WorldWideScience

Sample records for high space-charge intensity

  1. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  2. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  3. Space-Charge Waves and Instabilities in Intense Beams

    Science.gov (United States)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  4. Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

    2011-03-01

    The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

  5. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  6. Direct Measurements of Space-Charge-Potential in High Intensity H- Beam with Laser Based Photo Neutralization Method

    CERN Document Server

    Lee, S; Ikegami, M; Toyama, T

    2005-01-01

    Transverse profiles of H- beams can be observed by scanning a laser wire across the ion beam and detect the pulse of photo detached electrons. In addition, laser based photo neutralization method have a capability of direct space-charge-potential measurement by investigate the energy distribution of collected electrons. The kinetic energy of photo detached electron corresponds to the ion velocity and space potential at stripped location. The space-charge-potential in H- beam can be measured by scanning the bias potential of repeller grid in front of Faraday cup. In this paper, an available method to observe the space-charge-potential and preliminary experimental results with Nd:YAG laser in KEK DTL1 (J-PARC) are described.

  7. Space charge templates for high-current beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  8. Space charge

    CERN Document Server

    Schindl, Karlheinz

    2005-01-01

    The Coulomb forces between the charged particles of a high-intensity beam in an accelerator create a self-field which acts on the particles inside the beam like a distributed lens, defocusing in both transverse planes. A beam moving with speed n is accompanied by a magnetic field which partially cancels the electrostatic defocusing effect, with complete cancellation at c, the speed of light. The effect of this 'direct space charge' is evaluated for transport lines and synchrotrons where the number of betatron oscillations per machine turn, Q, is reduced by DQ. In a real accelerator, the beam is also influenced by the environment (beam pipe, magnets, etc.) which generates 'indirect' space charge effects. For a smooth and perfectly conducting wall, they can easily be evaluated by introducing image charges and currents. These 'image effects' do not cancel when n approaches c, thus they become dominant for high-energy synchrotrons. Each particle in the beam has its particular incoherent tune Q and incoherent tune...

  9. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  10. Space-charge limited photocurrent

    NARCIS (Netherlands)

    Mihailetchi, VD; Wildeman, J; Blom, PWM

    2005-01-01

    In 1971 Goodman and Rose predicted the occurrence of a fundamental electrostatic limit for the photocurrent in semiconductors at high light intensities. Blends of conjugated polymers and fullerenes are an ideal model system to observe this space-charge limit experimentally, since they combine an

  11. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  12. Experimental characterization of a space charge induced modulation in high-brightness electron beam

    Directory of Open Access Journals (Sweden)

    T. Shaftan

    2004-08-01

    Full Text Available We present the experimental investigation of a collective effect driving strong modulation in the longitudinal phase space of a high-brightness electron beam. The measured beam energy spectrum was analyzed in order to reveal the main parameters of modulation. The experimental results were compared with a model of space-charge oscillations in the beam longitudinal phase space. The measurements and analysis allowed us to determine the range of the parameters of the observed effect on the modulation dynamics and illustrate its potential impact on short-wavelength free-electron laser performance.

  13. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  14. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  15. Three dimensional space charge model for large high voltage satellites. [plasma sheath

    Science.gov (United States)

    Cooks, D.; Parker, L. W.; Mccoy, J. E.

    1980-01-01

    High power solar arrays for satellite power systems with dimensions of kilometers, and with tens of kilovolts distributed over their surface face many plasma interaction problems that must be properly anticipated. In most cases, the effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Two computer programs were developed to provide fully self consistent plasma sheath models in three dimensions as a result of efforts to model the experimental plasma sheath studies at NASA/JSC. Preliminary results indicate that for the conditions considered, the Child-Langmuir diode theory can provide a useful estimate of the plasma sheath thickness. The limitations of this conclusion are discussed. Some of the models presented exhibit the strong ion focusing observed in the JSC experiments.

  16. Numerical Extraction of Distributions of Space-charge and Polarization from Laser Intensity Modulation Method

    OpenAIRE

    Tuncer, Enis; Lang, Sidney B.

    2004-01-01

    The Fredholm integral equation of the laser intensity modulation method is solved with the application of the Monte Carlo technique and a least-squares solver. The numerical procedure is tested on simulated data.

  17. Understanding the effect of space charge on instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chao, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Chin, Y. H. [National Lab. for High Energy Physics (KEK), Ibaraki (Japan)

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  18. Space charge effects in intense electron beams related to electron cooling systems

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M

    2000-01-01

    The review of researches performed by JINR-CERN-ITEP collaboration in 1994-1995 and by JINR group in 1996-1998 years is presented. The research has the goal to study theoretically and experimentally a possibility of electron beam space neutralization and formation of a stable and intense neutralized electron beam (NEB). (4 refs).

  19. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  20. Epoxy Based Nanodielectrics for High Voltage DC Applications : Synthesis, Dielectric Properties and Space Charge Dynamics

    NARCIS (Netherlands)

    Smit, J.J.; Andritsch, T.M.

    Main goal of the research described in this PhD thesis was to determine the influences of filler size, material and distribution on the DC breakdown strength, permittivity and space charge behaviour of nanocomposites. This should lay the groundwork for tailored insulation materials for HVDC

  1. Epoxy Based Nanodielectrics for High Voltage DC Applications : Synthesis, Dielectric Properties and Space Charge Dynamics

    NARCIS (Netherlands)

    Andritsch, T.M.

    2010-01-01

    Main goal of the research described in this PhD thesis was to determine the influences of filler size, material and distribution on the DC breakdown strength, permittivity and space charge behaviour of nanocomposites. This should lay the groundwork for tailored insulation materials for HVDC

  2. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    Energy Technology Data Exchange (ETDEWEB)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications

  3. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  4. Study of the transient effects of the space charge compensation on the dynamics of an intense beam; Etude des effets transitoires de la compensation de charge d'espace sur la dynamique d'un faisceau intense

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ismail, A

    2005-09-15

    A main interest in the design of ion accelerators is the control of the dynamics of intense beams at low energy. This dynamics is dominated by nonlinear effects of the Space Charge (SC) field. This SC field induces a halo formation which can induce losses along the transport. Once ionized by the beam, the residual gas, diffused by the source and produced by the desorption of the vacuum chamber of the accelerator, contributes to the production of electrons and ions. According to their sign of charge compared to the beam, these particles will be repelled or confined. The accumulation of particles in the beam contributes to the compensation of the SC field. However, this neutralization induces other non linearity which are dependent on time. This thesis presents an experimental and theoretical work of the SC compensation for ion beams (H{sup +} and H{sup -}). The dynamics of these beams is modelled by a new PIC code, CARTAGO, ensuring the coupling between the created plasma and the studied beams. A single-particle study introduces the dynamics of the plasma in presence of the SC field and of an external magnetic field. The modeling of the compensation with the 1D version of CARTAGO code gave the establishment times and the compensation degrees for several cases of beams and various gas pressures. The compensation of a protons beam was studied more particularly in the low-energy line of the Injector of Protons of High Intensity (IPHI) at Saclay. Simulations show an over-compensation of the space charge inside the focusing solenoid and outside the compensation is only partial. Experimental confrontations of the 2D(r,z) modeling results in a part of this line are also detailed. (author)

  5. Space-Charge Experiments at the CERN Proton Synchrotron

    CERN Document Server

    Franchetti, Giuliano; Hofmann, I; Martini, M; Métral, E; Qiang, J; Ryne, D; Steerenberg, R; CFA Beam Dynamics Workshop “High Intensity and Brightness Hadron Beams”

    2005-01-01

    Benchmarking of the simulation codes used for the design of the next generation of high beam power accelerators is of paramount importance due to the very demanding requirements on the level of beam losses. This is usually accomplished by comparing simulation results against available theories, and more importantly, against experimental observations. To this aim, a number of well-defined test cases, obtained by accurate measurements made in existing machines, are of great interest. Such measurements have been made in the CERN Proton Synchrotron to probe three space-charge effects: (i) transverse emittance blow-up due to space-charge induced crossing of the integer or half-integer stop-band, (ii) space-charge and octupole driven resonance trapping, and (iii) intensity-dependent emittance transfer between the two transverse planes. The last mechanism is discussed in detail in this paper and compared to simulation predictions.

  6. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    Science.gov (United States)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  7. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z.

    1993-05-01

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included.

  8. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A. E-mail: anna.cavallini@bo.infn.it; Polenta, L.; Canali, C.; Nava, F

    1999-04-21

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  9. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F

    1999-01-01

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  10. Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions

    Science.gov (United States)

    Tu, B.; Lu, Q. F.; Cheng, T.; Li, M. C.; Yang, Y.; Yao, K.; Shen, Y.; Lu, D.; Xiao, J.; Hutton, R.; Zou, Y.

    2017-10-01

    A high-temperature superconducting electron-beam ion trap (EBIT) has been set up at the Shanghai EBIT Laboratory for spectroscopic studies of low-charge-state ions. In the study reported here, beam trajectory simulations are implemented in order to provide guidance for the operation of this EBIT under ultralow-energy conditions, which has been successfully achieved with a full-transmission electron-beam current of 1-8.7 mA at a nominal electron energy of 30-120 eV. The space-charge effect is studied through both simulations and experiments. A modified iterative formula is proposed to estimate the space-charge potential of the electrons and shows very good agreement with the simulation results. In addition, space-charge compensation by trapped ions is found in extreme ultraviolet spectroscopic measurements of carbon ions and is studied through simulation of ion behavior in the EBIT. Based on the simulation results, the ion-cloud radius, ion density, and electron-ion overlap are obtained.

  11. Study of longitudinal dynamics in space-charge dominated beams

    Science.gov (United States)

    Tian, Kai

    Modern accelerator applications, such as heavy ion fusion drivers, pulsed neutron sources, electron injectors for high-energy linear colliders, and X-ray Free Electron Lasers, demand beams with high intensity, low emittance and small energy spread. At low (non-relativistic) energies, the "electrostatic", collective interactions from space-charge forces existing in such intense beams play the dominant role; we characterize these beams as space-charge dominated beams. This dissertation presents numerous new findings on the longitudinal dynamics of a space-charge dominated beam, particularly on the propagation of density perturbations. In order to fully understand the complex physics of longitudinal space-charge waves, we combine the results of theory, computer simulation, and experiment. In the Long Solenoid Experimental system (LSE), with numerous diagnostic tools and techniques, we have, for the first time, experimentally measured the detailed energy profiles of longitudinal space-charge waves at different locations, both near the beam source and at the end of the transport system. Along with the current profiles, we have a complete set of experimental data for the propagation of space-charge waves. We compare these measured results to a 1-D theory and find better agreement for beams with perturbations in the linear regime, where the perturbation strength is less than 10%, than those with nonlinear perturbations. Using fast imaging techniques that we newly developed, we have, for the first time, obtained the progressive time-resolved images of longitudinal slices of a space-charge dominated beam. These images not only provide us time-resolved transverse density distribution of the beam, but also enable us to take time-resolved transverse phase space measurement using computerized tomography. By combining this information with the longitudinal energy measurement, we have, for the first time, experimentally constructed the full 6-D phase space. Part of the results

  12. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  13. Simulations of space charge in the Fermilab Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2011-03-01

    The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 10{sup 11} to 3.0 x 10{sup 11}. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

  14. Summary of the Space Charge Workshop 2013 (SC-13)

    CERN Document Server

    Franchetti, G

    2013-01-01

    This report summarizes the disucssions and conclusions from the "Space Charge 2013" (SC-13) workshop at CERN, 16-19 April 2013. SC-13 was jointly organized by EUCARD, ACCNET, ICFA, HIC4FAIR and LIU. Strong activities on space-charge related topics are ongoing at CERN (LIU), GSI (FAIR), and RAL (ISIS upgrade). Several studies include experimental work. The issue of code benchmarking is important with regard to long-term tracking. In particular, the noise created by PIC codes evoked intense discussions. Interesting from a theoretical stand point has been a discussion about equating PIC noise with intrabeam-scattering. A decision has been taken to use the GSI test suite for benchmarking of frozen space charge models also for the benchmarking of PIC codes. Firm plans have been made to benchmark Synergia and Orbit, plus perhaps also IMPACT and WARP. Other discussion focused on the role of GPU for high intensity beam dynamics. Corresponding efforts were reported from GSI, RAL, and FNAL. The final consensus is that ...

  15. Early transverse decoherence of bunches with space charge

    Directory of Open Access Journals (Sweden)

    Ivan Karpov

    2016-12-01

    Full Text Available The transverse decoherence of injected bunches is an important phenomenon in synchrotrons and storage rings. The initial stage of this process determines the transverse emittance blowup, which should be taken into account for the design of feedback systems, for example. The interplay of different high-intensity effects can strongly affect the initial decoherence stage. We present a model that explains decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. We compare the model for different combinations of parameters with self-consistent particle tracking simulations and measurements in the SIS18 synchrotron at GSI Darmstadt. Generally, space charge slows down the decoherence process and can cause the loss of decoherence. Chromaticity and image charges can partly compensate this loss and restore the decoherence. We also analyze the single-particle excitation driven by space charge during the decoherence process. Particles gain large amplitudes from the coherent beam oscillation, which leads to halo buildup and losses.

  16. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  17. Simulations of beam emittance growth from the collectiverelaxation of space-charge nonuniformities

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Steven M.; Grote, David P.; Davidson, Ronald C.

    2004-05-01

    Beams injected into a linear focusing channel typically have some degree of space-charge nonuniformity. For unbunched beams with high space-charge intensity propagating in linear focusing channels, Debye screening of self-field interactions tends to make the transverse density profile flat. An injected particle distribution with a large systematic charge nonuniformity will generally be far from an equilibrium of the focusing channel and the initial condition will launch a broad spectrum of collective modes. These modes can phase-mix and experience nonlinear interactions which result in an effective relaxation to a more thermal-equilibrium-like distribution characterized by a uniform density profile. This relaxation transfers self-field energy from the initial space-charge nonuniformity to the local particle temperature, thereby increasing beam phase space area (emittance growth). Here they employ two-dimensional electrostatic particle in cell (PIC) simulations to investigate the effects of initial transverse space-charge nonuniformities on the equality of beams with high space-charge intensity propagating in a continuous focusing channel. Results are compared to theoretical bounds of emittance growth developed in previous studies. Consistent with earlier theory, it is found that a high degree of initial distribution nonuniformity can be tolerated with only modest emittance growth and that beam control can be maintained. The simulations also provide information on the rate of relaxation and characteristic levels of fluctuations in the relaxed states. This research suggests that a surprising degree of initial space-charge nonuniformity can be tolerated in practical intense beam experiments.

  18. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  19. Space-Charge Compensation Options for the LHC Injector Complex

    CERN Document Server

    Aiba, M; Dorda, U; Franchetti, G; Garoby, R; Koutchouk, Jean-Pierre; Martini, M; Métral, E; Papaphilippou, Y; Scandale, Walter; Shiltsev, V; Zimmermann, F

    2007-01-01

    Space-charge effects have been identified as the most serious intensity limitation in the CERN PS and PS Booster, on the way towards ultimate LHC performance and beyond. We here explore the application of several previously proposed space-charge compensation methods to the two LHC pre-injector rings, and the challenges which need to be overcome. The methods considered include the reduction of tune shift and resonance strengths via octupoles, pole-face windings, electron lenses, or neutralisation.

  20. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  1. Adaptive matching of the iota ring linear optics for space charge compensation

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder

    2016-10-09

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters

  2. Experiments and Simulations with Space Charge Dominated Beams

    Science.gov (United States)

    Kishek, Rami A.

    2002-11-01

    Applications such as heavy ion inertial fusion, spallation neutron sources, high energy colliders, and free electron lasers, require high brightness that boosts the intensity beyond traditional limits. Beams of interest for such applications begin life as space-charge dominated beams, and should ideally remain so for most of their lives. In practice, undesirably high emittance at the source or emittance growth during acceleration and transport disturb this condition, and the beam becomes emittance dominated. Space charge-induced instabilities, emittance growth and halo formation are limiting factors that need to be understood in order to maintain the beam quality while transporting a higher current. At the University of Maryland we have a number of experiments that use low-energy, high-intensity electron beams to model such accelerators at low cost. The University of Maryland Electron Ring (UMER), currently under construction, has been designed to operate with an extreme space charge tune shift that can also be adjusted to span the entire range down to existing rings. The 10-keV, 100 mA, UMER beam has a generalized perveance in the range of 0.0015, and a tune depression (k/ko) as low as 0.2. With hundreds of magnets and a vast arsenal of diagnostics, the 3.6 m-diameter ring is a complex and flexible machine. Since UMER is designed to serve as an accelerator for research in beam physics, beam experiments are conducted hand-in-hand with the phased installation of UMER segments, in order to provide a wealthy basis of beam data for future experiments. This talk presents some of the experimental results obtained during the phased-installation of UMER. Computer simulation results using various codes, particularly self-consistent models of the space charge effects using the WARP code, are used to enhance our understanding of the experimental results. An overview is presented of a number of significant (and sometimes mysterious) issues. These include detailed and time

  3. Space-charge electrostatic precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, C.E.

    1977-05-01

    An improved electrostatic precipitator called a space charge precipitator was tested and studied. A space charge precipitator differs from a conventional model in that the fields necessary to move the particles from the gas to the collecting surfaces are provided by a cloud of charged innocuous drops, such as glycerine or water, rather than by a charged electrode system. The flow conditions, electrical equipment, and physical dimensions of the test precipitator are typical of industrial applications. Experiments using water fog at a velocity of 10 ft/sec and a residence time of 0.6 sec, for a system charged at 25 kV, show a removal of iron oxide particles of approximately 52 percent. Theoretical calculations, assuming 2 micron particles, predict a removal of 50 percent. The results with glycerine fog are comparable. Experiments at various flowrates for both water fog and glycerine fog show a trend of decreasing particle removal for increasing flowrate. An identical trend is predicted by the space charge theory. Electron micrographs verify that only particles smaller than two microns are present in the laboratory precipitator.

  4. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  5. WSN-Based Space Charge Density Measurement System.

    Directory of Open Access Journals (Sweden)

    Dawei Deng

    Full Text Available It is generally acknowledged that high voltage direct current (HVDC transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  6. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  7. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    Science.gov (United States)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  8. Electron cloud and space charge effects in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  9. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  10. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  11. Simulation and observation of driven beam oscillations with space charge in the CERN PS Booster

    CERN Document Server

    McAteer, M; Benedetto, E; Carli, C; Findlay, A; Mikulec, B; Tomás, R

    2014-01-01

    As part of the LHC Injector Upgrade project, the CERN PS Booster will be required to operate at nearly doubled intensity with little allowable increase in emittance growth or beam loss. A campaign of nonlinear optics measurements from turn-by-turn trajectory measurements, with the goal of characterizing and then compensating for higher-order resonances, is planned for after Long Shutdown 1. The trajectory measurement system is expected initially to require high intensity beam in order to have good position measurement resolution, so understanding space charge effects will be important for optics analysis. We present the results of simulations of driven beam oscillations with space charge effects, and comparison with trial beam trajectory measurements.

  12. Space charge fields in DC cables

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage

    1996-01-01

    The space charge that accumulates in DC cables can, mathematically, be resolved into two components. One is related to the temperature and the other to the magnitude of the electric field strength. Analytical expressions for the electric fields arising from each of these space charge components...

  13. Space-charge dynamics in ultra-cold ion bunches

    Science.gov (United States)

    Scholten, Robert; Murphy, Dene; Speirs, Rory; Thompson, Daniel; Sparkes, Benjamin; McCulloch, Andrew

    2014-05-01

    Cold ion sources based on photoionisation of laser cooled atoms provide a unique system for investigating Coulomb interactions within complex charged particle bunches. Space-charge driven expansion in charged particle beams is of critical importance for applications including electron and ion microscopy, mass spectrometry, synchrotrons and x-ray free electron lasers, and in electron diffraction where space-charge effects constrain the capacity to obtain diffraction information. Self-field effects are often difficult to observe because of thermal diffusion with traditional sources. Cold atom sources produce ions with temperatures of a few mK, such that subtle space-charge effects are apparent. We illustrate the capabilities through detailed investigation of a complex ion bunch shape, showing collective behaviour including high density caustics and shockwave structures arising from long-range interactions between small charge bunches.

  14. ACHROMAT WITH LINEAR SPACE CHARGE FOR BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA,D.; ALESSI,J.G.; LEE,Y.Y.; WENG,W.T.

    1998-08-23

    The standard definition for an achromat is a transport line having zero values for the spatial dispersion (R16) and the angular dispersion (RZ6). For a bunched beam with linear space charge this definition of achromaticity does not hold. The linear space charge in the presence of a bend provides coupling between (a) bunch spatial width and bunch length (R1.5) and (b) bunch angular spread and bunch length (R25). Therefore, achromaticity should be redefined as a line having zero values of the spatial dispersion (R16), the angular dispersion (R26), and matrix elements R15 and R25. These additional conditions (R15=R25=0) can be achieved, for example, with two small RF cavities at appropriate locations in the achromat, to cancel space charge effects. An example of the application of this technique to the Spallation Neutron Source (SNS) high energy beam transport line is presented.

  15. New technique to measure emittance for beams with space charge

    Directory of Open Access Journals (Sweden)

    K. Poorrezaei

    2013-08-01

    Full Text Available The characterization of the transverse phase space of beams is a fundamental requirement for particle accelerators. We present a novel approach for measurement of transverse emittance for beams with space charge, an important quality indicator of transverse phase space. The method utilizes a lens-drift-screen setup similar to that of a quadrupole scan emittance measurement. Measurements of radius and divergence that can be obtained from beam produced radiation, e.g. optical transition, are used to calculate the cross-correlation term and therefore the rms emittance. A linear space-charge model is used in the envelope equations; hence, the errors in the measurement relate to the nonuniformity of the beam distribution. The emittance obtained with our method shows small deviation from those obtained by WARP simulations for beams with high space charge, in contrast to other techniques.

  16. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  17. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  18. Longitudinal Space Charge in the SPS

    CERN Document Server

    Lasheen, Alexandre

    2016-01-01

    Longitudinal instabilities due to the SPS beam coupling impedance are a major issue for future projects and it is essential to have an accurate SPS impedance model to study them. The longitudinal space charge effect can be modelled by a pure reactive impedance and should also be included in simulations as it may have an impact at low energy. In this Note, the effect of the longitudinal space charge in the SPS is evaluated by taking into account the variation of the transverse beam size and vacuum chamber geometry along the ring. Scaling laws are used to investigate what are the most important parameters for the evaluation of the longitudinal space charge impedance.

  19. High-Polarity Solvents Decreasing the Two-Photon Transition Probability of Through-Space Charge-Transfer Systems - A Surprising In Silico Observation.

    Science.gov (United States)

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan; Ruud, Kenneth

    2012-04-19

    In the Letter, we address the question as to why larger two-photon absorption cross sections are observed in nonpolar than in polar solvents for through-space charge-transfer (TSCT) systems such as [2,2]-paracyclophane derivatives. In order to answer this question, we have performed ab initio calculations on two well-known TSCT systems, namely, a [2.2]-paracyclophane derivative and a molecular tweezer-trinitrofluorinone complex, and found that the two-photon transition probability values of these systems decreases with increasing solvent polarity. To rationalize this result, we have analyzed the role of different optical channels associated with the two-photon process and noticed that, in TSCTs, the interference between the optical channels is mostly destructive and that its magnitude increases with increasing solvent polarity. Moreover, it is also found that a destructive interference may sometimes even become a constructive one in a nonpolar solvent, making the two-photon activity of TSCTs in polar solvents less than that in nonpolar solvents.

  20. Self-excitation of space charge waves

    DEFF Research Database (Denmark)

    Lyuksyutov, Sergei; Buchhave, Preben; Vasnetsov, Mikhail

    1997-01-01

    We report a direct observation of space charge waves in photorefractive crystals with point group 23 (sillenites) based on their penetration into an area with uniform light illumination. It is shown experimentally that the quality factor of the waves increases substantially with respect to what...... current theory predicts [B. Sturman el al., Appl. Phys. A 55, 235 (1992)]. This results in the appearance of strong spontaneous beams caused by space charge wave self-excitation....

  1. Numerical investigation of space charge electric field for a sheet ...

    Indian Academy of Sciences (India)

    One of the problems in scaling high power vacuum and plasma microwave sources to higher frequencies is the need to transport beams with higher space charge density, since the radio frequency circuit transverse dimensions tend to decrease with wavelength. The use of sheet electron beams can alleviate this difficulty ...

  2. Space charge equation calculations for the reflex triode

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1976-09-01

    The Poisson equation solution of the space charge problem for the reflex triode is reviewed and illustrated with a number of examples. The numerical calculation technique for obtaining these results is briefly described. The results show that the characteristics of the triode are strong functions of the reflex-electron kinetic-energy spectrum, especially of the high-energy electrons.

  3. Longitudinal phase space tomography with space charge

    Directory of Open Access Journals (Sweden)

    S. Hancock

    2000-12-01

    Full Text Available Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the nonlinearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of the vacuum chamber parametrized by a single value of distributed reactive impedance and by a geometrical coupling coefficient. This is sufficient to model the dominant collective effects in machines of low to moderate energy. In contrast to simulation codes, binning is not an issue since the profiles to be differentiated are measured ones. The program is written in Fortran 90 with high-performance Fortran extensions for parallel processing. A major effort has been made to identify and remove execution bottlenecks, for example, by reducing floating-point calculations and recoding slow intrinsic functions. A pointerlike mechanism which avoids the problems associated with pointers and parallel processing has been implemented. This is required to handle the large, sparse matrices that the algorithm employs. Results obtained with and without the inclusion of space charge are presented and compared for proton beams in the CERN protron synchrotron

  4. Advanced modeling of high intensity accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R.D.; Habib, S.; Wangler, T.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.

  5. Design of low energy bunch compressors with space charge effects

    Directory of Open Access Journals (Sweden)

    A. He

    2015-01-01

    Full Text Available In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5–22 MeV linac bunch compressor design to produce short (∼150  fs and small size (∼30  μm bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R_{56} dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31  μm rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL’s very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25  μm rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  6. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    Science.gov (United States)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  7. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  8. Formation of high intensity ion beams with ballistic focusing

    Science.gov (United States)

    Koval, T. V.; Ryabchikov, A. I.; Shevelev, A. E.; Kim, An Tran My; Tarakanov, V. P.

    2017-11-01

    This investigation presents the results of experimental investigation and theoretical simulations of the influence of plasma and negative bias parameters on formation, transportation and focusing of high intensity ion beams of titanium and nitrogen (with an ion current density up to 1 A/cm2 and pulsed power density up to 2.6 kW/cm2). It was shown that the conditions of space charge neutralization of the focusing beam have a significant influence on the distribution and magnitude of the ion current at the collector.

  9. Investigation on Beam Dynamics Design of High-Intensity RFQs

    CERN Document Server

    Zhang, C

    2004-01-01

    Recently various potential uses of high-intensity beams bring new opportunities as well as challenges to RFQ accelerator research because of the new problems arising from the strong space-charge effects. Unconventional concepts of beam dynamics design, which surround the choice of basic parameters and the optimization of main dynamics parameters’ variation along the machine, are illustrated by the designing Peking University (PKU) Deuteron RFQ. An efficient tool of LANL RFQ Design Codes for beam dynamics simulation and analysis, RFQBAT, is introduced. Some quality criterions are also presented for evaluating design results.

  10. WSN-Based Space Charge Density Measurement System

    OpenAIRE

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the co...

  11. Experiment on space charge driven nonlinear resonance crossing in an ion synchrotron

    Directory of Open Access Journals (Sweden)

    G. Franchetti

    2010-11-01

    Full Text Available Trapping of particles in nonlinear resonances in the presence of space charge and synchrotron motion may be a source of beam halo generation and beam loss in high intensity synchrotrons, in particular for extended storage times at the injection plateau as planned for the SIS100 synchrotron of the FAIR project. Although extensive simulation studies have theoretically demonstrated this mechanism, experimental evidence was so far limited to demonstration experiments at the CERN Proton Synchrotron (PS in 2002–2003 using an octupolar resonance. Here we describe new experiments at the SIS18 synchrotron at GSI, where the resonance is driven by a sextupolar field error and horizontal static tune scans are taken across the resonance stop band. The new data significantly extend the previous observations by a complete set of measurements comparing beams with and without rf, both at low and high intensity. The correlation between transverse beam loss and simultaneous bunch length shortening provides strong evidence that the measured emittance and the loss in intensity are indeed caused by periodic resonance crossing, leading to the main effect of scattering but also to a lesser extent to the trapping of particles due to the combined effect of the nonlinear resonance and the space charge.

