-01

    Full Text Available In this study, we examined the relationship between spalling behaviour and spalling ratio of UFC with three kinds of short fibers (jute, polypropylene, water-soluble polyvinyl alcohol at high temperature. The heating temperatures were 400 °C and 600 °C. Although the specimen with jute fiber dosage of 0.19% by volume was occurred explosive spalling, the damage of specimen was slightly small. It appears that the addition of jute fiber to UFC is effective for preventing spalling.

  4. Molecular dynamics simulations of spinels: LiMn2O4 and Li4Mn5O12 at high temperatures

    International Nuclear Information System (INIS)

    Ledwaba, R S; Matshaba, M G; Ngoepe, P E

    2015-01-01

    Energy storage technologies are critical in addressing the global challenge of clean sustainable energy. Spinel lithium manganates have attracted attention due to their electrochemical properties and also as promising cathode materials for lithium-ion batteries. The current study focused on the effects of high temperatures on the materials, in order to understand the sustainability in cases where the battery heats up to high temperature and analysis of lithium diffusion aids in terms of intercalation host compatibility. It is also essential to understand the high temperature behaviour and lithium ion host capability of these materials in order to perform the armorphization and recrystalization of spinel nano-architectures. Molecular dynamics simulations carried out to predict high temperature behaviour of the spinel systems. The NVE ensemble was employed, in the range 300 - 3000K. The melting temperature, lithium-ion diffusion and structural behaviour were monitored in both supercell systems. LiMn 2 O 4 indicated a diffusion rate that increased rapidly above 1500K, just before melting (∼1700K) and reached its maximum diffusion at 2.756 × 10 -7 cm 2 s -1 before it decreased. Li 4 Mn 5 O 12 indicated an exponential increase above 700K reaching 8.303 × 10 −7 cm 2 s −1 at 2000K and allowing lithium intercalation even above its melting point of around 1300K. This indicated better structural stability of Li 4 Mn 5 O 12 and capability to host lithium ions at very high temperatures (up to 3000 K) compared to LiMn 2 O 4 . (paper)

  5. Several aspects of the temperature history in relation to the cyclic behaviour of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Gentet, D.; Feaugas, X.; Risbet, M.; Lejeail, Y.; Pilvin, P.

    2011-01-01

    Highlights: · Dynamic strain ageing consequences on the temperature history memorization effect. · Temperature is mainly focused at a temperature range equal to 293-923 K. · Two peaks are observed on the curve describing saturation stress amplitude. · Cyclic behaviour is a function of the temperature range explored. · Cyclic temperature history is mainly associated with chromium segregation. - Abstract: A consistent mechanical and transmission electron microscopy (TEM) database is proposed to discuss the consequences of dynamic strain ageing (DSA) on the temperature history memory effect observed under the cyclic loading of a 316LN austenitic stainless steel. Two DSA mechanisms have been identified in relation with two temperature regimes: the first of which may be related to the Suzuki effect (in the low temperature regime) and the second is linked to solute segregation at dislocation node (in the high temperature regime). The temperature history memory effect is a function of the temperature range and can be explained in terms of chromium segregation and the potentiality to obtain 'stability' in dipolar dislocation structures. Both aspects are discussed based on the measurement of internal stress changes.

  6. High-temperature current conduction through three kinds of Schottky diodes

    International Nuclear Information System (INIS)

    Fei, Li; Xiao-Ling, Zhang; Yi, Duan; Xue-Song, Xie; Chang-Zhi, Lü

    2009-01-01

    Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I–V–T measurements ranging from 300 to 523 K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelling and so on. The most remarkable finding in the present paper is that these three kinds of Schottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Schottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AlGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. High temperature damage of a re-sulfurized stainless steel

    International Nuclear Information System (INIS)

    Tinet, Hougo

    2002-01-01

    After having evoked the industrial problem raised by high-temperature damage in the 303 stainless steel, and outlined that the experimental study of high-temperature damage implies the study of the sane (or non damaged) material, the study of micro-voids germination, growth and coalescence, and the study of the material failure process, the author of this research thesis reports a bibliographical study on the behaviour of sane re-sulfurized stainless steel and different damage models. He presents experimental techniques (thermal-mechanical compression and tensile tests, image analysis in optical microscopy) which have been used in this work, and describes and comments results obtained on axisymmetric samples for micro-void germination, growth and coalescence in case of a damage under low and medium stress triaxiality. The last part addresses the study of the damage of strongly notched samples (stress triaxialities close to those existing at the crack bottom) [fr

  8. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  9. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    International Nuclear Information System (INIS)

    Shi, H.J.; Niu, L.S.; Korn, C.; Pluvinage, G.

    2000-01-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data

  10. Convective behaviour in vapour-gas-aerosol mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1986-01-01

    Unusual convective behaviour can occur in mixtures of gases and heavy vapour, including stabilization of mixtures hot at the base and 'upside-down' convection in mixtures hot at the top. Previous work produced a criterion for this behaviour which ignored the necessary presence of an aerosol. Modification arising from aerosol condensation is derived and is shown to involve the Lewis and condensation numbers of the mixture, as well as a quantity involving the temperature drop across a boundary layer. It becomes negligible at high temperatures, but can crucially affect the temperature for the onset of unusual behaviour. Aerosol formation produces an asymmetry between the convective forces in boundary layers in which the mixture is being heated and cooled, respectively, for example at the base and roof of a cavity. The convective behaviour discussed could occur in situations relevant to nuclear safety. (author)

  11. High temperature mass spectrometry for thermodynamic study of radioactive materials

    International Nuclear Information System (INIS)

    Pattoret, Andre; Philippot, Joseph; Pesme, Olivier.

    1983-01-01

    Thermodynamic properties and evaporation kinetics are essential data to evaluate the nuclear fuel behaviour under accidental conditions. High temperature mass spectrometry appears as a valuable method to set up a such assessment. However, because of size, complexity and radioactivity of the irradiated samples, important improvements of the classical method are required. The device built in CEN/FAR to overcome these problems is described; performances and possible applications out of the nuclear safety field are presented [fr

  12. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Balamurugan, G.M.; Duraiselvam, Muthukannan; Anandakrishnan, V.

    2012-01-01

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  13. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, H., E-mail: huwdawson@gmail.com [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Serrano, M.; Hernandez, R. [Structural Materials Division, Technology Department, CIEMAT, Avda de la Complutense 40, 28040 Madrid (Spain); Cater, S. [Friction and Forge Processes Department, Joining Technologies Group, TWI Technology Centre (Yorkshire), Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Jimenez-Melero, E. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-05-02

    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a range of temperatures, from room temperature up to 750 °C. The mechanical properties of the welds were investigated via tensile testing at room temperature and at 500 °C, together with micro-hardness testing. The welds exhibited similar strength and ductility to the base material at both testing temperatures as welding caused a partial loss of particle strengthening, alongside an increase in grain boundary strengthening due to a greatly refined grain size in the stir zones. The micro-hardness data revealed a trend of increasing hardness with increasing tool traverse speed or decreasing rotation speed. This was attributed to the smaller grain size and lower nanoparticle number density in the welds created with these parameters. At 500 °C, the yield stress and ultimate tensile stress of the base material and the welds decreased, due to a progressive reduction in both the Orowan-type particle strengthening and the grain boundary strengthening.

  14. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  15. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  16. Constitutive behaviour of an as-cast AA7050 alloy in the sub-solidus temperature range

    International Nuclear Information System (INIS)

    Subroto, T A S; Miroux, A G; Eskin, D G; Katgerman, L

    2012-01-01

    Aluminum alloy 7050 is of interest for aerospace industries due to its superior mechanical properties. However, its inherent solidification behaviour may augment the accumulation of residual stresses due to uneven cooling conditions upon direct-chill (DC) casting. This can increase the propensity of cold cracking (CC), which is a potentially catastrophic phenomenon in casting ingots. To predict the outcome of the aluminum casting process, ALSIM software is utilised. This software has the capability to predict CC susceptibility during the casting process. However, at the moment, ALSIM lacks the information regarding material constitutive behaviour in the sub-solidus temperature range, which is considered important for studying CC phenomenon. At the moment, ALSIM only has a partial constitutive database for AA7050 and misses data, especially in the vicinity of non-equilibrium solidus (NES) point. The present work presents measurements of tensile constitutive parameters in the temperature range between 400 °C and NES, which is for this alloy defined as 465 °C. The mechanical behaviour is tested in a Gleeble 3800 thermo-mechanical simulator. Constitutive parameters such as stress-strain curves, strain-rate sensitivity and ductility of the alloy have been measured at different test temperatures. With these constitutive data, we expect to improve the accuracy of ALSIM simulations in terms of CC prediction, and gain more insight into the evolution of mechanical properties of AA7050 in the temperature nearby the NES.

  17. Alcohol consumption and high risk sexual behaviour among female ...

    African Journals Online (AJOL)

    Alcohol consumption has been associated with high risk sexual behaviour among key populations such as female sex workers. We explored the drivers of alcohol consumption and its relationship to high risk sexual behaviour. Participants were drawn from a cohort of 1 027 women selected from 'hot spots' in the suburbs of ...

  18. Influence of the temperature on materials electric behaviour: Understanding and students’ learning difficulties

    Directory of Open Access Journals (Sweden)

    Antonio García Carmona

    2006-03-01

    Full Text Available In this article, we defend that in the teaching/learning of the electricity, its contents must be associa ted with contents concerning the structure and behaviour of the matter. Thus, it is possible to understand some electricity topics as the influence of the temperature on electric behaviour of materials. In this sense, we propose a conceptual framework for its teaching, coherent with the Spanish Physics and Chemistry curriculum of Secondary Education. Likewise, we show the results of a research carried out with 60 pupils (age 14-15, about theirs understanding levels and theirs learning difficulties regarding considered topic.

  19. An assessment of high risk sexual behaviour and HIV transmission ...

    African Journals Online (AJOL)

    An assessment of high risk sexual behaviour and HIV transmission among migrant oil workers in the Niger Delta area of Nigeria. ... questionnaires to evaluate key high – risk sexual behavioral parameters such as multiplicity of sexual partners, bisexuality (closet homosexuality), high grade sexual behaviour and lesbianism.

  20. Direct effects of incubation temperature on morphology, thermoregulatory behaviour and locomotor performance in jacky dragons (Amphibolurus muricatus).

    Science.gov (United States)

    Esquerré, Damien; Keogh, J Scott; Schwanz, Lisa E

    2014-07-01

    Incubation temperature is one of the most studied factors driving phenotypic plasticity in oviparous reptiles. We examined how incubation temperature influenced hatchling morphology, thermal preference and temperature-dependent running speed in the small Australian agamid lizard Amphibolurus muricatus. Hatchlings incubated at 32 °C grew more slowly than those incubated at 25 and 28 °C during their first month after hatching, and tended to be smaller at one month. These differences were no longer significant by three months of age due to selective mortality of the smallest hatchlings. The cooler incubation treatments (25 °C and 28 °C) produced lizards that had deeper and wider heads. Hatchlings from 28 °C had cooler and more stable temperature preferences, and also had lower body temperatures during a 2-h thermoregulatory behaviour trial. Locomotor performance was enhanced at higher body temperatures, but incubation temperature had no measurable effect either independently or in interaction with body temperature. Our study demonstrates that incubation temperature has direct effects on morphology and thermoregulatory behaviour that appears to be independent of any size-dependent effects. We postulate a mechanistic link between these two effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of temperature on oxidation behaviour of ZE41 magnesium alloy

    International Nuclear Information System (INIS)

    Lopez, M.D.; Munez, C.J.; Carboneras, M.; Rodrigo, P.; Escalera, M.D.; Otero, E.

    2010-01-01

    The influence of temperature on the oxidation behaviour of commercial ZE41 magnesium alloy has been studied. Thermogravimetric tests were carried out to determine the oxidation kinetics in the 350-500 o C range. Morphology and growth of the oxidation films were analysed by Scanning Electronic Microscopy (SEM), Energy Dispersive X-Ray Spectrometry (EDS) and X-Ray Diffraction (XRD). It was found that the oxidation kinetics initially follow a parabolic law, following a linear law for higher exposure times. Results also showed that the protective nature of the oxide layer depends on the oxidation temperature. At temperatures in the range of 350-450 o C the ZE41 alloy is covered by a protective oxide layer, very thin and compact, whereas the oxide layer formed at 500 o C exhibits a non-protective nature, showing an 'oxide sponges' morphology.

  2. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  3. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Farrokhzad, M A; Khan, T I

    2014-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al 2 O3 and TiO 2 ) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO 2 , 10% O 2 and 75% N 2 . This research investigates the effects of CO 2 and O 2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO 2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO 2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO 2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  4. Plastic behaviour of Zircaloy-4 in the temperature range 77-1000 K

    International Nuclear Information System (INIS)

    Derep, J.L.; Ibrahim, S.; Rouby, D.; Fantozzi, G.; Gobin, P.

    1979-01-01

    Tensile tests were carried out on Zircaloy-4 over a temperature range 77-1000 K. So, we have determined the flow stress variations as a function of temperature and strain rate. Two thermally activated zones were observed between about 77 and 600 K, a plateau stress between 600 and 700 K and an other thermally activated zone above 700 K. The various mechanisms which can be responsible for the thermally activated and athermal zones are discussed in the light of experimental results. The mechanical behaviour of Zircaloy-4 appears similar to the zirconium-oxygen alloys one. (orig.) [de

  5. Symmetry non-restoration at high temperature and supersymmetry

    CERN Document Server

    Dvali, Gia; Dvali, Gia

    1996-01-01

    We analyse the high temperature behaviour of softly broken supersymmetric theories taking into account the role played by effective non-renormalizable terms generated by the decoupling of superheavy degrees of freedom or the Planck scale physics. It turns out that discrete or continuous symmetries, spontaneously broken at intermediate scales, may never be restored, at least up to temperatures of the cutoff scale. There are a few interesting differences from the usual non-restoration in non-supersymmetric theories case where one needs at least two Higgs fields and non-restoration takes place for a range of parameters only. We show that with non-renormalizable interactions taken into account the non-restoration can occur for any nonzero range of parameters even for a single Higgs field. We show that such theories in general solve the cosmological domain wall problem, since the thermal production of the dangerous domain walls is enormously suppressed.

  6. High-temperature strength of AISI 316 steel

    International Nuclear Information System (INIS)

    Antunes, A.E.B.; Monteiro, S.N.

    1975-01-01

    The mechanical properties, especially elastic limit and strain hardening of AISI-316 austenitic stainless steel were investigated within the temperature range 150-800 0 C for two strain rates. The results showed anomalous behaviour between 200 and 650 0 C, over which range there was an increase in maximum strenght and hardening, with a tendency to show peaks. These apparentley three in number, may be connected with the effects of interaction between point defects and dislocations leading to dinamic aging phenomena. The mechanisms responsible for this anomalous behaviour produce a negative dependence on strain rate [pt

  7. Microstructural control and high temperature mechanical property of ferritic/martensitic steels for nuclear reactor application

    International Nuclear Information System (INIS)

    Adetunji, G.J.

    1991-04-01

    The materials under study are 9-12% Cr ferritic/martensitic steels, alternative candidate materials for application in core components of nuclear power reactors. This work involves (1) Investigation of high temperature fracture mechanism during slow tensile and limited creep testing at 600 o C (2) Extensive study of solute element segregation both theoretically and experimentally (3) Investigation of effects by thermal ageing and irradiation on microstructural developments in relation to high temperature mechanical behaviour. From (1) the results obtained indicate that the important microstructural characteristics controlling the fracture of 9-12% Cr ferritic/martensitic steels at high temperature are (a) solute segregation to inclusion-matrix interfaces (b) hardness of the martensitic matrix and (c) carbide particle size distribution. From (2) the results indicate a strong concentration gradient of silicon and molybdenum near lath packet boundaries for certain quenching rates from the austenitizing temperature. From (3) high temperature tensile data were obtained for irradiated samples with thermally aged ones as control. (author)

  8. The Differentiation of Adaptive Behaviours: Evidence from High and Low Performers

    Science.gov (United States)

    Kane, Harrison; Oakland, Thomas David

    2015-01-01

    Background: Professionals who use measures of adaptive behaviour when working with special populations may assume that adaptive behaviour is a consistent and linear construct at various ability levels and thus believe the construct of adaptive behaviour is the same for high and low performers. That is, highly adaptive people simply are assumed to…

  9. Two decades on[Research into high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-04-15

    Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, T{sub c}, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a T{sub c} of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals

  10. High in situ repeatability of behaviour indicates animal personality in the beadlet anemone Actinia equina (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Mark Briffa

    Full Text Available 'Animal personality' means that individuals differ from one another in either single behaviours or suites of related behaviours in a way that is consistent over time. It is usually assumed that such consistent individual differences in behaviour are driven by variation in how individuals respond to information about their environment, rather than by differences in external factors such as variation in microhabitat. Since behavioural variation is ubiquitous in nature we might expect 'animal personality' to be present in diverse taxa, including animals with relatively simple nervous systems. We investigated in situ startle responses in a sea anemone, Actinia equina, to determine whether personalities might be present in this example of an animal with a simple nervous system. We found very high levels of repeatability among individuals that were re-identified in the same locations over a three week sampling period. In a subset of the data, where we used tide-pool temperature measurements to control for a key element of variation in microhabitat, these high levels of repeatability remained. Although a range of other consistent differences in micro-habitat features could have contributed to consistent differences between the behaviour of individuals, these data suggest the presence of animal personality in A. equina. Rather than being restricted to certain groups, personality may be a general feature of animals and may be particularly pronounced in species with simple nervous systems.

  11. Corrosion of metallic materials by uranium hexafluoride at high temperatures (1963)

    International Nuclear Information System (INIS)

    Langlois, G.

    1963-01-01

    The corrosion of the following metals or alloys by UF 6 : nickel, monel, Inconel, gold, platinum, stainless steel, is studied in the temperature range from 300 to 1000 deg. C. The test method, designed to avoid heating the apparatus containing the corrosive fluid to a high temperature, consists in using threadlike samples heated by the Joule effect, the rest of the apparatus being maintained close to room temperature. This technique makes it possible also to determine continuously the penetration of the corrosion by measuring the electrical resistance of the sample with a double Thomson bridge. A series of rapid comparison tests shows that stainless steel, precious metals and Inconel are attacked far too rapidly to be used above 500 deg. C; only monel and especially nickel appear capable of resisting at high temperatures. The detailed examination of the behaviour of nickel shows that the metallic fluoride is volatilized and that this influences the corrosion rate. It shows also the existence of a temperature zone situated between 550 and 700 deg. C in which occurs A strong intergranular corrosion the cause of which appears to be the presence of impurities in the metal. (author) [fr

  12. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  13. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  14. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  15. High temperature cyclic oxidation and hot corrosion behaviours of ...