  12. Simulation of space charge effects in resistive plate chambers

    CERN Document Server

    Lippmann, Christian

    2003-01-01

    Multigap resistive plate chambers with 0.3-mm gas gaps operated in avalanche mode at atmospheric pressure have reached timing accuracies below 50 ps (standard deviation) with efficiencies above 99% . The avalanches in high homogeneous electric fields of 100 kV/cm are strongly influenced by space charge effects which are the main topic of this paper. We extend a previously discussed Monte Carlo simulation model of avalanches in resistive plate chambers by the dynamic calculation of the electric field in the avalanches. We complete the previously presented results on time resolution and efficiency data with simulated charge spectra. The simulated data shows good agreement with measurements. The detailed simulation of the avalanche saturation due to the space charge fields explains the small observed charges, the shape of the spectra, and the linear increase of average charges with high voltage. (22 refs).

  13. Large space-charge effects in a nanostructured proton conductor

    Energy Technology Data Exchange (ETDEWEB)

    Haverkate, Lucas A.; Chan, Wing K.; Mulder, Fokko M. [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionuclides, and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2010-12-08

    Decreasing the dimensions of heterogeneous mixtures of ionic conductors towards the nanoscale results in ionic conduction enhancements, caused by the increased influence of the interfacial space-charge regions. For a composite of TiO{sub 2} anatase and solid acid CsHSO{sub 4}, the strong enhancement of the ionic conductivity at the nanoscale also can be assigned to this space-charge effect. Surprisingly high hydrogen concentrations in the order of 10{sup 21} cm{sup -3} in TiO{sub 2} are measured, which means that about 10% of the available sites for H{sup +} ions are filled on average. Such high concentrations require a specific elaboration of the space-charge model that is explicitly performed here, by taking account of the large occupation numbers on the exhaustible sites. It is shown that ionic defects with negative formation enthalpy reach extremely high concentrations near the interfaces and throughout the material. By performing first-principles density functional theory calculations, it is found that proton insertion from CsHSO{sub 4} into the TiO{sub 2} particles is preferred compared to neutral hydrogen atom insertion and indeed that the formation enthalpy is negative. Moreover, the average proton fractions in TiO{sub 2}, estimated by the theoretical ionic density profiles, are in good agreement with the experimental observations. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Space charge effect in an accelerated beam

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2008-01-01

    Full Text Available It is usually assumed that the space charge effects in relativistic beams scale with the energy of the beam as γ^{-2}, where γ is the relativistic factor. We show that for a beam accelerated in the longitudinal direction there is an additional space charge effect in free space that scales as E/γ, where E is the accelerating field. This field has the same origin as the “electromagnetic mass of the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic energy of the beam and the energy of the electromagnetic field of the beam. We then consider the effect of this field on a beam generated in an rf gun and calculate the energy spread produced by this field in the beam.

  15. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  16. Space charge mitigation with longitudinally hollow bunches

    CERN Document Server

    AUTHOR|(CDS)2088716; Hancock, Steven; Rumolo, Giovanni; CERN. Geneva. ATS Department

    2016-01-01

    Suitably, hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  17. High Intensity Physics

    Science.gov (United States)

    Marklund, M.; Brodin, G.; Lundin, J.; Ilderton, A.

    2009-11-01

    The capability to produce high field strengths, and thereby obtain a new means for doing fundamental physics, has over the last thirty years taken great leaps forward. Both superconducting cavities as well ultra-intense lasers can now reach field strengths of the order 50 MV/m (stationary) and 1012 V/m (peak value, time-dependent field), respectively. Here we will describe a collection of problems that catches the flavor of the nonlinear quantum vacuum and the possibility to use high field strengths as a low-energy probe of fundamental physics.

  18. An analytical approach to space charge distortions for time projection chambers

    CERN Document Server

    Rossegger, S; Riegler, W

    2010-01-01

    In a time projection chamber (TPC), the possible ion feedback and also the primary ionization of high multiplicity events result in accumulation of ionic charges inside the gas volume (space charge). This charge introduces electrical field distortions and modifies the cluster trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in the TPC, novel representations of the Green's function for a TPC geometry were worked out. This analytical approach finally permits accurate predictions of track distortions due to an arbitrary space charge distribution by solving the Langevin equation.

  19. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  20. Introduction to Space Charge Effects in Semiconductors

    CERN Document Server

    Böer, Karl W

    2010-01-01

    This book is the most comprehensive one to describe the basics of space-charge effects in semiconductors, starting from basic principles to advanced application in semiconducting devices. It uses detailed analyses of the transport, Poisson, and continuity equations to demonstrate the behavior of the solution curves of the complete set of field and current distributions, along with quantitative descriptions of the relevant band models of typical pn-junction and Schottky barrier devices. It emphasizes the relevance to actual devices and sets these results apart from more simple models of networks of diodes and resistors. The book is especially important for people interested in detail analysis of solar cells and their efficiencies.

  1. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  2. High intensity ion beams in rf undulator linac

    Directory of Open Access Journals (Sweden)

    E. S. Masunov

    2008-07-01

    Full Text Available The possibility of using a radio frequency undulator field to accelerate a high intensity ion beam in a linac is discussed. Such an accelerator can be realized using the periodical interdigital H-type resonator structure. The accelerating force is produced by an electric field which is a combination of two or more spatial harmonics, none of them being synchronous with the ion beam. The value of this force is proportional to the squared charge. The equations of motion in Hamiltonian form are derived by means of smooth approximation. The analysis of the 3D effective potential function allows finding the conditions of the beam focusing and acceleration. Two ways to increase ion beam intensity are considered: (i to enlarge beam cross section; (ii to neutralize the beam space charge by accelerating ions with opposite charge signs within the same bunch. The basic results are confirmed by a numerical simulation.

  3. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  4. Space Charge Modules for PyHEADTAIL

    CERN Multimedia

    Oeftiger, Adrian

    2016-01-01

    PyHEADTAIL is a 6D tracking tool developed at CERN to simulate collective effects. We present recent developments of the direct space charge (SC) suite, which is available for both the CPU and GPU. A new 3D particle-in-cell solver with open boundary conditions has been implemented. For the transverse plane, there is a semi-analytical Bassetti-Erskine model as well as 2D self-consistent particle-in-cell solvers with both open and closed boundary conditions. For the longitudinal plane, PyHEADTAIL offers line density derivative models. Simulations with these models are benchmarked with experiments at the injection plateau of CERN’s SPS.

  5. Space charge modules for PyHEADTAIL

    CERN Document Server

    Oeftiger, Adrian; Hegglin, Stefan Eduard

    2016-01-01

    PyHEADTAIL is a 6D tracking tool developed at CERN to simulate collective effects. We present recent developments of the direct space charge suite, which is available for both the CPU and GPU. A new 3D particle-in-cell solver with open boundary conditions has been implemented. For the transverse plane, there is a semi-analytical Bassetti-Erskine model as well as 2D self-consistent particle-in-cell solvers with both open and closed boundary conditions. For the longitudinal plane, PyHEADTAIL offers line density derivative models. Simulations with these models are benchmarked with experiments at the injection plateau of CERN’s Super Proton Synchrotron.

  6. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  7. Experimental study of a half-integer resonance with space-charge effects in a synchrotron

    Directory of Open Access Journals (Sweden)

    Tomonori Uesugi

    2002-04-01

    Full Text Available Beam losses due to half-integer resonance have been observed in the Heavy Ion Medical Accelerator in Chiba synchrotron, along with exciting the harmonic component of gradient field errors. During operation, while varying the defocusing quadrupole to cross a half-integer tune in the vertical space, the region of bare tunes which causes the half-integer resonance was evaluated. When the initial beam intensity was high, the bare tune where the beam loss occurred became higher. The beam loss occurred rapidly when the half-integer tune was crossed upward, but gradually when it was crossed downward. Those results mean that the half-integer resonance is affected by space-charge-induced tune shifts. This fact was verified experimentally for the first time. The results from a one-dimensional multiparticle simulation agreed with those characteristics. Finally, the beam-size growth and the change in distribution were studied by a simulation.

  8. Space Charge effects and mitigation in the CERN PS Booster, in view of the Upgrade

    CERN Document Server

    AUTHOR|(CDS)2068441; Cieslak-Kowalska, Magdalena Anna; Forte, Vincenzo; Schmidt, Frank

    2016-01-01

    The CERN PS Booster (PSB) is presently running with a space charge tune spread larger than 0.5 at injection. Since the High Luminosity LHC (HL-LHC) will require beams with twice the intensity and brightness of today, the LHC Injector Upgrade (LIU) Project is putting in place an upgrade program for all the injector chain and, in particular, it relies on the important assumption that the PS Booster can successfully produce these beams after the implementation of the 160 MeV H- injection from Linac4. This contribution describes the studies (measure-ments and simulations) that have been carried out to con- firm that the PSB can indeed perform as needed in terms of beam brightness for the future HL-LHC runs. The importance of the mitigation measures already in place, such as the correction of the half-integer line, and the effects of non-linear resonances on the beam are also discussed.

  9. Tools for simulation of high beam intensity ion accelerators; Simulationswerkzeuge fuer die Berechnung hochintensiver Ionenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Tiede, Rudolf

    2009-07-09

    A new particle-in-cell space charge routine based on a fast Fourier transform was developed and implemented to the LORASR code. It provides the ability to perform up to several 100 batch run simulations with up to 1 million macroparticles each within reasonable computation time. The new space charge routine was successfully validated in the framework of the European ''High Intensity Pulsed Proton Injectors'' (HIPPI) collaboration: Several static Poisson solver benchmarking comparisons were performed, as well as particle tracking comparisons along the GSI UNILAC Alvarez section. Moreover machine error setting routines and data analysis tools were developed and applied on error studies for the ''Heidelberg Cacer Therapy'' (HICAT) IH-type drift tube linear accelerator (linac), the FAIR Facility Proton Linac and the proposal of a linac for the ''International Fusion Materials Irradiation Facility'' (IFMIF) based on superconducting CH-type structures. (orig.)

  10. Longitudinal Phase Space Tomography with Space Charge

    CERN Document Server

    Hancock, S; Lindroos, M

    2000-01-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of...

  11. Space Charge Effects in Single Molecular Devices

    Science.gov (United States)

    Dunlap, David H.; Malliaras, George G.

    2002-03-01

    Strong negative differential resistance (NDR) has been recently observed in p-conjugated oligo (phenyleneethynylene) single-molecular devices consisting of two parallel metal (Au) electrodes which are separated by a self-assembled monolayer having a thickness on the order of 2nm [1]. The sudden drop in current suggests that nonlinear feedback associated electron transport through intermediate molecular states may be responsible for the observed NDR. We propose that the transfer of charge from the cathode to the anode takes place via nearest-neighbor hopping between two weakly coupled oligomer states. In such a case, the current is highest when the energies of the two states are coincident, and is suppressed when the voltage drop between them is sufficient to take them far out of resonance. The modification of the voltages within the junction due to accumulated space charge causes the states to become pinned. We show that this collective behavior enhances the abruptness of the NDR, and under appropriate circumstances leads to a triangularly shaped hysteresis loop in the current-voltage relation. [1] M. A. Reed, J. Chen, W. Wang, D. W. Price, A. M. Rawlett, and J. M. Tour, Appl. Phys. Lett 78, 3735 (2001)

  12. Evolution of High Intensity Beams in the CERN PS Booster after H⁻ Injection and Phase Space Painting

    CERN Document Server

    Cieslak-Kowalska, Magdalena; Benedetto, Elena; Bracco, Chiara

    2016-01-01

    With the LHC Injector Upgrade (LIU) project, the injection energy of PS Booster (PSB) ' first circular accelerator in the LHC injector chain ' will be raised from 50 MeV to 160 MeV and the present multiturn injection will be upgraded to H⁻ injection with transverse and longitudinal painting. In the scope of this project, it is planned to double the beam intensities, profiting from the fact that the βγ2 factor will be two times larger (0.35 at 50 MeV and 0.71 at 160 MeV), so the resulting tune spread driven by a direct space charge should remain similar. This paper describes the feasibility to double the intensity of high intensity and large emittance beams, looking into the evolution under space charge and taking into account losses constrains in the ring and in the extraction lines.

  13. Implementation of Space Charge Forces in BimBim

    CERN Document Server

    Gottlob, Emmanuel; Oeftiger, Adrian

    An numerical algorithm is described for the implementation of linearised coherent space charge forces into BimBim, an eigenvalue solver for the coherent modes of oscillation of multibunch beams in the presence of beam coupling impedance, beam-beam, transverse feedback and now space charge effects. First results obtained with the model are described and compared to existing results where applicable.

  14. Stochastic Coulomb interactions in space charge limited electron emission

    NARCIS (Netherlands)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    A Monte Carlo simulation tool, which was used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics, was discussed. It was found that interactions in the space charge cloud affect the electron trajectories such that the velocity

  15. Numerical study for production of space charge within the stratiform ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5. Numerical study for production of space charge within the stratiform cloud ... One dimensional numerical model has been developed to predict the production of space charge and variations in other electrical parameters within the low level stratiform ...

  16. Single-Bunch Stability With Direct Space Charge

    CERN Multimedia

    Oeftiger, Adrian

    2017-01-01

    Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.

  17. A model and simulation of fast space charge pulses in polymers

    Science.gov (United States)

    Lv, Zepeng; Rowland, Simon M.; Wu, Kai

    2017-11-01

    The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.

  18. Accelerators for high intensity beams

    CERN Document Server

    Chou, Weiren

    2014-01-01

    As particle accelerators strive forever increasing performance, high intensity particle beams become one of the critical demands requested across the board by a majority of accelerator users (proton, electron and ion) and for most applications. Much effort has been made by our community to pursue high intensity accelerator performance on a number of fronts. Recognizing its importance, we devote this volume to Accelerators for High Intensity Beams. High intensity accelerators have become a frontier and a network for innovation. They are responsible for many scientific discoveries and technological breakthroughs that have changed our way of life, often taken for granted. A wide range of topics is covered in the fourteen articles in this volume.

  19. Gain length fitting formula for free-electron lasers with strong space-charge effects

    Directory of Open Access Journals (Sweden)

    G. Marcus

    2011-08-01

    Full Text Available We present a power-fit formula, obtained from a variational analysis using three-dimensional free-electron laser theory, for the gain length of a high-gain free-electron laser’s fundamental mode in the presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. The approach is inspired by the work of Xie [Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000NIMAER0168-900210.1016/S0168-9002(0000114-5], and provides a useful shortcut for calculating the gain length of the fundamental Gaussian mode of a free-electron laser having strong space-charge effects in the 3D regime. The results derived from analytic theory are in good agreement with detailed numerical particle simulations that also include higher-order space-charge effects, supporting the assumptions made in the theoretical treatment and the variational solutions obtained in the single-mode limit.

  20. Conductivity and Space Charges in PE with Additives

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, J.

    2003-01-01

    temperatures. Space charge formation under an applied electrical field of 20 kV/mm was investigated by means of the pulse-electro-acoustic method (PEA) at room temperature. The results were compared to space charge formation and conductivity in common LDPE. The measurements showed considerable differences...... between materials and only minor influence of crosslinking process and the addition of antioxidant with respect to the electrical properties of the material. Possible correlations between conductivity and space charge formation are discussed in the paper. The relevance of the findings for application...

  1. Development of a Space-charge-sensing System

    Directory of Open Access Journals (Sweden)

    Teiji Watanabe

    2007-12-01

    Full Text Available A system for remotely measuring the distribution of air space charge in real time is developed. The system consists of a loudspeaker and an electric field antenna. By propagating a burst of directional sound wave from the speaker, a modulation in the space charge and, therefore, an electric field change at ground is produced. The distribution of the space charge density is derived from the E-field change which can be measured by the E- field antenna. The developed system has been confirmed by both laboratory and field experiments.

  2. Summary of the Space Charge Collaboration Meeting May 2014

    CERN Document Server

    Schmidt, F

    2014-01-01

    The space charge collaboration meeting took place at CERN on 20 and 21 May 2014. It was co-sponsored by EuCARD-2 WP5.3 XBEAM XRING. The workshop focused on the needs of the LIU upgrade, covering requirements for space-charge codes, experiments including code benchmarking for the PS Booster and the PC, and the effect of PIC noise in simulations.

  3. Flat Bunches with a Hollow Distribution for Space Charge Mitigation

    CERN Document Server

    Oeftiger, Adrian; Findlay, Alan James; Hancock, Steven; Rumolo, Giovanni

    2016-01-01

    Longitudinally hollow bunches provide one means to mitigate the impact of transverse space charge. The hollow distributions are created via dipolar parametric excitation during acceleration in CERN's Proton Synchrotron Booster. We present simulation work and beam measurements. Particular emphasis is given to the alleviation of space charge effects on the long injection plateau of the downstream Proton Synchrotron machine, which is the main goal of this study.

  4. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  5. Detection of a space-charge region in an organic photoconductive sensor

    OpenAIRE

    Woestenborghs, Wouter; De Visschere, Patrick; Beunis, Filip; Neyts, Kristiaan; Vetsuypens, Arnout

    2012-01-01

    In our contribution we will present a transparent photoconductive sensor based on organic materials. The performance of the photoconductive sensor will be demonstrated by electrical and spectral response measurements. The existence of a high-field space charge region near the cathode will be shown by means of local illumination measurements.

  6. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    Laser induced pressure pulse space charge measurements were made on 1.5 mm thick plaques of high purity low density polyethylene equipped with vacuum-evaporated aluminium electrodes. Temperature differences up to 20 °C were maintained across the samples, which were subjected to dc fields up to 1...

  7. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  8. EBQ code: transport of space-charge beams in axially symmetric devices

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  9. Measurement of beam energy spread in a space-charge dominated electron beam

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2004-07-01

    Full Text Available Characterization of beam energy spread in a space-charge dominated beam is very important to understanding the physics of intense beams. It is believed that coupling between the transverse and longitudinal directions via Coulomb collisions will cause an increase of the beam longitudinal energy spread. At the University of Maryland, experiments have been carried out to study the energy evolution in such intense beams with a high-resolution retarding field energy analyzer. The temporal beam energy profile along the beam pulse has been characterized at the distance of 25 cm from the anode of a gridded thermionic electron gun. The mean energy of the pulsed beams including the head and tail is reported here. The measured rms energy spread is in good agreement with the predictions of the intrabeam scattering theory. As an application of the beam energy measurement, the input impedance between the cathode and the grid due to beam loading can be calculated and the impedance number is found to be a constant in the operation region of the gun.

  10. Smooth approximation model of dispersion with strong space charge for continuous beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2011-10-01

    Full Text Available We apply the Venturini-Reiser (V-R envelope-dispersion equations [M. Venturini and M. Reiser, Phys. Rev. Lett. 81, 96 (1998PRLTAO0031-900710.1103/PhysRevLett.81.96] to a continuous beam in a uniform focusing/bending lattice to study the combined effects of linear dispersion and space charge. Within this simple model we investigate the scaling of average dispersion and the effects on beam dimensions and show that the V-R equations lead to the correct zero-current limits. We also introduce a generalization of the space charge intensity parameter and apply it to the University of Maryland Electron Ring and other machines. In addition, we present results of calculations to test the smooth approximation by solving the V-R original equations and also through simulations with the matrix code ELEGANT.

  11. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...... of a dielectric. Results obtained using this model-based framework are compared to measurement results obtained from Laser Induced Pressure Pulse (LIPP) space charge measurements as well as conductivity measurements on selected cable type samples....

  12. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  13. LHC Report: reaching high intensity

    CERN Multimedia

    Jan Uythoven

    2015-01-01

    After both beams having been ramped to their full energy of 6.5 TeV, the last two weeks saw the beam commissioning process advancing on many fronts. An important milestone was achieved when operators succeeded in circulating a nominal-intensity bunch. During the operation, some sudden beam losses resulted in beam dumps at top energy, a problem that needed to be understood and resolved.   In 2015 the LHC will be circulating around 2800 bunches in each beam and each bunch will contain just over 1 x 1011 protons. Until a few days ago commissioning was taking place with single bunches of 5 x 109 protons. The first nominal bunch with an intensity of 1 x 1011 protons was injected on Tuesday, 21 April. In order to circulate such a high-intensity bunch safely, the whole protection system must be working correctly: collimators, which protect the aperture, are set at preliminary values known as coarse settings; all kicker magnets for injecting and extracting the beams are commissioned with beam an...

  14. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Noll, Daniel [Goethe Univ., Frankfurt (Germany); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  15. Experiments on Ion Space-Charge Neutralization with Pulsed Electron Beams

    CERN Document Server

    Herleb, U

    1996-01-01

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes has been experimentally investigated. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source may be increased by one order of magnitude. For elevated charge states the intensity amplification is more significant than for low charge states. For $Al^(7+)$ ions from an aluminium target a charge enhancement by a factor of 4 has been achieved by electron beam focusing.

  16. Experiments on Ion Beam Space-Charge Neutralization with Pulsed Electron Beams

    CERN Document Server

    Herleb, U

    1998-01-01

    Space-charge neutralization of heavy ion beams with electron beam pulses generated by electron guns incorporating ferroelectric cathodes has been experimentally investigated. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant than for low charge states. A charge enhancement factor of four has been achieved by neutralization with pulsed electron beams for Al7+ ions generated from an aluminium target.

  17. Modal description of longitudinal space-charge fields in pulse-driven free-electron devices

    Directory of Open Access Journals (Sweden)

    Yu. Lurie

    2010-05-01

    Full Text Available In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects leading to an expansion of short electron bunches along their trajectory. This effect restricts an application of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is required in order to achieve an accurate description of the self-fields and the resulted electron beam dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic field (including self-fields in terms of transverse eigenmodes of the (cold cavity, in which the field is excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant velocity. This enables consideration and study of the role played by different terms of the resulted expressions, such as components arising from forward and backward waves, propagating waves, and under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge fields are discussed.

  18. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2009-01-01

    Full Text Available Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004; R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006, Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes: (i Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000NIMAER0168-900210.1016/S0168-9002(0000729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]. All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance ϵ_{x} on beam width (as controlled by the lattice β_{x} function at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR. (ii A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the

  19. Study of space-charge dependence on IBF for GEM and Micromegas detectors

    Science.gov (United States)

    Yukawa, Kentaro; Hamagaki, Hideki; Gunji, Taku; Yamaguchi, Yorito; Terasaki, Kohei

    2014-09-01

    The MWPC is widely used in a Time Projection Chamber (TPC). To prevent ions created around amplification region from back drifting into the drift space, gating grid system is widely used in the TPC. However, the data taking rate is limited by the operation of the gating grid and the TPC with gating grid system cannot be suitable for the high rate experiments. Micor-Pattern Gaseous Detectors (MPGD) are the possible solutions to overcome the high rate limitations. GEM and Micromegas can absorb positive ions on its electrode or mesh and can reduce the ion backflow into the drift space. In this study, we aim to evaluate performance of ion back flow suppression of GEM and Micromegas detector as a function of space-charge density. We also did the simulation studies using Garfield + + to assess the reproducibility of the space-charge density dependence of the ion back flow obtained in the measurement. In this talk, we will report the overall performances (space-charge density and field dependences of the ion backflow) of GEM and micromegas detectors studied in the measurements and simulations.

  20. Incoherent Effect of Space Charge and Electron Cloud

    CERN Document Server

    Franchetti, G; Fischer, W; Zimmermann, F

    2009-01-01

    Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.

  1. Space charge distribution measurement methods and particle loaded insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)

    2006-03-07

    In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.

  2. Space charge studies in the PSB - MD report

    CERN Document Server

    Forte, V; Martini, M; Schmidt, F; Yu Molodozhentsev, A

    2014-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarizes the PSB Machine Development (MD) studies in 2012-2013, before the Long Shutdown 1 (LS1), focused on space charge eects analysis at the future 160 MeV injection energy from the Linac4. Different phenomena have been analysed to understand the behaviour of the machine and permit benchmarks with simulation codes.

  3. Study of a measurement of beam distribution on the phase space in the space charge dominant region

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Masahiro [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-06-01

    Beam distribution on the phase space which is figured by the emittance and Twiss parameters is one of the most important parameters when applications and performance of accelerator are studied. In the high energy region where the space charge effect is week, the emittance is measured by a quadrupole magnet and in the space charge dominant region, the pepper-pot technique is used. I studied a method to measure the beam distribution on the phase space by magnetic lenses in the space charge dominant region. In this method, an initial beam distribution is figured by parameters such as a momentum spread, a waist position and a beam radius at the exit of gun instead of Twiss parameters. And the beam trajectory and radius are calculated by a new simulation code instead of transfer matrix because transfer matrix can not be used in the space charge dominant region. I developed a new one dimensional simulation code. In this code, when the space charge force is calculated, a mesh size is changed automatically according to the beam radius in order to reduce the calculation error. The relations between the beam radius and strength of the magnetic lenses were calculated by this simulation code. The results show that the waist position and the beam radius at the exit of gun can be estimated from those relations. (author)

  4. On compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Wang, G.

    2014-05-09

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  5. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.

  6. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    Directory of Open Access Journals (Sweden)

    M. Dell'Angela

    2015-03-01

    Full Text Available Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES have been studied at a free electron laser (FEL for an oxygen layer on Ru(0001. We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  7. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    Science.gov (United States)

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  8. Head-tail instability and Landau damping in bunches with space charge

    Directory of Open Access Journals (Sweden)

    V. Kornilov

    2010-11-01

    Full Text Available Head-tail modes in bunches with space charge are studied using particle tracking simulations. The eigenfrequencies and eigenfunctions of transverse coherent oscillations in a Gaussian bunch are determined and compared with theories. A model for an airbag distribution in a barrier potential gives good predictions for the head-tail spectrum and for eigenfunctions in bunches with space charge. Using numerical simulations, space-charge induced Landau damping in a bunch is demonstrated. The damping rates are quantified for different modes and space-charge tune shifts. Finally, the head-tail instability with space charge is studied for the resistive-wall impedance below the mode coupling threshold. Results demonstrate that space-charge induced damping can suppress the instability for moderately strong space charge; instability growth rates saturate at strong space charge, in agreement with theoretical predictions.

  9. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Chem, Y-J; McCarrick, J F; Guethlein, G; Chambers, F; Falabella, S; Lauer, E; Richardson, R; Weir, J

    2002-07-31

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  10. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.

    1999-01-01

    The in situ thermal poling processes in germanosilicate fibers for positive and negative poling voltages are significantly different. Thermal poling of silica fibers consists of two processes: the faster linear process of charge migration and the subsequent single exponential process of charge...... ionization. Both the shielding electrical field due to charge migration and the ionization electrical field due to charge ionization are able to be frozen-in at room temperature acid lead to the residual linear electrooptic effects, The observations support that the mechanism of the induced electrooptic...... effects is based on space charge electrical fields instead of dipole/bond orientation....

  11. Program NAJOCSC and space charge effect simulation in C01

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.Y.; Chabert, A.; Baron, E

    1999-03-10

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.) 12 refs.

  12. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  13. A mask for high-intensity heavy-ion beams in the MAYA active target

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Tajes, C., E-mail: rodriguez@ganil.fr [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Pancin, J.; Damoy, S.; Roger, T.; Babo, M. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Caamaño, M. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Farget, F.; Grinyer, G.F.; Jacquot, B.; Pérez-Loureiro, D. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Ramos, D. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Suzuki, D. [Institut de Physique Nucléaire, Université Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France)

    2014-12-21

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a {sup 136}Xe beam are presented.

  14. An FPGA computing demo core for space charge simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  15. Space charge distributions in insulating polymers: A new non-contacting way of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L. [Université de Toulouse, UPS, LAPLACE, 118 route de Narbonne, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Petre, A. [Université de Pau et des Pays de l’Adour, SIAME, IPRA, 2 avenue du Président Pierre Angot, F-64053 Pau (France)

    2015-04-15

    A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.

  16. Space charge calculations for sub-three-dimensional particle-in-cell code

    Directory of Open Access Journals (Sweden)

    Leonid G. Vorobiev

    2000-11-01

    Full Text Available A novel approach for modeling high-current, charged particle beams in a three-dimensional manner is introduced. While the integration of beam motion equations is done as in completely 3D particle-in-cell codes, the space charge forces are found by an approximately self-consistent inclusion of the transverse and longitudinal fields. The algorithm is dramatically faster than fully 3D algorithms with computational times comparable to 2D field solvers. In addition, a sparser spatial grid and fewer required macroparticles provide significantly reduced memory demands. The proposed sub-3D technique has been verified with good agreement with other independent algorithms.

  17. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. New beam-tracking simulation code using bulk-to-point calculation technique for space charge fields

    Science.gov (United States)

    Mizuno, A.