    Indian Academy of Sciences (India)

    Administrator

    eutectic reaction below 600°C. When the temperature ... blades, consequently corrosion rate rapidly increases due ... the corrosion run. ... Figure 1. Surface macrographs of superalloys subjected to hot corrosion and oxidation .... show the oxide scales of three different chemical compo- .... Li J and Wahi R P 1995 Acta Metall.

  16. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Specialists' meeting on high temperature metallic materials for application in gas-cooled reactors

    International Nuclear Information System (INIS)

    At the meeting overviews of current programmes for the development of high temperature materials in Japan, F.R. Germany and the United States of America were presented. Some papers were presented dealing with various aspects of microstructural studies, surface reactions and the changes of microstructure and dimensions due mainly to the associated interfacial material transports, protective surface coatings for HTGR and AGR applications. Other topics presented were mechanical properties of materials and also the influence of materials' properties data on design at temperatures in the creep region where time dependent behaviour must be considered

  18. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    Science.gov (United States)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our results are in favour of a steady exhumation of the GHC rocks since Oligocene that was contributed by partial melting. Key words: U-Th-Pb geochronology, Monazite, Recrystallization, Pelitic granulite, Himalaya

  19. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Science.gov (United States)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  20. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  1. CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Lukas Blesak

    2016-12-01

    Full Text Available Research on structural load-bearing systems exposed to elevated temperatures is an active topic in civil engineering. Carrying out a full-size experiment of a specimen exposed to fire is a challenging task considering not only the preparation labour but also the necessary costs. Therefore, such experiments are simulated using various software and computational models in order to predict the structural behaviour as exactly as possible. In this paper such a procedure, focusing on software simulation, is described in detail. The proposed constitutive model is based on the stress-strain curve and allows predicting SFRC material behaviour in bending at ambient and elevated temperature. SFRC material is represented by the initial linear behaviour, an instantaneous drop of stress after the initial crack occurs and its consequent specific ductility, which influences the overall modelled specimen behaviour under subjected loading. The model is calibrated with ATENA FEM software using experimental results.

  2. Effect of gender on physiological and behavioural responses of Gammarus roeseli (Crustacea Amphipoda) to salinity and temperature

    International Nuclear Information System (INIS)

    Sornom, Pascal; Felten, Vincent; Medoc, Vincent; Sroda, Sophie; Rousselle, Philippe; Beisel, Jean-Nicolas

    2010-01-01

    The importance of potentially interacting factors in organisms responses to a stress are often ignored or underestimated in ecotoxicology. In laboratory experiments we investigated how gender, temperature and age influence the behaviour and the physiology of the freshwater amphipod Gammarus roeseli under salinity stress. Our results revealed a significant higher sensitivity of females in survival, ventilation and ionoregulation whereas no inter-age differences were reported. Water temperature also exerted a significant effect in survival and ventilation of G. roeseli. Some of those factors appeared to interact significantly. This study provides evidence that gender can affect organisms responses to a stressor and consequently has to be considered while assessing a stress impact. We discussed the potential relationships between biological and behavioural responses. - Influence of gender, age and temperature in a gammarid responses to a stress.

  3. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  4. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    hysteresis loop at 300 K temperature, which reflects its ferromagnetic behaviour. We confirmed ... obtained by doping magnetic transition elements such as. Mn, Fe and .... factor to account for particle shapes, λ = 1⋅5406 Å the wavelength of ...

  5. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Directory of Open Access Journals (Sweden)

    Chrysochoos A.

    2010-06-01

    Full Text Available Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This

  6. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  7. A novel method for delivering ramped cooling reveals rat behaviours at innocuous and noxious temperatures: A comparative study of human psychophysics and rat behaviour.

    Science.gov (United States)

    Dunham, James P; Hulse, Richard P; Donaldson, Lucy F

    2015-07-15

    Thermal sensory testing in rodents informs human pain research. There are important differences in the methodology for delivering thermal stimuli to humans and rodents. This is particularly true in cold pain research. These differences confound extrapolation and de-value nociceptive tests in rodents. We investigated cooling-induced behaviours in rats and psychophysical thresholds in humans using ramped cooling stimulation protocols. A Peltier device mounted upon force transducers simultaneously applied a ramped cooling stimulus whilst measuring contact with rat hind paw or human finger pad. Rat withdrawals and human detection, discomfort and pain thresholds were measured. Ramped cooling of a rat hind paw revealed two distinct responses: Brief paw removal followed by paw replacement, usually with more weight borne than prior to the removal (temperature inter-quartile range: 19.1 °C to 2.8 °C). Full withdrawal was evoked at colder temperatures (inter quartile range: -11.3 °C to -11.8 °C). The profile of human cool detection threshold and cold pain threshold were remarkably similar to that of the rat withdrawals behaviours. Previous rat cold evoked behaviours utilise static temperature stimuli. By utilising ramped cold stimuli this novel methodology better reflects thermal testing in patients. Brief paw removal in the rat is driven by non-nociceptive afferents, as is the perception of cooling in humans. This is in contrast to the nociceptor-driven withdrawal from colder temperatures. These findings have important implications for the interpretation of data generated in older cold pain models and consequently our understanding of cold perception and pain. Copyright © 2015. Published by Elsevier B.V.

  8. High temperature oxidation behaviour of nanostructured cermet coatings in amixed CO/sub 2/ - O/sub 2/ environment

    International Nuclear Information System (INIS)

    Farrokhzad, M. A.; Khan, T. I.

    2013-01-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (alpha-Al /sub 2/O/sub 3/ and TiO/sub 2/) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500 degree C, 600 degree C and 700 degree C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15 percentage CO/sub 2/, 10 percentage O/sub 2/ and 75 percentage N/sub 2/. This research investigates the effects of CO/sub 2/ and O/sub 2/ partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO/sub 2/ at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO/sub 2/ in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO/sub 2/ acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO/sub 2/ particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Nu i-Tau i compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings. (author)

  9. Microstructure and transformation behaviour of Ni75−XTiXPd25 high temperature shape memory alloys

    International Nuclear Information System (INIS)

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2013-01-01

    Highlights: ► Partitioning of elements during solidification of cast NiTiPd results in cored microstructure. ► Homogenized alloys consists of NiTiPd matrix with Ti2(Ni,Pd) precipitates. ► Transformation temperatures of NiTiPd alloy is strongly dependent on Ti content. ► Transformation hysteresis was found to be relatively low, in the range 7–12 °C. ► Lower fraction of second phases and twinless/small twin ratio martensite led to low hysteresis. -- Abstract: The effect of composition on microstructure, transformation behaviour and thermal stability of cast and homogenized Ni 75−X Ti X Pd 25 alloys (X = 49.7, 50.0 and 50.3 at.%) were studied. Results showed significant partitioning of the alloying elements during solidification, resulting in cored microstructure in the cast alloys. The interdendritic regions were depleted in Pd and richer in Ni compared to dendritic regions. The interdendritic regions also showed presence of a thread-like Ti-rich second phase. The microstructure of the homogenized alloys consisted of NiTiPd matrix phase interspersed with Ti 2 (Ni,Pd) second phase precipitates. The precipitate phase was found to be rich in Ni and depleted in Pd. EPMA analysis showed that significant redistribution of Ni concentration in the matrix and the precipitate phase takes place during homogenization. X-ray diffraction study confirmed the matrix phase at room temperature to be of orthorhombic B19 structure. Study showed that the transformation temperatures of the alloys were strongly dependent on Ti content. The martensite finish temperature (M f ) of 157 °C for stoichiometric-Ti alloy increased to 179 °C and decreased to 105 °C for Ti-rich and Ti-lean alloys, respectively. Also, the alloys showed relatively low transformation hysteresis in the range 7–12 °C. TEM micrographs showed the presence of twinless/small twin ratio martensite which minimizes the interfacial energy and hence lower hysteresis. The transformation stability upon stress

  10. Theoretical and experimental research of natural convection in the core of the high temperature pebble bed reactor

    International Nuclear Information System (INIS)

    Schuerenkraemer, M.

    1984-04-01

    The physical model of the developed THERMIX-2D-code for computing thermohydraulic behaviour of the core of high temperature pebble bed reactors is verified by experiments with natural convection flow. Such fluid flow behaviour can be of very high importance for the real reactor in the case of natural heat removal decay. The experiments are performed in a special set up testing-stand with pressures up to 30 bars and temperatures up to 300 0 C by using air and helium as fluid. In comparison with the experimental data the numerical results show that a good and useful simulation is given by the program. Pure natural convection flow in packed pebble beds is calculated with a very high degree of reliability. The investigation of flow stability demonstrate that radial-symmetric relations are not given temporarily when national convection is overlayed by forced convection flow. In the discussion it is explained when and to what extent the program leds to useful results in such situations. The test of the effective heat conductivity lambdasub(eff) results in an improvement of the lambdasub(eff)-data used so far for temperatures below 1300 0 C. (orig.) [de

  11. The Relationship between Parental Control and High-Risk Internet Behaviours in Adolescence

    Directory of Open Access Journals (Sweden)

    David Álvarez-García

    2018-06-01

    Full Text Available One of the main predictors of being a victim of cyber-aggression is engaging in high-risk behaviours on the internet. The main objective of this research is to analyse the relationship between two types of parental control (restriction and supervision and engagement in high-risk internet behaviours during adolescence. To that end, and as a secondary objective, we designed and validated the High-risk Internet Behaviours Questionnaire for adolescents, used in this study. We analysed the responses of 946 adolescents aged between 12 and 18 to the High-risk Internet Behaviours Questionnaire and the Questionnaire on Parental Control of Internet Use in Adolescence. The results show that the questionnaire has appropriate metrics of reliability and validity, and show the existence of a statistically significant negative relationship, albeit small, between supervision and engaging in high-risk internet behaviours. We discuss the practical implications of these results.

  12. Polarization behaviour of polyvinylidenefluoride-polysulfone (PVDF: PSF) blends under high field and high temperature condition

    Science.gov (United States)

    Shrivas, Sandhya; Patel, Swarnim; Dubey, R. K.; Keller, J. M.

    2018-05-01

    Thermally stimulated discharge currents of PVDF: PSF blend samples in ratio 80:20 and 95:05 prepared by the solution cast technique have been studied as a function of polarizing field and polarizing temperature, the temperature corresponding to a peak in TSDC is found to be independent of polarizing field but dependent on the polarizing temperature.

  13. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  14. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    Energy Technology Data Exchange (ETDEWEB)

    Navia, Paloma; Troncoso, Jacobo [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis, E-mail: romani@uvigo.e [Departamento de Fisica Aplicada, Facultad de Ciencias de Ourense, Campus As Lagoas, 32004 Ourense (Spain)

    2010-01-15

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  15. Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids

    International Nuclear Information System (INIS)

    Navia, Paloma; Troncoso, Jacobo; Romani, Luis

    2010-01-01

    In order to study the influence of association on the isobaric thermal expansivity, this magnitude has been experimentally determined for a set of associating fluids within the temperature and pressure intervals (278.15 to 348.15) K and (5 to 55) MPa by means of calorimetric measurements. The 1-alcohol series, from methanol to 1-decanol, 2-pentanol, 3-pentanol, and 1-pentylamine were selected. With a view on checking the quality of the experimental data, they are compared with available literature values; good coherence was obtained for most of the studied liquids. The analysis of the experimental results reveals that the association capability presents a strong influence not only on the value of the isobaric thermal expansivity itself, but also on its behaviour against temperature and pressure.

  16. Cutting Temperature Investigation of AISI H13 in High Speed End Milling

    Directory of Open Access Journals (Sweden)

    Muhammad Riza

    2016-10-01

    Full Text Available Heat produced at the tool-chip interface during high speed milling operations have been known as a significant factor that affect to tool life and workpiece geometry or properties. This paper aims to investigate cutting temperature behaviours of AISI H13 (48 HRC under high speed machining circumstances during pocketing. The experiments were conducted on CNC vertical machining centre by using PVD coated carbide insert. Milling processes were done at cutting speeds 150, 200 and 250 m/min and feed rate were 0.05, 0.1 and 0.15 mm/tooth. Depths of cut applied were 0.1, 0.15 and 0.2 mm. Tool path method applied in this experiment was contour in. Results presented in this paper indicate that by increasing cutting speed the cutting temperature is lower than low cutting speed. However, by decreasing feed rate leads to cutting temperature low. Cutting temperature phenomena at the corner of pocket milling were also investigated. The phenomena showed that cutting temperature tends to decrease a moment when cutter comes to the corner of pocket and turning point of tool path and increase extremely a moment before leaving the corner and turning point.

  17. A physical detail relevant to the Savic-Kasanin theory of behaviour of materials under high pressure

    International Nuclear Information System (INIS)

    Celebonovic, V.

    1982-01-01

    P. Savic and R. Kasanin have proposed a theory of behaviour of materials under high pressure (Savic, 1981). Their theory can be applied to the explanation of the internal structures of planets and stars. The author proposes, a simple method for the calculation of the internal temperatures of the terrestrial planets. All the parameters needed for the application of the method can be obtained from the SK theory. (Auth.)

  18. Low-temperature behaviour of an ideal Bose gas and some forbidden thermodynamic cycles

    International Nuclear Information System (INIS)

    Chen Jincan; Lin Bihong

    2003-01-01

    Based on the equation of state of an ideal Bose gas, the heat capacities at constant volume and constant pressure of the Bose system are derived and used to analyse the low-temperature behaviour of the Bose system. It is expounded that some important thermodynamic processes such as a constant pressure and an adiabatic process cannot be carried out from the region of T > T c to that of T c , where T c is the critical temperature of Bose-Einstein condensation of the Bose system. Consequently, some typical thermodynamic cycles such as the Carnot cycle, Brayton cycle, Otto cycle, Ericsson cycle, Diesel cycle and Atkinson cycle cannot be operated across the critical temperature T c of Bose-Einstein condensation of an ideal Bose gas

  19. Corrosion fatigue crack growth behaviour of low-alloy RPV steels at different temperatures and loading frequencies under BWR/NWC environment

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2004-01-01

    The strain-induced corrosion cracking or low-frequency corrosion fatigue (LFCF) crack growth behaviour of different reactor pressure vessel (RPV) steels and of a RPV weld filler/weld heat-affected zone (HAZ) material were characterized under simulated transient boiling water reactor/normal water chemistry conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated high-temperature water at temperatures of either 288, 250, 200, or 150 deg. C. Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographic analysis by SEM were used to quantify the cracking response. Under low-flow and highly oxidising conditions (ECP > 0 mV SHE , O 2 = 0.4 ppm) the cycle-based LFCF crack growth rates (CGR) Δa/ΔN increased with decreasing loading frequency and increasing temperature with a maximum/plateau at/above 250 deg. C. Sustained environmentally-assisted crack growth could be maintained down to low frequencies of 10 -5 Hz. The LFCF CGR of low- and high-sulphur steels and of the weld filler/HAZ material were comparable over a wide range of loading conditions and conservatively covered by the 'high-sulphur line' of the General Electric-model. The 'ASME XI wet fatigue CGR curves' could be significantly exceeded in all materials by cyclic fatigue loading at low frequencies ( -2 Hz) at high and low load ratios R. (authors)

  20. Computer modelling of high-temperature superconductors using an A-V formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Alonso, D; Coombs, T; Campbell, A M [Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2004-05-01

    Numerical methods for calculating the current and field distribution in high-temperature superconductors under non-uniform time-varying fields are being investigated. The highly non-linear behaviour of superconductors makes them difficult to analyse and computationally expensive. This non-linear behaviour is often accounted for through a non-linear E-J constitutive law. This paper proposes a fast method based on the finite element method to solve 2D and axially symmetric problems that contain superconducting materials. An E-J power law together with an A-V formulation is used to calculate the induction of currents in the superconductor due to time-varying external magnetic fields or forced transport current. Experimental data of a magnet-above-superconductor system is obtained in order to validate the model. In the experimental set-up a magnet is brought towards a superconducting puck at different speed rates and is also vibrated on top of it. The force between the magnet and the superconductor is measured and is found to vary with both time and frequency of excitation.

  1. Computer modelling of high-temperature superconductors using an A-V formulation

    International Nuclear Information System (INIS)

    Ruiz-Alonso, D; Coombs, T; Campbell, A M

    2004-01-01

    Numerical methods for calculating the current and field distribution in high-temperature superconductors under non-uniform time-varying fields are being investigated. The highly non-linear behaviour of superconductors makes them difficult to analyse and computationally expensive. This non-linear behaviour is often accounted for through a non-linear E-J constitutive law. This paper proposes a fast method based on the finite element method to solve 2D and axially symmetric problems that contain superconducting materials. An E-J power law together with an A-V formulation is used to calculate the induction of currents in the superconductor due to time-varying external magnetic fields or forced transport current. Experimental data of a magnet-above-superconductor system is obtained in order to validate the model. In the experimental set-up a magnet is brought towards a superconducting puck at different speed rates and is also vibrated on top of it. The force between the magnet and the superconductor is measured and is found to vary with both time and frequency of excitation

  2. NORA-2, a model for creep deformation and rupture of zircaloy at high temperatures

    International Nuclear Information System (INIS)

    Raff, S.; Meyder, R.

    1983-01-01

    A model has been developed to describe Zircaloy cladding behaviour under LOCA and small leak conditions within specified temperature range and strain rates. The deformation model consists of a strain rate equation with two components representing strain rate controlled contributions from different deformation mechanisms. Transition from one mechanism to the other produces the strain rate dependence of the stress exponent of steady state creep. During transient creep the change of creep mechanisms produces a flow softening behaviour which induces unstable creep. Together with a strain hardening model, the strain history can be described for low and high strain values. The influence of oxidation is taken into account by modelling hardening due to solid solution of oxygen, cracking of the brittle oxide and oxygen stabilised α-phase layers, and by an oxidation-induced creep component in steam atmosphere. The rupture criterion is based on a strain fraction rule whose variables are temperature, strain rate or applied stress, and oxygen content. (author)

  3. Tensile behaviour of natural fibres. Effect of loading rate, temperature and humidity on the “accommodation” phenomena

    Directory of Open Access Journals (Sweden)

    Placet V.

    2010-06-01

    Full Text Available The use of natural fibres in high performance composite requires an accurate understanding of the mechanical behaviour of the fibres themselves. As for all biobased materials, the mechanical properties of natural fibres depend generally on the testing rate and on the environmental conditions. In addition, natural fibres as hemp for example exhibit a particular mechanism of stiffness increase and accommodation phenomena under cyclic loading. Loading rate, temperature and humidity effects on the viscoelastic properties of hemp fibres were investigated in this work. The collected results clearly emphasis the involvement of time-dependant and mechano-sorptive mechanisms.

  4. Low temperature magnetic behaviour of glass-covered magnetic microwires with gradient nanocrystalline microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I. G.; Hernando, A.; Marín, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155 las Rozas, Madrid 28230 (Spain)

    2014-01-21

    Slow nanocrystallization driving dynamics can be affected by the combination of two factors: sample residual stresses and sample geometry. This effect is evidenced at the initial stages of nanocrystallization of amorphous CoFeSiBCuNb magnetic microwires. Transmission electron microscopy observations indicate how crystallization at temperatures between 730 and 780 K results in a graded microstructure where the crystallization at the surface skin of the microwire, which remains almost amorphous, differs from that of the middle, where elongated grains are observed, and inner regions. However, samples annealed at higher temperatures present a homogeneous microstructure. The effect of gradient microstructure on magnetic properties has been also analyzed and a loss of bistable magnetic behaviour at low temperatures, from that obtained in the amorphous and fully nanocrystallized sample, has been observed and ascribed to changes in sign of magnetostriction for measuring temperatures below 100 K.

  5. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  6. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  7. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic–martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-01-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic–Martensitic (RAFM) steel (9Cr–1W–0.06Ta–0.22V–0.08C) have been investigated over a temperature range of 300–873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  8. Silicon detectors: Damage, modelling and expected long-time behaviour in physics experiments at ultra high energy

    International Nuclear Information System (INIS)

    Lazanu, Ionel; Lazanu, Sorina

    2007-01-01

    In this contribution, the structural modifications of the material and the degradation of devices is modelled and compared with the experimental data for more resistivities, temperatures, crystal orientations and oxygen concentrations, considering the existence of the new primary fourfold coordinated defect, besides the vacancy and the interstitial. Some estimations of the behaviour of detectors in specific environments at the next generations of high-energy physics experiments as LHC, SLHC, VLHC, or ULHC are done

  9. Deeply torpid bats can change position without elevation of body temperature.

    Science.gov (United States)

    Bartonička, Tomáš; Bandouchova, Hana; Berková, Hana; Blažek, Ján; Lučan, Radek; Horáček, Ivan; Martínková, Natália; Pikula, Jiri; Řehák, Zdeněk; Zukal, Jan

    2017-01-01

    Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject. Copyright © 2016. Published by Elsevier Ltd.

  10. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  11. Statistics of energy levels and zero temperature dynamics for deterministic spin models with glassy behaviour

    NARCIS (Netherlands)

    Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.

    2001-01-01

    We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,

  12. Effects of temperature and surface orientation on migration behaviours of helium atoms near tungsten surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2015-10-15

    Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.

  13. Large transverse momenta as evidence of high temperatures

    International Nuclear Information System (INIS)

    Gorenstein, M.I.; Shelest, V.P.; Zinovjev, G.M.

    1975-01-01

    In the framework of the hydrodynamical model of multiparticle production a qualitative and quantitative description is given for main regularities in the behaviour of large transverse momenta secondaries taking into account the evaporation mechanism of particles. The appearance of such particles in this model is due to large initial temperatures

  14. Microfracture behaviour of extruded Mg–Zn–Y alloys containing long-period stacking ordered structure at room and elevated temperatures

    International Nuclear Information System (INIS)

    Mine, Yoji; Yoshimura, Hajime; Matsuda, Mitsuhiro; Takashima, Kazuki; Kawamura, Yoshihito

    2013-01-01

    We studied the fracture behaviour of extruded Mg–Zn–Y alloys at room temperature (RT) and at 523 K using microfracture testing. An Mg 97 Zn 1 Y 2 alloy was used to obtain two-phase specimens consisting of α-Mg and long-period stacking ordered (LPSO) structure phases, and an Mg 88 Zn 5 Y 7 alloy was used to obtain specimens consisting of an LPSO phase. The microfracture testing of the two-phase specimen revealed that the fracture behaviour changed from brittle to ductile as the testing temperature increased. By contrast, the LPSO-phase specimen remained brittle even at the elevated temperature and the intrinsic fracture toughness values obtained at both testing temperatures were nearly identical. Ex situ transmission electron microscopy of the two-phase specimen showed that mechanical twinning in the α-Mg phase did not occur at the elevated temperature, although it was activated at RT. This suggests that the plastic deformation mode in the α-Mg phase plays a crucial part in the enhanced crack growth resistance of the two-phase alloy at the elevated temperature

  15. Mechanical and microstructural behaviour of alumina-zirconia ceramic filaments for high temperature applications; Comportement mecanique et microstructure de filaments ceramiques alumine-zircone pour applications a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A

    2002-04-01

    This thesis is a contribution to the development and to the study of two-phase alumina-zirconia ceramic filaments resistant to creep and chemical and microstructural degradation. The materials studied are experimental two-phase filaments (diameter of few millimeters) with a fibrillary structure obtained by coextrusion of sol-gels or of powder pastes and a nanocrystalline fiber of thin diameter (11{mu}m) with a homogeneous structure. They have been respectively perfected and chosen for their very promising microstructures and compositions concerning the creep resistance. This study is concentrated on the mechanical characterization at high temperature of these materials and especially on the understanding of the deformation and rupture mechanisms in relation with the microstructural evolution. The commercial fiber (Nextel 650) is a {alpha} alumina (grain size {>=}0.1{mu}m) in which the grains of the second phase zirconia are dispersed in a homogeneous way in intra (5-10 nm) as in inter-granular (20-30 nm). After a heat treatment at temperatures superior to 1200 C, it can be noted a strong grains growth preferentially to the axis of the fiber. The tensile properties decrease to a considerable extent with high temperatures ({>=}1000 C). The creep behaviour has been determined between 1000 and 1300 C (value of 2.5 for the stress exponent and of 850 kJ/mol for the activation energy). The evolution of the microstructure to a long grains microstructure is favourable for the creep resistance. A comparison with other fibers of compositions near the Nextel 650 fiber show that the Nextel 650 fiber has interesting properties for being used at high temperatures (until 1200 C). The study of co-extruded alumina-zirconia filaments with a fibrillary structure has at first required those of filaments which composition are each of the phases obtained from pastes (powder-thermoplastics or sol-gels). The composition of each of the phases has been optimized in order to adapt the

  16. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  17. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  18. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  19. Development of a structure-dependent materials model for complex high-temperature loads: Turbine blades of IN 738 LC

    International Nuclear Information System (INIS)

    1989-01-01

    In the framework of a material research programme of the Federal Ministry for Research and Technology a joint project of 10 institutes has started. It aims at developing new concepts for high-temperature components. A subtask is concerned with the internally cooled turbine blade of IN 738 LC for stationary gas turbines. The envisaged procedure for the development of the design conception and the level of knowledge concerning the influencing parameters of the structure and the mechanical behaviour at high operating temperatures are reported on. (orig.) [de

  20. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    International Nuclear Information System (INIS)

    Palma, Rodrigo H.; Sepulveda, Aquiles; Espinoza, Rodrigo; Dianez, M. Jesus; Criado, Jose M.; Sayagues, M. Jesus

    2005-01-01

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO 2 and Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO 2 alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10 -3 and 0.85 x 10 -4 s -1 were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO 2 and the Cu-5 vol.% ZrO 2 alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO 2 alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures

  1. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  2. Oxidation and creep behaviour of dense silicon nitride materials with different compositions

    International Nuclear Information System (INIS)

    Ernstberger, U.

    1985-09-01

    The study was intended to yield information on the oxidation and creep behaviour of Si 3 N 4 materials of different composition and microstructure, and produced by different processes. The experiments carried out in a vast temperature and load range showed that the chemical grain boundary composition is the key parameter affecting the materials' high-temperature properties. Significant correlations could be established between oxidation and creep behaviour on the one hand, and between microstructure and the behaviour on the other. (orig./IHOE) [de

  3. High temperature expansions for the free energy of vortices respectively the string tension in lattice gauge theories

    International Nuclear Information System (INIS)

    Muenster, G.

    1980-05-01

    We derive high temperature cluster expansions for the free energy of vortices in SU(2) and Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement at strong and intermediate coupling. (orig.)

  4. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    Science.gov (United States)

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  5. A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environments

    Science.gov (United States)

    Azhari, Amir; Liang, Richard; Toyserkani, Ehsan

    2014-07-01

    The aim of this article is to introduce a novel packaging of conventional Corning SMF-28™ single-mode fibre Bragg grating sensors for ultra-high temperature sensing. The package is in a cylindrical shape made of yttria-stabilized zirconia tubes. The fibre optic sensor is epoxied to one end inside the tube to be protected from high external temperatures and also harsh environments. Highly-oriented pyrolytic graphite tube with an exceptional anisotropic thermal conductivity with higher conductivity in transverse than radial direction is positioned around the fibre to protect it from high temperatures. Air cooling system is also provided from the other end to dissipate the transferred heat from inside the tube. The shift in the Bragg wavelength is influenced by the thermal expansion of the package and internal temperature variations, which translates into thermal expansion of the fibre. The modelling and experimental results revealed that the Bragg wavelength shift increases to 1.4 pm °C-1 at higher temperatures with linear behaviour at temperatures above 600 °C. The finite element modelling and the experimental results are also in good proximity indicating the similar trend for the shift in the Bragg wavelength.

  6. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  7. Effects of strain rate and temperature on deformation behaviour of IN 718 during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L X [Dept. of Metallurgy and Engineering Materials, Univ. of Strathclyde, Glasgow (United Kingdom); Baker, T N [Dept. of Metallurgy and Engineering Materials, Univ. of Strathclyde, Glasgow (United Kingdom)

    1994-04-15

    The hot deformation characteristics of a wrought IN 718 alloy were investigated by compression testing at constant strain rates in the range of 0.1 to 5 x 10[sup -3] s[sup -1], and testing temperatures in the range of 950 to 1100 C using a 200 ton capacity microprocessor controlled Fielding hydraulic press. Examination of the microstructures was carried out by optical microscopy and TEM. The flow stress of the compression tests showed a single peak in the flow stress-strain curves, and indicated that a dynamic recrystallization transition took place during the hot compression. The relationship between the peak stresses ([sigma][sub p]) and the Zener-Hollomon parameter (z) can be expressed by [sigma][sub p] = 0.5 Z[sup 0.17]. Necklace'' microstructures were observed at testing temperatures below 1050 C, for strain of 0.7. The fraction of recrystallized grains increased with the increasing temperature and strain, and decreasing strain rate. Fully recrystallized microstructures were observed at temperatures 1050 C or greater, with a strain of 0.7. (orig.)

  8. Transient fission gas release from UO2 fuel for high temperature and high burnup

    International Nuclear Information System (INIS)

    Szuta, M.

    2001-01-01

    In the present paper it is assumed that the fission gas release kinetics from an irradiated UO 2 fuel for high temperature is determined by the kinetics of grain growth. A well founded assumption that Vitanza curve describes the change of uranium dioxide re-crystallization temperature and the experimental results referring to the limiting grain size presented in the literature are used to modify the grain growth model. Algorithms of fission gas release due to re-crystallization of uranium dioxide grains are worked out. The defect trap model of fission gas behaviour described in the earlier papers is supplemented with the algorithms. Calculations of fission gas release in function of time, temperature, burn-up and initial grain sizes are obtained. Computation of transient fission gas release in the paper is limited to the case where steady state of irradiation to accumulate a desired burn-up is performed below the temperature of re-crystallization then the subsequent step temperature increase follows. There are considered two kinds of step temperature increase for different burn-up: the final temperature of the step increase is below and above the re-crystallization temperature. Calculations show that bursts of fission gas are predicted in both kinds. The release rate of gas liberated for the final temperature above the re-crystallization temperature is much higher than for final temperature below the re-crystallization temperature. The time required for the burst to subside is longer due to grain growth than due to diffusion of bubbles and knock-out release. The theoretical results explain qualitatively the experimental data but some of them need to be verified since this sort of experimental data are not found in the available literature. (author)

  9. Production of high temperature superconductors and characteristics by infrared and Raman spectroscopy

    International Nuclear Information System (INIS)

    Thomsen, C.

    1991-01-01

    This final report, which is partly kept short, is concerned with electron/phonon interaction and the determination of the band gap in high temperature superconductors (YBa 2 Cu 3 O 7 ). The final report is divided into four parts, which reflect the individual working groups: 1. Raman spectroscopy, 2. IR spectroscopy (reflection measurements, isotope effect, superconducting energy gap, behaviour of infrared active phonons), 3. Magnetic field measurements, and 4. Theory (initial calculation of the metal/isolator transfer in BaBiO 3 ). (MM) [de

  10. Safety analysis of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Mitake, Susumu; Ezaki, Masahiro; Suzuki, Katsuo; Takaya, Junichi; Shimazu, Akira

    1976-02-01

    Safety features of the experimental multi-purpose high-temperature gas-cooled reactor being developed in JAERI were studied or the basis of its preliminary conceptual design of the reactor plant. Covered are control of the plant in transients, plant behaviour in accidents, and functions of engineered safeguards, and also dynamics of the uprant and frequencies of the accidents. These studies have shown, (i) the reactor plant can be operated both in plant slave to reactor and reactor slave to plant control, (ii) stable control of

  11. Steam oxidation of Zr 1% Nb clads of VVER fuels in high temperature

    International Nuclear Information System (INIS)

    Solyanyj, V.I.; Bibilashvili, Yu.K.; Dranenko, V.V.; Levin, A.Ya.; Izrajlevskij, L.B.; Morozov, A.M.

    1984-01-01

    In a wide range of accident conditions processes of clad corrosion effected by steam are rather intensive and in many respects influence the safety of NPP and the after-accident dismantling of a reactor core. This paper discusses the results of comprehensive studies into corrosion behaviour of Zr 1%Nb clads of VVER-type fuels at high temperatures. These studies are a continuation of previous work and the base for the design modelling of corrosion processes

  12. Efficient dual layer interconnect coating for high temperature electrochemical devices

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    Effects of novel dual layer coatings Co3O4/La0.85Sr0.15MnO3−δ on high temperature oxidation behaviour of candidate steels for interconnects are studied at 1123 K in flowing simulated ambient air (air + 1% H2O) and oxygen. Four alloys are investigated: Crofer 22 APU, Crofer 22 H, E-Brite and AL 29...... that the oxidation reaction is limited by outward Cr3+ diffusion in the chromia scale. The coating effectively reduces the oxidation rate. Reactions and cation inter-diffusion between the coating and the oxide scale are observed. Long term effects of these interactions are discussed and practical implications...

  13. Some aspects of the tribological behaviour of materials in sodium

    International Nuclear Information System (INIS)

    Campbell, C.S.; Lewis, M.W.J.

    1980-08-01

    The influence of boundary lubricating films formed by reaction of metallic surfaces with oxygen-containing sodium is discussed. In general, pre-existing surface metallic oxides are reduced in high-temperature low-oxygen sodium, and tribological behaviour is accordingly poor. Chromium-containing alloys, however, can react more readily with oxygen-containing sodium to form sodium chromite, NaCrO 2 , on the alloy surfaces. Such an oxide could plausibly account for significantly improved tribological behaviour at higher oxygen levels. Sodium chromite is only marginally stable at typical reactor outlet conditions and frictional behaviour of typical chromium-containing alloys has therefore been studied as a function of rig cold trap temperature for exposure temperatures ranging from 650 to 500 0 C in order to define the effective tribological boundary. The behaviour of aluminised surfaces has also been studied and results from sliding and fretting wear tests are discussed in the context of the role of a lubricating oxide, believed to be sodium aluminate (formed by reaction of aluminium and oxygen-containing sodium) which is considerably more stable than sodium chromite at reactor outlet temperatures. (author)

  14. Papers about coated particles, graphitic and metallic materials for progressive high-temperature reactors at the Reactor Meeting 1978

    International Nuclear Information System (INIS)

    Rottmann, J.

    1978-09-01

    In the contributions, questions on the development, the radiation and the high-temperature behaviour and the characterization of fuel element particles are treated. Furthermore the resistance and radiation behaviour of graphitic materials are discussed. Finally, questions on the choice of high-temperature alloys for nuclear process heat facilities are discussed and the testing-equipment of the Nuclear Research Centre as well as first results of the long-time experiments are presented. The work was performed within the frame of the projects 'HTR-Fuel Element Cycle' and 'Prototype Nuclear Process Heat', which are sponsored by the Federal Ministry of Research and Technology of the Federal Republic of Germany and of the state of North-Rhine-Westfalia. Partner firms, who participate in the two projects are Gelsenberg AG, Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperaturreaktor-Brennelement GmbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH, NUKEM GmbH, SIGRI Elektrographit GmbH/Ringsdorff-Werke GmbH, Bergbauforschung GmbH und Rheinische Braunkohlenwerke AG. (orig./UA) [de

  15. Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Anesh; Dwivedi, D.K.

    2007-01-01

    In the present paper, the influence of solutionizing temperature during artificial age hardening treatment (T 6 ) of cast Al-(8, 12, 16%)Si-0.3%Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given artificial age hardening treatment having a sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 450 deg. C, 480 deg. C, 510 deg. C, and 550 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 170 deg. C for 12 h. Abrasive wear tests were conducted against 320 grade SiC polishing papers at 5 N and 10 N normal loads. It was observed that the silicon content and solution temperature affected the wear resistance significantly. Increase in solution temperature improved the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic and hypoeutectic alloys under identical conditions. Optical microstructure study of alloys revealed that the increase in solutionizing temperature improved distribution of silicon grains. Scanning electron microscopy (SEM) of wear surface was carried out to analyze the wear mechanism

  16. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  17. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  18. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  19. The behavioural consequences of sex reversal in dragons

    Science.gov (United States)

    Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur

    2016-01-01

    Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.