    2016-02-01

    A new two-dimensional beam-tracking simulation code for electron injectors using a bulk-to-point calculation technique for space charge fields was developed. The calculated space charge fields are produced not by a point charge but by a hollow cylinder that has a volume. Each tracked electron is a point charge. This bulk-to-point calculation technique for space charge fields is based on that used in the multiple beam envelope equations, which were developed by the author. The multiple beam envelope equations are a set of differential equations for investigating the beam dynamics of electron injectors and can be used to calculate bunched beam dynamics with high accuracy. However, there is one limitation. The bunched beam is assumed to be an ensemble of several segmentation pieces in both the transverse and longitudinal directions. In this bunch model, each longitudinal segmentation slice in a bunch must not warp; consequently, the accuracy of the calculated emittance is reduced in the case of a highly charged beam for calculations of a typical rf gun injector system. This limitation is related to the calculation model of longitudinal space charge fields. In the newly developed beam-tracking simulation code, the space charge field calculation scheme is upgraded and the limitation has been overcome. Therefore, the applicable range is extended while maintaining the high accuracy of emittance calculations. Simultaneously, the calculation time is markedly shortened because the emittance dependence on the segmentation number is extremely weak. In this paper, several examples of beam dynamics that cannot be calculated accurately using the multiple beam envelope equations are demonstrated using the new beam-tracking simulation code. The accuracy of the calculated emittance is also discussed.

  19. High Intensity Exercise in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Wens, Inez; Dalgas, Ulrik; Vandenabeele, Frank

    2015-01-01

    exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body......±5%) and lean tissue mass (+1.4±0.5%) only increased in HITR. Finally self-reported physical activity levels increased 73±19% and 86±27% in HCTR and HITR, respectively. Conclusion High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile......Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2...

  20. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  1. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  2. High-Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  3. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  4. COMPENSATION FOR BUNCH EMITTANCE IN A MAGNETIZATION AND SPACE CHARGE DOMINATED BEAM.

    Energy Technology Data Exchange (ETDEWEB)

    CHANG,X.; BEN-ZVI,I.; KEWISCH,J.

    2004-06-21

    In order to obtain sufficient cooling rates for the Relativistic Heavy Ion Collider (RHIC) electron cooling, a bunched beam with high bunch charge, high repetition frequency and high energy is required and it is necessary to use a ''magnetized'' beam, i.e., an electron beam with non-negligible angular momentum. Applying a longitudinal solenoid field on the cathode can generate such a beam, which rotates around its longitudinal axis in a field-free region. This paper suggests how a magnetized beam can be accelerated and transported from a RF photocathode electron gun to the cooling section without significantly increasing its emittance. The evolution of longitudinal slices of the beam under a combination of space charge and magnetization is investigated, using paraxial envelope equations and numerical simulations. We find that we must modify the traditional method of compensating for emittance as used for normal non-magnetized beam with space charge to account for magnetization. The results of computer simulations of successful compensation are presented. Alternately, we show an electron bunch density distribution for which all slices propagate uniformly and which does not require emittance compensation.

  5. Non-stationary Effects In Space-charge Dominated Electron Beams

    CERN Document Server

    Agafonov, A V; Tarakanov, V P

    2004-01-01

    Problems of non-linear dynamics of space charge dominated electron beams in plane and in coaxial electron guns are discussed from the point of view of non-stationary behaviour of beams. The results of computer simulations of beam formation are presented for several simple plane diode geometries and for the gun with large compression of annular beam. Emphasised is non-stationary behaviour combined with edge and hysteresis effects. Non-stationary effects in crossed electron and magnetic field are considered from the point of view a development of schemes of intense electron beam formation for compact accelerators and RF-devices. The results of computer simulation of beam formation inside coaxial guns are described under condition of secondary self-sustaining emission. Possibilities of electron storage and capture due to transient processes are discussed. Work supported by RFBR under grant 03-02-17301.

  6. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  7. Simulation of space-charge effects in an ungated GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Böhmer, F.V., E-mail: felix.boehmer@tum.de; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-08-11

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P{sup ¯}ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm{sup −3} are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC.

  8. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    Science.gov (United States)

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  9. High-Intensity Plasma Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-01-01

    Modular high-intensity plasma melter promises improved performance, reduced energy use, and lower emissions. The glass industry has used the same basic equipment for melting glass for the past 100 years.

  10. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  11. Detection and stability of nanoscale space charges in local oxidation nanolithography

    Science.gov (United States)

    Baumgärtel, T.; Borczyskowski, C. v.; Graaf, H.

    2012-03-01

    We report on the stability of space charges within nanoscale silicon oxide patterns generated by atomic force microscope tip-induced local anodic oxidation of alkyl-terminated silicon. Surface potentials of these structures are investigated using two different approaches: Kelvin probe force microscopy and the spectroscopy of adsorbed charge-sensitive dye molecules. Both techniques prove that there is no decay of the space charge itself at least for several days. The apparent decrease of the surface potential measured with the Kelvin probe method is known to be influenced by the ambient humidity. It is supposed to be caused by a screening effect through the formation of a water layer. This is confirmed by our investigation of the surface potential decrease kinetics, which could be well fitted with an adapted model of water condensation. The fluorescence of the charge-sensitive dye di-4-ANEPPS, which is applied to the structures, shows a spectral shift of about 270 meV compared to an uncharged silicon oxide surface. The high stability of the charges supports the use of local anodic oxidation patterns as templates for selective immobilization of cationic species.

  12. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    Science.gov (United States)

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 1014 cm-2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  13. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission.

    Science.gov (United States)

    Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A

    2009-10-02

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  14. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  15. String formulation of space charge forces in a deflecting bunch

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2004-10-01

    Full Text Available The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995; Nucl. Instrum. Methods Phys. Res., Sect. A 417, 158 (1998.NIMAER0168-900210.1016/S0168-9002(9800623-8

  16. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  17. Stochastic behavior of electrons in high intensity laser-plasma interaction

    Science.gov (United States)

    Khalilzadeh, Elnaz; Chakhmachi, Amir; Yazdanpanah, Jamalaldin

    2017-12-01

    The stochastic behavior of electrons during the interaction of an intense short laser pulse with under-dense plasma is investigated by employing a fully kinetic 1D-3V particle-in-cell (PIC) simulation. The development of chaos in the involved nonlinear regime and in the presence of plasma space charge is examined. Though the electron Lagrangian is extremely complicated in this case, our analyses suggest some potential ways for chaos development. In this regard, our simulation results show that chaotic motion can develop in three different ways. When the space charge field is weak, the scattered fields can provide the necessary condition for chaos to occur. When a strong space charge field is presented, the creation of chaos is initiated by wave breaking. The third procedure for creating chaos originates from the inhomogeneity of the density on the vacuum-plasma surface. In this case, a new electrostatic mode without any phase relation with the space charge electrostatic mode is generated.

  18. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  19. Space Charge Formation in XLPE - the Influence of Electrodes and Pre-conditioning

    DEFF Research Database (Denmark)

    Holbøll, Joachim T.; Henriksen, Mogens; Fleming, R.J.

    1999-01-01

    investigations of the influence of these factors, on space charge accumulation or other electrical properties of XLPE, have been reported. In this paper we present space charge profiles for a range of XLPE planar samples under dc stress. Three different types of semicon electrodes were investigated, as well...

  20. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  1. Training for intense exercise performance: high-intensity or high-volume training?

    Science.gov (United States)

    Laursen, P B

    2010-10-01

    Performance in intense exercise events, such as Olympic rowing, swimming, kayak, track running and track cycling events, involves energy contribution from aerobic and anaerobic sources. As aerobic energy supply dominates the total energy requirements after ∼75s of near maximal effort, and has the greatest potential for improvement with training, the majority of training for these events is generally aimed at increasing aerobic metabolic capacity. A short-term period (six to eight sessions over 2-4 weeks) of high-intensity interval training (consisting of repeated exercise bouts performed close to or well above the maximal oxygen uptake intensity, interspersed with low-intensity exercise or complete rest) can elicit increases in intense exercise performance of 2-4% in well-trained athletes. The influence of high-volume training is less discussed, but its importance should not be downplayed, as high-volume training also induces important metabolic adaptations. While the metabolic adaptations that occur with high-volume training and high-intensity training show considerable overlap, the molecular events that signal for these adaptations may be different. A polarized approach to training, whereby ∼75% of total training volume is performed at low intensities, and 10-15% is performed at very high intensities, has been suggested as an optimal training intensity distribution for elite athletes who perform intense exercise events. © 2010 John Wiley & Sons A/S.

  2. Fundamental Physics Explored with High Intensity Laser

    Science.gov (United States)

    Tajima, T.; Homma, K.

    2012-10-01

    Over the last century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers. First we envision the laser-driven plasma accelerator may be able to extend the reach of the collider. For this approach to bear fruit, we need to develop the technology of high averaged power laser in addition to the high intensity. For this we mention that the latest research effort of ICAN is an encouraging sign. In addition to this, we now introduce the concept of the noncollider paradigm in exploring fundamental physics with high intensity (and large energy) lasers. One of the examples we mention is the laser wakefield acceleration (LWFA) far beyond TeV without large luminosity. If we relax or do not require the large luminosity necessary for colliders, but solely in ultrahigh energy frontier, we are still capable of exploring such a fundamental issue. Given such a high energetic particle source and high-intensity laser fields simultaneously, we expect to be able to access new aspects on the matter and the vacuum structure from fundamental physical point of views. LWFA naturally exploits the nonlinear optical effects in the plasma when it becomes of relativistic intensity. Normally nonlinear optical effects are discussed based upon polarization susceptibility of matter to external fields. We suggest application of this concept even to the vacuum structure as a new kind of order parameter to discuss vacuum-originating phenomena at semimacroscopic scales. This viewpoint unifies the following observables with the unprecedented experimental environment we envision; the dispersion relation of

  3. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  4. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A.; Jovanovic, M.

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  5. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  6. Systematic studies on the effect of linear lattice optics for space-charge limited beams

    CERN Document Server

    Fitterer, M; Molodozhentsev, A; Müller, A S

    2015-01-01

    The HL-LHC (High Luminosity LHC) project aims to an increase of the luminosity of the LHC by a factor of 10. In order to realize this ambitious goal, the LHC itself has to undergo a major upgrade accompanied by an extensive upgrade of the complete injector complex referred to as LHC injector upgrade (LIU). In the framework of the LIU project, a new rapid cycling synchrotron (RCS) as an alternative to the energy upgrade of the existing PS Booster has been proposed. Motivated by the optics studies conducted for this RCS, the more general question of the influence of the linear optics on the machine performance has been raised. In this paper, we want to investigate this question by comparing different lattices with the final aim of identifying lattice characteristics advantageous under strong space-charge effects.

  7. AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

    1999-03-29

    The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

  8. Tunable Intense High-Order Vortex Generation.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei

    2017-10-01

    In 2015, we found the scheme to generate intense high-order optical vortices that carry OAM in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. The topological charge of the harmonics scales with its order. These results have been confirmed in recent experiments. In the two incident beams case, we produced relativistic intense harmonics with expected frequency and optical vortex. When two counter-propagating LG laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and 3D PIC simulations. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374319, 11674339).

  9. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  10. High intensity laser interactions with atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  11. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  12. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  13. Analytic fluid theory of beam spiraling in high-intensity cyclotrons

    Directory of Open Access Journals (Sweden)

    A. J. Cerfon

    2013-02-01

    Full Text Available Using a two-dimensional fluid description, we investigate the nonlinear radial-longitudinal dynamics of intense beams in isochronous cyclotrons in the nonrelativistic limit. With a multiscale analysis separating the time scale associated with the betatron motion and the slower time scale associated with space-charge effects, we show that the longitudinal-radial vortex motion can be understood in the frame moving with the charged beam as the nonlinear advection of the beam by the E×B velocity field, where E is the electric field due to the space charge and B is the external magnetic field. This interpretation provides simple explanations for the stability of round beams and for the development of spiral halos in elongated beams. By numerically solving the nonlinear advection equation for the beam density, we find that it is also in quantitative agreement with results obtained in particle-in-cell simulations.

  14. The Influence of Electrodes and Conditioning on Space Charge Accumulation in XLPE

    DEFF Research Database (Denmark)

    Fleming, R. J.; Henriksen, Mogens; Holbøll, Joachim

    2000-01-01

    The accumulation of space charge in planar crosslinked polyethylene (XLPE) samples under dc electric fields at room temperature was investigated using the pulsed electroacoustic (PEA) method. Three different organic semiconductor (semicon) materials containing carbon black at concentrations ~30 %wt...

  15. Space-charge effects in ultrahigh current electron bunches generated by laser-plasma accelerators

    National Research Council Canada - National Science Library

    Grüner, F. J; Schroeder, C. B; Maier, A. R; Becker, S; Mikhailova, J. M

    2009-01-01

    ...) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process...

  16. Space charge and resistive wall impedance computation in the frequency domain using the finite element method

    Directory of Open Access Journals (Sweden)

    Uwe Niedermayer

    2015-03-01

    Full Text Available A two-dimensional finite element beam coupling impedance solver for arbitrary transverse geometries and material distribution is presented. The solver is based on open source software and is applicable to space charge and resistive wall longitudinal and transverse impedances. The frequency and the beam velocity can be chosen arbitrarily and also dispersively lossy materials are supported. Space charge impedance, a thin resistive beam pipe, a ferrite ring, and a carbon collimator are presented as application examples.

  17. A novel technique for compensation of space charge effects in the LUPIN-II detector

    Science.gov (United States)

    Cassell, C.; Ferrarini, M.; Rosenfeld, A.; Caresana, M.

    2015-12-01

    A new method for improving REM counter performance in Pulsed Neutron Fields (PNFs) has been developed. This method uses an analysis of the build-up of space charge in the counter to compensate for an underestimation of Ambient Dose Equivalent (H*(10)) in intense pulsed fields. It was applied to three sets of experimental data acquired using the LUPIN-II REM counter device, which is designed for use in PNFs. The data was acquired using the cyclotron at Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), at the HiRadMat facility at CERN and at the 'Elettra Sincrotrone Trieste' (ELETTRA), Italy. A comparison of the data with and without this compensation method is used to highlight its effectiveness. The LUPIN-II performance, which has already been shown to be able to cope with fields of up to hundreds of nSv/burst, is improved by at least one order of magnitude, with further potential for improvement.

  18. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    CERN Document Server

    Talman, Richard; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004); N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using trafic4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)] and elegant [M. Borland, Argonne National Laboratory...

  19. Review of High-intensity Interval Training in Cardiac Rehabilitation

    National Research Council Canada - National Science Library

    Ito, Shigenori; Mizoguchi, Tatsuya; Saeki, Tomoaki

    2016-01-01

    .... Although moderate-intensity continuous training has been the main training regimen recommended in cardiac rehabilitation guidelines, high-intensity interval training has been reported to be more...

  20. New functionalities of potassium tantalate niobate deflectors enabled by the coexistence of pre-injected space charge and composition gradient

    Science.gov (United States)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian L.; Henry, Michael G.; Yin, Stuart Shizhuo; Hoffman, Robert C.

    2017-10-01

    In most beam steering applications such as 3D printing and in vivo imaging, one of the essential challenges has been high-resolution high-speed multi-dimensional optical beam scanning. Although the pre-injected space charge controlled potassium tantalate niobate (KTN) deflectors can achieve speeds in the nanosecond regime, they deflect in only one dimension. In order to develop a high-resolution high-speed multi-dimensional KTN deflector, we studied the deflection behavior of KTN deflectors in the case of coexisting pre-injected space charge and composition gradient. We find that such coexistence can enable new functionalities of KTN crystal based electro-optic deflectors. When the direction of the composition gradient is parallel to the direction of the external electric field, the zero-deflection position can be shifted, which can reduce the internal electric field induced beam distortion, and thus enhance the resolution. When the direction of the composition gradient is perpendicular to the direction of the external electric field, two-dimensional beam scanning can be achieved by harnessing only one single piece of KTN crystal, which can result in a compact, high-speed two-dimensional deflector. Both theoretical analyses and experiments are conducted, which are consistent with each other. These new functionalities can expedite the usage of KTN deflection in many applications such as high-speed 3D printing, high-speed, high-resolution imaging, and free space broadband optical communication.

  1. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  2. High-intensity, focused ultrasonic fields

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1988-01-01

    The use of extracorporeal shock wave lithotripsy (ESWL) for disintegration of body stones has increased considerably during recent years. A worldwide activity in this field is reflected in a growing number of international publications and in the development and manufacturing of several ESWL...... machines marketed by companies in Germany and France, in particular. Two main types of ESWL systems are prevailing, the spark gap-based and the piezoelectric disk-based systems. This paper is introduced by a brief reconsideration of the features of pressure waves in water produced by an electrical...... distribution, etc. involving nonlinearity, diffraction, and absorption in the high-intensity focused ultrasonic fields produced by an ellipsoid as well as a spherical cap focusing geometry. Data from the development of an ESWL of the piezoelectric disk type are reported including demands to transducers...

  3. Production of high intensity radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of {approximately}10{sup 39} cm{sup {minus}2} s{sup {minus}1}, which would yield radioactive beams in excess of 10{sup 11} s{sup {minus}1}. 9 refs., 3 figs., 7 tabs.

  4. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  5. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of)

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-charge wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.

  6. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  7. Studies of Space Charge Effects in the Proposed CERN PS2

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; /LBL, Berkeley; Ryne, Robert; /LBL, Berkeley; De Maria, Riccardo; /Brookhaven; Macridin, Alexandru; /Fermilab; Spentzouris, Panagiotis; /Fermilab; Papaphilippou, Yannis; /CERN; Wienands, Ulrich; /SLAC

    2012-06-22

    A new proton synchrotron, the PS2, is under design study to replace the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, aperture sizes, initial painted distribution, and RF ramping scheme will also be discussed.

  8. Dielectric process of space-charge polarization for an electrolytic cell with blocking electrodes.

    Science.gov (United States)

    Sawada, Atsushi

    2008-08-14

    The dielectric process of space-charge polarization for an electrolytic cell with blocking electrodes is simulated considering bound charges externally supplied to the electrodes. A numerical calculation is performed to determine the distribution of mobile charges under an ac field satisfying Poisson's equation in which the dielectric constant varies with frequency. An exact frequency-dependent curve of the complex dielectric constant is obtained by including the contribution of bound charges induced by the space-charge polarization itself in Poisson's equation at every frequency. The present model of the space-charge polarization enables one to correctly understand the experimental results on the complex dielectric constant of electrolytic cells in low-frequency regions.

  9. Space charge in drift chambers operated with the Xe, CO$_{2}$(15\\%) mixture

    CERN Document Server

    AUTHOR|(CDS)2070213; Blume, C; Braun-Munzinger, P; Bucher, D; Busch, O; Catanescu, V; Ciobanu, M; Daues, H W; Emschermann, D; Fateev, O V; Foka, Y; Garabatos, C; Gunji, T; Herrmann, N; Inuzuka, M; Kislov, E; Lindenstruth, V; Ludolphs, W; Mahmoud, T; Petracek, V; Petrovici, M; Rusanov, I R; Sandoval, A; Santo, R; Schicker, R; Simon, R S; Smykov, L P; Soltveit, H K; Stachel, J; Stelzer, H; Tsiledakis, G; Vulpescu, B; Wessels, J P; Windelband, B; Xu, C; Zaudtke, O; Zanevsky, Yu; Yurevich, V; 10.1016/j.nima.2004.01.076

    2004-01-01

    Using prototype modules of the ALICE Transition Radiation Detector (TRD) we investigate space-charge effects and the dependence of the pion rejection performance on the incident angle of the ionizing particle. The average pulse height distributions in the drift chambers operated with the Xe, CO //2(15%) mixture provide quantitative information on the gas gain reduction due to space charge accumulating during the drift of the primary ionization. Our results demonstrate that the pion rejection performance of a TRD is better for tracks which are not at normal incidence to the anode wires. We present detailed simulations of detector signals, which reproduce the measurements and lend strong support to our interpretation of the measurements in terms of space-charge effects.

  10. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    Science.gov (United States)

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  11. Space charge in drift chambers operated with the Xe,CO2(15%) mixture

    CERN Document Server

    Andronic, A

    2004-01-01

    Using prototype modules of the ALICE Transition Radiation Detector we investigate space charge effects and the dependence of the pion rejection performance on the incident angle of the ionizing particle. The average pulse height distributions in the drift chambers operated with the Xe,CO2(15%) mixture provide quantitative information on the gas gain reduction due to space charge accumulating during the drift of the primary ionization. Our results demonstrate that the pion rejection performance of a TRD is better for tracks which are not at normal incidence to the anode wires. We present detailed simulations of detector signals, which reproduce the measurements and lend strong support to our interpretation of the measurements in terms of space charge effects.

  12. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  13. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, Gwenael G.J. [Univ. of California, Berkeley, CA (United States)

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  14. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  15. Transverse modes and instabilities of a bunched beam with space charge and resistive wall impedance

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V.; /Fermilab

    2011-11-01

    Transverse instability of a bunch in a ring accelerator is considered with space charge and wakefield taken into account. It is assumed that space charge tune shift significantly exceeds the synchrotron tune. Bunch spectrum, instability growth rate, and effects of chromaticity are studied with different bunch and wake forms. Fast instability caused by coupling of transverse modes is studied in detail. It is shown that, for monotonic wakes, the transverse mode coupling instability is possible only with a certain sign of the wake. Its threshold and growth rate are calculated precisely over a wide range of parameters.

  16. Space Charge Effects for the ERL Prototype Injector Line at Daresbury Laboratory

    CERN Document Server

    Muratori, Bruno; Owen, Hywel; de Loos, Marieke; van der Geer, Bas

    2005-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the space charge effects on the beam dynamics in the ERLP injector line. A Gaussian particle distribution is tracked with GPT (General Particle Tracer) through the injection line to the main linac to calculate the effect of 3Dspace charge in the dipoles. The nominal beam energy in the injection line is 8.3 MeV and the bunch charge 80 pC. The effects of space charge on the transverse and longitudinal emittance are studied for various electron beam parameter settings.

  17. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  18. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    OpenAIRE

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, Robert; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Neher, D.; Koch, N.

    2017-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 104 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contr...

  19. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Energy Technology Data Exchange (ETDEWEB)

    Ligorio, G.; Nardi, M. V. [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Steyrleuthner, R.; Neher, D. [Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht Str. 24, 14476 Potsdam (Germany); Ihiawakrim, D. [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, Cedex2 (France); Crespo-Monteiro, N.; Brinkmann, M. [Institut Charles Sadron CNRS, 23 rue du Loess, 67034 Strasbourg (France); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Erneuerbare Energien, Albert-Einstein Str. 15, 12489 Berlin (Germany)

    2016-04-11

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10{sup 4} due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  20. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  1. High-Intensity Sweeteners and Energy Balance

    Science.gov (United States)

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  2. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shunailov, S. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Kolomiets, M. D. [Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); Mesyats, G. A. [P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation); Yalandin, M. I. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation)

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  3. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  4. Simulation of transverse modes with their intrinsic Landau damping for bunched beams in the presence of space charge

    OpenAIRE

    Alexandru Macridin; Alexey Burov; Eric Stern; James Amundson; Panagiotis Spentzouris

    2015-01-01

    Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. The intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, ver...

  5. Grid dependent noise and entropy growth in anisotropic 3d particle-in-cell simulation of high intensity beams

    Directory of Open Access Journals (Sweden)

    I. Hofmann

    2014-12-01

    Full Text Available The numerical noise inherent to particle-in-cell (PIC simulation of 3d anisotropic high intensity bunched beams in periodic focusing is compared with the analytical model by Struckmeier [Part. Accel. 45, 229 (1994]. The latter assumes that entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial “collisions” caused by using macro-particles and calculating the space charge effect. The PIC simulations are carried out with the tracewin code widely used for high intensity beam simulation. The resulting noise can lead to growth of the six-dimensional rms emittance. The logarithm of the latter is shown to qualify as rms-based entropy. We confirm the dependence of this growth on the bunch temperature anisotropy as predicted by Struckmeier. However, we also find a grid and focusing dependent component of noise not predicted by Struckmeier. Although commonalities exist with well-established models for collision effects in PIC-simulation of extended plasmas, a distinctive feature is the presence of a periodic focusing potential, wherein the beam one-component plasma extends only over relatively few Debye lengths. Our findings are applied in particular to noise in high current linac beam simulation, where they help for optimization of the balance between the number of simulation particles and the grid resolution.

  6. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  7. RMS envelope matching of electron beams from “zero” current to extreme space charge in a fixed lattice of short magnets

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2006-06-01

    Full Text Available We present detailed calculations of RMS-envelope matching over a broad range of beam intensities for the University of Maryland Electron Ring (UMER. Containment of beams from zero current to extreme space charge, all without changing the strength of external focusing in the periodic lattice, is possible thanks to the high density of quadrupoles in UMER. In turn, the small-aspect ratio of the UMER magnets results in gradient or field profiles that are “all edges,” thus requiring special treatment when constructing accurate hard-edge models. Further, the results of matching calculations, for both symmetric and asymmetric FODO (alternating gradient schemes, are compared with calculations from simple general expressions valid in the uniform-focusing approximation of the periodic lattice. Finally, some aspects of the source-to-FODO matching calculation/optimization problem are discussed, together with sensitivity studies of the matching solutions under realistic conditions. The examples from the UMER project, which include experimental results, emphasize the practical aspects of beam envelope matching.

  8. Investigation of space charge in low-density polyethylene using a field probe technique

    DEFF Research Database (Denmark)

    Khalil, M. Salah; Hansen, Bo Svarrer

    1988-01-01

    A test method that uses a capacitive field probe to investigate the space charge distribution in low-density polyethylene (LDPE) is described. Specimens of 7-mm thickness were stressed under 100 kV DC at room temperature and for different time periods. The results indicate that the LDPE insulation...

  9. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  10. Space charge and beam stability issues of the Fermilab proton driver in Phase I

    Energy Technology Data Exchange (ETDEWEB)

    K. Y. Ng

    2001-08-24

    Issues concerning beam stability of the proposed Fermilab Proton Driver are studied in its Phase I. Although the betatron tune shifts are dominated by space charge, these shifts are less than 0.25 and will therefore not drive the symmetric and antisymmetric modes of the beam envelope into instability. The longitudinal space charge force is large and inductive inserts may be needed to compensate for the distortion of the rf potential. Although the longitudinal impedance is space charge dominated, it will not drive any microwave instability, unless the real part of the impedance coming from the inductive inserts and wall resistivity of the beam tube are large enough. The design of the beam tube is therefore very important in order to limit the flow of eddy current and keep wall resistivity low. The transverse impedance is also space charge dominated. With the Proton Driver operated at an imaginary transition gamma, however, Landau damping will never be canceled and beam stability can be maintained with negative chromaticities.

  11. The Influence of Pre-Conditioning on Space Charge Formation in LDPE

    DEFF Research Database (Denmark)

    Fleming, Robert J.; Henriksen, Mogens; Holbøll, Joachim T.

    1996-01-01

    In this paper we present space charge accumulation data for planar low density polyethylene samples subjected to 20 kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40o...

  12. Space Charge measurements in the PS at 2GeV.

    CERN Document Server

    Benedetto, E

    2012-01-01

    This note summarizes the 2011 Space-Charge studies in the PS on the $2$~GeV plateau and in particular it reports the results of the systematic measurements made on 9-10th November'11 with a low-emittance (LHC-type) beam.

  13. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y.

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  14. Physiological responses at the lactate-minimum-intensity with and without prior high-intensity exercise.

    Science.gov (United States)

    Zagatto, Alessandro Moura; Padulo, Johnny; Silva, Adelino Ramos Sanchez da; Müller, Paulo de Tarso Guerrero; Miyagi, Willian Eiji; Gobatto, Claudio Alexandre

    2016-11-01

    This study examined the physiological responses during exercise-to-exhaustion at the lactate-minimum-intensity with and without prior high-intensity exercise. Eleven recreationally trained males performed a graded exercise test, a lactate minimum test and two constant-load tests at lactate-minimum-intensity until exhaustion, which were applied with or without prior hyperlactatemia induction (i.e., 30-s Wingate test). The physiological responses were significantly different (P  0.05). In conclusion, the constant-load exercises performed at lactate-minimum-intensity with or without prior high-intensity exercise did not lead to the steady state of all analysed parameters; however, variables such as [La(-)], pH and [HCO3] - altered at the beginning of effort performed after high-intensity exercise - were reestablished after approximately 30 min of exercise.

  15. Stretching Effects: High-intensity & Moderate-duration vs. Low-intensity & Long-duration.

    Science.gov (United States)

    Freitas, S R; Vaz, J R; Bruno, P M; Andrade, R; Mil-Homens, P

    2016-03-01

    This study examined whether a high-intensity, moderate-duration bout of stretching would produce the same acute effects as a low-intensity, long-duration bout of stretching. 17 volunteers performed 2 knee-flexor stretching protocols: a high-intensity stretch (i. e., 100% of maximum tolerable passive torque) with a moderate duration (243.5 ± 69.5-s); and a low-intensity stretch (50% of tolerable passive torque) with a long duration (900-s). Passive torque at a given sub-maximal angle, peak passive torque, maximal range of motion (ROM), and muscle activity were assessed before and after each stretching protocol (at intervals of 1, 30 and 60 min). The maximal ROM and tolerable passive torque increased for all time points following the high-intensity stretching (p0.05). 1 min post-stretching, the passive torque decreased in both protocols, but to a greater extent in the low-intensity protocol. 30 min post-test, torque returned to baseline for the low-intensity protocol and had increased above the baseline for the high-intensity stretches. The following can be concluded: 1) High-intensity stretching increases the maximal ROM and peak passive torque compared to low-intensity stretching; 2) low-intensity, long-duration stretching is the best way to acutely decrease passive torque; and 3) high-intensity, moderate-duration stretching increases passive torque above the baseline 30 min after stretching. © Georg Thieme Verlag KG Stuttgart · New York.