  20. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  1. Quantum Field Theory at non zero temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.

    1989-01-01

    The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)

  2. Risk-taking behaviour of Cape Peninsula high-school students. Part ...

    African Journals Online (AJOL)

    The prevalence of a wide range of risk-taking behaviour among high-school students in the Cape Peninsula, South Africa, was investigated. In this article, the findings for road-related behaviour are presented. Cluster sampling techniques produced a sample of 7 340 students from 16 schools in the three major education ...

  3. AIDS knowledge, attitude and behavioural patterns among high ...

    African Journals Online (AJOL)

    AIDS knowledge, attitude and behavioural patterns among high school students in ... Incorporating sex education into the curriculum of secondary schools will be a welcome development in stemming the tide of this dreaded disease.

  4. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  5. High temperature initiation and propagation of cracks in 12%Cr-steel turbine disks

    Directory of Open Access Journals (Sweden)

    S. Foletti

    2013-10-01

    Full Text Available This work aims to study the crack propagation in 12%Cr steel for turbine disks. Creep Crack Growth (CCG tests on CT specimens have been performed to define the proper fracture mechanics which describes the initiation of the crack propagation and the crack growth behaviour for the material at high temperature. Results have been used to study the occurrence of crack initiation on a turbine disk at the extreme working temperature and stress level experienced during service, and validate the use of C* integral in correlating creep growth rate on the disk component, in case C* is numerically calculated through FEM analysis or calculated by the use of reference stress concept.

  6. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    found that the conduction mechanism of aluminium nitride at low temperature is a mixture of ionic and electronic but at high temperature the electronic conduction dominated. Silicon nitride dielectric properties measurements show that there is a change of the two complex permittivity parts, ε' and ε'', with increases of temperature. This change was related to the degree of the densification which increases with the increases of temperature. The behaviour of SiN at low temperature has a similarity with insulators while at high temperature it has an electronic conduction. (author)

  7. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  8. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  9. Petascale supercomputing to accelerate the design of high-temperature alloys

    Science.gov (United States)

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; Haynes, J. Allen

    2017-12-01

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ‧-Al2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviour of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. The approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.

  10. Annealing experiments on and high-temperature behavior of the superconductor yttrium barium copper oxide (YBa2Cu3Ox)

    NARCIS (Netherlands)

    Brabers, V.A.M.; Jonge, de W.J.M.; Bosch, L.A.; Steen, van der C.; de Groote, A.M.W.; Verheyen, A.A.; Vennix, C.W.H.M.

    1988-01-01

    The high temperature behaviour (300–1100 K) of the superconductor YBa2Cu3Ox has been studied by annealing experiments, thermal dilatation, thermogravimetry and measurements of the electrical resistance and thermoelectric power. For the fast oxidation process of this compound, reaction enthalpies

  11. Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour.

    Science.gov (United States)

    Liebsch, G; Montkowski, A; Holsboer, F; Landgraf, R

    1998-08-01

    Over the past years, two breeding lines, derived originally from outbred Wistar rats, have been established that differ markedly and consistently in their anxiety-related behaviour in the elevated plus-maze. At the age of ten weeks, rats were tested once on the elevated plus-maze and the males and females displaying the most anxious and the least anxious behaviour were sib-mated to start a new generation of the high anxiety-related behaviour (HAB) and the low anxiety-related behaviour (LAB) lines, respectively. The resulting difference in emotionality between these two lines was also evident in an open field test and correlated with differences in the forced swim test. In the open field, the HAB rats tended to be less active and explored the central zone of the open field much less than the LAB animals. In the forced swim test, HAB rats started floating earlier, spent significantly more time in this immobile posture and struggled less than LAB rats. However, in an olfactory-cued social discrimination task there was no difference between male and female animals from either line. The overall performance in these various behavioural tests suggests that selective breeding has resulted in rat lines not only differing markedly in their innate anxiety-related behaviour in the plus-maze, but also in other stress-related behavioural performances, suggesting a close link between the emotional evaluation of a novel and stressful situation and an individual's coping strategy.

  12. Deromancing leadership: what are the behaviours of highly effective middle managers?

    NARCIS (Netherlands)

    van der Weide, J.G.; Wilderom, Celeste P.M.

    2004-01-01

    Title: Deromancing leadership: what are the behaviours of highly effective middle managers? Author: Joost Van der Weide, Celeste Wilderom Address: University of Twente, Department of Management and Organizational Behaviour, P.O. Box 217, 7500 AE Enschede, The Netherlands. ' University of Twente,

  13. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behaviour in adolescents

    Directory of Open Access Journals (Sweden)

    Matthew R G Brown

    2015-09-01

    Full Text Available High-risk behaviour in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behaviour and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behaviour. We recruited 21 adolescents (age 14-17 with a wide range of high-risk behaviour tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behaviour Screen (ARBS. ARBS risk scores correlated highly (0.78 with impulsivity scores from the Barratt Impulsivity scale (BIS. Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behaviour and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behaviour tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents.

  14. Effect of high temperature deposition on CoSi2 phase formation

    International Nuclear Information System (INIS)

    Comrie, C. M.; Ahmed, H.; Smeets, D.; Demeulemeester, J.; Vantomme, A.; Turner, S.; Van Tendeloo, G.; Detavernier, C.

    2013-01-01

    This paper discusses the nucleation behaviour of the CoSi to CoSi 2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi 2 , its growth behaviour, and the epitaxial quality of the CoSi 2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi 2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi 2 nucleation temperature above that of CoSi 2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi 2 growth occurs as a function of deposition temperature. First, the CoSi 2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi 2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi 2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi 2 growth mechanism.

  15. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.

    2016-01-01

    Roč. 54, č. 6 (2016), s. 471-481 ISSN 0023-432X R&D Projects: GA TA ČR(CZ) TA04011525; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : hot isostatic pressing * high-temperature low cycle fatigue * fatigue life curves * Ni-based superalloy * dislocation structures * planar bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.366, year: 2016

  16. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  17. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  18. Tensile stress–strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Christopher, J.; Choudhary, B.K.; Isaac Samuel, E.; Mathew, M.D.; Jayakumar, T.

    2012-01-01

    Highlights: ► σ–ε behaviour has been adequately described by Ludwigson and Hollomon equations. ► Instantaneous work hardening rate (θ) exhibited two-stage behaviour. ► σ–ε, flow parameters, θ and θσ vs.σ exhibited three distinct temperature regimes. ► Influence of dynamic strain ageing at intermediate temperatures has been identified. ► Dominance of dynamic recovery at high temperatures was demonstrated. - Abstract: Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300–873 K) at a strain rate of 1.3 × 10 −3 s −1 . Ludwigson equation described true stress (σ)–true plastic strain (ε) data most accurately in the range 300–723 K. At high temperatures (773–873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress indicated two-stage work hardening behaviour. True stress–true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ–σ and θσ–σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  19. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

    International Nuclear Information System (INIS)

    Llordes, Anna; Palau, A.; Gazquez, J.; Coll, M.; Vlad, R.; Pomar, A.; Arbiol, Jordi; Guzman, Roger; Ye, S.; Rouco, V.; Sandiumenge, Felip; Ricart, Susagna; Puig, Teresa; Varela del Arco, Maria; Chataigner, D.; Vanacken, J.; Gutierrez, J.; Moschalkov, V.; Deutscher, G.; Magen Dominguez, Cesar; Obradors, Xavier

    2012-01-01

    Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centers in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa 2 Cu 3 O 7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.

  20. Simultaneous Effects of Total Solids Content, Milk Base, Heat Treatment Temperature and Sample Temperature on the Rheological Properties of Plain Stirred Yogurt

    Directory of Open Access Journals (Sweden)

    Attilio Converti

    2006-01-01

    Full Text Available Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3–22.7 % and milk base heat treatment temperature (81.6–98.4 °C resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6–18.4 °C caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.

  1. Devitrification and high temperature properties of mineral wool

    DEFF Research Database (Denmark)

    Nielsen, Eva Ravn; Augustesen, Maria; Ståhl, Kenny

    2007-01-01

    spectroscopy, secondary neutral mass spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. When stone wool fibres were heated at 800 ºC in air, oxidation of Fe2+ to Fe3+ occurred simultaneously with migration of divalent cations (especially Mg2+) to the surface. Decreasing Fe3......Mineral wool products can be used for thermal and acoustic insulation as well as for fire protection. The high temperature properties and the crystallization behaviour (devitrification) of the amorphous fibres during heating have been examined. Commercial stone wool and commercial hybrid wool......+/Fetotal ratios resulted in increasing migration and improved thermal stability. The cations formed a surface layer mainly consisting of MgO. When heated to above 800 ºC, bulk crystallization of the fibres took place with diopside and nepheline as the main crystalline phases. Commercial stone wool...

  2. Possibilities of observation of behaviour of concrete- and cement-based composite materials exposed to high temperatures

    Czech Academy of Sciences Publication Activity Database

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, Libor

    2015-01-01

    Roč. 19, č. 5 (2015), s. 936-940 ISSN 1432-8917 Institutional support: RVO:68145535 Keywords : concrete * high temperature * thermal load Subject RIV: JQ - Machines ; Tools Impact factor: 0.830, year: 2014 http://www.tandfonline.com/doi/full/10.1179/1432891714Z.0000000001225?scroll=top&needAccess=true

  3. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  4. The effect of temperature on the behaviour of marine fishes: A comparison among Atlantic mackerel, Scomber scombrus, bluefish, Pomatomus saltatrix, and tautog, Tautoga onitis

    International Nuclear Information System (INIS)

    Olla, B.L.; Studholme, A.L.; Bejda, A.J.; Samet, C.; Martin, A.D.

    1975-01-01

    A comparison was made of the behavioural responses to temperature of Atlantic mackerel, Scomber scombrus, bluefish, Pomatomus saltatrix, and tautog, Tautoga onitis, held under controlled laboratory conditions. When the temperature was either raised or lowered from normal levels, juvenile and adult bluefish and adult Atlantic mackerel, all pelagic species, responded similarly by increasing swimming speed as much as 61-190%. This response was interpreted as a manifestation of behavioural avoidance of a particular level of temperature, indicative of capability for directive movements relative to ambient thermal conditions. Comparing the response of pelagic species to earlier work on tautog, a demersal species, it was clear that avoidance capability is dependent upon the behavioural repertoire of the individual species. The significance of the results, regarding distribution of fish and response potential under thermal stress, is discussed. (author)

  5. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature

    International Nuclear Information System (INIS)

    Hidalgo-Manrique, P.; Herrera-Solaz, V.; Segurado, J.; Llorca, J.; Gálvez, F.; Ruano, O.A.; Yi, S.B.; Pérez-Prado, M.T.

    2015-01-01

    The mechanical behaviour in tension and compression of an extruded Mg–1 wt.% Mn–1 wt.% Nd (MN11) alloy was studied along the extrusion direction in the temperature range −175 °C to 300 °C at both quasi-static and dynamic strain rates. Microstructural analysis revealed that the as-extruded bar presents a recrystallized microstructure and a weak texture that remain stable in the whole temperature range. A remarkable reversed yield stress asymmetry was observed above 150 °C, with the compressive yield stress being significantly higher than the tensile yield stress. The origin of this anomalous reversed yield stress asymmetry, which to date remains unknown, was investigated through the analysis of the macro and microtexture development during deformation, as well as by means of crystal plasticity finite element simulations of a representative volume element of the polycrystal. The critical resolved shear stresses of slip and twining for simulated single crystals were obtained as a function of the temperature by means of an inverse optimisation strategy. Experimental and simulation results suggest that the reversed yield asymmetry may be primarily attributed to the non-Schmid behaviour of pyramidal 〈c + a〉 slip, which is the dominant deformation mechanism at high temperatures. It is proposed, furthermore, that the asymmetry is enhanced at quasi-static strain rates by the stronger interaction of 〈c + a〉 dislocations with the diffusing solute atoms and particles in compression than in tension

  6. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  7. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  8. Thermomechanical behaviour of a cellular structure exposed to a high radiation flux

    International Nuclear Information System (INIS)

    Biggio, M.; Zani, F.

    1983-01-01

    Cellular structures composed of panels surrounding a number of cooling channels, are envisaged for the first wall in the conceptual design of a TOKAMAK-type experimental fusion reactor. The behaviour of this type of structure when exposed directly to the plasma is analysed. Results show that three-dimensional calculations must be performed in order to assess the real behaviour of the first-wall structure considered. An analysis of an aluminium first-wall model proposed for the experimental reactor INTOR is presented as a specific case. The temperature and stress distributions in the first wall were quantified by two- and three-dimensional calculations using the finite-element method. (author)

  9. The effect of low and high barn temperatures on behaviour and performance of Holstein dairy cows

    Directory of Open Access Journals (Sweden)

    Milan Večeřa

    2012-01-01

    Full Text Available The experiment was carried out at the University Training Farm in Žabčice (the Czech Republic; location 49°0’51.081”N, 16°36’14.848”E, 179 m.a.s.l over the period of one year (1st July to 30th June. The assessment of temperature impact was based on data from 16 hottest days (H and 16 coldest days (L. The experimental group consisted of 70 cows in various stage of lactation (30d–210d and parity (1–8. The cows were housed in a section (one quarter of a free-stall barn with 77 stalls in three rows. Row A was located peripherally, close to the side wall, row B was in the middle and row C was situated centrally, close to the feed table. The cows were observed weekly on the same day at 9.00 a.m. The microclimate characteristics were recorded daily: temperature in hot (H resp. cold (L period was in average 27.1°C resp. – 1.47 °C, and relative humidity 54.4 % resp. 77.3 %, and THI 75 resp. 33.Behaviour was described by a number of cows standing or lying down, number of cows lying down on their left or right side and row preference (A, B, C in the resting area. Cow Comfort Index (CCI – a number of cows lying down at given time was calculated. A total of 1587 observations were analysed. A number of cows lying down (922 was significantly higher than that of standing cows (665. Milk production was significantly higher in hot (H period (by 1.0–1.7 kg. There was an interaction in milk production between period and standing. In H period the standing cows produced more milk, in L period vice versa. The cows with non-significant tendency towards left-side laterality produced more milk (by 1.2 kg. No interaction was found between period and laterality for milk production. All the observed parameters significantly differed between rows A, B and C. Row A was the most preferred, the cows preferring it were young (low number of lactation with greatest milk production. The cows in row C had the lowest milk production and were in late

  10. High temperature corrosion in the service environments of a nuclear process heat plant

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1987-01-01

    In a nuclear process heat plant the heat-exchanging components fabricated from nickel- and Fe-Ni-based alloys are subjected to corrosive service environments at temperatures up to 950 0 C for service lives of up to 140 000 h. In this paper the corrosion behaviour of the high temperature alloys in the different service environments will be described. It is shown that the degree of protection provided by Cr 2 O 3 -based surface oxide scales against carburization and decarburization of the alloys is primarily determined not by the oxidation potential of the atmospheres but by a dynamic process involving, on the one hand, the oxidizing gas species and the metal and, on the other hand, the carbon in the alloy and the oxide scale. (orig.)

  11. Influence of the relative humidity and the temperature on the in-vivo friction behaviour of human skin

    NARCIS (Netherlands)

    Klaassen, M.; Schipper, D. J.; Masen, M.A.

    2016-01-01

    Both temperature and relative humidity are known to influence the frictional behaviour of human skin. However, literature does not completely cover to what extent both parameters play a role. Measurements were conducted using an in-house built reciprocating tribometer inside an enclosure in which

  12. Magnetization hysteresis and history effects in conventional and high temperature superconductors

    International Nuclear Information System (INIS)

    Chaddah, P.

    1990-01-01

    The magnetization in hard superconductors is irreversible and history-dependent, and cannot be a priori compared with the equilibrium magnetization. These features have gained prominence in the high T c superconductors (HTSC) where the short coherence length presumably leads to intrinsic pinning. Various experimental features, first noticed in the HTSC, are explained by an extension of Bean's macroscopic model to include temperature variations and the field dependence of J c . This paper discusses recent measurements of history effects in niobium and show their similarities with other published data on HTSC. The authors also present our calculations of magnetization behaviour in hard superconductors of sample-shapes having a non-zero demagnetization factor

  13. The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    Science.gov (United States)

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-08-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44°C±0.4°C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High risk behaviour near OPG dams and power stations : results from two surveys

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, N.; Schmidt, R.; Ialomiteanu, A. [Centre for Addiction and Mental Health, Toronto, ON (Canada)

    2009-07-01

    High risk behaviour near dams is not uncommon. This presentation discussed the results from 2 surveys on high risk behaviour near dams and power stations operated by Ontario Power Generation (OPG). The main components of the project were presented, with particular reference to analyses of recent literature on high-risk behaviour; interviews with OPG managers and staff in 4 regions; main survey of respondents from 4 regions; follow-up interviews with high-risk respondents; interviews with community members and contacts from recreational associations; and recommendations. Specific questions and results were provided from each survey. From the first survey, the characteristics of respondents that used OPG sites for recreation were identified. One hundred high risk respondents completed a follow-up interview. The survey showed that although high-risk behaviour is not uncommon, the main reason people use the facilities are for recreation and relaxation, and not for thrill seeking purposes. Recommendations stemming from the surveys included the need for definition of boundaries and delivery of messages via children, recreational associations, and law enforcement personnel. tabs., figs.

  15. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  16. Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chao; Liao Ruijin [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, G [School of Electronics and Computer Science, University of Southampton (United Kingdom); Fu, M, E-mail: tangchao_1981@163.co [AVERA T and D Technology Centre, Stafford (United Kingdom)

    2009-08-01

    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples.

  17. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  18. Can there be a T3 ln T kind of behaviour of the low temperature specific heat of liquid 3He without the paramagnons?

    International Nuclear Information System (INIS)

    Tripathy, D.N.; Mishra, S.

    1996-01-01

    It is shown that even without invoking the concepts like paramagnons, the temperature dependence of the interparticle correlations in a system of liquid 3 He can give rise a T 3 ln T kind of behaviour of its low temperature fermionic specific heat. It is found to be coming from the self-energy corrections to the bare single particle energy involving the particle-hole propagator. Looking at the similar kind of behaviour observed by us recently for an electron liquid, one may conclude that the T 3 ln T behaviour is perhaps universal for all fermi systems, although for liquid 3 He the very dependence also follows from the paramagnon effects. It is interesting to see that unlike earlier theories, an extremely good fit is obtained with the experimental data over the entire range of low temperatures. (orig.)

  19. Dietary health behaviour and beliefs among university students from 26 low, middle and high income countries.

    Science.gov (United States)

    Pengpid, Supa; Peltzer, Karl

    2015-01-01

    The aim of this study was to assess the prevalence of six healthy dietary behaviours and associated factors in university students from 26 low, middle and high income countries. In a cross-sectional survey, we used a self-administered questionnaire (largely based on the European Health and Behaviour Survey) among 19503 undergraduate university students (mean age 20.8, Standard deviation=2.8, age range of 16-30 years) from 27 universities in 26 countries. Results indicated that for a total of six healthy dietary behaviours, overall, students scored a mean of 2.8 healthy dietary behaviours. More female than male students indicated healthy dietary behaviours. In multivariate linear regression among men and women, living in an upper middle income or high income country, dieting to lose weight, the high importance of dietary health benefits, high non-organized religious activity, high physical activity and currently a non-tobacco user were associated with the healthy dietary behaviour index. The study found a high prevalence of relatively poor dietary healthy behaviours.

  20. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  1. Behaviour of Ca2Fe2O5 with Nb substitution and sintering temperatures seen by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Duhalde, S.; Saragovi, C.; Moraes, I.J.; Terrile, M.C.; Francisco, R.H.P.

    1991-01-01

    Moessbauer spectroscopy of samples of Ca 2 Fe 2-x Nb x O 5+x with x values ranging from 0 to 0.8 and sintering temperatures of 1200degC and 1300degC shows the presence of two magnetic fields and a paramagnetic signal. The behaviour of the parameters as a function of x and of the sintering temperatures are discussed and compared with XRD results. (orig.)

  2. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    Science.gov (United States)

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A; Kölzsch, Andrea; Prins, Herbert H T; de Boer, W Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations

  3. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    Directory of Open Access Journals (Sweden)

    Nelleke de Weerd

    Full Text Available The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus fitted with high-frequency GPS (Global Positioning System receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking. We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57% than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to

  4. Patterns of cyprinid migration through a fishway in relation to light, water temperature and fish circling behaviour

    Czech Academy of Sciences Publication Activity Database

    Prchalová, Marie; Slavík, O.; Bartoš, L.

    2006-01-01

    Roč. 4, č. 3 (2006), s. 213-218 ISSN 1571-5124. [International symposium on Ecohydraulics /5./. Madrid, 12.09.2004-17.09.2004] Institutional research plan: CEZ:AV0Z60170517 Keywords : migration * Cyprinidae * fishway * fish counter * water temperature * weather Subject RIV: EH - Ecology, Behaviour

  5. Risk-taking behaviour ofCape Peninsula high-school students

    African Journals Online (AJOL)

    behaviour alDong high-school students in the. Cape Peninsula ... Knonenbelt - personal communication). South Africa has ..... vision and film violence increases physical aggression ... violence in the media; revising firearm legislation and.

  6. Hidden Markov Models for indirect classification of occupant behaviour

    DEFF Research Database (Denmark)

    Liisberg, Jon Anders Reichert; Møller, Jan Kloppenborg; Bloem, H.

    2016-01-01

    Even for similar residential buildings, a huge variability in the energy consumption can be observed. This variability is mainly due to the different behaviours of the occupants and this impacts the thermal (temperature setting, window opening, etc.) as well as the electrical (appliances, TV......, computer, etc.) consumption. It is very seldom to find direct observations of occupant presence and behaviour in residential buildings. However, given the increasing use of smart metering, the opportunity and potential for indirect observation and classification of occupants’ behaviour is possible...... sequence of states was determined (global decoding). From reconstruction of the states, dependencies like ambient air temperature were investigated. Combined with an occupant survey, this was used to classify/interpret the states as (1) absent or asleep, (2) home, medium consumption and (3) home, high...

  7. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  8. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  9. Effect of ageing time and temperature on the strain ageing behaviour of quenched zircaloy-4

    International Nuclear Information System (INIS)

    Rheem, K.S.; Park, W.K.; Yook, C.C.

    1977-01-01

    The strain ageing behaviour of quenched Zircaloy-4 has been studied as a function of ageing time and temperature in the temperature range 523-588 K for a short-ageing time of 1 to 52 seconds. A the test conditions, the strain ageing stress increased with ageing time and temperature at a strain rate of 5.55x10 -4 sec -1 . Applying stress on the quenched Zircaloy-4, the strain ageing effect indicated following two states: an initial stage having an activation energy of 0.39ev considered to be due to Snoek type ordering of interstitial oxygen atoms in the stress field of a dislocaiton and a second stage havingan activation energy of 0.60 ev, due to mainly long range diffusion of oxygen atoms. (author)

  10. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  11. Experimental and numerical analysis of the static and dynamic crack growth resistance behaviour of structural steels in the temperature range from 20 C to 350 C

    International Nuclear Information System (INIS)

    Aurich, D.; Gerwien, P.; Huenecke, J.; Klingbeil, D.; Krafka, H.; Kuenecke, G.; Ohm, K.; Veith, H.; Wossidlo, P.; Haecker, R.

    1998-01-01

    The crack growth resistance behaviour of the steels StE 460 and 22NiMoCr3-7 was determined in the temperature range from 23 C to 350 C by means of C(T), M(T), and ISO-V specimens tested under quasistatic and dynamic loads. The Russian steel 15Ch2NMFA-A was tested at room temperature and 50 C. In the steels StE 460 and 22 NiMoCr3-7, the minimum crack growth resistance is observed at about 250 C, with measured values always being higher for the latter steel type. The crack growth resistance behaviour of the tested materials correlates with the behaviour of flow curve, yield strength, and notch impact toughness as a function of temperature. Impact tests of ISO-V specimens give higher crack resistance values than quasistatic load tests, and the temperature dependence is significantly lower than those of specimens tested under static loads. A metallurgical analysis of the materials shows the causes of the dissimilar behaviour. The stretching zones determined for the C(T) specimen correspond to the toughness of the steels examined, and they are not much influenced by the temperature. The numerical analysis using damaging models for simulation of ductile crack growth is reported for all specimen types and two different temperatures each. (orig./CB) [de

  12. Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest.

    Directory of Open Access Journals (Sweden)

    Carly Starr

    Full Text Available The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert or active behaviour (travel, feeding, grooming, or others. Moon luminosity (bright/dark and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive, and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours.

  13. Connection Temperatures during the Mokrsko Fire Test

    Directory of Open Access Journals (Sweden)

    J. Chlouba

    2009-01-01

    Full Text Available The Mokrsko fire test focused on the overall behaviour of the structure, which cannot be observed on the separate elements, and also on the temperature of connections with improved fire resistance. During the test, measurements were made of the temperature of the gas and of the elements, the overall and relative deformations, gas pressure, humidity, the radiation of the compartment to structural element and the external steel column, transport of the moisture through the walls, and also the climatic conditions. The results of the test show the differences between the behaviour of the element and the behaviour of the structure exposed to high temperatures during a fire. The collapse of the composite slab was reached. The results of the numerical simulations using the SAFIR program compared well with the measured temperature values in the structure and also in the connections. 

  14. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  15. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  16. Temperature behaviour of optical parameters in (Ag3AsS3)0.3(As2S3)0.7 thin films

    Science.gov (United States)

    Kutsyk, Mykhailo M.; Ráti, Yosyp Y.; Izai, Vitalii Y.; Makauz, Ivan I.; Studenyak, Ihor P.; Kökényesi, Sandor; Komada, Paweł; Zhailaubayev, Yerkin; Smailov, Nurzhigit

    2015-12-01

    (Ag3AsS3)0.3(As2S3)0.7 thin films were deposited onto a quartz substrate by rapid thermal evaporation. The optical transmission spectra of thin films were measured in the temperature range 77-300 K. It is shown that the absorption edge spectra are described by the Urbach rule. The temperature behaviour of absorption spectra was studied, the temperature dependences of energy position of absorption edge and Urbach energy were investigated. The influence of transition from three-dimensional glass to the two-dimensional thin film as well as influence of Ag3AsS3 introduction into As2S3 on the optical parameters of (Ag3AsS3)0.3(As2S3)0.7 were analysed. The spectral and temperature behaviour or refractive index for (Ag3AsS3)0.3(As2S3)0.7 thin film were studied.

  17. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  18. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  19. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)- II. High- and low-temperature characteristics

    NARCIS (Netherlands)

    Dekkers, M.J.; Passier, Hilde F.; Schoonen, M.A.A.

    1999-01-01

    The magnetic behaviour of hydrothermally synthesized greigite was analysed in the temperature range from 4 K to 700 °C. Below room temperature, hysteresis parameters were determined as a function of temperature, with emphasis on the temperature range below 50 K. Saturation magnetization and

  20. Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures

    International Nuclear Information System (INIS)

    Jaswin, M. Arockia; Lal, D. Mohan

    2011-01-01

    Research highlights: → Tensile behaviour of cryo-treated valve steels are investigated at elevated temperature. → En 52 and 21-4N valve steel materials are treated at - 196 o C . → Tensile strength of cryo-treated En 52 and 21-4N valve steel has improved by 8 % and 12 % respectively. → Precipitation of fine carbides through cryogenic treatment is the reason for the improved strength. -- Abstract: This experimental study investigates the effects of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures. The materials are subjected to shallow cryogenic treatment (SCT) at 193 K and deep cryogenic treatment (DCT) at 85 K and the tensile behaviour is compared with that of the conventional heat treatment (CHT). The high temperature tensile test is conducted at 673 K (400 o C) and 923 K (650 o C) for the En 52 and 21-4N valve steels respectively. The ultimate tensile strength of the En 52 and 21-4N DCT samples show an enhancement of 7.87% and 6.76% respectively, over the CHT samples tested at the elevated temperature. The average yield strength of the En 52 DCT samples has an improvement 11% than that of the CHT samples when tested at room and elevated temperatures. The deep cryogenic treatment conducted at the optimized condition shows 7.84% improvement in the tensile strength for the En 52 valve steel and 11.87% improvement for the 21-4N valve steel when compared to the strength of the samples without the cryogenic treatment. A scanning electron microscopic analysis of the fracture surface indicates the presence of dimples and microvoid coalescence on the grain facets and interfaces of the cryo-treated specimens. The fracture surface of the deep cryo-treated 21-4N valve steel specimen shows a complete intergranular fracture with deep secondary cracks between the grains. On comparing the results of the percentage elongation, the cryo-treated samples show a smaller reduction in the elongation than that of the

  1. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    International Nuclear Information System (INIS)

    Morais, Marcus V.G. de; Pliya, Prosper; Noumowe, Albert; Beaucour, Anne-Lise; Ortola, Sophie

    2010-01-01

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 o C. The tension stresses in the specimens then exceed the concrete tensile strength.

  2. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    Science.gov (United States)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  3. High temperature oxidation in boiler environment of chromized steel

    Science.gov (United States)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  4. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  5. Thermal conductivity in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Castello, D.J.

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the

  6. The thermal behaviour of cuprite: An XRD-EXAFS combined approach

    International Nuclear Information System (INIS)

    Dapiaggi, M.; Tiano, W.; Artioli, G.; Sanson, A.; Fornasini, P.

    2003-01-01

    Cuprite (Cu 2 O) is a low thermal expansion material with a negative thermal expansion coefficient below room temperature. Its peculiar thermal behaviour encompasses the increase of the shear modulus with increasing temperature, and the presence of rather intense symmetry-forbidden eeo reflections below room temperature. The thermal expansion of cuprite was studied at low temperature (between 5 and 298 K) by means of high-resolution (10 -5 A) X-ray powder diffraction at European Synchrotron Radiation Facility (Grenoble, BM16) and extended X-ray absorption fine structure (EXAFS) (BM29). Negative thermal expansion is confirmed up to 200 K, by EXAFS as well as by XRD measurements, and no sign of transition was found in XRD data. The comparison between EXAFS and XRD results provides a valuable insight into vibrational behaviour of cuprite at low temperature

  7. Behavioural fever is a synergic signal amplifying the innate immune response.

    Science.gov (United States)

    Boltaña, Sebastian; Rey, Sonia; Roher, Nerea; Vargas, Reynaldo; Huerta, Mario; Huntingford, Felicity Anne; Goetz, Frederick William; Moore, Janice; Garcia-Valtanen, Pablo; Estepa, Amparo; Mackenzie, S

    2013-09-07

    Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene-environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity-environment interactions are likely to be under strong positive selection.

  8. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  9. Kinetics of high-temperature oxidation of (Ti,Ta)(C,N)-based cermets

    International Nuclear Information System (INIS)

    Chicardi, E.; Córdoba, J.M.; Gotor, F.J.

    2016-01-01

    Highlights: • The kinetic of high-temperature oxidation of (Ti,Ta)(C,N)-Co cermets was studied. • A parabolic oxidation kinetic was determined in cermets between 700 °C and 1200 °C. • This parabolic kinetic behaviour is due to the existence of a protective layer. • The protective layer formed was a complex Ti_xTa_1_−_xO_2 oxide with rutile structure. • The oxidation rate is controlled by the Ti and O_2 diffusion through the Ti_xTa_1_−_xO_2. - Abstract: The kinetics of the high-temperature oxidation of titanium–tantalum carbonitride-based cermets with different Ti/Ta ratios was studied. Isothermal oxidation tests were conducted under static air for 48 h at temperatures between 700 °C and 1200 °C. The oxidation satisfied the parabolic kinetics, characteristic of the existence of a protective oxide layer. The apparent activation energy suggests the rate-controlling process during oxidation is the simultaneous inward and outward diffusion of oxygen and titanium, respectively, through the formed protective layer, consisting mainly of a rutile phase. A higher Ta(V) content in the rutile decreased the oxygen diffusivity due to the reduction of oxygen vacancy concentration.

  10. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  11. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  12. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  13. Corrosion kinetics at high pressure and temperature of Zr-2.5 Nb with different heat treatments

    International Nuclear Information System (INIS)

    Jaime Solis, F.; Bordoni, Roberto; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela

    2003-01-01

    The corrosion behaviour of Zr-2.5 Nb pressure tube (PT) specimens, with ageing treatments at 400 and 500 C degrees for different times, was studied. The results were analyzed using the corrosion behavior of Zr-20 Nb and Zr-1 Nb samples heat treated during 1 hour at 850 C degrees, cooled in air and aged at the same temperature and times than the PT specimens. The comparison between the corrosion behaviour of Zr-1 Nb and Zr-20 Nb aged coupons with the aged pressure tube specimens, together with the metal/oxide interface morphology of Zr-2.5 Nb specimens, suggest that the increase in the corrosion resistance in the latter coupons is associated with the decomposition of the β-Zr phase. There is also a contribution of α-Zr phase when the ageing temperatures are high enough or the ageing times are long enough, due to a decrease in the Nb content of this phase. This last contribution is associated with an increase in the corrosion resistance of the central zone of pressure tube in the reactor. (author)

  14. Concrete for PCRV's: Mechanical properties at elevated temperatures and residual mechanical behaviour after triaxial preloading

    International Nuclear Information System (INIS)

    Aschl, H.; Moosecker, W.

    1979-01-01

    During the lifetime of reactor vessels stress states will change as a result of changes in loading and heating, shrinkage and creep. For the design of prestressed concrete reactor vessels information is required about the behaviour of concrete under multiaxial short- and long-term loading at elevated temperatures. Therefore, tests were carried out at the Institut fuer Massivbau of the Technical University of Munich to study the properties of mass concrete under uniaxial loading at 353 K. Additionally, biaxial creep of concrete up to 368 K was investigated. Some of the uniaxial test specimens were sealed with a copper foil to avoid drying. The concrete contained calzite gravel. The thermal expansion coefficient of predried concrete was 9.5 x 10 -6 , of sealed concrete 13.6 x 10 -6 and of unsealed concrete 13.2 x 10 -6 . The modulus of elasticity at 353 K (393 K) was reduced by 10 (13)% for sealed and by 15 (22)% for unsealed specimens. Total shrinkage deformations of heated concrete were 190 to 225 microstrains for sealed and 250 to 350 microstrains for unsealed specimens. Creep deformations were highly dependent upon temperature being about 3 times higher at 353 K for sealed and unsealed concrete. (orig.)

  15. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  16. The reliability of structural systems operating at high temperature: Replacing engineering judgement with operational experience

    International Nuclear Information System (INIS)

    Chevalier, M.J.; Smith, D.J.; Dean, D.W.

    2012-01-01

    Deterministic assessments are used to assess the integrity of structural systems operating at high temperature by providing a lower bound lifetime prediction, requiring considerable engineering judgement. However such a result may not satisfy the structural integrity assessment purpose if the results are overly conservative or conversely plant observations (such as failures) could undermine the assessment result if observed before the lower bound lifetime. This paper develops a reliability methodology for high temperature assessments and illustrates the impact and importance of managing the uncertainties within such an analysis. This is done by separating uncertainties into three classifications; aleatory uncertainty, quantifiable epistemic uncertainty and unquantifiable epistemic uncertainty. The result is a reliability model that can predict the behaviour of a structural system based upon plant observations, including failure and survival data. This can be used to reduce the over reliance upon engineering judgement which is prevalent in deterministic assessments. Highlights: ► Deterministic assessments are shown to be heavily reliant upon engineering judgment. ► Based upon the R5 procedure, a reliability model for a structural system is developed. ► Variables must be classified as either aleatory or epistemic to model their impact on reliability. ► Operation experience is then used to reduce reliance upon engineering judgment. ► This results in a model which can predict system behaviour and learn from operational experience.

  17. Risk-taking behaviour of Cape Peninsula high-school students

    African Journals Online (AJOL)

    Risk-taking behaviour of Cape Peninsula high-school students ... Cluster sampling techniques produced a sam- ple of 7 340 ... Over the past 30 or 40 years increasing percent- ages of ..... many adolescents, caution should be exercised when.