  16. The effect of adsorbates on the space-charge-limited current in single ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Liao Zhimin; Lv Zhenkai; Zhou Yangbo; Yu Dapeng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Xu Jun; Zhang Jingmin [Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871 (China)], E-mail: yudp@pku.edu.cn

    2008-08-20

    We studied the influence of adsorbates on the space-charge-limited current (SCLC) in individual ZnO nanowires through varying the bias voltage, laser illumination, and ambient pressure. In dark and air conditions, the free carriers were depleted by the surface adsorbates, and electrons injected from the electrode to the nanowire dominated the electron transport properties. Under laser illumination, the current-voltage characteristic was linear at low voltage and superlinear at high voltage, and the SCLC regime occurred at high voltages due to the surface desorption. The time response of photoconductivity further revealed the dynamic process of elimination of SCLC by desorption of oxygen molecules at the ZnO nanowire surface.

  17. Charge and Current Compensation of Intense Charged Beams in Future Accelerators

    CERN Document Server

    Riege, H

    1998-01-01

    Proposals for future high-energy accelerators are characterized by demands for increasingly intense and energetic beams. The classical operation of high-current accelerators is severely constrained by collective electrodynamic phenomena, such as problems related to space-charge, to high-current flow, to beamstrahlung and pair production. These detrimental electrodynamic effects dominate the dynamic s and the collision interactions of high-intensity beams. With the introduction of soft space-charge and current compensation techniques utilizing low- to medium-energy lepton beams with charge polari ty opposite to that of the beams to be neutralized, all electromagnetic high-intensity limitations may be removed. The application of beam compensation is proposed for various sections of different ty pes of classical accelerator systems, such as for ion sources and the low-energy beam transport sections of ion linacs, for the crossing points of circular and linear colliders and for the final focii of ion beam fusion ...

  18. Evidence based exercise: Clinical benefits of high intensity interval training

    National Research Council Canada - National Science Library

    Shiraev, Tim; Barclay, Gabriella

    2012-01-01

    ...: This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Discussion...

  19. Aluminium plasma production at high laser intensity

    Science.gov (United States)

    Torrisi, L.; Cutroneo, M.

    2014-02-01

    Thick and thin films of Al targets were irradiated in vacuum with iodine laser at 1315 nm wavelength, 300 ps pulse duration at a maximum intensity of about 1016 W/cm2 by varying the pulse energy and focal position. The laser-generated plasma was monitored in forward and backward directions by using ion collectors, SiC detectors, Thomson parabola spectrometer, and X-ray streak camera. Ion emission shows maximum proton energy of about 4 MeV in self-focusing conditions and a maximum Al ion energy of about 50 MeV. An evaluation of the electric field driving ions in conditions of target normal sheath acceleration is given.

  20. Aluminium plasma production at high laser intensity

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L.; Cutroneo, M. [Dip.to di Fisica e S.d.T. Università di Messina, V.S. d' Alcontres 31, 98166 S. Agata (Italy)

    2014-02-28

    Thick and thin films of Al targets were irradiated in vacuum with iodine laser at 1315 nm wavelength, 300 ps pulse duration at a maximum intensity of about 10{sup 16} W/cm{sup 2} by varying the pulse energy and focal position. The laser-generated plasma was monitored in forward and backward directions by using ion collectors, SiC detectors, Thomson parabola spectrometer, and X-ray streak camera. Ion emission shows maximum proton energy of about 4 MeV in self-focusing conditions and a maximum Al ion energy of about 50 MeV. An evaluation of the electric field driving ions in conditions of target normal sheath acceleration is given.

  1. Numerical simulation of amplification of space charge waves in n-InP films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Barrientos, Abel, E-mail: abel@upp.edu.mx [Department of Mechatronics, Polytechnic University of Pachuca (UPP), Km. 20 Carretera Pachuca-Cd.Sahagun, Ex-Hacienda de Santa Barbara, 43830 Pachuca, Hidalgo (Mexico); Advanced Materials and Device Analysis Group, Inst. for Microelectronics, TU Wien, Gusshausstr. 27-29, 1040 Vienna (Austria); Palankovski, Vassil, E-mail: palankovski@iue.tuwien.ac.at [Advanced Materials and Device Analysis Group, Inst. for Microelectronics, TU Wien, Gusshausstr. 27-29, 1040 Vienna (Austria)

    2011-10-25

    The non-linear interaction of space charge waves including the amplification in microwave and millimeter wave range in n-InP films, possessing the negative differential conductance phenomenon, is investigated theoretically. Both the amplified signal and the generation of harmonics of the input signal are demonstrated, which are due to non-linear effect of the negative differential resistance. It is possible to observe an amplification of the space charge waves in n-InP films of submicron thicknesses at essentially higher frequencies f <70 GHz, when compared with n-GaAs films f < 44 GHz. The increment observed in the gain is due to the larger dynamic range in n-InP than in n-GaAs films.

  2. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    and temperatures were applied in the 20 - 80°C range with gradients across the insulation of up to 15°C. In this paper, the observed charge phenomena in the bulk and at the interfaces are related to the external conditions, in particular to the temperature gradient. The measured space charge distributions......Space charge build-up in standard XLPE insulated AC cables has been studied under varying temperature and field conditions. The cables were triple-extruded with the inner semicon on a solid aluminum conductor, 5.5mm XLPE-insulation and an outer semicon. The cables were stressed up to 15kV/mm DC...

  3. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    CERN Document Server

    Koscielniak, Shane Rupert; Lindroos, M

    2001-01-01

    Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell (1969) for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition) if the impedance is inductive (or resistive) or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coast...

  4. On Relativistic Space Charge Limited Current in Planar, Cylindrical, and Spherical Diodes

    Science.gov (United States)

    2016-07-01

    Phys. Rev., vol . 21, p. 450, 1923. [3] I. Langmuir and K. B. Blodgett, “Currents limited by space charge between coaxial cylinders,” Phys. Rev., vol . 22 ...Andrew Greenwood, et al. Air Force Research Laboratory Department of Nuclear Engineering 3550 Aberdeen Avenue SE Radiological ...Force Resear ch Laboratory 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 Department of Nuclear Engineering and Radiological Sciences

  5. The Influence of Pre-conditioning on Space Charge Formation in LDPE

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Holbøll, Joachim T.; Fleming, R.J.

    1998-01-01

    The effect of thermal conditioning, at reduced pressure, on space charge accumulation in planar LDPE samples under DC stress has been investigated. The samples were 1.8 mm thick, including two 0.1 mm thick semicon electrodes, and they were conditioned prior to voltage application by being held...... charge injection from the electrodes or field-assisted thermal ionisation of impurities would not be expected....

  6. Longitudinal Space Charge Effects in the JLAB IR FEL SRF Linac

    CERN Document Server

    Hernandez-Garcia, Carlos; Behre, Chris; Benson, S V; Herman-Biallas, George; Boyce, James; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Hardy, David; Jordan, Kevin; Merminga, Lia; Neil, George; Preble, Joe; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Williams, Gwyn; Yunn, Byung; Zhang, Shukui

    2004-01-01

    Observations of energy spread asymmetry when operating the Linac on either side of crest and longitudinal emittance growth have been confirmed by extending PARMELA simulations from the injector to the end of the first SRF Linac module. The asymmetry can be explained by the interaction of the accelerating electric field with that from longitudinal space charge effects within the electron bunch. This can be a major limitation to performance in FEL accelerators.

  7. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  8. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  9. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  10. Space-charge effects in ultrahigh current electron bunches generated by laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    F. J. Grüner

    2009-02-01

    Full Text Available Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron laser (FEL. Significant reduction in size of the FEL is facilitated by the expected ultrahigh peak beam currents (10–100 kA generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultracompact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution, which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  11. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  12. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  13. Time-dependent simulation of plasma and electrodes in high-intensity discharge lamps with different electrode shapes

    CERN Document Server

    Flesch, P

    2003-01-01

    The subject of this paper is the modelling of d.c. and a.c. high-intensity Hg-discharge lamps with differently shaped electrodes. Different arc attachments on the electrodes are studied and insight for the development of new electrodes is gained. The model includes the entire discharge plasma (plasma column, hot plasma spots in front of electrodes, near-electrode non-LTE-plasma) as well as anode and cathode. No subdivision of the discharge space into different regions is necessary (like space charge layer, ionization zone, plasma column). This is achieved by using a differential equation for a non-LTE electrical conductivity which is applicable for local thermal equilibrium (LTE-)regions as well as for non-LTE plasma regions close to the electrodes in a high pressure plasma. Modelling results for a 0.6 MPa mercury discharge considering six different electrode shapes (anode and cathode) are presented and compared with experimental results. The electrodes have different diameters and different electrode tips, s...

  14. Engineering Food Ingredients with High-Intensity Ultrasound

    Science.gov (United States)

    Weiss, Jochen; Kristbergsson, Kristberg; Kjartansson, Gunnar Thor

    The use of ultrasound in the food industry has increased in the last decades. Ultrasound has been used both to analyze food structure and composition at low ultrasonic intensities and high frequencies and to modify ingredients at high ultrasonic intensities and low frequencies. Application of the latter is referred to as high-intensity (power) ultrasonication and is generally carried out at frequencies of =0.1 MHz and ultrasonic intensities of 10-100 W cm-2. In the food industry, power ultrasonication has proved to be a highly effective food processing and preservation technology, and use of high-intensity ultrasound with or without heat may be used, for example, to denature enzymes, aid in the extraction of valuable compounds from plants and seeds, tenderize meat, and homogenize or disperse two-phase systems such as emulsions or suspensions (Mason et al., 1996).

  15. Simulation of transverse modes with their intrinsic Landau damping for bunched beams in the presence of space charge

    Directory of Open Access Journals (Sweden)

    Alexandru Macridin

    2015-07-01

    Full Text Available Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. The intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.

  16. Simulation of transverse modes with their intrinsic Landau damping for bunched beams in the presence of space charge

    Science.gov (United States)

    Macridin, Alexandru; Burov, Alexey; Stern, Eric; Amundson, James; Spentzouris, Panagiotis

    2015-07-01

    Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. The intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4 . For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.

  17. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    Science.gov (United States)

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.

  18. SALIVARY CORTISOL RESPONSES AND PERCEIVED EXERTION DURING HIGH INTENSITY AND LOW INTENSITY BOUTS OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Alison D. Egan

    2004-03-01

    Full Text Available The purpose of this study was to measure the salivary cortisol response to different intensities of resistance exercise. In addition, we wanted to determine the reliability of the session rating of perceived exertion (RPE scale to monitor resistance exercise intensity. Subjects (8 men, 9 women completed 2 trials of acute resistance training bouts in a counterbalanced design. The high intensity resistance exercise protocol consisted of six, ten-repetition sets using 75% of one repetition maximum (RM on a Smith machine squat and bench press exercise (12 sets total. The low intensity resistance exercise protocol consisted of three, ten-repetition sets at 30% of 1RM of the same exercises as the high intensity protocol. Both exercise bouts were performed with 2 minutes of rest between each exercise and sessions were repeated to test reliability of the measures. The order of the exercise bouts was randomized with least 72 hours between each session. Saliva samples were obtained immediately before, immediately after and 30 mins following each resistance exercise bout. RPE measures were obtained using Borg's CR-10 scale following each set. Also, the session RPE for the entire exercise session was obtained 30 minutes following completion of the session. There was a significant 97% increase in the level of salivary cortisol immediately following the high intensity exercise session (P<0.05. There was also a significant difference in salivary cortisol of 145% between the low intensity and high intensity exercise session immediately post-exercise (P<0.05. The low intensity exercise did not result in any significant changes in cortisol levels. There was also a significant difference between the session RPE values for the different intensity levels (high intensity 7.1 vs. low intensity 1.9 (P<0.05. The intraclass correlation coefficient for the session RPE measure was 0.95. It was concluded that the session RPE method is a valid and reliable method of

  19. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  20. Repeated high-intensity exercise in professional rugby union.

    Science.gov (United States)

    Austin, Damien; Gabbett, Tim; Jenkins, David

    2011-07-01

    The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.

  1. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  2. Single injection space-charge-limited current in insulator with two sets of distributed traps

    Science.gov (United States)

    Kumar, M.; Vashistha, G. K.; Sharma, Y. K.

    2007-11-01

    A study of single injection space-charge-limited current flow in insulator with two sets of traps distributed in energy is presented for a particular situation in which the energy separation of the two sets of traps is too small to give rise a current-voltage characteristic with maximum structure. The current-voltage characteristic is obtained in a simplified way with the help of regional approximation method. The obtained J-V characteristic is compared with previously reported experimental work on p-type GaSe sample. The comparison shows very good agreement between theoretical and experimental result, confirming the correctness of the analysis.

  3. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  4. The Influence of Pre-conditioning on the Space Charge Formation in LDPE and XLPE

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Holbøll, Joachim T.; Fleming, R.J.

    1996-01-01

    obtained by utilizing two different test methods. These were the laser induced pressure pulse (LIPP) method and the pulsed electroacoustic (PEA) method. The thickness of the test samples was 1.80mm. Calibration of the measuring systems was performed at field strengths below that required for charge......Planar LDPE and XLPE samples were conditioned by holding in short circuit for 48 hrs. at 40oC under rotary pump pressure, and space charge accumulation in these samples under DC fields of 20 kV/mm was then compared with the corresponding accumulation in unconditioned samples.The test results were...

  5. A Novel Method Describing the Space Charge Limited Region in a Planar Diode

    Directory of Open Access Journals (Sweden)

    Mitra Ghergherehchi

    2017-11-01

    Full Text Available A novel and rather simple method is presented to describe the physics of space-charge region in a planar diode. The method deals with the issue in the time domain and as a consequence transient time behavior can be achieved. Potential distributions and currents obtained using this technique, supposing zero initial velocity for electrons, reveal absolute agreement with Child's results. Moreover, applying the method for non-zero uniform initial velocity for electrons, gives results which are in good agreement with previous works

  6. Computer modeling of beam space charge effects in cyclotron injector into JINR phasotron

    CERN Document Server

    Kalinichenko, V V

    2002-01-01

    Charge particle beam dynamics including space charge by direct Coulomb particle-to-particle method was simulated. For this purpose in MATLAB a new code KASKADS was developed. Numerical simulations of the particle motion confirm that it is possible to achieve separated orbits in a 5 MeV, 30 mA separated sector cyclotron (accelerating voltage varies depending on radius from 150 kV in the centre to 240 kV in the extraction region). The aperture of the accelerator must be greater than 3 cm.

  7. Interaction of relativistic short proton bunches with space charge limited electron clouds

    Directory of Open Access Journals (Sweden)

    F. B. Petrov

    2014-12-01

    Full Text Available The electron cloud buildup and interaction with a train of relativistic, short proton bunches is studied using particle-in-cell codes. The simulation models describe the electron generation at the beam pipe wall as well as the wakefield behind the bunches. The study focuses on the space charge limited (saturated cloud profile between the bunches and on the incoherent tune spread caused by the interaction of the saturated cloud with individual bunches. Analytical expressions describing the pinch of a saturated electron cloud are derived and compared to simulation results.

  8. Space charge deposition in tubular channel ferroelectrets: A combined fluorescence imaging/LIMM study with finite element analysis

    Science.gov (United States)

    Nepal, Neerajan; Altafim, Ruy Alberto Pisani; Mellinger, Axel

    2017-06-01

    Ferroelectrets, i.e., soft materials with electric charges deposited on the surfaces of internal voids, are well known for their potential in transducer applications and energy harvesting. Due to their regular geometry and optical transparency, tubular channel ferroelectrets (manufactured by laminating polymer films around a polytetrafluoroethylene template which is later removed) are well-suited for studying the process of charge deposition. Understanding how space charges are formed on the internal surfaces will lead to improvements in the charge density and in the piezoelectric performance of these films. In this work, the inception voltage for dielectric barrier discharges (and hence the onset of charge deposition) was measured using two independent techniques, fluorescence imaging and the laser intensity modulation method (LIMM). The results (around 1.4-1.7 kV, depending on the void height) are in agreement within ±50 V. The internal electric field distribution was calculated using finite element analysis (FEA). Combined with Paschen's law, these calculations explained the experimentally observed discharge patterns, starting from the channel edges in thick samples, but glowing more uniformly in films with void heights of 50 μm or less. A time-dependent FEA simulation of the LIMM measurement reproduced the observed thermoelastic resonances and their effect on the LIMM signal, and explained its seemingly erratic behavior. This approach has great potential for analyzing LIMM and thermal pulse data obtained in inhomogeneous materials.

  9. Architecture and Programming Models for High Performance Intensive Computation

    Science.gov (United States)

    2016-06-29

    AFRL-AFOSR-VA-TR-2016-0230 Architecture and Programming Models for High Performance Intensive Computation XiaoMing Li UNIVERSITY OF DELAWARE Final...TITLE AND SUBTITLE Architecture and Programming Models for High Performance Intensive Computation 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0213...developing an efficient system architecture and software tools for building and running Dynamic Data Driven Application Systems (DDDAS). The foremost

  10. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  11. High-intensity aerobic interval exercise in chronic heart failure.

    Science.gov (United States)

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  12. Nonlinear δf particle simulations of collective excitations and energy-anisotropy instabilities in high-intensity bunched beams

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2007-06-01

    Full Text Available Collective effects with strong coupling between the longitudinal and transverse dynamics are of fundamental importance for applications of high-intensity bunched beams. The self-consistent Vlasov-Maxwell equations are applied to high-intensity finite-length charge bunches, and a generalized δf particle simulation algorithm is developed for bunched beams with or without energy anisotropy. The nonlinear δf method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. Systematic studies are carried out under conditions corresponding to strong 3D nonlinear space-charge forces in the beam frame. For charge bunches with isotropic energy, finite bunch-length effects are clearly evident by the fact that the spectra for an infinitely long coasting beam and a nearly spherical charge bunch have strong similarities, whereas the spectra have distinctly different features when the bunch length is varied between these two limiting cases. For bunched beams with anisotropic energy, there exists no exact kinetic equilibrium because the particle dynamics do not conserve transverse energy and longitudinal energy separately. A reference state in approximate dynamic equilibrium has been constructed theoretically, and a quasi-steady state has been established in the simulations for the anisotropic case. Collective excitations relative to the reference state have been simulated using the generalized δf algorithm. In particular, the electrostatic Harris instability driven by strong energy anisotropy is investigated for a finite-length charge bunch. The observed growth rates are larger than those obtained for infinitely long coasting beams. However, the growth rate decreases for increasing bunch length to a value similar to the case of a long coasting beam. For long bunches, the instability is axially localized symmetrically relative to the beam center, and the characteristic wavelength in the longitudinal direction is

  13. Self-consistent simulation of the space charge dominated beams in an elliptical solenoid magnet

    Science.gov (United States)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-11-01

    The behaviour of a space charge dominated beam has been studied through an elliptical solenoid which is used for making a planar beam as well as for matching an axisymmetric beam to a system needing unequal beam sizes in the two transverse planes. We have first developed an envelope model based on the canonical description of the motion and derived ten independent first order differential equations for the beam sigma matrix elements by assuming canonically transformed Kapchinskij-Vladimirskij (KV) like distribution of the beam. In order to investigate the nonlinear space charge effect a 2D particle-in-cell method has been used. Five types of phase space distributions for the initial beam have been utilized to study the evolutions of envelope and emittance as a function of beam current for different initial beam conditions as the beam passes through the elliptical solenoid. It is shown that the evolution of beam sizes depends weakly on the form of initial distributions whereas the projected emittances in the two transverse planes strongly depend on the initial beam conditions and type of distributions.

  14. Space-charge limits on the transport of ion beams in a long alternating gradient system

    Energy Technology Data Exchange (ETDEWEB)

    Tiefenback, M.G.

    1986-11-01

    We have experimentally studied the space-charge-dominated transport of ion beams in an alternating-gradient channel, without acceleration. We parameterize the focusing strength in terms of the zero-current ''betatron'' oscillation phase advance rate, sigma/sub 0/ (degrees per focusing period). We have investigated the conditions for ''stability'', defined as the constancy of the total current and phase space area of the beam during transport. We find that the beam may be transported with neither loss of current nor growth in phase area if sigma/sub 0/ < 90/sup 0/. In this regime, the space-charge repulsive force can counter 98-99% of the externally applied focusing field, and the oscillation frequency of the beam particles can be depressed by self-forces to almost a factor of 10 below the zero-current value, limited only by the optical quality of our ion source. For sigma/sub 0/ > 90/sup 0/, we find that collective interactions bound the maintainable density of the beam, and we present a simple, semi-empirical characterization for stability, within our ability to distinguish the growth rate from zero in our apparatus. Our channel comprises 87 quadrupole lenses, 5 of which are used to prepare the beam for injection into the non-azimuthally-symmetric focusing channel.

  15. Longitudinal space charge effect in slowly converging or diverging relativistic beams

    Directory of Open Access Journals (Sweden)

    Karl L. F. Bane

    2002-10-01

    Full Text Available Beginning with the Green function for a rod beam in a round beam pipe we derive the space charge induced average energy change and rms spread for relativistic beams that are slowly converging or diverging in round beam pipes, a result that tends to be much larger than the 1/γ^{2} dependence for parallel beams. Our results allow for beams with longitudinal-transverse correlation, and for slow variations in beam pipe radius. We calculate, in addition, the space charge component of energy change and spread in a chicane compressor. This component indicates source regions of coherent synchrotron radiation (CSR energy change in systems with compression. We find that this component, at the end of example compressors, approximates the total induced voltage obtained by more detailed CSR calculations. Our results depend on beam pipe radius (although only weakly whereas CSR calculations do not normally include this parameter, suggesting that results of such calculations, for systems with beam pipes, are not complete.

  16. Direct space-charge effects on the ILC damping rings: Task ForceReport

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco; Oide, Katsunobu

    2006-02-28

    In 2005 a global effort was initiated to conduct studies for a baseline recommendation for the various components of the International Linear Collider (ILC). Work for the damping rings was subdivided in a number of tasks. This Report contains the contribution to this effort by the Authors as Coordinators of the Task Force on space charge. (A slightly reduced version of this document can also be found as part of the ''Configuration Studies and Recommendations for the ILC Damping Rings'', Edts. A. Wolski, et al., LBNL-59449.) The studies documented in this Report were carried out for several of the reference lattices considered for the baseline recommendation. Space charge effects were found to be quite noticeable in the lattices with the longest circumference. Although it does not appear that they could prevent operation of any machine having such lattices they do favor a choice of a ring design with shorter ({approx}6km) circumference at 5 GeV.

  17. PARMELA-B A new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    CERN Document Server

    Koltenbah, B E C; Greegor, R B; Dowell, D H

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA_B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self- fields. The self-fields are due to CSR and S...

  18. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    Science.gov (United States)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  19. Review of High-intensity Interval Training in Cardiac Rehabilitation.

    Science.gov (United States)

    Ito, Shigenori; Mizoguchi, Tatsuya; Saeki, Tomoaki

    2016-01-01

    For the secondary prevention of cardiovascular disease, comprehensive cardiac rehabilitation is required. This involves optimal medical therapy, education on nutrition and exercise therapy, and smoking cessation. Of these, efficient exercise therapy is a key factor. A highly effective training protocol is therefore warranted, which requires a high rate of compliance. Although moderate-intensity continuous training has been the main training regimen recommended in cardiac rehabilitation guidelines, high-intensity interval training has been reported to be more effective in the clinical and experimental setting from the standpoint of peak oxygen uptake and central and peripheral adaptations. In this review, we illustrate the scientific evidence for high-intensity interval training. We then verify this evidence and discuss its significance and the remaining issues.

  20. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting–receiving system in the presence of intense high frequency (a few MHz) ...

  1. Simulation of high currents in x-ray flash tubes

    Science.gov (United States)

    Germer, R.; Sato, E.

    2008-11-01

    The discharge in linear plasma X-ray flash tubes ( Sato tubes ) is simulated. For the geometry of a cylinder cathode outside and an anode in the centre, the electrical fields and potentials are calculated and the propagation of electrons are studied. Space charge limits the current in the initial phase strongly. Replacing the vacuum by plasma from the anode evaporation, it is possible to get increasing current and strong X-ray pulses. Space charge is important for the high intensity X-ray production up to the end of the emission.

  2. Ion space-charge effects in multi-GEM detectors: challenges and possible solutions for future applications

    CERN Document Server

    AUTHOR|(CDS)2079251; Streli, Christina

    Gaseous Electron Multiplier (GEM) detectors are well known both for stable operation under irradiation with high particle fluxes and high achievable effective gains. The aim of this thesis is two-fold: to investigate the limits of GEM detector operation due to space-charge effects, and to develop a means to reduce the magnitude of the observed effects and thus extend those limitations. The first part of the thesis presents a comprehensive study of the intrinsic limits of triple-GEM detectors under exposure to very high fluxes of soft X-rays or operation at very large effective gains. The behaviour of the effective gain, ion back-flow and the pulse-height spectra is explained in terms of the movement and accumulation of positive ions throughout the detector volume, resulting in distortions of the transfer and amplification fields. Numerical computations, and measurements on double-stage and single-stage detectors confirm the model describing the observed effects. Discussions on ways to extend the limits of gas...

  3. Benefits of High-Intensity Intensive Care Unit Physician Staffing under the Affordable Care Act

    Directory of Open Access Journals (Sweden)

    Sachin Logani

    2011-01-01

    Full Text Available The Affordable Care Act signed into law by President Obama, with its value-based purchasing program, is designed to link payment to quality processes and outcomes. Treatment of critically ill patients represents nearly 1% of the gross domestic product and 25% of a typical hospital budget. Data suggest that high-intensity staffing patterns in the intensive care unit (ICU are associated with cost savings and improved outcomes. We evaluate the literature investigating the cost-effectiveness and clinical outcomes of high-intensity ICU physician staffing as recommended by The Leapfrog Group (a consortium of companies that purchase health care for their employees and identify ways to overcome barriers to nationwide implementation of these standards. Hospitals that have implemented the Leapfrog initiative have demonstrated reductions in mortality and length of stay and increased cost savings. High-intensity staffing models appear to be an immediate cost-effective way for hospitals to meet the challenges of health care reform.

  4. The generation of high-quality, intense ion beams by ultra-intense lasers

    CERN Document Server

    Roth, M; Audebert, Patrick; Blazevic, A; Brambrink, E; Cowan, T E; Fuchs, J; Gauthier, J C; Geissel, M; Hegelich, M; Karsch, S; Meyer-Ter-Vehn, J; Ruhl, H; Schlegel, T; Stephens, R B

    2002-01-01

    Intense beams of protons and heavy ions have been observed in ultra-intense laser-solid interaction experiments. Thereby, a considerable fraction of the laser energy is transferred to collimated beams of energetic ions (e.g. up to 50 MeV protons; 100 MeV fluorine), which makes these beams highly interesting for various applications. Experimental results indicate a very short-pulse duration and an excellent beam quality, leading to beam intensities in the TW range. To characterize the beam quality and its dependence on laser parameters and target conditions we performed experiments using the 100 TW laser system at Laboratoire pour l'Utilisation des Lasers Intenses at the Ecole Polytechnique, France, with focused intensities exceeding 10 sup 1 sup 9 W cm sup - sup 2. We found a strong dependence on the target rear surface conditions allowing to tailor the ion beam by an appropriate target design. We also succeeded in the generation of heavy ion beams by suppressing the proton amount at the target surface. We wi...

  5. High Intensity Interval Training for Maximizing Health Outcomes.

    Science.gov (United States)

    Karlsen, Trine; Aamot, Inger-Lise; Haykowsky, Mark; Rognmo, Øivind

    Regular physical activity and exercise training are important actions to improve cardiorespiratory fitness and maintain health throughout life. There is solid evidence that exercise is an effective preventative strategy against at least 25 medical conditions, including cardiovascular disease, stroke, hypertension, colon and breast cancer, and type 2 diabetes. Traditionally, endurance exercise training (ET) to improve health related outcomes has consisted of low- to moderate ET intensity. However, a growing body of evidence suggests that higher exercise intensities may be superior to moderate intensity for maximizing health outcomes. The primary objective of this review is to discuss how aerobic high-intensity interval training (HIIT) as compared to moderate continuous training may maximize outcomes, and to provide practical advices for successful clinical and home-based HIIT. Copyright © 2017. Published by Elsevier Inc.

  6. High-intensity light-emitting diode vs fluorescent tubes for intensive phototherapy in neonates.

    Science.gov (United States)

    Sherbiny, Hanan S; Youssef, Doaa M; Sherbini, Ahmad S; El-Behedy, Rabab; Sherief, Laila M

    2016-05-01

    Special blue fluorescent tubes are recommended by the American Academy of Pediatrics (AAP) as the most effective light source for lowering serum bilirubin. A high-intensity light-emitting diode ('super LED') could render intensive phototherapy more effective than the above conventional methods. This study compared the efficacy and safety of a high-intensity light-emitting diode bed vs conventional intensive phototherapy with triple fluorescent tube units as a rescue treatment for severe unconjugated neonatal hyperbilirubinaemia. This was a randomised, prospective trial. Two hundred jaundiced neonates ≥ 35 weeks gestation who met the criteria for intensive phototherapy as per AAP guidelines were randomly assigned to be treated either with triple fluorescent tube units (group 1, n = 100) or a super LED bed (group 2, n = 100). The outcome was the avoidance of exchange transfusion by successful control of hyperbilirubinaemia. Statistically significant higher success rates of intensive phototherapy were achieved among neonates treated with super LED (group 2) than in those treated conventionally (group 1) (87% vs 64%, P = 0.003). Significantly higher 'bilirubin decline' rates were reported in both haemolytic and non-haemolytic subgroups treated with the super LED bed compared with a similar sub-population in the conventionally treated group. Comparable numbers of neonates in both groups developed rebound jaundice (8% vs 10% of groups 1 and 2, respectively). Side-effects were mild in both groups, but higher rates of hyperthermia (12% vs 0%, P = 0.03), dehydration (8% vs 2%, P = 0.26) and skin rash (39% vs 1%, P = 0.002) were reported in the fluorescent tubes-treated group compared with the LED group. Super LED is a safe rescue treatment for severe neonatal hyperbilirubinaemia, and its implementation may reduce the need for exchange transfusion.

  7. High-intensity research infrastructure at ELI Beamlines

    Science.gov (United States)

    Klimo, Ondrej

    2017-10-01

    The L4 laser (10 PW, 150 fs) at ELI Beamlines is expected to provide focused intensities approaching 1023 W /cm2 and thus herald a new era of research in ultra-high intensity laser matter interaction. This talk will describe the progress in enabling the associated technological infrastructure - including the laser system, beam transport, diagnostics and the experimental chamber. Synergistic experimental and theoretical programs are also developing tools for such research. The talk will also briefly describe these research areas like development of dedicated diagnostic equipment, efforts toward obtaining ultra-high intensities using tight-focusing and theoretical modeling toward future experiments where radiation reaction in the classical and quantum regime and pair production start to play an important role. Supported from European Regional Development Funds - projects High Field Initiative (CZ.02.1.01/0.0/0.0/15_003/0000449) and ELI - phase 2 (CZ.02.1.01/0.0/0.0/15_008/0000162).

  8. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    Science.gov (United States)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  9. Ion source and injection line for high intensity medical cyclotron.

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  10. Influence of ion effects on a space charge limited field emission flow: from non-relativistic to ultra-relativistic regimes

    Science.gov (United States)

    Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.

    2011-10-01

    Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.

  11. Generation of attosecond soft X-ray pulses in a longitudinal space charge amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Schneidmiller, E.A.; Yurkov, M.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    A longitudinal space charge amplifier (LSCA), operating in soft X-ray regime, was recently proposed. Such an amplifier consists of a few amplification cascades (focusing channel and chicane) and a short radiator undulator in the end. Broadband nature of LSCA supports generation of few-cycle pulses as well as wavelength compression. In this paper we consider an application of these properties of LSCA for generation of attosecond X-ray pulses. It is shown that a compact and cheap addition to the soft X-ray free electron laser facility FLASH would allow to generate 60 attosecond (FWHM) long X-ray pulses with the peak power at 100 MW level and a contrast above 98%. (orig.)

  12. Detailed numerical studies of space charge effects in an FEL RF gun

    CERN Document Server

    Cee, R R; Setzer, S; Weiland, T; Novokhatski, A

    2002-01-01

    The production of short bunches with low emittance is a key issue for the successful operation of an SASE-FEL as proposed by the TESLA collaboration (TESLA Technical design report, DESY 2001-011, Hamburg, 2001). In this paper we present the results of detailed MAFIA TS-2 (CST GmbH, Buedinger Strasse 2a, D-64289 Darmstadt) simulations for the FEL RF-gun revealing the main physical effects leading to emittance growth. The simulations prove that the transverse emittance growth can mainly be observed close to the cathode area. This is caused by the non-linear space charge forces acting inside the bunch during the injection process. For the application of an emittance compensation scheme (Nucl. Instr. and Meth. 285 (1989) 313) the slice emittance is of significant importance. Therefore, a wide range of parameters for the photo cathode laser has been investigated in order to find an appropriate operation point.

  13. Transverse mode coupling instability threshold with space charge and different wakefields

    Science.gov (United States)

    Balbekov, V.

    2017-03-01

    Transverse mode coupling instability of a single bunch with space charge (SC) and a wakefield is considered within the framework of the boxcar model. Eigenfunctions of the bunch without a wake are used as a basis for the solution of the equations with the wakefield included. A dispersion equation for a constant wake is presented in the form of an infinite continued fraction and also as the recursive relation with an arbitrary number of basis functions. Realistic wakefields are considered as well including resistive wall, square, and oscillating wakes. It is shown that the transverse mode coupling instability threshold of the negative wake grows in absolute value when the SC tune shift increases. The threshold of the positive wake goes down at increasing the SC tune shift. The explanation is developed by an analysis of the bunch spectrum.

  14. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  15. Clinical applications of high-intensity focused ultrasound.

    Science.gov (United States)

    She, W H; Cheung, T T; Jenkins, C R; Irwin, M G

    2016-08-01

    Ultrasound has been developed for therapeutic use in addition to its diagnostic ability. The use of focused ultrasound energy can offer a non-invasive method for tissue ablation, and can therefore be used to treat various solid tumours. High-intensity focused ultrasound is being increasingly used in the treatment of both primary and metastatic tumours as these can be precisely located for ablation. It has been shown to be particularly useful in the treatment of uterine fibroids, and various solid tumours including those of the pancreas and liver. High-intensity focused ultrasound is a valid treatment option for liver tumours in patients with significant medical co-morbidity who are at high risk for surgery or who have relatively poor liver function that may preclude hepatectomy. It has also been used as a form of bridging therapy while patients awaiting cadaveric donor liver transplantation. In this article, we outline the principles of high-intensity focused ultrasound and its clinical applications, including the management protocol development in the treatment of hepatocellular carcinoma in Hong Kong by performing a search on MEDLINE (OVID), EMBASE, and PubMed. The search of these databases ranged from the date of their establishment until December 2015. The search terms used were: high-intensity focused ultrasound, ultrasound, magnetic resonance imaging, liver tumour, hepatocellular carcinoma, pancreas, renal cell carcinoma, prostate cancer, breast cancer, fibroids, bone tumour, atrial fibrillation, glaucoma, Parkinson's disease, essential tremor, and neuropathic pain.

  16. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...

  17. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  18. Numerical simulation of the effect of wind removing the corona space charge over grounded structures under thunderstorm conditions

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Holbøll, Joachim

    2015-01-01

    agrounded object under thunderstorm conditions. The electric fieldcreated by the charge distribution in the thundercloud above theobject, which is in first place enhanced by its geometry, leadsto the generation and secondly upward propagation of chargefrom the object. Recent investigations underline...... that the effectof the removal of the corona space charge by the wind leadsto a higher field strength at the grounded object and, therefore,it becomes easier for it to initiate an upward connecting leadercompared to a situation where the space charge is present. Inthis work, a simplified space charge drift model...... quantifies thedifference between static towers and rotating wind turbines whichare influenced by different resultant wind velocities. The voltagedistribution and ion drift velocities in the vicinity of the groundedstructures are illustrated. The results show a higher voltagegradient at the side of the object...

  19. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  20. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  1. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    receiving system in the presence of intense high frequency (a few MHz) electromagnetic noise. Initially, the diode detector ... Microwave generation; microwave measurements; electromagnetic interfer- ence; electron beams; noise .... completely with the aluminum sheet due to some other problems. 3.2 With a preamplifier.

  2. High-Intensity Interval Training for Improving Postprandial Hyperglycemia

    Science.gov (United States)

    Little, Jonathan P.; Francois, Monique E.

    2014-01-01

    High-intensity interval training (HIIT) has garnered attention in recent years as a time-efficient exercise option for improving cardiovascular and metabolic health. New research demonstrates that HIIT may be particularly effective for improving postprandial hyperglycemia in individuals with, or at risk for, type 2 diabetes (T2D). These findings…

  3. Influence of high intensity ultrasound with different probe diameter ...

    African Journals Online (AJOL)

    The main goal of this research is to analyze the influence of ultrasonic probe diameters (7 and 10 mm) of high-intensity ultrasound with constant frequency (30 kHz) on the degree of homogenization (variance) of cow milk. Influence of different probe diameters on the physical properties of cow milk was also tested. Changes ...

  4. Evidence based exercise - clinical benefits of high intensity interval training.

    Science.gov (United States)

    Shiraev, Tim; Barclay, Gabriella

    2012-12-01

    Aerobic exercise has a marked impact on cardiovascular disease risk. Benefits include improved serum lipid profiles, blood pressure and inflammatory markers as well as reduced risk of stroke, acute coronary syndrome and overall cardiovascular mortality. Most exercise programs prescribed for fat reduction involve continuous, moderate aerobic exercise, as per Australian Heart Foundation clinical guidelines. This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Aerobic exercise has numerous benefits for high-risk populations and such benefits, especially weight loss, are amplified with HIIT. High intensity interval training involves repeatedly exercising at a high intensity for 30 seconds to several minutes, separated by 1-5 minutes of recovery (either no or low intensity exercise). HIT is associated with increased patient compliance and improved cardiovascular and metabolic outcomes and is suitable for implementation in both healthy and 'at risk' populations. Importantly, as some types of exercise are contraindicated in certain patient populations and HIIT is a complex concept for those unfamiliar to exercise, some patients may require specific assessment or instruction before commencing a HIIT program.

  5. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables, such as m...

  6. Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution

    Directory of Open Access Journals (Sweden)

    M. Rihaoui

    2009-12-01

    Full Text Available We report on an experimental study of space-charge effects in a radio-frequency (rf photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  7. High intensity surface plasma waves, theory and PIC simulations

    Science.gov (United States)

    Raynaud, M.; Héron, A.; Adam, J.-C.

    2018-01-01

    With the development of intense (>1019 W cm‑2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm‑2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.

  8. Three order increase in scanning speed of space charge-controlled KTN deflector by eliminating electric field induced phase transition in nanodisordered KTN.

    Science.gov (United States)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Yin, Shizhuo; Hoffman, Robert C

    2016-09-09

    In this paper, we report a three orders-of-magnitude increase in the speed of a space-charge-controlled KTN beam deflector achieved by eliminating the electric field-induced phase transition (EFIPT) in a nanodisordered KTN crystal. Previously, to maximize the electro-optic effect, a KTN beam deflector was operated at a temperature slightly above the Curie temperature. The electric field could cause the KTN to undergo a phase transition from the paraelectric phase to the ferroelectric phase at this temperature, which causes the deflector to operate in the linear electro-optic regime. Since the deflection angle of the deflector is proportional to the space charge distribution but not the magnitude of the applied electric field, the scanning speed of the beam deflector is limited by the electron mobility within the KTN crystal. To overcome this speed limitation caused by the EFIPT, we propose to operate the deflector at a temperature above the critical end point. This results in a significant increase in the scanning speed from the microsecond to nanosecond regime, which represents a major technological advance in the field of fast speed beam scanners. This can be highly beneficial for many applications including high-speed imaging, broadband optical communications, and ultrafast laser display and printing.

  9. High energy high intensity coherent photon beam for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of ..pi../sup 0/ in the neutral beam, are converted to e/sup +/e/sup -/ pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator.

  10. Comparison of cyclotron and linacs for high-intensity-beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, T.S.; Jason, A.; Mottershead, C.T. [Los Alamos National Lab., NM (United States); Cooper, R. [Amparo Corp., NM (United States)

    1998-11-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to understand the current level of cyclotron design expertise especially in the areas of space-charge modeling and simulation codes, (2) to develop a better understanding of the capabilities and limitations of circular machines, especially in the area of current limits, and (3) to stay abreast of the developments at other institutions in the area of high-current circular machines. These goals were partially met especially in the area of code development for the application of linac codes to motion of ions in a circular orbit. The authors were also able to continue their interactions with the other institutions working in this area.

  11. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    Energy Technology Data Exchange (ETDEWEB)

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-04-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent /sup 192/Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent /sup 192/Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent /sup 192/Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various /sup 192/Ir loads. The bedside shield reduces exposure from /sup 192/Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable.

  12. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  13. Multi-energy ion implantation from high-intensity laser

    OpenAIRE

    Cutroneo Mariapompea; Torrisi Lorenzo; Ullschmied Jiri; Dudzak Roman

    2016-01-01

    The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high ...

  14. High-Intensity Focused Ultrasound Therapy: an Overview for Radiologists

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sun; Rhim, Hyun Chul; Lim, Hyo Keun; Choi, Dong Il [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Min Joo [College of Medicine, Cheju National University, Jeju (Korea, Republic of)

    2008-08-15

    High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expected that current obstacles to implementation will be resolved in the near future. In this review, we provide an overview of high-intensity focused ultrasound therapy from the basic physics to recent clinical studies with an interventional radiologist's perspective for the purpose of improving the general understanding of this cutting-edge technology as well as speculating on future developments

  15. Fermilab main injector: High intensity operation and beam loss control

    Directory of Open Access Journals (Sweden)

    Bruce C. Brown

    2013-07-01

    Full Text Available From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  16. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  17. Entrepreneurship in high-tech and knowledge-intensive sectors

    DEFF Research Database (Denmark)

    Christensen, Patrizia V.; Madsen, Henning; Neergaard, Helle

    development of new enterprises in high-tech and knowledge-intensive sectors are analysed in relation to the educational and professional background of the entrepreneur/entrepreneurial team, as well as the personal and professional social networks of the entrepreneurs. The analysis is based on a theoretical......The paper investigates key factors influencing the establishment and early growth of high-tech and knowledge-intensive new firms in Denmark. Particular attention is paid to the human and social variables affecting the creation, survival, and growth of such firms. The establishment and subsequent...... framework combining theories of human and social capital. Secondary aspects addressed in the research project are questions of male vs. female entrepreneurship, internationalisation-globalisation, and business success/failure....

  18. Alpine Skiing as Winter-Time High-Intensity Training.

    Science.gov (United States)

    Stöggl, Thomas Leonhard; Schwarzl, Christoph; Müller, Edith E; Nagasaki, Masaru; Stöggl, Julia; Schönfelder, Martin; Niebauer, Josef

    2017-09-01

    To counteract the winter activity deficit, we set out to analyze cardiorespiratory and metabolic responses of two high-intensity training (HIT) protocols during alpine skiing (AS), cross-country skiing (XCS), and indoor cycling (IC) and the effects of sex, age, and fitness level in this comparison. Nineteen healthy subjects (two age and fitness groups, both sexes) performed AS, XCS, and IC with measurements of oxygen uptake (V˙O2), energy expenditure (EE), HR, lactate, blood glucose and rate of perceived exertion, determined during 4 min of continuous HIT (HITc: 90% HRmax for XCS and IC or short turn skiing during AS) or 10-min intermittent HIT [HITint: 5 × 1 min high intensity (>90% HRmax or short turn skiing), 1 min active recovery]. During all three exercise modes and irrespective of HIT protocols, sex, age, and fitness, participants were able to reach exercise intensities >90% HRmax and >84% V˙O2max. In all exercise modes 10-min of HITint with a 10-min postexercise O2 consumption phase resulted in greater mean EE per minute compared to 4-min HITc with 10 min postexercise O2 consumption. When applying the same HIT loading and recovery pattern to all three exercise modes, EE during approximately 1:15 h of AS was equivalent to about 1:00 h of either XCS or IC. Across all exercise modes and HIT protocols, high cardiorespiratory and metabolic responses were achieved regardless of age, sex, or fitness. EE during AS can be maximized by choosing the skiing mode "short turn skiing" in combination with an HITint to prolong the duration of continuous high-intensity loading during each descent. Therefore, all exercise modes and both HIT protocols are applicable and feasible in a broad spectrum of healthy subjects.

  19. Spallation neutron source and other high intensity froton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  20. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  1. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    Science.gov (United States)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  2. Light-induced space-charge fields for the structuration of dielectric materials; Lichtinduzierte Raumladungsfelder zur Strukturierung dielektrischer Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, H.A.

    2006-11-15

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  3. High-intensity interval training in cardiac rehabilitation.

    Science.gov (United States)

    Guiraud, Thibaut; Nigam, Anil; Gremeaux, Vincent; Meyer, Philippe; Juneau, Martin; Bosquet, Laurent

    2012-07-01

    High-intensity interval training (HIIT) is frequently used in sports training. The effects on cardiorespiratory and muscle systems have led scientists to consider its application in the field of cardiovascular diseases. The objective of this review is to report the effects and interest of HIIT in patients with coronary artery disease (CAD) and heart failure (HF), as well as in persons with high cardiovascular risk. A non-systematic review of the literature in the MEDLINE database using keywords 'exercise', 'high-intensity interval training', 'interval training', 'coronary artery disease', 'coronary heart disease', 'chronic heart failure' and 'metabolic syndrome' was performed. We selected articles concerning basic science research, physiological research, and randomized or non-randomized interventional clinical trials published in English. To summarize, HIIT appears safe and better tolerated by patients than moderate-intensity continuous exercise (MICE). HIIT gives rise to many short- and long-term central and peripheral adaptations in these populations. In stable and selected patients, it induces substantial clinical improvements, superior to those achieved by MICE, including beneficial effects on several important prognostic factors (peak oxygen uptake, ventricular function, endothelial function), as well as improving quality of life. HIIT appears to be a safe and effective alternative for the rehabilitation of patients with CAD and HF. It may also assist in improving adherence to exercise training. Larger randomized interventional studies are now necessary to improve the indications for this therapy in different populations.

  4. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Anil V. Virkar

    2005-09-21

    This report summarizes the work done during the eleventh quarter of the project. Conductivity relaxation experiments were conducted on porous La{sub 0.5}Sr{sub 0.5}CoO{sub (3-{delta})} (LSC50) samples over a temperature range from 350 to 750 C, and over an oxygen partial pressure, p{sub O{sub 2}}, switch between 0.04 and 0.06 atm in order to determine the surface exchange coefficient, k{sub chem}. The normalized conductivity data could be fitted to a first order kinetic equation. The time constant decreased with decreasing temperature between {approx}750 and {approx}450 C, but sharply increased with decreasing temperature between 450 and 350 C. The corresponding k{sub chem} was estimated using three models: (a) A porous body model wherein it is assumed that the kinetics of surface exchange is the slowest. (b) Solution to the diffusion equation assuming the particles can be approximated as spheres. (c) Solution to the diffusion equation assuming the particles can be approximated as cylinders. The values of k{sub chem} obtained from the three models were in good agreement. In all cases, it was observed that k{sub chem} increases with decreasing temperature between 750 and 450 C, but below 450 C, it sharply decreases with further decrease in temperature.

  5. Performance of space charge simulations using High Performance Computing (HPC) cluster

    CERN Document Server

    Bartosik, Hannes; CERN. Geneva. ATS Department

    2017-01-01

    In 2016 a collaboration agreement between CERN and Istituto Nazionale di Fisica Nucleare (INFN) through its Centro Nazionale Analisi Fotogrammi (CNAF, Bologna) was signed [1], which foresaw the purchase and installation of a cluster of 20 nodes with 32 cores each, connected with InfiniBand, at CNAF for the use of CERN members to develop parallelized codes as well as conduct massive simulation campaigns with the already available parallelized tools. As outlined in [1], after the installation and the set up of the first 12 nodes, the green light to proceed with the procurement and installation of the next 8 nodes can be given only after successfully passing an acceptance test based on two specific benchmark runs. This condition is necessary to consider the first batch of the cluster operational and complying with the desired performance specifications. In this brief note, we report the results of the above mentioned acceptance test.

  6. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  7. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F.

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  8. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  9. Hunting for new, weakly coupled particles with high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, Babette [CERN, 1211 Geneva 23 (Switzerland)

    2016-07-01

    A number of smaller and diverse experiments complements the high-energy explorations for new physics at the LHC. Many of these experiments are searching for new physics hiding at comparably low mass but very weak coupling. Examples of such particles are axion-like particles and dark gauge bosons, which could also explain Dark Matter. The technology to directly search for such particles are often high-intensity and precision set-ups. In my talk I give a brief overview of the motivation and search for axion-like particles and then focus on the possibility to find them in a proton-dump experiment at CERN.

  10. The joint project for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) agreed to promote the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This document describes the joint proposal prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  11. Removing Known SPS Intensity Limitations for High Luminosity LHC Goals

    CERN Document Server

    Shaposhnikova, Elena; Bohl, Thomas; Cruikshank, Paul; Goddard, Brennan; Kaltenbacher, Thomas; Lasheen, Alexandre; Perez Espinos, Jaime; Repond, Joël; Salvant, Benoit; Vollinger, Christine

    2016-01-01

    In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented t...

  12. The effect of progressive high-intensity inspiratory muscle training and fixed high-intensity inspiratory muscle training on the asymmetry of diaphragm thickness in stroke patients

    OpenAIRE

    Jung, Ju-hyeon; Kim, Nan-soo

    2015-01-01

    [Purpose] This study investigated the effects of progressive load and fixed load high-intensity inspiratory muscle training on the asymmetry of diaphragm thickness in stroke patients. [Subjects] Twenty-one stroke patients were assigned to one of three groups: progressive load high-intensity inspiratory muscle training (n = 8), fixed load high-intensity inspiratory muscle training (n = 6), and controls (n = 7). [Methods] The progressive load and fixed load high-intensity inspiratory muscle tra...

  13. Short-pulse high intensity laser thin foil interaction

    Science.gov (United States)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  14. Adaptive RF Transient Reduction for HIGH Intensity Beams with Gaps

    CERN Document Server

    Tückmantel, Joachim

    2006-01-01

    When a high-intensity beam with bunch-trains and gaps passes a cavity with a high-gain vector feedback enforcing a constant voltage, large transients appear, stressing the RF high power hardware and increasing the trip rate. By modulating the cavity voltage with a varying periodic waveform (set-function), the RF power can be made constant while still preserving the high feedback gain. The average cavity voltage is conserved but bunches have to settle at slightly shifted positions. A method is derived to obtain this set-function in practice while making no assumptions or measurements of the beam or RF parameters. Adiabatic iterations are made including the whole machine as an analog computing device, using all parameters as they are. A computer simulation shows the success of the method.

  15. The different effects of high intensity interval training and moderate intensity interval training for weightlessness countermeasures

    Science.gov (United States)

    Wang, Lin-Jie; Cheng, Tan; Zhi-Li, Li; Hui-juan, Wang; Wen-juan, Chen; Jianfeng, Zhang; Desheng, Wang; Dongbin, Niu; Qi, Zhao; Chengjia, Yang; Yanqing, Wang

    High intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. But the difference between high intensity interval training and moderate intensity interval training (MIIT) in simulated weightlessness still has not been well studied. This study sought to characterize the difference between 6 weeks high intensity interval training and moderate intensity interval training under reduced weight (RW) gait training device and zero-gravity locomotion system (ZLS). Twenty-three subjects (14M/4F, 32.5±4.5 years) volunteered to participate. They were divided into three groups, that were MITT (alternating 2 min at 40% VO _{2} peak and 2 min at 60% VO _{2} peak for 30min, five days per week) RW group (n=8), HITT (alternating 2 min at 40% VO _{2} peak and 2 min at 90% VO _{2} peak for 30min, three days per week) RW group (n=8) and HITT ZLS group (n=7). The Z-axis load used in RW group was 80% body weight (BW) and in ZLS was 100% BW. Cardiopulmonary function was measured before, after 4-week training and after 6-week training. Isokinetic knee extension-flexion test at 60(°) deg/s and 180(°) deg/s were performed before and after the 6-week training, and isometric knee extension-flexion test at 180(°) deg/s was also examined at the same time. It was found that the VO _{2} peaks, metabolic equivalent (MET), Speedmax and respiratory exchange ratio (RER) were significantly increased after 4 and 6-week training in all three groups and no significant group difference were detected. The peak torque at 60(°) deg/s for right knee flexion were significantly increased after 6 week-training in all three groups, and only in HITT RW group the total power at 60(°) deg/s for right knee flexion enhanced. The total power and average power at 60(°) deg/s for right knee extension decreased significantly after 6-week training in all three groups. The peak torque at 60(°) deg/s for right knee extension in MIIT RW group was

  16. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers.

    Science.gov (United States)

    Sandbakk, Øyvind; Sandbakk, Silvana B; Ettema, Gertjan; Welde, Boye

    2013-07-01

    The purpose of this study was to test whether a long duration of aerobic high-intensity interval training is more effective than shorter intervals at a higher intensity in highly trained endurance athletes. The sample comprised of 12 male and 9 female, national-level, junior cross-country skiers (age, 17.5 ± 0.4 years, maximal oxygen uptake (V[Combining Dot Above]O2max): 67.4 ± 7.7 ml min kg), who performed 8-week baseline and 8-week intervention training periods on dry land. During the intervention period, a short-interval group (SIG, n = 7) added 2 weekly sessions with short duration intervals (2- to 4-minute bouts, total duration of 15-20 minutes), a long-interval group (LIG; n = 7) added 2 weekly sessions with long duration intervals (5- to 10-minute bouts, total duration of 40-45 minutes). The interval sessions were performed with the athletes' maximal sustainable intensity. A control group (CG; n = 7) added 2 weekly sessions with low-intensity endurance training at 65-74% of maximal heart rate. Before and after the intervention period, the skiers were tested for time-trial performance on 12-km roller-ski skating and 7-km hill run. V[Combining Dot Above]O2max and oxygen uptake at the ventilatory threshold (V[Combining Dot Above]O2VT) were measured during treadmill running. After the intervention training period, the LIG-improved 12-km roller ski, 7-km hill run, V[Combining Dot Above]O2max, and V[Combining Dot Above]O2VT by 6.8 ± 4.0%, 4.8 ± 2.6%, 3.7 ± 1.6%, and 5.8 ± 3.3%, respectively, from pre- to posttesting, and improved both performance tests and V[Combining Dot Above]O2VT when compared with the SIG and the CG (all p high-intensity interval training improved endurance performance and oxygen uptake at the ventilatory threshold more than shorter intervals at a higher intensity.

  17. Effects of high-intensity interval training on canoeing performance.

    Science.gov (United States)

    Yang, Ming-Ta; Lee, Mien-Mien; Hsu, Shu-Ching; Chan, Kuei-Hui

    2017-08-01

    The purpose of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) utilizing a canoeing ergometer on endurance determinants, as well as aerobic and anaerobic performances among flat-water canoeists. Fourteen well-trained male flat-water canoeists were divided into an HIIT group or an MICT group. All subjects performed a continuous graded exercise test (GXT) and three fixed-distance (200, 500, and 1000 m) performance tests on a canoeing ergometer to determine canoeing economy, peak oxygen uptake (VO2peak), and power at VO2peak, and to calculate the critical velocity (CV) and anaerobic work capacity before and after the training programmes. The training programme involved training on a canoeing ergometer three times per week for four weeks. HIIT consisted of seven 2 min canoeing bouts at an intensity of 90% VO2peak separated by 1 min of rest. The MICT group was trained at an intensity of 65% VO2peak continuously for 20 min. After four weeks of training, performance in the 200-m distance test and the power at VO2peak significantly improved in the HIIT group; performance in the 500 m and 1000 m distances and CV significantly improved in the MICT group. However, all variables were not significantly different between groups. It is concluded that HIIT for four weeks is an effective training strategy for improvement of short-distance canoeing performance. In contrast, MICT improves middle-distance canoeing performances and aerobic capacity.

  18. Lead paint removal with high-intensity light pulses.

    Science.gov (United States)

    Grapperhaus, Michael J; Schaefer, Raymond B

    2006-12-15

    This paper presents the results of an initial investigation into using high-intensity incoherent light pulses to strip paint. Measurements of light pulse characteristics, the reflectivity of different paints and initial experiments on the threshold for paint removal, and paint removal are presented, along with an approximate model consistent with experimental results. Paint removal tests include lead paint, the reduction of lead levels to below levels required for lead abatement, as well as air and light emissions measurements that are within regulatory guidelines.