  18. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  19. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  20. Oxidation behaviour of titanium in high temperature steam

    International Nuclear Information System (INIS)

    Moroishi, Taishi; Shida, Yoshiaki

    1978-01-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550 0 C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500 0 C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550 0 C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450 0 C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO 2 . Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO 2 scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal. (auth.)

  1. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  2. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  3. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  4. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  5. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    International Nuclear Information System (INIS)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A.; Mondal, K.

    2012-01-01

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M S ) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T 0 ) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M S temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  6. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mondal, K., E-mail: kallol@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2012-12-15

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M{sub S}) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T{sub 0}) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M{sub S} temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  7. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics

    Science.gov (United States)

    Zhang, Ying; Li, Jun; Chai, Xiaona; Wang, Xusheng; Li, Yongxiang; Yao, Xi

    2017-03-01

    Er-doped Bi3Ti1.5W0.5O9 (BTW-x) ferroelectric ceramics were prepared by a conventional solid-state reaction synthesis method, and their structure, electrical properties, up-conversion (UC) luminescence, and temperature sensing behaviour were investigated. A high piezoelectric coefficient d33 (9.6 pC/N), a large remnant polarization Pr (12.75 μC/cm2), a high Curie temperature Tc (730.2 °C), and the optimal luminescent intensity are obtained for the samples at x = 0.05. By changing the Er doped concentration, the BTW-x ceramics are capable of generating various UC spectra and the color could be tunable from green to yellow. According to the fluorescence intensity ratio of green emissions at 532.6 nm and 549.2 nm in the temperature range from 83 K to 423 K, optical temperature sensing properties are investigated and the maximum sensing sensitivity is found to be 0.00314 K-1 at 423 K. The results conclude that BTW-x would be a candidate in high temperature sensor, fluorescence thermometry, and opto-electronic integration applications.

  8. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  9. High temperature phase transitions in nuclear fuels of the fourth generation

    International Nuclear Information System (INIS)

    De Bruycker, F.

    2010-01-01

    Understanding the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents, relevant to the general objectives of nuclear safety research. The main purpose of this thesis is the study of high temperature phase transitions in nuclear materials, with special attention to the candidate fuel materials for the reactors of the 4. Generation. In this framework, material properties need to be investigated at temperatures higher than 2500 K, where equilibrium conditions are difficult to obtain. Laser heating combined with fast pyrometer is the method used at the European Institute for Transuranium Elements (JRC - ITU). It is associated to a novel process used to determine phase transitions, based on the detection, via a suited low-power (mW) probe laser, of changes in surface reflectivity that may accompany solid/liquid phase transitions. Fast thermal cycles, from a few ms up to the second, under almost container-free conditions and control atmosphere narrow the problem of vaporisation and sample interactions usually meet with traditional method. This new experimental approach has led to very interesting results. It confirmed earlier research for material systems known to be stable at high temperature (such as U-C) and allowed a refinement of the corresponding phase diagrams. But it was also feasible to apply this method to materials highly reactive, thus original results are presented on PuO 2 , NpO 2 , UO 2 -PuO 2 and Pu-C systems. (author)

  10. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Science.gov (United States)

    Kolb, Matthias H. H.; Rolli, Rolf; Knitter, Regina

    2017-06-01

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20-30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  12. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Marcus V.G. de, E-mail: mvmorais@unb.b [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Pliya, Prosper [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Noumowe, Albert, E-mail: Albert.Noumowe@u-cergy.f [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Beaucour, Anne-Lise; Ortola, Sophie [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France)

    2010-10-15

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 {sup o}C. The tension stresses in the specimens then exceed the concrete tensile strength.

  13. Experimental confirmation of the ITER cryopump high temperature regeneration scheme

    International Nuclear Information System (INIS)

    Day, C.; Haas, H.

    2007-01-01

    therefore essential for tritium inventory control. In the TIMO test bed at FZK, a half scale pump model of the torus exhaust cryopump with fully ITER relevant cryosorbent coating has been under detailed investigation over the last years, in order to determine the required high temperature regeneration conditions (times, pressures, temperatures). To replicate the ITER conditions most neatly, multi-cycle tests have been performed, aiming to identify any poisoning effects on cryopumping that may arise in the region of high accumulated gas loads of water-likes. Furthermore, the regeneration behaviour of representative water-likes has been investigated by high resolution gas analysis. The regeneration efficiency has been assessed by comparing pumping speeds before and after the contamination of the pump with the high molecular species. This paper summarizes the experimental results and draws conclusions with respect to ITER and the regeneration frequency to be considered for the ITER operational plan. (orig.)

  14. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  15. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  16. High pressure phase behaviour of the binary mixture for the 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and 2-hydroxypropyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Choi, Min-Yong

    2007-01-01

    Experimental data of high pressure phase behaviour for binary mixtures of {carbon dioxide + 2-hydroxyethyl methacrylate (HEMA)}, {carbon dioxide + 2-hydroxypropyl acrylate (HPA)}, and {carbon dioxide + 2-hydroxypropyl methacrylate (HPMA)} were determined using a static type with the variable-volume cell at temperatures from (313.2 to 393.2) K and pressures up to 27.10 MPa. Among these binary experimental data, the bubble-point data were correlated with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule containing two interaction parameters (k ij and η ij ). The (carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems exhibit type-I phase behaviour. At constant pressure, the solubility of HEMA, HPA, and HPMA for the (Carbon dioxide + HEMA), (carbon dioxide + HPA), and (carbon dioxide + HPMA) systems increases as the temperature increases

  17. Some observations on the high temperature oxidation behaviour of plasma sprayed Ni3Al coatings

    International Nuclear Information System (INIS)

    Singh, H.; Prakash, S.; Puri, D.

    2007-01-01

    High temperature oxidation resistance of the superalloys can be greatly enhanced by plasma sprayed coatings and this is a growing industry of considerable economic importance. The purpose of these coatings is to form long-lasting oxidation protective scales. In the current investigation, Ni 3 Al powder was prepared by mechanical mixing of pure nickel and aluminium powders in a ball mill. Subsequently Ni 3 Al powder was deposited on three Ni-base superalloys: Superni 600, Superni 601 and Superni 718 and, one Fe-base superalloy, Superfer 800H by shrouded plasma spray process. Oxidation studies were conducted on the coated superalloys in air at 900 deg. C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. All the coated superalloys nearly followed parabolic rate law of oxidation. X-ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxidation products. The Ni 3 Al coating was found to be successful in maintaining its adherence to the superalloy substrates in all the cases. The oxide scales formed on the oxidised coated superalloys were found to be intact and spallation-free. XRD analysis revealed the presence of phases like NiO, Al 2 O 3 and NiAl 2 O 4 in the oxide scales, which are reported as protective oxides against high temperature oxidation. The XRD results were further supported by SEM/EDAX and EPMA

  18. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; Deng, Lei; Wang, Xinyun, E-mail: wangxy_hust@163.com

    2015-02-11

    The high-temperature deformation behaviour and microstructure evolution of an extruded Al-Cu-Li alloy were investigated by compression tests conducted at various temperatures (613, 673 and 733 K) with various strain rates (0.001, 0.01, and 0.1 s{sup -1}). The results indicated that the deformation activation energy increased from 208.7 kJ/mol to 255.7 kJ/mol with an increase in strain from 0.1 to 0.7. The electron backscatter diffraction maps indicated that a dynamic recrystallisation occurred during the high-temperature deformation. Two types of recrystallisation mechanisms, grain boundary bulging and a grain boundary transformation from low misorientation to high misorientation, were considered as the mechanisms for controlling the formation of the recrystallised grains. A new dynamic recrystallisation model containing these two mechanisms was proposed to describe the microstructure evolution of the extruded Al-Cu-Li alloy. At the early stage of the deformation, the recrystallised grains were formed by grain boundary bulging along the original grain boundaries. With increasing strain, recrystallised grains were gradually generated in the deformed grains due to the transformation from low angle boundaries to high angle boundaries.

  19. Some factors influencing the creep behaviour of alloy 800

    International Nuclear Information System (INIS)

    Asbury, F.E.; Willoughby, G.

    1975-01-01

    Studies have been made of the stability of the creep behaviour of two commercial casts of Incoloy 800, one high carbon and the other low carbon. The effects of pre-ageing, of prolonged creep up to 10 4 hours duration, and of grain size were investigated. Three factors were found to excercise a major influence on creep behaviour. Firstly, when the high carbon alloy was heat treated at 1150degC super-saturation effects, ascribed principally to carbon, gave some initial strengthening which would not, however, persist for the duration of service life in nuclear power plant applications above 600degC. Secondly, a gamma-dash type phase precipitated readily at 550 to 600degC, giving a marked increase in creep strength. Nucleation was sluggish at higher temperatures but once established, this form of strengthening could persist up to at least 650degC. Creep under non-isothermal conditions at 600 to 700degC would be complex on account of the behaviour of this phase. The hardening associated with its precipitation was greater in the low carbon alloy. Finally it was demonstrated that, in spite of gamma-dash precipitation, fine grained low carbon material was weak in creep at low stresses and temperatures. This was ascribed to the occurrence of grain boundary diffusion creep. It appears that this source of weakening would persist in service, and severely restrict the maximum temperature of usage for fined grained high tensile material. (author)

  20. High temperature corrosion studies on friction-welded dissimilar metals

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2006-01-01

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na 2 SO 4 + V 2 O 5 (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound

  1. High temperature corrosion studies on friction-welded dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, N. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India)]. E-mail: arivadmt@iitr.ernet.in; Singh, Surendra [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Prakash, Satya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee (India); Reddy, G.M. [Defense Metallurgical and Research Laboratory, Hyderabad (India)

    2006-07-25

    Understanding the behaviour of weldment at elevated temperatures and especially their corrosion behaviour has become an object of scientific investigation recently. Investigation has been carried out on friction-welded AISI 4140 and AISI 304 under molten salt of Na{sub 2}SO{sub 4} + V{sub 2}O{sub 5} (60%) environment at 500 and 550 deg. C under cyclic condition. The influences of welding parameters on the hot corrosion have been discussed. The resulting oxide scales in the weldment have been characterized systematically using surface analytical techniques. Scale thickness on low alloy steel side was found to be more and was prone to spalling. Weld region has been found to be more prone to degradation than base metals due to inter diffusion of element across the interface and the formation of intermetallic compound.

  2. Corrosion behaviour of Mg/Al alloys in high humidity atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Arrabal, R.; Pardo, A.; Merino, M.C.; Mohedano, M.; Casajus, P. [Facultad de Quimicas, Departamento de Ciencia de Materiales, Universidad Complutense, 28040 Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, Villanueva de la Canada, 28691 Madrid (Spain)

    2011-04-15

    The influence of relative humidity (80-90-98% RH) and temperature (25 and 50 C) on the corrosion behaviour of AZ31, AZ80 and AZ91D magnesium alloys was evaluated using gravimetric measurements. The results were compared with the data obtained for the same alloys immersed in Madrid tap water. The corrosion rates of AZ alloys increased with the RH and temperature and were influenced by the aluminium content and alloy microstructure for RH values above 90%. The initiation of corrosion was localised around the Al-Mn inclusions in the AZ31 alloy and at the centre of the {alpha}-Mg phase in the AZ80 and AZ91D alloys. The {beta}-Mg{sub 17}Al{sub 12} phase acted as a barrier against corrosion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Oxidation behaviour of titanium in high temperature steam

    Energy Technology Data Exchange (ETDEWEB)

    Moroishi, T; Shida, Y [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Central Research Labs.

    1978-03-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550/sup 0/C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500/sup 0/C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550/sup 0/C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450/sup 0/C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO/sub 2/. Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO/sub 2/ scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal.

  4. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  5. Sexual risk behaviours of high school female learners in Mbonge subdivision of rural Cameroon.

    Science.gov (United States)

    Tarkang, Elvis Enowbeyang

    2015-01-01

    Since female learners in high schools in Cameroon fall within the age group hardest hit by HIV/AIDS, it is assumed that these learners might be exposed to sexual risk behaviours. However, little has been explored on the sexual risk behaviours of high school female learners in Cameroon. This study aimed at examining the sexual risk behaviours of high school female learners in Mbonge subdivision of rural Cameroon. A cross sectional design was adopted, using a self-administered questionnaire for data collection. Respondents were selected through disproportional stratified simple random sampling resulting in 210 female grade 10 to grade 12 learners from three participating high schools in Mbonge subdivision, Cameroon. Descriptive and inferential statistics were calculated using SPSS version 20 software program. Majority of the respondents, 54.0% reported being sexually active, of whom only 39.8% used condoms during first sex; 49.5% used condoms during last sex and 29.6% used condoms consistently. Up to 32% of the sexually active respondents had multiple sexual partners in the past one year before the study, while 9.3% had multiple sexual partners during the study period. The mean age of first sex was 15.6 years. Lack of parental control, religion, academic profile, poverty, place of residence and perception of risk of HIV infection were the main factors significantly associated with sexual risk behaviours. The findings indicate that sexual risk behaviours exist among high school female learners in Mbonge, Cameroon. There is need for campaigns and interventions to bring about sexual behaviour change.

  6. Analysis of elevated temperature flow and work hardening behaviour of service-exposed 2.25Cr-1Mo steel using Voce equation

    International Nuclear Information System (INIS)

    Girish Shastry, C.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2004-01-01

    The Voce equation was used to model the tensile flow and work-hardening behaviour of a service-exposed 2.25Cr-1Mo steel. The applicability of Voce parameters obtained from the fit to experimental true stress-true strain datasets for estimating the validity of the fit was examined. The Voce equation was found to model the stress-strain curve closely. The Voce parameter n v was correlated to the underlying dislocation activities. It was found that the values of Voce parameters at various temperatures and strain rates can be used to infer the operating recovery mechanism during stage III hardening. A low absolute value of n v is indicative of recovery by cross-slip, whereas the high temperature transition to climb or sub-boundary migration driven recovery is accompanied by an increase in the value of n v

  7. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  8. High-temperature stability of thermoelectric Ca3Co4O9 thin films

    DEFF Research Database (Denmark)

    Brinks, P.; Van Nong, Ngo; Pryds, Nini

    2015-01-01

    An enhanced thermal stability in thermoelectric Ca3Co4O9 thin films up to 550 °C in an oxygen rich environment was demonstrated by high-temperature electrical and X-ray diffraction measurements. In contrast to generally performed heating in helium gas, it is shown that an oxygen/helium mixture...... provides sufficient thermal contact, while preventing the previously disregarded formation of oxygen vacancies. Combining thermal cycling with electrical measurements proves to be a powerful tool to study the real intrinsic thermoelectric behaviour of oxide thin films at elevated temperatures. © 2015 AIP...

  9. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  10. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  11. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.

    Science.gov (United States)

    Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert

    2018-05-01

    In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Temporal chlorophyll fluorescence signals to track changes in optical properties of maturing rice panicles exposed to high night temperature

    Czech Academy of Sciences Publication Activity Database

    Šebela, David; Quiňones, C.; Olejníčková, Julie; Jagadish, K. S. V.

    2015-01-01

    Roč. 177, jun (2015), s. 75-85 ISSN 0378-4290 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk EE2.3.20.0246 Institutional support: RVO:67179843 Keywords : chlorophyll fluorescence (Chl-F) * grain filling * high night temperature (HNT) * maturing panicle * reflectance * Rice (Oryza sativa) Subject RIV: EH - Ecology, Behaviour Impact factor: 2.927, year: 2015

  13. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  14. Effects of ambient temperature and early open-field response on the behaviour, feed intake and growth of fast- and slow-growing broiler strains.

    Science.gov (United States)

    Nielsen, B L

    2012-09-01

    Increased activity improves broiler leg health, but also increases the heat production of the bird. This experiment investigated the effects of early open-field activity and ambient temperature on the growth and feed intake of two strains of broiler chickens. On the basis of the level of activity in an open-field test on day 3 after hatching, fast-growing Ross 208 and slow-growing i657 chickens were allocated on day 13 to one of the 48 groups. Each group included either six active or six passive birds from each strain and the groups were housed in floor-pens littered with wood chips and fitted with two heat lamps. Each group was fed ad libitum and subjected to one of the three temperature treatments: two (HH; 26°C), one (HC; 16°C to 26°C) or no (CC; 16°C) heat lamps turned on. Production and behavioural data were collected every 2 weeks until day 57. For both strains, early open-field activity had no significant effects on their subsequent behaviour or on any of the production parameters measured, and overall, the slow-growing strain was more active than the fast-growing strain. Ambient temperature had significant effects on production measures for i657 broilers, with CC chickens eating and weighing more, and with a less efficient feed conversion than HH chickens, with HC birds intermediate. A similar effect was found for Ross 208 only for feed intake from 27 to 41 days of age. Ross 208 chickens distributed themselves in the pen with a preference for cooler areas in the hottest ambient temperature treatments. In contrast, the behaviour of the slow-growing strain appeared to be relatively unaffected by the ambient temperature. In conclusion, fast-growing broilers use behavioural changes when trying to adapt to warm environments, whereas slow-growing broilers use metabolic changes to adapt to cooler ambient temperatures.

  15. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  16. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  17. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  18. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  19. Construction of sputtering system and preparation of high temperature superconducting thin films

    International Nuclear Information System (INIS)

    Kaynak, E.

    2000-01-01

    The preparation of high T c superconducting thin film is important both for the understanding of fundamental behaviours of these materials and for the investigations on the usefulness of technological applications. High quality thin films can be prepared by various kinds of techniques being used today. Among these, sputtering is the most preferred one. The primary aim of this work is the construction of a r. f. and c. magnetron sputtering system. For this goal, a magnetron sputtering system was designed and constructed having powers up to 500W (r.f.) and 1KW (d.c.) that enables to deposit thin films of various kinds of materials: metals, ceramics and magnetic materials. The temperature dependence of the electrical resistance of the films was investigated by using four-point probe method. The zero resistance and the transition with of the films were measured as 80-85 K, and 2-9 K, respectively. The A.C. susceptibility experiments were done by utilising the system that was designed and constructed. The applied field dependence of the real and imaginary components of the susceptibility that were measured between the 77-120 K temperature interval and at a fixed frequency was investigated

  20. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    , i.e. cathode and anode gas flows and temperature by using mass flow controllers and controlled heaters. Using this system the methanol reformer is characterized in its different operating points, both steady-state but also dynamically. Methanol steam reforming is a well known process, and provides...... and burner and the behaviour of the CO concentration of the reformate gas....... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact...