  19. Space-charge-controlled field emission model of current conduction through Al2O3 films

    Science.gov (United States)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  20. Axial p–n junction and space charge limited current in single GaN nanowire

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p–n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p–n junction NWs grown by plasma-assisted molecular beam epitaxy. I–V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p–n junction NW. Thanks to an improved contact process, both the electric field induced by the p–n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p–n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116–125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2–3 × 1017 at cm‑3 assuming a donor level N d of 2–3 × 1018 at cm‑3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  1. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  2. Case Studies in Space Charge and Plasma Acceleration of Charged Beams

    CERN Document Server

    Bazzani, A; Londrillo, P; Sinigardi, S; Turchetti, G

    2014-01-01

    Plasma acceleration with electron or proton driver beams is a challenging opportunity for high energy physics. An energy doubling experiment with electron drivers was successfully performed at SLAC and a key experiment AWAKE with proton drivers is on schedule at CERN. Simulations play an important role in choosing the best experimental conditions and in interpreting the results. The Vlasov equation is the theoretical tool to describe the interaction of a driver particle beam or a driver laser pulse with a plasma. Collective effects, such as tune shift and mismatch instabilities, appear in high intensity standard accelerators and are described by the Poisson-Vlasov equation. In the paper we review the Vlasov equation in electrostatic and fully electromagnetic case. The general framework of variational principles is used to derive the equation, the local form of the balance equations and related conservation laws. In the electrostatic case we remind the analytic Kapchinskij-Vladimirskij (K-V) model and we propo...

  3. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  4. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  5. TT40 Damage during 2004 High Intensity SPS Extraction

    CERN Document Server

    Goddard, B; Mertens, V; Uythoven, J; Wenninger, J; CERN. Geneva. AB Department

    2005-01-01

    During high intensity extraction on 25/10/04 an incident occurred in which the vacuum chamber of the TT40 magnet QTRF4002 was badly damaged. The beam was a 450 GeV full LHC injection batch of 3.4 1013 p+ in 288 bunches, and was extracted from SPS LSS4 with the wrong trajectory. Prior to the fatal extraction, problems had occurred over several hours during the setting-up, with beam-induced noise causing the extraction septum interlock to trip the power convertor, and also with the bumped beam position interlock. Deficiencies in the extraction setting-up process, in the interlocking and in the operational procedures used for the high-intensity test were contributing factors. In this note the incident causes are identified, the details reconstructed from the logged data, and the damage to the vacuum chamber analysed. The remedial measures which have already been taken are explained, and further recommendations made concerning the interlocking system performance and tests, as well as the operational procedures wh...

  6. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise.

    Directory of Open Access Journals (Sweden)

    Jacob S Thum

    Full Text Available Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT may provide an alternative to moderate intensity continuous exercise (MICT to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2 initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax with 1 min of active recovery between bouts or MICT (20 min of cycling at 45% Wmax in randomized order. During exercise, rating of perceived exertion (RPE, affect, and blood lactate concentration (BLa were measured. Additionally, the Physical Activity Enjoyment Scale (PACES was completed after exercise. Results showed higher enjoyment (p = 0.013 in response to HIIT (103.8 ± 9.4 versus MICT (84.2 ± 19.1. Eleven of 12 participants (92% preferred HIIT to MICT. However, affect was lower (p<0.05 and HR, RPE, and BLa were higher (p<0.05 in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus.NCT:02981667.

  7. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise

    Science.gov (United States)

    Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor

    2017-01-01

    Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (pHIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352

  8. Two-beam interdigital-H-type radio frequency quadrupole linac with direct plasma injection for high intensity heavy ion acceleration

    Directory of Open Access Journals (Sweden)

    T. Ishibashi

    2011-06-01

    Full Text Available We developed a two-beam interdigital-H-type radio frequency quadrupole (IH-RFQ linac as a prototype of a multibeam IH-RFQ for high intensity heavy ion acceleration in the low energy region. This linac has two sets of RFQ electrodes within an IH-type resonant frequency cavity that is a power-efficient structure for low energy beam acceleration. The linac can accelerate two beams in parallel in one cavity with a reduction in the coulomb repulsive force (the space charge effect between the accelerated heavy ion particles. The resonance frequency and the Q factor of the linac were found to be 47 MHz and 5900, respectively. We also developed a two-beam laser ion source with a direct plasma injection scheme as an injection system for the two-beam IH-RFQ linac and built a system to demonstrate the use of the two-beam IH-RFQ linac. Using this linac system, we were able to accelerate carbon ions from 5 to 60  keV/u and generate an output beam current of about 108 mA (2×54  mA/channel. A coherency between the two beams, derived from the imbalance of the beam loading, was observed in the acceleration test with carbon ions.

  9. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  10. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J. [Princeton Univ., NJ (United States)

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  11. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  12. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  13. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  14. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2016-04-01

    Full Text Available This paper reports three types of electrode materials (copper, aluminum, and stainless steel that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate.

  15. First Analysis of the Space Charge Effects on a Third Order Coupled Resonance Proc. HB2016 Malmo, Sweden

    CERN Document Server

    Franchetti, Giuliano; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-01-01

    The effect of space charge on bunches stored for long term in a nonlinear lattice can be severe for beam survival. This may be the case in projects as SIS100 at GSI or LIU at CERN. In 2012, for the first time, the effect of space charge on a normal third order coupled resonance was investigated at the CERN-PS. The experimental results have highlighted an unprecedented asymmetric beam response: in the vertical plane the beam exhibits a thick halo, while the horizontal profile has only core growth. The quest for explaining these results requires a journey through the 4 dimensional dynamics of the coupled resonance investigating the fixed-lines, and requires a detailed code-experiment benchmarking also including beam profile benchmarking. This proceeding gives a short summary of the experimental results of the 2012 PS measurements, and address an interpretation based on the dynamics the fixed-lines.

  16. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  17. High-Intensity Events in International Women's Team Handball Matches.

    Science.gov (United States)

    Luteberget, Live S; Spencer, Matt

    2017-01-01

    International women's team handball is a physically demanding sport and is intermittent in nature. The aim of the study was to profile high-intensity events (HIEs) in international women's team handball matches with regard to playing positions. Twenty female national-team handball players were equipped with inertial movement units (OptimEye S5, Catapult Sports, Australia) in 9 official international matches. Players were categorized in 4 different playing positions: backs, wings, pivots, and goalkeepers (GKs). PlayerLoad™, accelerations (Acc), changes of direction (CoD), decelerations (Dec), and the sum of the latter 3, HIEs, were extracted from raw-data files using the manufacturer's software. All Acc, Dec, CoD, and HIEs >2.5 m/s were included. Data were log-transformed and differences were standardized for interpretation of magnitudes and reported with effect-size statistics. Mean numbers of events were 0.7 ± 0.4 Acc/min, 2.3 ± 0.9 Dec/min, and 1.0 ± 0.4 CoD/min. Substantial differences between playing positions, ranging from small to very large, were found in the 3 parameters. Backs showed a most likely greater frequency for HIE/min (5.0 ± 1.1 HIE/min) than all other playing positions. Differences between playing positions were also apparent in PlayerLoad/min. HIEs in international women's team handball are position specific, and the overall intensity depends on the positional role within a team. Specific HIE and intensity profiles from match play provide useful information for a better understanding of the overall game demands and for each playing position.

  18. Outcomes of exertional rhabdomyolysis following high-intensity resistance training.

    Science.gov (United States)

    Huynh, A; Leong, K; Jones, N; Crump, N; Russell, D; Anderson, M; Steinfort, D; Johnson, D F

    2016-05-01

    High-intensity resistance training (HIRT) programmes are increasingly popular amongst personal trainers and those attending gymnasiums. We report the experience of exertional rhabdomyolysis (ER) at two tertiary hospitals in Melbourne, Australia. To compare the clinical outcomes of ER with other causes of rhabdomyolysis. Retrospective cross-sectional study of patients presenting with a serum creatine kinase (CK) of greater than 25 000 units/L from 1 September 2013 to 31 August 2014 at two tertiary referral hospitals in Melbourne, Australia. Records were examined to identify care measures implemented during hospital stay, clinical outcomes during admission and on subsequent follow up. Thirty four cases of rhabdomyolysis with a CK of greater than 25 000 units/L (normal range: 20-180 units/L) were identified during the 12-month study period. Twelve of the 34 cases (35%) had ER with 10 of 12 related to HIRT. No acute kidney injury, intensive care admission or death were seen among those with ER. All cases were managed conservatively, with 11 admitted and 9 receiving intravenous fluids only. In contrast, patients with rhabdomyolysis from other causes experienced significantly higher rates of intensive care admission (64%, P = 0.0002), acute kidney injury (82%, P = 0.0001) and death (27%, P = 0.069). ER resulting from HIRT appears to have a benign course compared with rhabdomyolysis of other aetiologies in patients with a serum CK greater than 25 000 units/L. Conservative management of ER appears to be adequate, although this requires confirmation in future prospective studies. © 2016 Royal Australasian College of Physicians.

  19. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    OpenAIRE

    Qing Yang; Yang Jin; Wenxia Sima; Mengna Liu

    2016-01-01

    This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of pro...

  20. The use of individualized speed and intensity thresholds for determining the distance run at high-intensity in professional soccer.

    Science.gov (United States)

    Abt, Grant; Lovell, Ric

    2009-07-01

    As with other match analysis systems, ProZone uses an absolute speed threshold to identify running speeds at "high-intensity". In this study, we examined the use of an individualized high-intensity speed threshold based on the speed at the second ventilatory threshold (VT(2speed)) for assessment of the distance run at high-intensity during matches. Ten professional soccer players completed a maximal treadmill test to determine VT(2speed). Match data were identified by means of the ProZone match analysis system. The distances run at high-intensity during matches were calculated using the default value (19.8 km . h(-1)) and VT(2speed). Differences between VT(2speed) and the default were analysed using a non-parametric median sign test. The distances run at high-intensity were compared with a paired t-test. The median VT(2speed) was 15 km x h(-1) (range 14-16 km x h(-1)), which was less than the default (P distance run at high-intensity based on the default and VT(2speed) was 845 m (s = 296) and 2258 m (s = 707), respectively [mean difference 1413 m; P distance run at high-intensity can be substantially underestimated.

  1. Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge.

    Science.gov (United States)

    Kirchartz, Thomas; Agostinelli, Tiziano; Campoy-Quiles, Mariano; Gong, Wei; Nelson, Jenny

    2012-12-06

    We investigate the reasons for the dependence of photovoltaic performance on the absorber thickness of organic solar cells using experiments and drift-diffusion simulations. The main trend in photocurrent and fill factor versus thickness is determined by mobility and lifetime of the charge carriers. In addition, space charge becomes more and more important the thicker the device is because it creates field free regions with low collection efficiency. The two main sources of space-charge effects are doping and asymmetric mobilities. We show that for our experimental results on Si-PCPDTBT:PC71BM (poly[(4,40-bis(2-ethylhexyl)dithieno[3,2-b:20,30-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,50-diyl]:[6,6]-phenyl C71-butyric acid methyl ester) solar cells, the influence of doping is most likely the dominant influence on the space charge and has an important effect on the thickness dependence of performance.

  2. Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty (TKA) by Bade et al

    DEFF Research Database (Denmark)

    Mechlenburg, Inger; Skoffer, Birgit; Dalgas, Ulrik

    2017-01-01

    Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially...

  3. High-intensity therapeutic ultrasound: metrological requirements versus clinical usage

    Science.gov (United States)

    Aubry, J.-F.

    2012-10-01

    High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.

  4. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  5. The High-Intensity Hyperon Beam at CERN

    CERN Document Server

    Aleksandrov, Yu.A.; Dropmann, F.; Fournier, A.; Grafstrom, P.; Hubbard, E.; Paul, S.; Siebert, H.W.; Trombini, A.; Zavertyaev, M.

    1998-01-01

    A high-intensity hyperon beam was constructed at CERN to deliver S- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam provided a S- flux of 1.4 x 105 per burst at mean momenta between 330 and 345 GeV/c produced by about 3 x 1010 protons of 450 GeV/c. At the experiment target the beam had a S-/p- ratio close to 0.4 and a size of 1.6 x 3.7 cm2. The beam particle trajectories and their momenta were measured with a scintillating fibre hodoscope in the beam channel and a silicon microstrip detector at the exit of the channel. A fast transition radiation detector was used to identify the pion component of the beam

  6. Multi-energy ion implantation from high-intensity laser

    Directory of Open Access Journals (Sweden)

    Cutroneo Mariapompea

    2016-06-01

    Full Text Available The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high energy increasing the ion charge state. The accelerated ions are emitted with the high directivity, depending on the ion charge state and ion mass, along the normal to the target surface. The ion fluencies depend on the ablated mass by laser, indeed it is low for thin targets. Ions accelerated from plasma can be implanted on different substrates such as Si crystals, glassy-carbon and polymers at different fluences. The ion dose increment of implanted substrates is obtainable with repetitive laser shots and with repetitive plasma emissions. Ion beam analytical methods (IBA, such as Rutherford backscattering spectroscopy (RBS, elastic recoil detection analysis (ERDA and proton-induced X-ray emission (PIXE can be employed to analyse the implanted species in the substrates. Such analyses represent ‘off-line’ methods to extrapolate and to character the plasma ion stream emission as well as to investigate the chemical and physical modifications of the implanted surface. The multi-energy and species ion implantation from plasma, at high fluency, changes the physical and chemical properties of the implanted substrates, in fact, many parameters, such as morphology, hardness, optical and mechanical properties, wetting ability and nanostructure generation may be modified through the thermal-assisted implantation by multi-energy ions from laser-generated plasma.

  7. Impulse space charge and dielectric characteristics of an Al2O3 nanoparticle suspension in propylene carbonate using various electrode materials

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2016-09-01

    Full Text Available We tested the impulse breakdown voltage of Al2O3 “nano-modified” propylene carbonate between different electrode materials. At any given concentration, the breakdown voltage was highest with stainless steel electrodes, followed by copper, and then aluminum. The space charge and electric field distributions were measured too. Results show that less space charge was injected by the electrodes, and the electric field was less distorted, than in pure propylene carbonate. However, the hoped-for reduction of the influence of the electrodes did not take place. Substantial differences in the space charge density and electric field distortion remained between the different electrode materials.

  8. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  9. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  10. Production and Studies of Photocathodes for High Intensity Electron Beams

    CERN Document Server

    Chevallay, E; Legros, P; Suberlucq, Guy; Trautner, H

    2000-01-01

    For short, high-intensity electron bunches, alkali-tellurides have proved to be a reliable photo-cathode material. Measurements of lifetimes in an rf gun of the CLIC Test Facility II at field strengths greater than 100 MV/m are presented. Before and after using them in this gun, the spectral response of the CS-Te and Rb-Te cathodes were determined with the help of an optical parametric oscillator. The behaviour of both materials can be described by Spicer's 3-step model. Whereas during the use the threshold for photo-emission in Cs-Te was shifted to higher proton energies, that of Rb-Te did not change. Our latest investigations on the stoichiometric ratio of the components are shown. The preparation of the photo-cathodes was monitored with 320 nm wavelength light , with the aim of improving the measurement sensitivity. The latest results on the protection of Cs-Te cathode surfaces with CsBr against pollution are summarized. New investigations on high mean current production are presented.,

  11. Design alternatives for beam halo monitors in high intensity accelerators

    CERN Document Server

    Braun, H; Corsini, R; Lefèvre, T; Schulte, Daniel; Tecker, F A; Welsch, C P

    2005-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Optical transition radiation (OTR) provides an interesting opportunity for linear real-time measurements of the transverse beam profile with a resolution which has been so far at best in the some μm range. However, the dynamic range of standard OTR systems is typically limited and needs to be improved for its application for halo measurements. In this contribution, the existing OTR system as it is installed in the CLIC test facility (CTF3) is analyzed and the contribution of each component to the final image quality discussed. Finally, possible halo measurement techniques based on OTR are pres...

  12. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  13. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  14. Association of serum BDNF concentration with high-intensity interval training

    National Research Council Canada - National Science Library

    東, 宏一郎; 大澤, 祐介; 田畑, 尚吾; 堀澤, 栞里; 勝川, 史憲; 石田, 浩之; 小熊, 祐子; 河合, 俊英; 小口, 修司; 太田, 敦美; 菊池, 春人; 村田, 満; 松本, 秀男

    2015-01-01

    To evaluate the association of serum BDNF concentration with high-intensity interval training, 12 healthy male volunteers, aged 28-48 years, completed 16-week high-intensity interval training (HIIT) using ergometer...

  15. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  16. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    Science.gov (United States)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  17. 78 FR 13566 - Energy Conservation Program for High-Intensity Discharge Lamps: Public Meeting and Availability...

    Science.gov (United States)

    2013-02-28

    ... Part 431 RIN 1904-AC36 Energy Conservation Program for High-Intensity Discharge Lamps: Public Meeting... conservation standards for high-intensity discharge (HID) lamps. The meeting will cover the analytical... High-Intensity Discharge Lamps, EERE-2010-BT-STD-0043 and/or RIN 1904-AC36, 1000 Independence Avenue SW...

  18. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    Directory of Open Access Journals (Sweden)

    Leon Telis

    2017-01-01

    Full Text Available Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months’ follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon.

  19. High intensity focused ultrasound in clinical tumor ablation

    Science.gov (United States)

    Zhou, Yu-Feng

    2011-01-01

    Recent advances in high intensity focused ultrasound (HIFU), which was developed in the 1940s as a viable thermal tissue ablation approach, have increased its popularity. In clinics, HIFU has been applied to treat a variety of solid malignant tumors in a well-defined volume, including the pancreas, liver, prostate, breast, uterine fibroids, and soft-tissue sarcomas. In comparison to conventional tumor/cancer treatment modalities, such as open surgery, radio- and chemo-therapy, HIFU has the advantages of non-invasion, non-ionization, and fewer complications after treatment. Over 100 000 cases have been treated throughout the world with great success. The fundamental principles of HIFU ablation are coagulative thermal necrosis due to the absorption of ultrasound energy during transmission in tissue and the induced cavitation damage. This paper reviews the clinical outcomes of HIFU ablation for applicable cancers, and then summarizes the recommendations for a satisfactory HIFU treatment according to clinical experience. In addition, the current challenges in HIFU for engineers and physicians are also included. More recent horizons have broadened the application of HIFU in tumor treatment, such as HIFU-mediated drug delivery, vessel occlusion, and soft tissue erosion (“histotripsy”). In summary, HIFU is likely to play a significant role in the future oncology practice. PMID:21603311

  20. A methodology for assessing high intensity RF effects in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, R.A.; Avalle, C.A.; Kunz, K.S.; Molau, N.E.; Pennock, S.T.; Poggio, A.J.; Sharpe, R.M.

    1993-07-01

    Optical components have an inherent immunity to the electromagnetic interference (EMI) associated with High Intensity Radiated Fields (HIRF). The optical technology embodied in Fly-by-Light (FBL) might therefore minimize the effects of HIRF on digitally controlled systems while providing lifetime immunity to signal EMI. This is one of the primary motivations for developing FBL systems for aircraft. FBL has the potential to greatly simplify EMI certification by enabling technically acceptable laboratory tests of subsystems, as opposed to expensive full airplane tests. In this paper the authors describe a methodology for assessing EMI effects on FBL aircraft that reduces or potentially eliminates the need for full airplane tests. This methodology is based on comparing the applied EMI stress--the level of interference signal that arrives at a unit under test--versus the EMI strength of the unit--the interference level it can withstand without upset. This approach allows one to use computer models and/or low power coupling measurement and similarity (to other previously tested aircraft) to determine the stress applied to installed subsystems, and to use benchtop cable injection tests and/or mode stirred chamber radiated tests to determine the strength of the subsystem.

  1. A highly parallelized framework for computationally intensive MR data analysis.

    Science.gov (United States)

    Boubela, Roland N; Huf, Wolfgang; Kalcher, Klaudius; Sladky, Ronald; Filzmoser, Peter; Pezawas, Lukas; Kasper, Siegfried; Windischberger, Christian; Moser, Ewald

    2012-08-01

    The goal of this study was to develop a comprehensive magnetic resonance (MR) data analysis framework for handling very large datasets with user-friendly tools for parallelization and to provide an example implementation. Commonly used software packages (AFNI, FSL, SPM) were connected via a framework based on the free software environment R, with the possibility of using Nvidia CUDA GPU processing integrated for high-speed linear algebra operations in R. Three hundred single-subject datasets from the 1,000 Functional Connectomes project were used to demonstrate the capabilities of the framework. A framework for easy implementation of processing pipelines was developed and an R package for the example implementation of Fully Exploratory Network ICA was compiled. Test runs on data from 300 subjects demonstrated the computational advantages of a processing pipeline developed using the framework compared to non-parallelized processing, reducing computation time by a factor of 15. The feasibility of computationally intensive exploratory analyses allows broader access to the tools for discovery science.

  2. Treatment of Acne Scars With High Intensity Focused Radio Frequency.

    Science.gov (United States)

    Ibrahimi, Omar A; Weiss, Robert A; Weiss, Margaret A; Halvorson, Christian R; Mayoral, Flor; Ross, E Victor; Cohen, Joel L

    2015-09-01

    In this multi-site case series, the efficacy of high intensity focused radiofrequency (RF) delivered to the dermis was evaluated for treating acne scars. A novel delivery system that uses insulated microneedles to deliver a desired thermal effect to multiple depths of the dermis while sparing the epidermis from RF injury was used. Four (4) healthy subjects from four different practices were evaluated and used in this case report. The subjects were treated between 3 or 4 times depending on the severity of the acne scars presented. The depth of thermal delivery was adjusted before each pass and all subjects received at a minimum, three passes to the treated area. Before and after photographs along with adverse effects were recorded. The theory behind the use of insulated needles with the active RF delivery at the distal tip is to allow for significant thermal injury to several layers of the dermis while avoiding thermal injury to the epidermis. This case report demonstrates significant improvement on acne scars and that all skin types should be safely treatable with minimum downtime realized.

  3. Perception of Breakfast Ingestion Enhances High Intensity Cycling Performance.

    Science.gov (United States)

    Mears, Stephen A; Dickinson, Kathryn; Bergin-Taylor, Kurt; Dee, Reagan; Kay, Jack; James, Lewis J

    2017-09-27

    To examine the effect on short duration, high intensity cycling time trial performance when a semi-solid breakfast containing carbohydrate or a taste and texture matched placebo is ingested 90 minutes pre-exercise compared to a water control. Thirteen well trained cyclists (25 ± 8 years, 71.1 ± 5.9 kg, 1.76 ± 0.04 m, 383 ± 46 Wmax, VO2peak 4.42 ± 0.53 L·min(-1)) performed three experimental trials examining breakfast ingestion 90 minutes before a 10 minute steady state cycle (60% Wmax) and a ~20 minute time trial (to complete a workload target of 376 ± 36 kJ). Subjects consumed either water (WAT), a semi-solid carbohydrate breakfast (2 g carbohydrate·kg(-1) body mass; CHO) or a taste and texture matched placebo (PLA). Blood lactate and glucose concentrations were measured periodically throughout the rest and exercise periods. The time trial was completed quicker in CHO (1120 ± 69 s; P=0.006) and PLA (1112 ± 50 s; P=0.030) compared to WAT (1146 ± 74 s). Ingestion of carbohydrate caused an increase in blood glucose concentration throughout the rest period in CHO (peak at 30 minutes rest: 7.37 ± 1.10 mmol·l(-1); Pbreakfast (PLA or CHO) 90 minutes prior to the start of exercise. The improvement in performance is likely attributable to a psychological rather than physiological effect.

  4. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  5. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  6. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  7. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  8. The effect of space charge on beam transport through the injection system of the Lund Pelletron accelerator

    Science.gov (United States)

    Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.; Ohlén, G.

    1993-04-01

    A new recursive technique is used for the solution of the equations of motion for charged particles, taking into account the effect of space charge. The paraxial equations are solved for an infinitely long beam with an elliptical cross-section in a static electric field. An effective computer code, based on the method of a continuous generalized analogue of the Gauss brackets and on the method of the envelope matrix, has been written. The code has been used to study the beam dynamics in the injection system of the Pelletron electrostatic accelerator in Lund.

  9. New design of the pulsed electro-acoustic upper electrode for space charge measurements during electronic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Riffaud, J.; Griseri, V.; Berquez, L. [UPS, LAPLACE, Université de Toulouse, 118 Route de Narbonne, Toulouse F-31062, France and CNRS, LAPLACE, Toulouse F-31062 (France)

    2016-07-15

    The behaviour of space charges injected in irradiated dielectrics has been studied for many years for space industry applications. In our case, the pulsed electro-acoustic method is chosen in order to determine the spatial distribution of injected electrons. The feasibility of a ring-shaped electrode which will allow the measurements during irradiation is presented. In this paper, a computer simulation is made in order to determine the parameters to design the electrode and find its position above the sample. The obtained experimental results on polyethylene naphthalate samples realized during electronic irradiation and through relaxation under vacuum will be presented and discussed.

  10. New design of the pulsed electro-acoustic upper electrode for space charge measurements during electronic irradiation.

    Science.gov (United States)

    Riffaud, J; Griseri, V; Berquez, L

    2016-07-01

    The behaviour of space charges injected in irradiated dielectrics has been studied for many years for space industry applications. In our case, the pulsed electro-acoustic method is chosen in order to determine the spatial distribution of injected electrons. The feasibility of a ring-shaped electrode which will allow the measurements during irradiation is presented. In this paper, a computer simulation is made in order to determine the parameters to design the electrode and find its position above the sample. The obtained experimental results on polyethylene naphthalate samples realized during electronic irradiation and through relaxation under vacuum will be presented and discussed.

  11. Can high intensity workloads be simulated at moderate intensities by reduced breathing frequency?

    Directory of Open Access Journals (Sweden)

    B Štrumbelj

    2010-09-01

    Full Text Available Objectives: This study was designed to investigate whether reduced breathing frequency during moderate intensity exercise produces similar metabolic responses as during exercise with spontaneous breathing at higher absolute intensity.Methods: Eight healthy male subjects performed a constant load test with reduced breathing frequency at 10 breaths per minute to exhaustion (B10 at the peak power output obtained during the incremental test with RBF (peak power output increased every two minutes for 30 W. The subjects then performed a constant load test with the spontaneous breathing to exhaustion (SB at peak power output obtained during the incremental test with spontaneous breathing. Results: Respiratory parameters (VE, PETO2, PETCO2, metabolic parameters (Vo2, Vco2 and oxygen saturation (SaO2 were measured during both constant load tests. Capillary blood samples were taken before and every minute during both constant load tests in order to measure lactate concentration ([LA-] and parameters of capillary blood gases and acid base status (Po2, Pco2, pH. Regardless of the type of comparison (the data obtained at the defined time or maximum and minimum values during the exercise, there were significant differences between SB and B10 in all respiratory parameters, metabolic parameters and SaO2 (p ≤ 0.01 and 0.05. There were significantly lower [LA-] and Pco2 during B10, when compared to SB (p≤0.01. However, there were no significant differences in pH during the exercise between different breathing conditions. Conclusion: It can be concluded that reduced breathing frequency during exercise at lower absolute intensity did not produce similar conditions as during the exercise with spontaneous breathing at higher absolute intensity.

  12. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  13. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation

    NARCIS (Netherlands)

    Daoudi, K.; Hoogenboom, M.; Brok, M.H. den; Eikelenboom, D.C.; Adema, G.J.; Futterer, J.J.; Korte, C.L. de

    2017-01-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological

  14. Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Jovanovic, I; Crane, J; Rushford, M; Lucianetti, A; Barty, C J

    2006-06-23

    The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of apertures, or with

  15. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease

    DEFF Research Database (Denmark)

    Kolmos, Mia; Krawcyk, Rikke Steen; Kruuse, Christina

    2016-01-01

    was to gather current knowledge on the effects of high-intensity training versus moderate-intensity continuous exercise on endothelial function in cardiovascular and cerebrovascular patients. METHODS: A systematic review was performed in PubMed database, Embase and Cochrane libraries and on PEDro using...... the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies were restricted to cardiovascular and cerebrovascular patients, and healthy subjects as general reference. Interventions comprised of high-intensity training alone, high-intensity training compared to moderate-intensity......: A total of 20 studies were included in the review. Although there was great heterogenecity in design, population and exercise protocols, all studies found high-intensity training to be safe. High-intensity training was equal to moderate-intensity continuous exercise through improvement in endothelial...

  16. Glass Strengthening via High-Intensity Plasma-Arc Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Harper, David C [ORNL; Duty, Chad E [ORNL; Patel, P [U.S. Army research Laboratory, Adelphi, MD

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  17. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    Science.gov (United States)

    Schafer, Mark E.; Gessert, James

    2009-04-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  18. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  19. High-intensity training reduces CD8+ T-cell redistribution in response to exercise

    NARCIS (Netherlands)

    Witard, O.C.; Turner, J.E.; Jackman, S.R.; Tipton, K.D.; Jeukendrup, A.E.; Kies, A.K.; Bosch, J.A.

    2012-01-01

    Purpose: We examined whether exercise-induced lymphocytosis and lymphocytopenia are impaired with high-intensity training. Methods: Eight trained cyclists (V·O2max = 64.2 ± 6.5 mL·kg-1·min-1) undertook 1 wk of normal-intensity training and a second week of high-intensity training. On day 7 of each

  20. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  1. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  2. Evolution of Space Charges and Conductivity with DC Aging of Polyethylene-Synthetic and Natural Clay Composites

    Directory of Open Access Journals (Sweden)

    Mahmoud Abou-Dakka

    2012-01-01

    Full Text Available The evolution of the space charge and conductivity with DC poling of two types of polypropylene-(PP- based nanocomposites (PNCs was investigated. The PNCs were manufactured with different concentrations of synthetic and natural organoclays. The optimal concentrations of nanofiller that can efficiently mitigate the space charge with DC aging time were 2-wt% for PP-natural-clay and between 2 and 4 wt% for the PP-synthetic-clay. Above these percentages charge transport through overlapping of nanoparticles can occur due to the interaction zone of double layers formed at the nanoparticle/host material interfaces. Under DC field the overlapping increases the conductivity of PNCs and minimizes the benefit of incorporating nanofillers into PP. The total charge stored in unfilled PP increased continuously with time reaching a maximum around 5000 h before decreasing but it also changed slightly in all filled specimens. It was perceived that the smaller the size of nanofiller platelets the more efficient the charge mitigation. The conductivity of specimens containing 6 wt% of natural clay and 8 wt% of synthetic clay reached ≈6 times the level of the unfilled PP. This observation could be related and due to the crossing of the percolation threshold for these composites.

  3. Phase identification for space charge measurement under periodic stress of an arbitrary waveform based on the Hilbert transform

    Science.gov (United States)

    Wu, Jiandong; Huang, Ruodong; Wan, Jiadong; Chen, Yading; Yin, Yi; Chen, George

    2016-04-01

    Data processing (i.e. phase identification) using the instantaneous phase φ‧(t) defined by the Hilbert transform is discussed to confirm the detecting phase of the space charge observed by the pulsed electroacoustic method under the periodic wave V a (t). The discrete voltage V a (i) of the periodic wave at the detecting phase φ(i) is used for phase identification, and φ(i) is equally distributed to obtain N p divisions for the phase within one period. The accuracy of the discrete instantaneous phase φ‧(i) is significantly determined by the number of samples N for the discrete voltage V a (i). The instantaneous phase is consistent with the real phase of pure sine and cosine waves, and this phase linearly varies with time. However, the instantaneous phase non-linearly varies with time under the periodic stress of arbitrary waveforms. This limitation can be resolved using the base wave component, i.e. sine or cosine wave of V a (t), which is acquired by the Fourier transform. Finally, the space charge behaviour in low-density polyethylene under square and sine waves with offset is detected to verify the accuracy and effectiveness of the proposed method.

  4. Numerical simulation of ion transport in an atmosphere-to-vacuum interface taking into account gas dynamics and space charge.

    Science.gov (United States)

    Skoblin, Michael G; Chudinov, Alexey V; Sulimenkov, Ilia V; Brusov, Vladimir S; Makarov, Alexander A; Wouters, Eloy R; Kozlovskiy, Viacheslav I

    2017-08-01

    A two-step approach was developed for the study of ion transport in an atmospheric pressure interface. In the first step, the flow in the interface was numerically simulated using the standard gas dynamic package ANSYS CFX 15.0. In the second step, the calculated fields of pressure, temperature, and velocity were imported into a custom-built software application for simulation of ion motion under the influence of both gas dynamic and electrostatic forces. To account for space charge effects in axially symmetric interfaces an analytical expression was used for the Coulomb force. For all other types of interfaces, an iterative approach for the Coulomb force computation was developed. The simulations show that the influence of the space charge is the main contributor to the loss of ion current in the heated capillary. In addition, the maximum ion current which can be transmitted through the heated capillary (0.58 mm inner diameter and 58.5 mm length) is limited to ∼6 nA for ions with m/z = 508 Da and with reduced ion mobility 1.05 cm2V-1s-1. This limit remains practically constant and independent of the ion current at the entrance of the capillary. For a particular ion type, this limit depends on its m/z ratio and ion mobility.

  5. High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension

    DEFF Research Database (Denmark)

    Mohr, Magni; Nordsborg, Nikolai Baastrup; Lindenskov, Annika

    2014-01-01

    intermittent swimming is an effective training strategy to improve cardiovascular health and physical performance......To test the hypothesis that high-intensity swim training improves cardiovascular health status in sedentary premenopausal women with mild hypertension, sixty-two women were randomized into high-intensity (n = 21; HIT), moderate-intensity (n = 21; MOD), and control groups (n = 20; CON). HIT...... in sedentary women with mild hypertension. Adaptations are similar with high- and moderate-intensity training, despite markedly less total time spent and distance covered in the high-intensity group....

  6. Underutilization of high-intensity statin therapy after hospitalization for coronary heart disease.

    Science.gov (United States)

    Rosenson, Robert S; Kent, Shia T; Brown, Todd M; Farkouh, Michael E; Levitan, Emily B; Yun, Huifeng; Sharma, Pradeep; Safford, Monika M; Kilgore, Meredith; Muntner, Paul; Bittner, Vera

    2015-01-27

    National guidelines recommend use of high-intensity statins after hospitalization for coronary heart disease (CHD) events. This study sought to estimate the proportion of Medicare beneficiaries filling prescriptions for high-intensity statins after hospital discharge for a CHD event and to analyze whether statin intensity before hospitalization is associated with statin intensity after discharge. We conducted a retrospective cohort study using a 5% random sample of Medicare beneficiaries between 65 and 74 years old. Beneficiaries were included in the analysis if they filled a statin prescription after a CHD event (myocardial infarction or coronary revascularization) in 2007, 2008, or 2009. High-intensity statins included atorvastatin 40 to 80 mg, rosuvastatin 20 to 40 mg, and simvastatin 80 mg. Among 8,762 Medicare beneficiaries filling a statin prescription after a CHD event, 27% of first post-discharge fills were for a high-intensity statin. The percent filling a high-intensity statin post-discharge was 23.1%, 9.4%, and 80.7%, for beneficiaries not taking statins pre-hospitalization, taking low/moderate-intensity statins, and taking high-intensity statins before their CHD event, respectively. Compared with beneficiaries not on statin therapy pre-hospitalization, multivariable adjusted risk ratios for filling a high-intensity statin were 4.01 (3.58-4.49) and 0.45 (0.40-0.52) for participants taking high-intensity and low/moderate-intensity statins before their CHD event, respectively. Only 11.5% of beneficiaries whose first post-discharge statin fill was for a low/moderate-intensity statin filled a high-intensity statin within 365 days of discharge. The majority of Medicare beneficiaries do not fill high-intensity statins after hospitalization for CHD. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. High-intensity re-warm-ups enhance soccer performance.

    Science.gov (United States)

    Zois, J; Bishop, D; Fairweather, I; Ball, K; Aughey, R J

    2013-09-01

    The effects of high-intensity, short-duration, re-warm-ups on team-sport-related performance were investigated. In a randomised, cross-over study, participants performed 2×26-min periods of an intermittent activity protocol (IAP) on a non-motorized treadmill, interspersed by 15-min of passive recovery (CON); 3-min small-sided game (SSG); or a 5RM leg-press. Measures included counter-movement jump, repeated-sprint, the Loughborough soccer passing test (LSPT), blood lactate concentration, heart-rate, and perceptual measures. Data were analyzed using effect size (90% confidence intervals), and percentage change; determining magnitudes of effects. A 5RM re-warm-up improved flight-time to contraction-time ratio when compared to SSG (9.8%, ES; 0.5±0.3) and CON (ES: 9.4%, 0.7±0.5) re-warm-ups, remaining higher following the second IAP (8.8%, ES; 0.5±0.3 and 10.2%, ES; 0.6±0.6, respectively). Relative-maximum rate-of-force development was greater in the 5RM condition following the second IAP compared to SSG (29.3%, ES; 0.7±0.5) and CON (16.2%, ES; 0.6±0.6). Repeated-sprint ability during the second IAP improved in the 5RM re-warm-up; peak velocity, mean velocity, and acceleration were 4, 3, and 18% greater, respectively. Within groups, the SSG re-warm-up improved LSPT performance post-intervention; 6.4% (ES: 0.6±0.8) and following the second IAP 6.2% (ES: 0.6±0.6), compared to pre-intervention. A 5RM leg-press re-warm-up improved physical performance, while a SSG re-warm-up enhanced skill execution following standardized intermittent exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  8. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  9. Experimental Research at the Intensity Frontier in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, Marvin L. [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-06-30

    This Final Report describes DOE-supported Intensity Frontier research by the University of Minnesota during the interval April 1, 2011 to March 31, 2014. Primary activities included the MINOS, NOvA and LBNE Experiments and Heavy Quark studies at BES III.

  10. Experimental and numerical study of high intensity argon cluster beams

    Energy Technology Data Exchange (ETDEWEB)

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E. [Department of Applied Physics, Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090 (Russian Federation); Skovorodko, P. A. [Department of Applied Physics, Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia and Kutateladze Institute of Thermophysics SB RAS,1, Lavrentyev Ave., Novosibirsk, 630090 (Russian Federation)

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  11. Investigation of the Frohlich hypothesis with high intensity terahertz radiation

    Science.gov (United States)

    Weightman, Peter

    2014-03-01

    This article provides an update to recent reviews of the Frohlich hypothesis that biological organisation is facilitated by the creation of coherent excited states driven by a flow of free energy provided by metabolic processes and mediated by molecular motions in the terahertz range. Sources of intense terahertz radiation have the potential to test this hypothesis since if it is true the growth and development of sensitive systems such as stem cells should be influenced by irradiation with intense terahertz radiation. A brief survey of recent work shows that it is not yet possible to make an assessment of the validity of the Frohlich hypothesis. Under some conditions a variety of cell types respond to irradiation with intense THz radiation in ways that involve changes in the activity of their DNA. In other experiments very intense and prolonged THz radiation has no measureable effect on the behavior of very sensitive systems such as stem cells. The wide variation in experimental conditions makes it impossible to draw any conclusions as to characteristics of THz radiation that will induce a response in living cells. It is possible that in environments suitable for their maintenance and growth cells are capable of compensating for any effects caused by exposure to THz radiation up to some currently unknown level of THz peak power.

  12. Rainfall intensity characteristics at coastal and high altitude stations ...

    Indian Academy of Sciences (India)

    This could be an indication of the relative prevalence of stratiform and cumuliform clouds.Rainfall was of intensity > 5 mm/hr for more than 95%of the time in Kochi in July 2002,which was a month seriously deficient in rainfall,indicating that the deficiency was probably due to the relative absence of cumuliform clouds.

  13. Max Tech and Beyond: High-Intensity Discharge Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable

  14. Transient effect in high intensity proton linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Senichev, Yu

    1993-09-01

    We study the possible mechanism of the separatrix destruction during the transient in the linear accelerator. This effect is due to the parametric resonance of the beam in the longitudinal plane caused by the perturbations of electromagnetic field. The magnitude of time-space perturbations of the electromagnetic field depends on the disperse feature of resonator and the beam intensity. In the paper we discuss how to avoid this effect or to decrease its influence.

  15. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  16. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Science.gov (United States)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  17. Luminescent rise times of inorganic phosphors excited by high intensity ultraviolet light.

    Science.gov (United States)

    Anderson, R J; Ricchio, S G

    1973-11-01

    The relative delay between excitation and luminescence was measured for a number of common inorganic phosphors using short, high intensity excitation pulses. The delays were found to be much shorter than anticipated; on the basis of low intensity pulsed luminescence measurements and were found to be extremely intensity-dependent. Both the luminescence rise and decay times were found to be intensitydependent as well, with the luminescence pulse waveform tending to approach the exciting pulse at the higher excitation intensities.

  18. Application of the Speed-Duration Relationship to Normalize the Intensity of High-Intensity Interval Training

    Science.gov (United States)

    Ferguson, Carrie; Wilson, John; Birch, Karen M.; Kemi, Ole J.

    2013-01-01

    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (PHIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols. PMID:24244266

  19. Creation, Manipulation, And Diagnosis Of Intense, Relativistic Picosecond Photo-electron Beams

    CERN Document Server

    Anderson, S G

    2002-01-01

    The radio frequency photoinjector is the pre-eminent source for advanced electron beam applications that require extremely high phase space density (high brightness) beams. Because of their high phase space density, the collective fields generated by photoinjector beams dominate their behavior. These space-charge fields influence every aspect of the beam's handling, including its acceleration, measurement, and transport. The effects of space-charge must be carefully considered in all of these beam handling procedures in order to deliver the highest brightness beams possible. This dissertation investigates the space-charge dominated physical processes involved in the acceleration and propagation, emittance measurement, and magnetic compression of photoinjector beams. In the analysis of the behavior of these beams, emphasis is placed on the techniques used to compensate for space-charge forces, and maximize beam brightness. The rectilinear motion of a space-charge dominated beam is analyzed, including both line...

  20. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    Science.gov (United States)

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion.

  1. Longitudinal space charge assisted echo seeding of a free-electron laser with laser-spoiler noise suppression

    Directory of Open Access Journals (Sweden)

    Kirsten Hacker

    2014-09-01

    Full Text Available Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.

  2. Forming of space charge wave with broad frequency spectrum in helical relativistic two-stream electron beams

    DEFF Research Database (Denmark)

    Lysenko, Alexander V.; Volk, Iurii I.; Serozhko, A.

    2017-01-01

    We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two......-stream instability increases with the beam entrance angle. An SCW with the broad frequency spectrum, in which higher harmonics have higher amplitudes, forms when the frequency of the first SCW harmonic is much less than the critical frequency of the two-stream instability. For helical electron beams the spectrum...... expands with the increase of the beam entrance angle. Moreover, we obtain that utilizing helical electron beams in multiharmonic two-stream superheterodyne free-electron lasers leads to the improvement of their amplification characteristics, the frequency spectrum broadening in multiharmonic signal...

  3. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.

  4. Transverse feedback: high intensity operation, AGC, IGC, lessons for 2012

    CERN Document Server

    Höfle, W

    2012-01-01

    The transverse damper system (ADT) plays an important role in the preservation of the beam transverse emittance and for damping of oscillations driven by the coupled bunch instability. An overview of the ADT system will be presented with an emphasis on the important feedback loop parameters as they change from injection through the ramp into collision. The dedicated setting - up procedure required for the different bunch intensities and bunch spacings will be explained. During the 2011 run the injection and abort gap cleaning became operational at injection energy. Preparations for cleaning at 3.5 TeV as well as batch selective transverse blow - up were completed and preliminarily tested. Plans for 2012 include study and potential improvement of the system impulse response to improve the 'selectivity' of the cleaning and blow - up facility. The ADT also provides bunch - by - bunch observation, which was extensively used during the run and MDs, and will be further upgraded during the next year.

  5. Risk of retina damage from high intensity light sources

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, V.A.; Romanchuk, K.G.

    1980-05-01

    The risk of thermal damage to the retina of the eye by exposure to excesive light intensities from continuous and pulsed man-made sources is discussed. The probability of injury increases, the larger the radiant power absorbed by the retina and the smaller the size of the retinal image of the source. A method of estimating the temperature increase of the immediately affected area of the retina is presented. The time constants involved are also briefly considered. Using numerical values from literature for the relevant parameters of the eye, threshold values for a variety of conditions can be established. Below these values little risk of retina damage should exist. The degree of hazard when these values are exceeded depends upon the circumstances. A case study of a welding accident showed good agreement between the conclusions of the theoretical analysis and clinical findings.

  6. Towards phasing using high X-ray intensity

    Directory of Open Access Journals (Sweden)

    Lorenzo Galli

    2015-11-01

    Full Text Available X-ray free-electron lasers (XFELs show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  7. Modeling of second order space charge driven coherent sum and difference instabilities

    Directory of Open Access Journals (Sweden)

    Yao-Shuo Yuan

    2017-10-01

    Full Text Available Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew modes have recently been shown in [Phys. Plasmas 23, 090705 (2016PHPAEN1070-664X10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on “Chernin’s equations.” This has the advantage that accurate information on growth rates can be obtained and gathered in a “tune diagram.” In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The “tilting instability” obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.

  8. High-intensity interval training in facioscapulohumeral muscular dystrophy type 1

    DEFF Research Database (Denmark)

    Andersen, Grete; Heje, Karen; Buch, Astrid Emilie

    2017-01-01

    Increasing evidence suggests that high-intensity training (HIT) is a time-efficient exercise strategy to improve fitness. HIT has never been explored in neuromuscular diseases, likely because it may seem counterintuitive. A single session of high-intensity exercise has been studied without signs...... fitness (3.3 ml O2/min/kg, CI 1.2-5.5, P training effect on other outcomes. Patients preferred HIT over strength and moderate-intensity aerobic training. It may seem...

  9. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  10. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function.

    Science.gov (United States)

    Kemi, Ole J; Haram, Per M; Loennechen, Jan P; Osnes, Jan-Bjørn; Skomedal, Tor; Wisløff, Ulrik; Ellingsen, Øyvind

    2005-07-01

    Current guidelines are controversial regarding exercise intensity in cardiovascular prevention and rehabilitation. Although high-intensity training induces larger increases in fitness and maximal oxygen uptake (VO(2max)), moderate intensity is often recommended as equally effective. Controlled preclinical studies and randomized clinical trials are required to determine whether regular exercise at moderate versus high intensity is more beneficial. We therefore assessed relative effectiveness of 10-week HIGH versus moderate (MOD) exercise intensity on integrative and cellular functions. Sprague-Dawley rats performed treadmill running intervals at either 85%-90% (HIGH) or 65%-70% (MOD) of VO2max 1 h per day, 5 days per week. Weekly VO2max-testing adjusted exercise intensity. HIGH and MOD increased VO2max by 71% and 28%, respectively. This was paralleled by intensity-dependent cardiomyocyte hypertrophy, 14% and 5% in HIGH and MOD, respectively. Cardiomyocyte function (fractional shortening) increased by 45% and 23%, contraction rate decreased by 43% and 39%, and relaxation rate decreased by 20% and 10%, in HIGH and MOD, respectively. Ca2+ transient time-courses paralleled contraction/relaxation, whereas Ca2+ sensitivity increased 40% and 30% in HIGH and MOD, respectively. Carotid artery endothelial function improved similarly with both intensities. EC50 for acetylcholine-induced relaxation decreased 4.3-fold in HIGH (p hypertrophy, contractility and vasorelaxation also correlated significantly with VO2max. The present study demonstrates that cardiovascular adaptations to training are intensity-dependent. A close correlation between VO2max, cardiomyocyte dimensions and contractile capacity suggests significantly higher benefit with high intensity, whereas endothelial function appears equivalent at moderate levels. Thus, exercise intensity emerges as an important variable in future preclinical and clinical investigations.

  11. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  12. Compensation of the dangling-bond space charge in amorphous silicon solar cells by graded low-level doping in the intrinsic layer

    OpenAIRE

    Fischer, D.; Shah, Arvind

    2008-01-01

    The compensation of the dangling-bond space charge in amorphous silicon p-i-n solar cells by graded, low-level doping in the intrinsic layer is discussed and demonstrated experimentally. Carrier collection in p-i-n cells without doping indicates that the degraded state space charge is largely positive, and thus that boron doping should be beneficial. Solar cells with linearly decreasing boron doping profiles are shown to yield a homogeneous collection in the intrinsic layer, and a red light c...

  13. Reduction of space charge effects in inductively coupled plasma mass spectrometry using a supplemental electron source inside the skimmer: ion transmission and mass spectral characteristics

    Science.gov (United States)

    Praphairaksit; Houk

    2000-06-01

    An electron source consisting of a heated filament has been added to the skimmer to suppress space charge effects in inductively coupled plasma mass spectrometry (ICPMS). Electrons from this source can reduce the space charge repulsion between the positive ions in the ion beam. As a result, ion transmission efficiency and analyte ion sensitivities are significantly improved across the full mass range. MO+/M+ abundance ratios are not affected, M2+/M+ abundance ratios increase only slightly, and no new background ions are created by this electron injection technique.

  14. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer.

    Science.gov (United States)

    Winklehner, D; Leitner, D; Cole, D; Machicoane, G; Tobos, L

    2014-02-01

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beam plasma model as well as simulations.

  15. Comparative analysis and approximations of space-charge formation in Langmuir probes with plane, cylindrical and spherical electrodes including temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Valdeblanquez, Eder [Departamento de Fisica, Facultad de IngenierIa, Universidad del Zulia, Apartado 4011- A 526, Maracaibo, Venezuela and Centro de Investigacion de Matematicas Aplicadas Facultad de IngenierIa, Universidad del Zulia, Apartado 10486, Maracaibo (Venezuela, Bolivarian Republic of)], E-mail: eder@luz.edu.ve

    2008-10-15

    In this paper the space-charge effects in Langmuir probes are compared for different kinds of symmetries: plane, cylindrical and spherical. A detailed analysis is performed here including temperature effects, and therefore kinetic theory is used instead of fluid equations as used by other authors. The nonlinear equations obtained here have been solved first by numerical computation and later by approximations using Bessel functions. The accuracy of each approximation is also discussed. Space-charge effects are more important in plane geometries than in the case of cylindrical or spherical symmetries.

  16. The feasibility and effectiveness of high-intensity boxing training versus moderate-intensity brisk walking in adults with abdominal obesity: a pilot study

    National Research Council Canada - National Science Library

    Cheema, Birinder S; Davies, Timothy B; Stewart, Matthew; Papalia, Shona; Atlantis, Evan

    2015-01-01

    High-intensity interval training (HIIT) performed on exercise cycle or treadmill is considered safe and often more beneficial for fat loss and cardiometabolic health than moderate-intensity continuous training (MICT...

  17. The influence of low-intensity resistance training versus high-intensity resistance training on left ventricular structure and function of healthy adolescent boys using Echocardiography

    Directory of Open Access Journals (Sweden)

    asghar Kianzadeh

    2013-05-01

    Conclusion: Low-intensity resistance training than high-intensity resistance training in healthy adolescent boys caused some changes in left ventricular structure and function, probably these changes were associated with increased volume and pressure load.

  18. Effects of high intensity laser therapy on pain and function of patients with chronic back pain.

    Science.gov (United States)

    Choi, Hyeun-Woo; Lee, Jongmin; Lee, Sangyong; Choi, Jioun; Lee, Kwansub; Kim, Byung-Kon; Kim, Gook-Joo

    2017-06-01

    [Purpose] This study examined the effects of High Intensity Laser Therapy on pain and function of patients with chronic back pain. [Subjects and Methods] This study evenly divided a total of 20 patients with chronic back pain into a conservative physical therapy group that received conservative physical therapy, and a high intensity laser therapy group that received High Intensity Laser Therapy after conservative physical therapy. All patients received the therapy three times a week for four weeks. For the high intensity laser therapy group, treatment was applied to the L1-L5 and S1 regions for 10 minutes by using a high intensity laser device while vertically maintaining the separation distance from handpiece to skin at approximately 1 cm. A visual analog scale was used to measure the pain and Oswestry Disability Index was used for functional evaluation. [Results] In a within-group comparison of the conservative physical therapy and high intensity laser therapy groups, both the visual analog scale and Oswestry Disability Index significantly decreased. In a between-group comparison after treatment, the high intensity laser therapy group showed a significantly lower visual analog scale and Oswestry Disability Index than the conservative physical therapy group. [Conclusion] High Intensity Laser Therapy can be an effective nonsurgical intervention method for reducing pain and helping the performance of daily routines of patients who have chronic back pain.

  19. Effect of Short-Term, High-Intensity Exercise on Anaerobic Threshold in Women.

    Science.gov (United States)

    Evans, Blanche W.

    This study investigated the effects of a six-week, high-intensity cycling program on anaerobic threshold (AT) in ten women. Subjects trained four days a week using high-intensity interval-type cycle exercises. Workouts included six 4-minute intervals cycling at 85 percent maximal oxygen uptake (VO sub 2 max), separated by 3-minute intervals of…

  20. The influence of basketball dribbling on repeated high-intensity intermittent runs

    Directory of Open Access Journals (Sweden)

    Zhaowei Kong

    2015-12-01

    Conclusion: The results suggest that the Yo-Yo IE2 test could reflect the repeatability of high-intensity intermittent basketball dribbling performance, while dribbling skills may have different influences on high-intensity intermittent exercise capacity in adolescent players at different ages.

  1. Distinct impacts of high intensity caregiving on caregivers' mental health and continuation of caregiving.

    Science.gov (United States)

    Kumagai, Narimasa

    2017-12-01

    Although high-intensity caregiving has been found to be associated with a greater prevalence of mental health problems, little is known about the specifics of this relationship. This study clarified the burden of informal caregivers quantitatively and provided policy implications for long-term care policies in countries with aging populations. Using data collected from a nationwide five-wave panel survey in Japan, I examined two causal relationships: (1) high-intensity caregiving and mental health of informal caregivers, and (2) high-intensity caregiving and continuation of caregiving. Considering the heterogeneity in high-intensity caregiving among informal caregivers, control function model which allows for heterogeneous treatment effects was used.This study uncovered three major findings. First, hours of caregiving was found to influence the continuation of high-intensity caregiving among non-working informal caregivers and irregular employees. Specifically, caregivers who experienced high-intensity caregiving (20-40 h) tended to continue with it to a greater degree than did caregivers who experienced ultra-high-intensity caregiving (40 h or more). Second, high-intensity caregiving was associated with worse mental health among non-working caregivers, but did not have any effect on the mental health of irregular employees. The control function model revealed that caregivers engaging in high-intensity caregiving who were moderately mentally healthy in the past tended to have serious mental illness currently. Third, non-working caregivers did not tend to continue high-intensity caregiving for more than three years, regardless of co-residential caregiving. This is because current high-intensity caregiving was not associated with the continuation of caregiving when I included high-intensity caregiving provided during the previous period in the regression. Overall, I noted distinct impacts of high-intensity caregiving on the mental health of informal caregivers and

  2. Kinetic description of electron-proton instability in high-intensity proton linacs and storage rings based on the Vlasov-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    1999-05-01

    Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and

  3. (Gamma scattering in condensed matter with high intensity Moessbauer radiation)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high {Tc} superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect.

  4. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  5. Distraction and Expressive Suppression Strategies in Regulation of High- and Low-Intensity Negative Emotions.

    Science.gov (United States)

    Li, Ping; Wang, Wei; Fan, Cong; Zhu, Chuanlin; Li, Shuaixia; Zhang, Zhao; Qi, Zhengyang; Luo, Wenbo

    2017-10-12

    The current study compared the effectiveness of distraction, an antecedent-focused strategy that involves diverting an individual's attention away from affective terms, and expressive suppression, a response-focused strategy that involves inhibiting conscious emotion-expressive behavior during an emotionally aroused state, in the regulation of high- and low-intensity unpleasant stimuli, using event-related potentials (ERPs). Sixteen participants completed an emotion regulation experiment in which they passively viewed high- or low-intensity unpleasant images (view), solved a mathematical equation presented on high- or low-intensity negative images (distraction), or suppressed their emotional expression in response to high- or low-intensity unpleasant images (suppression). Their negative experiences after implementation of these strategies were rated by participants on a 1-9 scale. We mainly found that compared with expressive suppression, distraction yielded greater attenuation of the early phase of centro-parietal LPP when the participants responded to high-intensity stimuli. In the low-intensity condition, distraction, but not expressive suppression, effectively decreased the early phase of LPP. The findings suggest that expressive suppression works as early as distraction in the high-intensity condition; more importantly, distraction is superior to expressive suppression in regulating negative emotion, which is influenced by emotional intensity.

  6. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600

    Directory of Open Access Journals (Sweden)

    Martin Buchheit

    2015-03-01

    Full Text Available To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS and 6 high-altitude (a Bolivian U18 team, BOL native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1 was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h-1 (D>14.4 km·h-1 and >80% of vYo-YoIR1 (D>80%vYo-YoIR1 were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen’s d +1.0, 90%CL ± 0.8 and D>14.4 km·h-1 (+0.5 ± 0.8 in AUS. D>14.4 km.h-1 was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8. Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h-1 increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7; conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2. In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in ‘fitness’ do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity.