  1. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Matthias H.H., E-mail: matthias.kolb@kit.edu; Rolli, Rolf; Knitter, Regina

    2017-06-15

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20–30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  2. Problems to be solved about inelastic behaviour of materials and inelastic analysis of structures at elevated temperature

    International Nuclear Information System (INIS)

    Ledermann, P.; Escatha, Y. d'.

    1981-01-01

    At elevated temperature, ASME CODE CASE N 47 demands, in its design and analysis part to demonstrate that none of eight damages, related to the monotonic and cyclic inelastic behaviour of the material and structure, will happen during the whole life of the reactor. However this demonstration, for strain limits and creep fatigue failure, using a purely elastic analysis as in the ASME CODE Section III, is usually impossible. Inelastic analysis is then necessary. We review some of the research work (theorical and experimental) which is being done to qualify methods for an inelastic analysis of structures at elevated temperature [fr

  3. Development of a deformation and failure model for Zircaloy at high temperatures for light water reactor loss-of-coolant-accident investigations

    International Nuclear Information System (INIS)

    Raff, S.

    1982-11-01

    To describe Zircaloy-4 deformation and failure behaviour at high temperatures (600 to 1400 0 C), the phenomenological model NORA was developed and verified against numerous experimental results. The model can be applied to the calculation of fuel rod cladding deformation during small and large break loss-of-coolant-accidents. (orig./RW) [de

  4. Influence of microstructure on the low and high cycle fatigue behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Srivastava, V.; Padmanabhan, K.A.

    2001-01-01

    This paper reports the room temperature monotonic and cyclic stress-strain (CSS) response, the low and high cycle fatigue behaviour of a medium carbon microalloyed (MA) steel in different microstructural conditions obtained by isothermal transformation at 973, 773 and 573 K following austenitizing at 1123 K. The isothermal transformations resulted in coarse pearlite (CP), fine pearlite (FP), and acicular ferrite/bainite (AF/B) microstructures, respectively. In low cycle fatigue, the CP and FP microstructures exhibited cyclic softening at low total strain amplitudes ( cys ) of the material and was approximately equal to 0.7σ cys . (orig.)

  5. An investigation of dynamic mechanical behaviour of Ti6Al4V titanium alloy at room temperature

    Directory of Open Access Journals (Sweden)

    Ran Chun

    2016-01-01

    Full Text Available To study the high strain rate shear behaviour of Ti6Al4V titanium alloy, a series of dynamic compression experiments has been performed by split Hopkinson pressure bar (SHPB using Flat Hat-shaped specimen at room temperature. Macro true shear stress-true strain curves were obtained under different strain rate loading conditions at room temperature. The effects of strain hardening and strain rate hardening on the dynamic mechanical properties of Ti6Al4V titanium alloy were discussed. Results indicate that a The higher the strain rate, the higher the flow stress, therefore, the material has obvious strain rate hardening effect, b It is ductile failure for Ti6Al4V titanium alloy under quasi-static loading condition, c For dynamical tests, the values for true shear stress increase with increasing true strain till the maximum true shear stress, on the contrary, the values for true shear stress decrease with increasing the true strain after the maximum true shear stress and d The flow stress increases with increasing the true strain under quasi-static loading condition during the plastic deformation.

  6. Effect of Temperature on Oscillatory Behaviour of the System Containing Isomers of Hydroxybenzoic Acid in Batch Reactor

    Directory of Open Access Journals (Sweden)

    Masood A. Nath

    2008-01-01

    Full Text Available In the present paper a thorough study of temperature dependence on oscillatory behaviour of the Belousov-Zhabotinsky (BZ system containing the isomers of hydroxybenzoic acids + BrO3-+ Mn(II in aqueous acid medium (1.0 M H2SO4 at a fixed concentration of reacting species has been reported. On varying temperature, the oscillatory parameters like induction time, time period and number of oscillations show marked changes. These changes arise due to the position and number of hydroxyl groups in these isomers which affect the oscillations. Experimental observations have satisfactorily been explained by FKN mechanism and kinetic parameters. The oscillatory characteristics depend on the temperature dependence of the rate constant of the reaction controlling the inhibitory reaction steps (negative feedback

  7. Magnetic field and pressure dependant resistivity behaviour of MnAs

    Science.gov (United States)

    Satya, A. T.; Amaladass, E. P.; Mani, Awadhesh

    2018-04-01

    The studies on the effect of magnetic field and external pressure on temperature dependant electrical resistivity behaviour of polycrystalline MnAs have been reported. At ambient pressure, ρ(T) shows a first order magnetic transition associated with change in sign of the temperature coefficient of resistivity from positive in the ferromagnetic (FM) phase to negative in the paramagnetic (PM) phase. The magneto resistance is negative and shows a peak at the FM transition temperature (T C ). The first order hysteresis width decreases with increase in magnetic field and the intersection of extrapolated linear variations of T C with field for the cooling and warming cycles enabled determination of the tricritical point. At high pressures, ρ(T) displays non monotonic variation exhibiting a low temperature minimum ({T}\\min L) and a high temperature maximum ({T}\\max H) accompanying broad thermal hysteresis above {T}\\min L. It is surmised that spin disorder scattering is responsible for the resistivity behaviour above {T}\\min L and the essential features of ρ(T) are qualitatively explained using Kasuya theoretical model. Below the {T}\\min L, ρ(T) follows linear logarithmic temperature dependence similar to the effect occurring due to Kondo type of scattering of conduction electrons with localised moments.

  8. Advanced Characterization Techniques for Silicon Carbide and Pyrocarbon Coatings on Fuel Particles for High Temperature Reactors (HTR)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, V.; Charollais, F. [CEA Cadarache, DEN/DEC/SPUA, BP 1, 13108 St Paul Lez Durance (France); Dugne, O. [CEA Marcoule, DEN/DTEC/SCGS BP 17171 30207 Bagnols sur Ceze (France); Garcia, C. [Laboratoire des Composites Thermostructuraux (LCTS), UMR CNRS 5801, 3 allee de La Boetie, 33600 Pessac (France); Perez, M. [CEA Grenoble DRT/DTH/LTH, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2008-07-01

    Cea and AREVA NP have engaged an extensive research and development program on HTR (high temperature reactor) fuel. The improving of safety of (very) high temperature reactors (V/HTR) is based on the quality of the fuel particles. This requires a good knowledge of the properties of the four-layers TRISO particles designed to retain the uranium and fission products during irradiation or accident conditions. The aim of this work is to characterize exhaustively the structure and the thermomechanical properties of each unirradiated layer (silicon carbide and pyrocarbon coatings) by electron microscopy (SEM, TEM), selected area electronic diffraction (SEAD), thermo reflectance microscopy and nano-indentation. The long term objective of this study is to define pertinent parameters for fuel performance codes used to better understand the thermomechanical behaviour of the coated particles. (authors)

  9. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  10. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  11. On the unusual magnetic behaviour of CeRh3B2

    International Nuclear Information System (INIS)

    Galatanu, A; Yamamoto, E; Okubo, T; Yamada, M; Thamizhavel, A; Takeuchi, T; Sugiyama, K; Inada, Y; Onuki, Y

    2003-01-01

    CeRh 3 B 2 is a ferromagnet with an unexpectedly high Curie temperature and low saturation magnetic moments. The origin of its unusual magnetic behaviour remains unelucidated despite various investigations performed in the last two decades. Here we present magnetic results obtained on high-quality single crystals over a wide temperature range. Some new magnetic features are uncovered and possible approaches to explaining its magnetism are briefly discussed

  12. THE RETENTION OF KRYPTON IN POLYCRYSTALLINE SILICON DURING HIGH-TEMPERATURE ANNEALING

    NARCIS (Netherlands)

    GREUTER, MJW; NIESEN, L; VANVEEN, A; EVANS, JH

    1994-01-01

    In a study into the annealing behaviour of silicon containing a few atomic per cent of krypton, it was found that, even at 0.87 of the silicon melting temperature, approximately 90% of the original krypton was still present. This result is compared with analogous work on metals where copious inert

  13. Fatigue Behaviour of High Performance Cementitious Grout Masterflow 9500

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes the fatigue behaviour of the high performance grout MASTERFLOW 9500 subjected to cyclic loading, in air as well as submerged in water, at various frequencies and levels of maximum stress. Part of the results were also reported in [1] together with other mechanical...

  14. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  15. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  16. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  17. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    International Nuclear Information System (INIS)

    Moreira, Uebert G.; Dominguez, Dany S.

    2017-01-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  18. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  19. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator.

    Science.gov (United States)

    Ozawa, Rika; Nishimura, Osamu; Yazawa, Shigenobu; Muroi, Atsushi; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-11-01

    Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent. © 2012 Blackwell Publishing Ltd.

  20. Influence of microstructure on the room temperature flow behaviour of Mod. 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kishore, R.; Singh, R.N.; Kashyap, B.P.

    2005-01-01

    The normalizing heat treatment conditions of T-91 grade steel were altered in order to get different austenite/martensite packet grain sizes. Tempering of the steel was carried out at (1) peak hardening temperature and (2) at temperature closer to commercial treatment. Tempering of these specimens, austenitized at a chosen temperature, at the two tempering temperatures resulted in the modification of the fine scale structure by the formation of different carbide types and their distribution. Tensile testing of these specimens (under all the three conditions) was conducted at ambient temperature in order to study the influence of the microstructures on the deformation behaviour. The flow stress, hardness and room temperature impact toughness showed an inverse relation with the martensite packet/austenite grain size. The deformation behavior of the specimens under the three heat treatment conditions was analyzed according to Ashby's model was made assuming. The slip length, λ g , was estimated from the σ-ε 1/2 plot and compared with the relevant microstructure parameters. The as-received material was seen to undergo aligatoring damage during cold rolling and a modification in their microstructure could render a defect free product. (author)

  1. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  2. On the electrical contact and long-term behavior of compression-type connections with conventional and high-temperature conductor ropes with low sag

    International Nuclear Information System (INIS)

    Hildmann, Christian

    2016-01-01

    In Germany and in Europe it is due to the ''Energiewende'' necessary to transmit more electrical energy with existing overhead transmission lines. One possible technical solution to reach this aim is the use of high temperature low sag conductors (HTLS-conductors). Compared to the common Aluminium Conductor Steel Reinforced (ACSR), HTLS-conductors have higher rated currents and rated temperatures. Thus the electrical connections for HTLS-conductors are stressed to higher temperatures too. These components are most important for the safe and reliable operation of an overhead transmission line. Besides other connection technologies, hexagonal compression connections with ordinary transmission line conductors have proven themselves since decades. From the literature, mostly empirical studies with electrical tests for compression connections are known. The electrical contact behaviour, i.e. the quality of the electrical contact after assembly, of these connections has been investigated insufficiently. This work presents and enhances an electrical model of compression connections, so that the electrical contact behaviour can be determined more accurate. Based on this, principal considerations on the current distribution in the compression connection and its influence on the connection resistance are presented. As a result from the theoretical and the experimental work, recommendations for the design of hexagonal compression connections for transmission line conductors were developed. Furthermore it is known from the functional principle of compression type connections, that the electrical contact behaviour can be influenced from their form fit, force fit and cold welding. In particular the forces in compression connections have been calculated up to now by approximation. The known analytical calculations simplify the geometry and material behaviour and do not consider the correct mechanical load during assembly. For these reasons the joining process

  3. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  4. Taking water-based mud to extremes : new ultra-high temperature water-based mud development and applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Conn, L.; Cullum, D.; Ray, R.; Marinescu, P. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The design, development and field applications of an ultra-high temperature water-based mud used for drilling very deep and hot wells in continental Europe was described. Basin-centred gas production from unconventional tight sands represents a significant resources that may revive exploration and gas production. However, these accumulations lie deep down from normal-pressure reservoirs and the bottom hole static temperatures are greater than 200 degrees C. In addition, they host acid gases such as carbon dioxide and hydrogen sulfide. As such, there are severe limitations on the design and choice of drilling fluids. This paper also described the extensive laboratory work that is needed to optimize the formulation of drilling fluids for high densities and extreme high temperatures. The lessons learned were described with reference to critical engineering guidelines for running a water-based system in such harsh conditions. The effectiveness of new fluids in delivering optimum drilling in extreme high temperature high pressure (HTHP) conditions were demonstrated using a unique software program that predicted the rheological behaviour, pressure losses, equivalent circulating density and equivalent static density. The new water-based system proved to be effective in drilling HTHP wells in areas where invert emulsion drilling fluid systems are not allowed.

  5. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  6. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  7. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  8. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    OpenAIRE

    Y. A. ABDELAZIZ; F. M. MEGAHED

    2010-01-01

    An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω) from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the...

  9. On the thermal behaviour of Boom clay

    International Nuclear Information System (INIS)

    Delage, P.; Cui Yu Jun; Sultan, N.

    2004-01-01

    When temperature is increased, the various phenomena that occur in a saturated natural potential host clay for nuclear waste disposal (Boom clay from SCK-CEN in Mol, Belgium) were experimentally investigated in a temperature controlled high stress triaxial cell. Firstly, the pore pressure build-up due to the difference in thermal dilation of both water and minerals was investigated through thermal consolidation tests. Interesting information was obtained about the dissipation of thermally induced pore pressure in Boom clay, based on the standard Terzaghi consolidation theory. Secondly, the volume change behaviour in drained conditions (i.e. under a very slow temperature increase) confirmed that the clay overconsolidation ratio (OCR) controlled the nature of the volume changes. Whereas overconsolidated soils use to dilate as any material when temperature is elevated, normally consolidated soils present a decrease in volume, which is less common. The principles of a coupled thermo-elasto-plastic model that was specifically developed to model this particular behaviour are finally presented. Obviously, it appears necessary to account in detail for these thermal phenomena in order to properly understand the response of the geological barrier in the near field once nuclear waste has been stored. (orig.)

  10. Defect trap model of gas behaviour in UO2 fuel during irradiation

    International Nuclear Information System (INIS)

    Szuta, A.

    2003-01-01

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO 2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO 2 fuel; microstructure of the UO 2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO 2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO 2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO 2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO 2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO 2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  11. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  12. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  13. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  14. INFLUENCE OF MARKETING COMMUNICATIVE STRATEGIES ON CONSUMER BEHAVIOUR: A CASE OF THE HIGH-TECHNOLOGY MARKET OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Victoria Zhurylo

    2017-11-01

    Full Text Available The purpose of the study is to research consumer behaviour types and to develop marketing strategies of communicative influence on the consumer in the high-technology goods market. Methodology. Marketing research in Ukrainian market of high-tech goods is conducted to define motivations of the consumers and the peculiarities of their market behaviour. The profiles of target customers are developed and the typology of consumer behaviour is formed, based on the reasons of purchasing of high-tech goods and on the level of consumer involvement in the purchasing process. Results showed that Highly Rational, Cautious, and Demonstrative behaviours can be observed in case of high consumer involvement in the buying process. Rationally-Confident, Comfortable, Adaptive behaviour can be observed in the case of low involvement. The peculiarities of communicative influence for each type of consumer behaviour in the market of high-tech goods are determined and the appropriate strategies of marketing communication are offered. Practical implementation. Strategies of communicative influence and communication sources depend on consumer behavioural types and the stage of the process of adopting innovations. In case of highly rational consumer behaviour, generic strategy, benefit strategy, and unique technical advantage strategies are recommended to be used as the main communicative strategies. Benefit strategy, unique technical advantage strategy, positioning strategy should be used in the case of rationally confident behaviour. The technology of intrusion, intimidation, positioning strategy, affective strategy, and resonance strategy should be used in the case of cautious consumer behaviour. Brand strategy should be used in the case of demonstrative consumer behaviour. The communicative strategies of product positioning and the strategy of resonance can be used in the case of comfortable consumer behaviour. Brand strategy is the main communicative strategy in the

  15. Multi-scale modelling of the physicochemical-mechanical coupling of fuel behaviour at high temperature in pressurized water reactors

    International Nuclear Information System (INIS)

    Julien, Jerome

    2008-01-01

    Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) while taking internal pressures as well as the fuel macroscopic viscoplastic behaviour into account. The author finally describes how to couple this micromechanical mode to physics-chemistry models [fr

  16. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  17. Experimental and numerical study of the high-temperature structure of copper single crystal surfaces

    International Nuclear Information System (INIS)

    Loisel, Bertrand

    1989-01-01

    The structure of copper single crystal surfaces has been investigated on an atomic scale using two complementary tools: helium beam diffraction experiments and computer simulations by molecular dynamics. In the case of stepped surfaces, the roughening transition occurs at low temperature. Our helium beam diffraction experiments in the range 70-1000 K reveal this transition at 650±50 K and 150±50 K respectively on the (331) and (310) surfaces. We emphasize the role of the terrace and step structure on the thermal roughness, which is ruled by microscopic energies related to the creation and interaction of defects on the step edges. Adsorbing oxygen on a rough (310) surface gives rise to ordered superstructures. In our computer simulations, the interatomic forces are derived from an empiric N-body potential which leads to a realistic description of the static and dynamical properties of the bulk metal and its surfaces. We analyze the results of high-temperature simulations on the (110) surface. Two types of disorder are distinguished: the creation of adatom-vacancy pairs and the enhancement of the vibrational amplitudes of the atoms near their equilibrium site. We establish that both phenomena take place in the same temperature range. These simulations also indicate the very anisotropic behaviour of the surface at high temperatures (> 1000 K). (author) [fr

  18. Risk-taking behaviour ofCape Peninsula high-school students

    African Journals Online (AJOL)

    behaviour aD10ng high-school students in the. Cape Peninsula ... During the previous year, 8,5% of the students had been involved in a ... mental and social factors associated with this life phase. These include ..... responsibility. An example of ... Hurrelmann K. Health promotion for adolescems: preventive and corrective ...

  19. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  20. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  1. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  2. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  3. Dynamic critical behaviour and scaling

    International Nuclear Information System (INIS)

    Oezoguz, B.E.

    2001-01-01

    Traditionally the scaling is the property of dynamical systems at thermal equilibrium. In second order phase transitions scaling behaviour is due to the infinite correlation length around the critical point. In first order phase transitions however, the correlation length remains finite and a different type of scaling can be observed. For first order phase transitions all singularities are governed by the volume of the system. Recently, a different type of scaling, namely dynamic scaling has attracted attention in second order phase transitions. In dynamic scaling, when a system prepared at high temperature is quenched to the critical temperature, it exhibits scaling behaviour. Dynamic scaling has been applied to various spin systems and the validity of the arguments are shown. Firstly, in this thesis project the dynamic scaling is applied to 4-dimensional using spin system which exhibits second order phase transition with mean-field critical indices. Secondly, it is shown that although the dynamic is quite different, first order phase transitions also has a different type of dynamic scaling

  4. An analytical description of the low temperature behaviour of a weakly interacting Bose gas

    International Nuclear Information System (INIS)

    Su Guozhen; Chen Lixuan; Chen Jincan

    2004-01-01

    An analytical description of the low temperature behaviour of a trapped interacting Bose gas is presented by using a simple approach that is based on the principle of the constancy of chemical potentials in equilibrium and the local-density approximation. Several thermodynamic quantities, which include the ground-state fraction, chemical potential, total energy, entropy and heat capacity, are derived analytically. It is shown that the results obtained here are in excellent agreement with the experimental data and the theoretical predictions based on the numerical calculation. Meanwhile, by selecting a suitable variable, the divergent problem existing in some papers is solved

  5. A Path Model of Smoking Behaviour among Senior High School Students in Taiwan

    Science.gov (United States)

    Chen, Yi-Chun; Huang, Hui-Wen; Cheng, Chung-Ping; Hsieh, Hsin-Chin; Huang, Chih-Ling

    2016-01-01

    Objective: The purpose of this study was to explore the ways in which social smoking expectations mediate the relationship between adolescent smoking behaviour and the smoking behaviour of family and peers. Design: Descriptive, cross-sectional survey. Setting: Taiwan, Republic of China. Method: The participants were 921 senior high school students…

  6. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  7. Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings.

    Science.gov (United States)

    McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y

    2017-12-28

    Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.

  8. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  9. Behavioural Economics, Consumer Behaviour, and Consumer Policy

    DEFF Research Database (Denmark)

    Reisch, Lucia A.; Zhao, Min

    2017-01-01

    . In particular, we discuss the impacts of key principles such as status quo bias, the endowment effect, mental accounting and the sunkcost effect, other heuristics and biases related to availability, salience, the anchoring effect and simplicity rules, as well as the effects of other supposedly irrelevant...... factors such as music, temperature and physical markers on consumers’ decisions. These principles not only add significantly to research on consumer behaviour – they also offer readily available practical implications for consumer policy to nudge behaviour in beneficial directions in consumption domains...... including financial decision making, product choice, healthy eating and sustainable consumption....

  10. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  11. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  12. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  13. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    de Weerd, N.; van Langevelde, F.; van Oeveren, H.; Nolet, Bart A.; Kölzsch, Andrea; Prins, H.H.T.; De Boer, W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  14. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    Weerd, de N.; Langevelde, van F.; Oeveren, van H.; Nolet, B.A.; Kölzsch, A.; Prins, H.H.T.; Boer, de W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data.We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  15. The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature.

    Science.gov (United States)

    Du, Wei-Guo; Shine, Richard

    2015-02-01

    Temperature profoundly affects the rate and trajectory of embryonic development, and thermal extremes can be fatal. In viviparous species, maternal behaviour and physiology can buffer the embryo from thermal fluctuations; but in oviparous animals (like most reptiles and all birds), an embryo is likely to encounter unpredictable periods when incubation temperatures are unfavourable. Thus, we might expect natural selection to have favoured traits that enable embryos to maintain development despite those fluctuations. Our review of recent research identifies three main routes that embryos use in this way. Extreme temperatures (i) can be avoided (e.g. by accelerating hatching, by moving within the egg, by cooling the egg by enhanced rates of evaporation, or by hysteresis in rates of heating versus cooling); (ii) can be tolerated (e.g. by entering diapause, by producing heat-shock proteins, or by changing oxygen use); or (iii) the embryo can adjust its physiology and/or developmental trajectory in ways that reduce the fitness penalties of unfavourable thermal conditions (e.g. by acclimating, by exploiting brief windows of favourable conditions, or by producing the hatchling phenotype best suited to those incubation conditions). Embryos are not simply passive victims of ambient conditions. Like free-living stages of the life cycle, embryos exhibit behavioural and physiological plasticity that enables them to deal with unpredictable abiotic challenges. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  16. Laboratory Investigation of High Temperature Corrosion in Straw fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie

    1998-01-01

    Corrosion in straw-fired power plants has been studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C metal temperature for upto 300 hours.In addition the corrosion behaviour of the same materials was examined in ash taken from a straw-fired...

  17. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  18. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  19. Defect assessment procedures at high temperature

    International Nuclear Information System (INIS)

    Ainsworth, R.A.

    1991-01-01

    A comprehensive assessment procedure for the high-temperature response of structures is being produced. The procedure is referred to as R5 and is written as a series of step-by-step instructions in a number of volumes. This paper considers in detail those parts of R5 which address the behaviour of defects. The defect assessment procedures may be applied to defects found in service, postulated defects, or defects formed during operation as a result of creep-fatigue loading. In the last case, a method is described for deducing from endurance data the number of cycles to initiate a crack of a specified size. Under steady loading, the creep crack tip parameter C * is used to assess crack growth. Under cyclic loading, the creep crack growth during dwell periods is stiell governed by C * but crack growth due to cyclic excursions must also be included. This cyclic crack growth is described by an effective stress intensity factor range. A feature of the R5 defect assessment procedures in that they are based on simplified methods and approximate reference stress methods are described which enable C * in a component to be evaluated. It is shown by comparison with theoretical calculations and experimental data that reliable estimates of C * and the associated crack growth are obtained provided realistic creep strain rate date are used in the reference stress approximation. (orig./HP)

  20. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  1. Climate and the evolution of group-living behaviour in the armadillo ...

    African Journals Online (AJOL)

    autumn period of low food availability and resulted in the evolution of heavy armour and group-living behaviour. The moderate winters and early spring temperatures allowed full capitalization on high arthropod abundance during winter–spring, ...

  2. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  3. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Science.gov (United States)

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  5. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  6. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  7. On the time and temperature dependent behaviour of laminated amorphous polymers subjected to low-velocity impact

    CERN Document Server

    Rühl, Andreas

    2017-01-01

    The thesis investigates a polymeric laminate consisting of poly(methyl methacrylate) (PMMA) and thermoplastic polyurethane (TPU) experimentally and numerically with regard to its impact behaviour and applicability. After a basic characterization of the monolithic materials, PMMA-TPU-PMMA laminates were subjected to impact loadings at velocities up to 5 m/s using threepoint bending and dart impact tests. Based on the experimental basis, different material models for the Finite Element simulation are presented, which are able to capture the time and temperature dependent behaviour of the laminate. Final validation experiments, consisting of head-dummy impacts at 10 m/s on automotive side windows, were conducted for PMMA and the laminate in order to investigate their applicability as glass substitution products. The Content Introduction · Fundamentals · Experimental Investigation · Material Modelling of PMMA · Material Modelling of TPU · Simulation of PMMA-TPU Laminate · Component Tests and Validation · S...

  8. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  9. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  10. Influence of phase transformations on the mechanical behaviour of refractory ceramics at high temperature;Effets des transformations de phase sur la tenue mecanique a haute temperature des ceramiques refractaires

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, N. [LMT-Cachan, ENS de Cachan, UMR 8535 CNRS, Universite Paris 6, 94 - Cachan (France); IUFM de Creteil, Universite Paris-Est Creteil, 93 - Saint-Denis (France); Poirier, J. [CNRS-CEMHTI, 45 - Orleans (France); Polytech, Universite d' Orleans, 45 - Orleans (France)

    2009-07-01

    Refractories used at high temperature are subjected to high chemical and mechanical stresses. The mastery of their microstructure as well as the phase changes occurring in service is essential to ensure resistance to wear and failure of refractory linings. Great progress has been made: combining efficient techniques for the investigation of the microstructure with powerful numerical tools (thermochemical and thermo-mechanical computations) provides information (e.g., degradation mechanisms) that cannot be obtained directly. Also multi-physical and multi-scale models developing materials with high-performance for higher temperature and with longer lifetime. In this paper, through several examples we show some interactions between the mechanical behavior and the microstructure transformations of refractory ceramics. The tools developed to characterize their microstructure change in situ (e.g., at high temperature) and to identify their kinetics are described. Some methodologies and tools developed in recent years, today, provide a better understanding of in-service behavior of refractories while identifying the critical material and process parameters likely to increase life-time. (authors)

  11. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  12. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  13. Deformational behaviour of fly-ash based geopolymer concrete at temperatures of up to 150°c

    Directory of Open Access Journals (Sweden)

    Junaid M Talha

    2017-01-01

    Full Text Available The use of Geopolymer Concrete (GP*C has been on the rise over the last few decades owing to its lower carbon emissions as compared to Ordinary Portland Cement Concrete (OPC. Recent research has also established the superior thermal properties of GPC and makes it an ideal construction material for specialized application. However, the deformational behaviour of GPC at elevated temperatures has not fully understood. If GPC is to be used as a main stream construction material for specialized applications, the exact deformational behaviour of the material under thermal loading needs to be investigated. This paper looks into the deformational characteristics of GPC (with natural crushed siliceous aggregates when dry heated up to 150°C at near zero loading. The deformations recorded using a clip-on extensometer are used to determine the strains developed in the GPC samples due to thermal loads. Coefficient of thermal expansion (CTE for the tested GPC samples was found and was comparable to OPC concrete at the tested temperatures. Between ambient (20°C and 80°C the CTE for GPC was determined to be between 10.3-10.9x10−6mm/mm/°C which is similar to OPC concretes. CTE for temperatures between 80°C and 150°C was determined to be 9.3-10.0x10−6 mm/mm/°C. First heating cycles resulted in much lower CTE which may be due to the presence of evaporable water in the samples. Like OPC, GPC is a non-homogeneous material and the variation in the materials between samples account for the slight variation in the CTE values determined.

  14. Behavioural fever is a synergic signal amplifying the innate immune response

    OpenAIRE

    Bolta?a, Sebastian; Rey, Sonia; Roher, Nerea; Vargas, Reynaldo; Huerta, Mario; Huntingford, Felicity Anne; Goetz, Frederick William; Moore, Janice; Garcia-Valtanen, Pablo; Estepa, Amparo; MacKenzie, S.

    2013-01-01

    Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coup...

  15. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  16. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.

    2011-01-01

    We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO 2 . A reference temperature is 296 K and an intensity cutoff is 10 -27 cm -1 /molecule cm -2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm -1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO 2 , including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site (ftp://ftp.iao.ru/pub/CDSD-4000).

  17. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  18. Gravitational Coleman–Weinberg potential and its finite temperature counterpart

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Srijit [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Discipline of Physics, Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India); Majumdar, Parthasarathi [Department of Physics, Ramakrishna Mission Vivekananada University, Belur Math, Howrah 711202 (India)

    2014-08-15

    Coleman–Weinberg (CW) phenomena for the case of gravitons minimally coupled to massless scalar field is studied. The one-loop effect completely vanishes if there is no self-interaction term present in the matter sector. The one-loop effective potential is shown to develop an instability in the form of acquiring an imaginary part, which can be traced to the tachyonic pole in the graviton propagator. The finite temperature counterpart of this CW potential is computed to study the behaviour of the potential in the high and low temperature regimes with respect to the typical energy scale of the theory. Finite temperature contribution to the imaginary part of gravitational CW potential exhibits a damped oscillatory behaviour; all thermal effects are damped out as the temperature vanishes, consistent with the zero-temperature result.

  19. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  20. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  1. Physics of the pebble-bed high temperature reactor in massive water ingress accidents

    International Nuclear Information System (INIS)

    Scherer, W.

    1989-10-01

    A point-kinetics model was developed to describe qualitatively hypothetical water ingress transients in the primary loop of High Temperature Reactors. Neutron kinetics, heat-flow balance and the chemical reaction of graphite corrosion together with their mutual influence are included. The qualitative behaviour of the transients is calculated and discussed for two fictitious examples, namely the long-term water ingress into a medium sized HTR (HTR-500) and the 'startup' of a small HTR after an intensive water flooding of the core. The model developed and the computer code KINKOR are thought to be tools for the general understanding of the water ingress phenomena and should be looked at as basis for more elaborated systems. (orig./HP) [de

  2. INFLUENCE OF MARKETING COMMUNICATIVE STRATEGIES ON CONSUMER BEHAVIOUR: A CASE OF THE HIGH-TECHNOLOGY MARKET OF UKRAINE

    OpenAIRE

    Victoria Zhurylo; Olga Prygara

    2017-01-01

    The purpose of the study is to research consumer behaviour types and to develop marketing strategies of communicative influence on the consumer in the high-technology goods market. Methodology. Marketing research in Ukrainian market of high-tech goods is conducted to define motivations of the consumers and the peculiarities of their market behaviour. The profiles of target customers are developed and the typology of consumer behaviour is formed, based on the reasons of purchasing of high-tech...

  3. The effect of inertia, viscous damping, temperature and normal stress on chaotic behaviour of the rate and state friction model

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-04-01

    A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.

  4. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  5. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  6. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  7. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  8. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials

    International Nuclear Information System (INIS)

    Lorrette, Ch.

    2007-04-01

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  9. formation and behaviour of coal free radicals in relation to ...

    African Journals Online (AJOL)

    DJFLEX

    61, 1249 – 1253. Xu L., Yang J and liu Z., 2004. Behaviour of organic sulfur model compounds in pyrolysis under coal like environment. Fuel Processing Technology 85 (8 - 10),. 1013 - 1024. Yokono T. Iyama S. Sanada Y. Shimokawa S and Yamada E., 1986. High temperature and high pressure 1H nmr and esr studies on.

  10. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  11. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  12. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  13. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  14. A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature

    International Nuclear Information System (INIS)

    Floyd, J.; Alpy, N.; Moisseytsev, A.; Haubensack, D.; Rodriguez, G.; Sienicki, J.; Avakian, G.

    2013-01-01

    Highlights: • Year-round behaviour of the supercritical CO 2 recompression cycle is simulated. • Behaviour of the system was uncertain due to large changes in the fluid properties. • Cycle thermodynamic optimisation and component preliminary designs were performed. • No off design cycle stability issues, compressors operate away from surge region. • Independent speed control of compressors maintains power and cycle efficiency. -- Abstract: Supercritical CO 2 cycles are particularly attractive for Generation IV Sodium-Cooled Fast Reactors (SFRs) as they can be simple and compact, but still offer steam-cycle equivalent efficiency while also removing potential for Na/H 2 O reactions. However, CO 2 thermophysical properties are very sensitive close to the critical point which raises, in particular, questions about the compressor and so cycle off-design behaviour when subject to inevitable temperature increases that result from seasonal variations in the heat sink temperature. This publication reports the numerical investigation of such an issue that has been performed using the Plant Dynamics Code (ANL, USA), the cycle being optimised for the next French SFR, ASTRID (1500 MW th ), as a test-case. On design, the net plant efficiency is 42.2% for a high pressure (25 MPa) turbine with an inlet temperature of 515 °C and considering a cycle low temperature of 35 °C. The off-design cycle behaviour is studied based on preliminary designs for the main components and assuming the use of a fixed heat sink flow rate. First results obtained using a common fixed shaft speed for all turbomachines, without any other active control, show no stability issues and roughly constant density (and volumetric flow rate) at the main compressor inlet for the range of heat sink temperature considered (21–40 °C). This occurs because the new stationary states are found without requiring a significant shift of mass to the higher pressure level, meaning the compressor inlet pressure

  15. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  16. Modeling of the fatigue intragranular strain hardening of metals at high temperature with keeping up time; Modelisation de l'ecrouissage intragranulaire en fatigue des metaux a haute temperature avec temps de maintien

    Energy Technology Data Exchange (ETDEWEB)

    Sauzay, M.; Mottot, M.; Noblecourt, M.; Allais, L.; Monnet, I.; Perinet, J. [CEA Saclay, Service de Recherche en Metallurgie Appliquee, DMN/SRMA, 91 - Gif-sur-Yvette (France)

    2003-07-01

    This study aims at foreseeing the behaviour of some alloys during high temperature fatigue-relaxation (creep) conditions when the maximum deformation is maintained during long times (about a month for each cycle). Such experiments can hardly be performed with laboratory tests. A simple modeling of the restoration occurring during the keeping of the conditions of deformation can explain the absence of dislocation microstructures. Abstract only. (J.S.)

  17. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature

  18. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  19. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  20. Modelling flow and work hardening behaviour of cold worked Zr–2.5Nb pressure tube material in the temperature range of 30–600 oC

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Pawaskar, D.N.; Seshu, P.; Chakravartty, J.K.; Sinha, R.K.

    2014-01-01

    Under a postulated accident scenario of loss of cooling medium in an Indian Pressurised Heavy Water Reactor (IPHWR), temperature of the pressure tubes can rise and lead to large deformations. In order to investigate the modes of deformation of pressure tube – calandria tube assembly, material property data defining the flow behaviour over a temperature range from room temperature (RT) to 800 o C are needed. It is of practical importance to formulate mathematical equations to describe the stress–strain relationships of a material for a variety of reasons, such as the analysis of forming operations and the assessment of component's performance in service. A number of constitutive relations of empirical nature have been proposed and they have been found very suitable to describe the behaviour of a material. Although these relations are of empirical nature, various metallurgical factors appear to decide applicability of each of these relations. For example, grain size influences mainly the friction stress while the strain hardening is governed by dislocation density. In a recent work, tensile deformation behaviour of pressure tube material of IPHWR has been carried out over a range of temperature and strain rates (Dureja et al., 2011). It has been found that the strength parameters (yield and ultimate tensile strength) vary along the length of the tube with higher strength at the trailing end as compared to the leading end. This stems from cooling of the billet during the extrusion process which results in the variation of microstructure, texture and dislocation density from the leading to the trailing end. In addition, the variation in metallurgical parameters is also expected to influence the work hardening behaviour, which is known to control the plastic instability (related to uniform strain). In the present investigation, the tensile flow and work-hardening behaviour of a cold worked Zr–2.5Nb pressure tube material of IPHWRs has been studied over the