  7. Space charge and working point studies in the CERN Low Energy Ion Ring

    CERN Document Server

    Huschauer, A; Hancock, S; Kain, V

    2017-01-01

    The Low Energy Ion Ring (LEIR) is at the heart ofCERN’s heavy ion physics programme and was designed toprovide the high phase space densities required by the exper-iments at the Large Hadron Collider (LHC). LEIR is the firstsynchrotron of the LHC ion injector chain and it receives aquasi-continuous pulse of lead ions (Pb54+) from Linac3, ex-ploiting a sophisticated multi-turn injection scheme in bothtransverse and longitudinal planes. Seven of these pulses areinjected and accumulated, which requires continuous elec-tron cooling (EC) at low energy to decrease the phase spacevolume of the circulating beam in between two injections.Subsequently, the coasting beam is adiabatically capturedin two bunches, which are then accelerated and extractedtowards the Proton Synchrotron (PS). Figure 1 shows theLEIR magnetic cycle and the different steps required forbeam production.

  8. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  9. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  10. Negative beliefs about low back pain are associated with persistent high intensity low back pain.

    Science.gov (United States)

    Ng, Sin Ki; Cicuttini, Flavia M; Wang, Yuanyuan; Wluka, Anita E; Fitzgibbon, Bernadette; Urquhart, Donna M

    2017-08-01

    While previous cross-sectional studies have found that negative beliefs about low back pain are associated with pain intensity, the relationship between back beliefs and persistent low back pain is not well understood. This cohort study aimed to examine the role of back beliefs in persistent low back pain in community-based individuals. A hundred and ninety-two participants from a previous musculoskeletal health study were invited to take part in a two-year follow-up study. Beliefs about back pain were assessed by the Back Beliefs Questionnaire (BBQ) at baseline and low back pain intensity was measured by the Chronic Pain Grade Questionnaire at baseline and follow-up. Of the 150 respondents (78.1%), 16 (10.7%) reported persistent high intensity low back pain, 12 (8.0%) developed high intensity low back pain, in 16 (10.7%) their high intensity low back pain resolved and 106 (70.7%) experienced no high intensity low back pain. While participants were generally positive about low back pain (BBQ mean (SD) = 30.2 (6.4)), those with persistent high intensity pain reported greater negativity (BBQ mean (SD) = 22.6 (4.9)). Negative beliefs about back pain were associated with persistent high intensity low back pain after adjusting for confounders (M (SE) = 23.5 (1.6) vs. >30.1 (1.7), p back beliefs were associated with persistent high intensity low back pain over 2 years in community-based individuals. While further longitudinal studies are required, these findings suggest that targeting beliefs in programs designed to treat and prevent persistent high intensity low back pain may be important.

  11. Improvement of high-voltage staircase drive circuit waveform for high-intensity therapeutic ultrasound

    Science.gov (United States)

    Tamano, Satoshi; Jimbo, Hayato; Azuma, Takashi; Yoshizawa, Shin; Fujiwara, Keisuke; Itani, Kazunori; Umemura, Shin-Ichiro

    2016-07-01

    Recently, in the treatment of diseases such as cancer, noninvasive or low-invasive modality, such as high-intensity focused ultrasound (HIFU), has been put into practice as an alternative to open surgery. HIFU induces thermal ablation of the target tissue to be treated. To improve the efficiency of HIFU, we have proposed a “triggered-HIFU” technique, which uses the combination of a short-duration, high-voltage transmission and a long-duration, medium-voltage transmission. In this method, the transmission device must endure high peak voltage for the former and the high time-average power for the latter. The triggered-HIFU sequence requires electronic scanning of the HIFU focus to maximize its thermal efficiency. Therefore, the transmission device must drive an array transducer with the number of elements on the order of a hundred or more, which requires that each part of the device that drives each element must be compact. The purpose of this work is to propose and construct such a transmission device by improving the staircase drive circuit, which we previously proposed. The main point of improvement is that both N and P MOSFETs are provided for each staircase voltage level instead of only one of them. Compared with the previous ultrasonic transmission circuit, high-voltage spikes were significantly reduced, the power consumption was decreased by 26.7%, and the transmission circuit temperature rise was decreased by 14.5 °C in the triggered-HIFU heating mode.

  12. EFFECT OF HIGH & LOW INTENSITIES OF AEROBIC EXERCISE ON PHYSICAL FITNESS INDEX

    Directory of Open Access Journals (Sweden)

    Madhusudhan

    2015-06-01

    Full Text Available BACKGROUND: Aerobic exercise reduces body fat and improves weight control, increases HDL&Vo2 max. Also improves PFI (physical fitness index which is defined as ability to carry out daily tasks with vigour and alertness without undue fatigue. Though aerobic exercise is found to improve physical fitness, the relative merits of different intensities of aerobi c exercise in improving physical fitness is still uncertain. AIM: The present study was conducted to know the Effect of High & low intensity aerobic training on physical fitness index. MATERIALS & METHODS : 80 sedentary men (18 - 40 years were randomized in to 2 equal groups (High Intensity & low intensity group . The High [80% HR max] & Low intensity [50 % HR max] groups underwent aerobic exercise training using Bicycle ergo meter (COSCO at 900kpm & 540kpm, for 15mins/day & 30mins/day respectively, 5days a week, for a period of 14weeks. Physical fitness index of each subject was recorded by Modified Harvard step test before & after intervention. RESULTS : After 14 weeks of aerobic training both the exercise groups had improvement in PFI, but high intensity gr oup had a significant (p<0.05 improvement in PFI (97.18 - 101.14 than low intensity group (98.12 - 100.6. CONCLUSION : High intensity aerobic exercise is effective in improving physical fitness.

  13. Profile distortion by beam space-charge in Ionization Profile Monitors

    CERN Document Server

    Vilsmeier, D; Wettig, T

    Measuring the transverse beam size in the Large Hadron Collider by using Ionization Profile Monitors is a difficult task for energies above injection during the energy ramp from 450 GeV to 6.5TeV. The beam size decreases from around 1mm to 200um and the brightness of the beam is high enough to destroy the structure of any form of interacting matter. While the electron trajectories are confined by an external electro-magnetic field which forces the electrons accordingly on helix paths with certain gyroradii, this gyration is heavily increased under the influence of the electric field of the beam. Smaller beam sizes, which go hand in hand with increased bunch electric fields, lead to larger gyroradii of the ionized electrons, which results in strongly distorted profiles. In addition, this distortion becomes more visible for smaller beam sizes as the extent of gyration grows compared to the actual beam size. Depending on the initial momentum distribution of the electrons, emerging from the ionization process wit...

  14. Simulation and Calibration of the ALICE TPC including innovative Space Charge Calculations

    CERN Document Server

    Rossegger, S; Riegler, W; Betev, L

    2009-01-01

    ALICE is one of the four main particle detectors located around the LHC accelerator at CERN. It is particularly designed to study the physics of the quark-gluon plasma by means of nucleus--nucleus collisions at center-of-mass energies up to 5.5 TeV per nucleon pair. A Time-Projection Chamber (TPC) was chosen to be its central-sub-detector due to its low mass properties and its capabilities to provide a robust and accurate Particle Identification even within ultra-high multiplicity environments (up to 8000 tracks per unit of eta). To achieve the required physics performance, the space point resolution of the TPC must be in the order of 0.2 mm. Due to its gigantic size of 5~m in diameter and 5~m in length, corrections for static as well as dynamic effects are indispensable in order to accomplish the design goal. The research presented covers all major issues relevant for the final calibration and therefore the enhancement of the TPC performance in terms of resolution. The main focus was to distinguish between t...

  15. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...... of acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy...

  16. Using (18)O/(16)O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application.

    Science.gov (United States)

    De Souza, Roger A; Martin, Manfred

    2008-05-07

    The use of an (18)O/(16)O exchange experiment as a means for probing surface space-charge layers in oxides is examined theoretically and experimentally. On the basis of a theoretical treatment, isotope penetration profiles are calculated for (18)O/(16)O exchange across a gas-solid interface and subsequent diffusion of the labelled isotope through an equilibrium space-charge layer depleted of mobile oxygen vacancies and into a homogeneous bulk phase. Profiles calculated for a range of conditions all have a characteristic shape: a sharp drop in isotope fraction close to the surface followed by a normal bulk diffusion profile. Experimental (18)O profiles in an exchanged (001) oriented single crystal of Fe-doped SrTiO(3) were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS). By extracting the space-charge potential from such profiles, we demonstrate that this method allows the spatially resolved characterization of space-charge layers at the surfaces of crystalline oxides under thermodynamically well-defined conditions.

  17. Data intensive high energy physics analysis in a distributed cloud

    Science.gov (United States)

    Charbonneau, A.; Agarwal, A.; Anderson, M.; Armstrong, P.; Fransham, K.; Gable, I.; Harris, D.; Impey, R.; Leavett-Brown, C.; Paterson, M.; Podaima, W.; Sobie, R. J.; Vliet, M.

    2012-02-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  18. High-intensity drying processes-impulse drying

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  19. High-intensity drying processes-impulse drying. Yearly report

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  20. High efficiency inductive output tubes with intense annular electron beams

    Science.gov (United States)

    Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.

    2017-10-01

    For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.

  1. Short-term effects of implemented high intensity shoulder elevation during computer work

    Directory of Open Access Journals (Sweden)

    Madeleine Pascal

    2009-08-01

    Full Text Available Abstract Background Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction on productivity, RPE and upper trapezius activity and rest during computer work and a subsequent pause from computer work. Methods 18 female computer workers performed 2 sessions of 15 min standardized computer mouse work preceded by 1 min pause with and without prior high intensity contraction of shoulder elevation. RPE was reported, productivity (drawings per min measured, and bipolar surface electromyography (EMG recorded from the dominant upper trapezius during pauses and sessions of computer work. Repeated measure ANOVA with Bonferroni corrected post-hoc tests was applied for the statistical analyses. Results The main findings were that a high intensity shoulder elevation did not modify RPE, productivity or EMG activity of the upper trapezius during the subsequent pause and computer work. However, the high intensity contraction reduced the relative rest time of the uppermost (clavicular trapezius part during the subsequent pause from computer work (p Conclusion Since a preceding high intensity shoulder elevation did not impose a negative impact on perceived effort, productivity or upper trapezius activity during computer work, implementation of high intensity contraction during computer work to prevent neck-shoulder pain may be possible without affecting the working routines. However, the unexpected reduction in clavicular trapezius rest during a

  2. Determinants of post-intensive care mortality in high-level treated critically ill patients

    NARCIS (Netherlands)

    Iapichino, G; Morabito, A; Mistraletti, G; Ferla, L; Radrizzani, D; Miranda, DR

    2003-01-01

    Objective. To assess the predictive ability of preillness and illness variables, impact of care, and discharge variables on the post-intensive care mortality. Setting and patients. 5,805 patients treated with high intensity of care in 89 ICUs in 12 European countries (EURICUS-I study) surviving ICU

  3. High or low intensity aerobic fitness training in fibromyalgia: does it matter?

    NARCIS (Netherlands)

    van Santen, Marijke; Bolwijn, Paulien; Landewé, Robert; Verstappen, Frans; Bakker, Carla; Hidding, Alita; van der Kemp, Désirée; Houben, Harry; van der Linden, Sjef

    2002-01-01

    To determine the efficacy of training in fibromyalgia (FM), we compared the effects of high intensity fitness training (HIF) and low intensity fitness training (LIF). Thirty-seven female patients with FM were randomly allocated to either a HIF group (n = 19) or a LIF group (n = 18). Four patients (1

  4. High-Intensity Plasma Glass Melter Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Gonterman, J. Ronald; Weinstein, Michael A.

    2006-10-27

    frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

  5. Diffraction Gratings for High-Intensity Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  6. High Performance Data Transfer for Distributed Data Intensive Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [Zettar Inc., Mountain View, CA (United States); Cottrell, R ' Les' A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanushevsky, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kroeger, Wilko [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yang, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp and GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.

  7. Space charge dynamics Of CF4 fluorinated LDPE samples from different fluorination conditions and their DC conductivities

    Science.gov (United States)

    Liu, Ning; Li, Ziyun; Chen, George; Chen, Qiang; Li, Shengtao

    2017-07-01

    Taking advantage of plasma technology using mixing gas CF4/H2, a fluorination process was performed on LDPE samples in the present paper. Different exposure times and discharge voltage levels were applied to produce four different types of samples. It has been found that after fluorination, space charge injection is obviously suppressed. And with longer fluorination times and higher discharge voltage, injected homocharges are reduced. By employing x-ray photoelectron spectroscopy, new chemical groups of C-F bindings are confirmed to be introduced by fluorination process of the plasma treatment. The charge suppression effect can be explained as: surface traps introduced by fluorination will reduce the interface field at both electrodes. Moreover, for fluorinated samples, heterocharge emerges obviously under 30 kV \\text{m}{{\\text{m}}-1} , which are considered as charges ionized from degradation products of etching and/or lower weight molecular specifies. Through the conductivity measurements also performed at 30 kV \\text{m}{{\\text{m}}-1} , it is found that, for the fluorinated samples with the better charge blocking effect, the conductivity is lowered. However, the conductivity of the fluorinated sample with the lightest degree of fluorination is found to be higher than that of normal samples.

  8. Angular-Dependent EDMR Linewidth for Spin-Dependent Space-Charge-Limited Conduction in a Polycrystalline Pentacene

    Directory of Open Access Journals (Sweden)

    Kunito Fukuda

    2017-08-01

    Full Text Available Spin-dependent space-charge-limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived, respectively, from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.

  9. Angular-dependent EDMR linewidth for spin-dependent space charge limited conduction in a polycrystalline pentacene

    Science.gov (United States)

    Fukuda, Kunito; Asakawa, Naoki

    2017-08-01

    Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.

  10. Can high-intensity exercise be more pleasant?: attentional dissociation using music and video.

    Science.gov (United States)

    Jones, Leighton; Karageorghis, Costas I; Ekkekakis, Panteleimon

    2014-10-01

    Theories suggest that external stimuli (e.g., auditory and visual) may be rendered ineffective in modulating attention when exercise intensity is high. We examined the effects of music and parkland video footage on psychological measures during and after stationary cycling at two intensities: 10% of maximal capacity below ventilatory threshold and 5% above. Participants (N = 34) were exposed to four conditions at each intensity: music only, video only, music and video, and control. Analyses revealed main effects of condition and exercise intensity for affective valence and perceived activation (p music-only and music-and-video conditions led to the highest valence and enjoyment scores during and after exercise regardless of intensity. Findings indicate that attentional manipulations can exert a salient influence on affect and enjoyment even at intensities slightly above ventilatory threshold.

  11. Remote Sensing Tertiary Education Meets High Intensity Interval Training

    Science.gov (United States)

    Joyce, K. E.; White, B.

    2015-04-01

    Enduring a traditional lecture is the tertiary education equivalent of a long, slow, jog. There are certainly some educational benefits if the student is able to maintain concentration, but they are just as likely to get caught napping and fall off the back end of the treadmill. Alternatively, a pre-choreographed interactive workshop style class requires students to continually engage with the materials. Appropriately timed breaks or intervals allow students to recover briefly before being increasingly challenged throughout the class. Using an introductory remote sensing class at Charles Darwin University, this case study presents a transition from the traditional stand and deliver style lecture to an active student-led learning experience. The class is taught at undergraduate and postgraduate levels, with both on-campus as well as online distance learning students. Based on the concept that active engagement in learning materials promotes 'stickiness' of subject matter, the remote sensing class was re-designed to encourage an active style of learning. Critically, class content was reviewed to identify the key learning outcomes for the students. This resulted in a necessary sacrifice of topic range for depth of understanding. Graduates of the class reported high levels of enthusiasm for the materials, and the style in which the class was taught. This paper details a number of techniques that were used to engage students in active and problem based learning throughout the semester. It suggests a number of freely available tools that academics in remote sensing and related fields can readily incorporate into their teaching portfolios. Moreover, it shows how simple it can be to provide a far more enjoyable and effective learning experience for students than the one dimensional lecture.

  12. High-intensity kayak performance after adaptation to intermittent hypoxia.

    Science.gov (United States)

    Bonetti, Darrell L; Hopkins, Will G; Kilding, Andrew E

    2006-09-01

    Live-high train-low altitude training produces worthwhile gains in performance for endurance athletes, but the benefits of adaptation to various forms of artificial altitude are less clear. To quantify the effects of intermittent hypoxic exposure on kayak performance. In a crossover design with a 6-week washout, we randomized 10 subelite male sprint kayak paddlers to hypoxia or control groups for 3 weeks (5 days/week) of intermittent hypoxic exposure using a nitrogen-filtration device. Each day's exposure consisted of alternately breathing hypoxic and ambient air for 5 minutes each over 1 hour. Performance tests were an incremental step test to estimate peak power, maximal oxygen uptake, exercise economy, and lactate threshold; a 500-m time trial; and 5 x 100-m sprints. All tests were performed on a wind-braked kayak ergometer 7 and 3 days pretreatment and 3 and 10 days posttreatment. Hemoglobin concentration was measured at 1 day pretreatment, 5 and 10 days during treatment, and 3 days after treatment. Relative to control, at 3 days posttreatment the hypoxia group showed the following increases: peak power 6.8% (90% confidence limits, + or - 5.2%), mean repeat sprint power 8.3% (+ or - 6.7%), and hemoglobin concentration 3.6% (+ or - 3.2%). Changes in lactate threshold, mean 500-m power, maximal oxygen uptake, and exercise economy were unclear. Large effects for peak power and mean sprint speed were still present 10 days posthypoxia. These effects of intermittent hypoxic exposure should enhance performance in kayak racing. The effects might be mediated via changes in oxygen transport.

  13. Comparison of Acute Physiological and Psychological Responses Between Moderate Intensity Continuous Exercise and three Regimes of High Intensity Training.

    Science.gov (United States)

    Green, Nicole; Wertz, Timothy; LaPorta, Zachary; Mora, Adam; Serbas, Jasmine; Astorino, Todd A

    2017-07-19

    High intensity interval training (HIIT) elicits similar physiological adaptations as moderate intensity continuous training (MICT) despite less time commitment. However, there is debate whether HIIT is more aversive than MICT. This study compared physiological and perceptual responses between MICT and three regimes of HIIT. Nineteen active adults (age = 24.0 ± 3.3 yr) unfamiliar with HIIT initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (VO2 max) and determine workload for subsequent sessions, whose order was randomized. Sprint interval training (SIT) consisted of six 20 s bouts of "all-out" cycling at 140% of maximum watts (Wmax). Low volume (HIITLV) and high volume HIIT (HIITHV) consisted of eight 60 s bouts at 85% Wmax and six 2 min bouts at 70% Wmax, respectively. MICT consisted of 25 min at 40% Wmax. Across regimes, work was not matched. Heart rate, VO2, blood lactate concentration (BLa), affect, and rating of perceived exertion (RPE) were assessed during exercise. Ten minutes post-exercise, Physical Activity Enjoyment (PACES) was measured via a survey. Results revealed significantly higher (pregimes versus MICT at 50, 75, and 100 % of session duration, PACES was similar across regimes (p=0.65) although it was higher in women (p=0.03). Findings from healthy adults unaccustomed to interval training demonstrate that HIIT and SIT are perceived as enjoyable as MICT despite being more aversive.

  14. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice.

    Science.gov (United States)

    Wang, Ningning; Liu, Yang; Ma, Yanan; Wen, Deliang

    2017-12-15

    Exercise is beneficial in obesity, however, the debate about the value of high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) has been long lasting. Therefore, here we have compared the possible beneficial effects of two different exercise training regimes in a mouse model of diet-induced obesity (DIO). Following 7wk. on high fat diet (HFD), ten-week-old male ICR mice (n=30) were assigned to HIIT, distance-matched MICT or remained sedentary for the next 8 constitutive weeks while maintaining the dietary treatments. Age-matched sedentary mice with standard diet were used as a control (n=10). Exercise was performed on a motorized treadmill for 5days a week. Both modes of exercise ameliorated adiposity and related metabolic dysfunction induced by HFD and sedentary lifestyle, while mice following HIIT exhibited significantly lower body weight, percentage of fat mass and smaller adipocyte size. HIIT was more favorable in preventing liver lipid accumulation by restoring mRNA levels of genes involved in hepatic lipogenesis (SREBP1, ACC1, FAS) and β-oxidation (PPARα, CPT1a, HAD). In addition, HIIT was more efficient in mitigating adipose tissue inflammation and insulin insensitivity, partly dependent on abrogating phosphorylation of JNK/IRS1 (Ser307) pathway. Moreover, only HIIT led to pronounced beige adipocyte recruitment in inguinal subcutaneous adipose tissue. We conclude that HIIT contribute a more favorable regulation of metabolic dysfunctions in DIO mice compared with MICT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Physiological Acute Response to High-Intensity Intermittent and Moderate-Intensity Continuous 5 km Running Performance: Implications for Training Prescription.

    Science.gov (United States)

    Cabral-Santos, Carolina; Gerosa-Neto, José; Inoue, Daniela S; Rossi, Fabrício E; Cholewa, Jason M; Campos, Eduardo Z; Panissa, Valéria L G; Lira, Fábio S

    2017-02-01

    The aim of this study was to investigate the physiological responses to moderate-intensity continuous and high-intensity intermittent exercise. Twelve physically active male subjects were recruited and completed a 5-km run on a treadmill in two experimental sessions in randomized order: continuously (70% sVO 2max ) and intermittently (1:1 min at sVO 2max ). Oxygen uptake, excess post-exercise oxygen consumption, lactate concentration, heart rate and rating of perceived exertion data were recorded during and after each session. The lactate levels exhibited higher values immediately post-exercise than at rest (High-Intensity: 1.43 ± 0.25 to 7.36 ± 2.78; Moderate-Intensity: 1.64 ± 1.01 to 4.05 ± 1.52 mmol⋅L -1 , p = 0.0004), but High-Intensity promoted higher values (p = 0.001) than Moderate-Intensity. There was a difference across time on oxygen uptake at all moments tested in both groups (High-Intensity: 100.19 ± 8.15L; Moderate-Intensity: 88.35 ± 11.46, p < 0.001). Both exercise conditions promoted increases in excess postexercise oxygen consumption (High-Intensity: 6.61 ± 1.85 L; Moderate-Intensity: 5.32 ± 2.39 L, p < 0.005), but higher values were observed in the High-Intensity exercise protocol. High-Intensity was more effective at modifying the heart rate and rating of perceived exertion (High-Intensity: 183 ± 12.54 and 19; Moderate-Intensity: 172 ± 8.5 and 16, respectively, p < 0.05). In conclusion, over the same distance, Moderate-Intensity and High-Intensity exercise exhibited different lactate concentrations, heart rate and rating of perceived exertion. As expected, the metabolic contribution also differed, and High-Intensity induced higher energy expenditure, however, the total duration of the session may have to be taken into account. Moreover, when following moderate-intensity training, the percentage of sVO 2max and the anaerobic threshold might influence exercise and training responses.

  16. In-Season High-Intensity Interval Training Improves Conditioning In High School Soccer Players.

    Science.gov (United States)

    Howard, Neal; Stavrianeas, Stasinos

    2017-01-01

    Soccer is characterized by high aerobic demands interspersed with frequent bursts of anaerobic activity. High-intensity interval training (HIIT) is considered a viable alternative to traditional endurance conditioning and offers the additional time-saving benefits of anaerobic training. We hypothesized that HIIT will compare favorably to traditional (aerobic-based) soccer conditioning over the course of a high school soccer season. Junior varsity soccer players were split into control (CON, n=16) and experimental (HIIT, n=16) groups for the 10-week study. The HIIT group performed 4-6 "all-out" sprints lasting 30s each, with 4.5 minute recovery, 3 times a week. The CON group performed endurance running for the same duration. The groups did not differ in any other aspect of their training. Participants completed the Yo-Yo intermittent recovery test level 1 (IR1), a 40-yard dash, vertical jump, Illinois agility test, and a sit-and-reach test, in two different testing sessions (pre/post season). Both HIIT and CON groups exhibited significant increase in IR1 test performance with time (741.6±307.6m vs. 1067.6±356.8m, ptraining.

  17. High T2-weighted signal intensity is associated with elevated troponin T in hypertrophic cardiomyopathy

    NARCIS (Netherlands)

    Gommans, D.H.F.; Cramer, G.E.; Bakker, J.; Michels, M; Dieker, H.J.; Timmermans, J.; Fouraux, M.A.; Marcelis, C.L.M.; Verheugt, F.W.A.; Brouwer, M.A.; Kofflard, M.J.M.

    2017-01-01

    OBJECTIVE: Areas of high signal intensity (HighT2) on T2-weighted cardiovascular magnetic resonance (CMR) imaging have been demonstrated in hypertrophic cardiomyopathy (HCM). It has been hypothesised that HighT2 may indicate active tissue injury in HCM. In this context, we studied HighT2 in relation

  18. High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress.

    Science.gov (United States)

    Gabriel, Brendan; Ratkevicius, Aivaras; Gray, Patrick; Frenneaux, Michael P; Gray, Stuart R

    2012-09-01

    Regular exercise can reduce the risk of CVD (cardiovascular disease). Although moderate-intensity exercise can attenuate postprandial TAG (triacylglycerol), high-intensity intermittent exercise might be a more effective method to improve health. We compared the effects of high-intensity intermittent exercise and 30 min of brisk walking on postprandial TAG, soluble adhesion molecules and markers of oxidative stress. Nine men each completed three 2-day trials. On day 1, subjects rested (control), walked briskly for 30 min (walking) or performed 5×30 s maximal sprints (high-intensity). On day 2, subjects consumed a high-fat meal for breakfast and 3 h later for lunch. Blood samples were taken at various times and analysed for TAG, glucose, insulin, ICAM-1 (intracellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), TBARS (thiobarbituric acid- reactive substances), protein carbonyls and β-hydroxybutyrate. On day 2 of the high-intensity trial, there was a lower (Pwalking trial (8.98±2.84 mmol/l per 7 h). A trend (P=0.056) for a reduced total TAG AUC was also seen during the high-intensity trial (14.13±2.83 mmol/l per 7 h) compared with control (17.18±3.92 mmol/l per 7 h), walking showed no difference (16.33±3.51 mmol/l per 7 h). On day 2 of the high-intensity trial plasma TBARS and protein carbonyls were also reduced (Pwalking trials. In conclusion, high-intensity intermittent exercise attenuates postprandial TAG and markers of oxidative stress after the consumption of a high-fat meal.

  19. High-intensity focused ultrasound (HIFU) for pancreatic carcinoma: evaluation of feasibility, reduction of tumour volume and pain intensity.

    Science.gov (United States)

    Marinova, Milka; Rauch, Maximilian; Mücke, Martin; Rolke, Roman; Gonzalez-Carmona, Maria A; Henseler, Jana; Cuhls, Henning; Radbruch, Lukas; Strassburg, Christian P; Zhang, Lian; Schild, Hans H; Strunk, Holger M

    2016-11-01

    Prognosis of patients with locally advanced pancreatic adenocarcinoma is extremely poor. They often suffer from cancer-related pain reducing their quality of life. This prospective observational study aimed to evaluate feasibility, local tumour response, and changes in quality of life and symptoms in Caucasian patients with locally advanced pancreatic cancer treated by ultrasound-guided high-intensity focused ultrasound (HIFU). Thirteen patients underwent HIFU, five with stage III, eight with stage IV UICC disease. Ten patients received simultaneous palliative chemotherapy. Postinterventional clinical assessment included evaluation of quality of life and symptom changes using standardized questionnaires. CT and MRI follow-up evaluated the local tumour response. HIFU was successfully performed in all patients. Average tumour reduction was 34.2 % at 6 weeks and 63.9 % at 3 months. Complete or partial relief of cancer-related pain was achieved in 10 patients (77 %), five of whom required less analgesics for pain control. Quality of life was improved revealing increased global health status and alleviated symptoms. HIFU treatment was well tolerated. Eight patients experienced transient abdominal pain directly after HIFU. HIFU ablation of pancreatic carcinoma is a feasible, safe and effective treatment with a crucial benefit in terms of reduction of tumour volume and pain intensity. • US-guided HIFU is feasible and safe for patients with unresectable pancreatic cancer. • HIFU can considerably reduce tumour volume and cancer-related pain. • Patients treated with HIFU experienced significant and lasting reduction of pain intensity. • HIFU has a crucial clinical benefit for patients with pancreatic cancer.

  20. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  1. Effect of high-intensity interval exercise on basal triglyceride metabolism in non-obese men

    National Research Council Canada - National Science Library

    Bellou, Elena; Magkos, Faidon; Kouka, Tonia; Bouchalaki, Eirini; Sklaveniti, Dimitra; Maraki, Maria; Tsekouras, Yiannis E; Panagiotakos, Demosthenes B; Kavouras, Stavros A; Sidossis, Labros S

    2013-01-01

    ..., but whether this applies to very low density lipoprotein (VLDL) metabolism is not known. We sought to examine the effect of a single bout of high-intensity interval aerobic exercise on basal VLDL-triglyceride (TG...

  2. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    Science.gov (United States)

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  3. Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping

    National Research Council Canada - National Science Library

    Jensen, Carl R; Ritchie, Robert W; Gyöngy, Miklós; Collin, James R T; Leslie, Tom; Coussios, Constantin-C

    2012-01-01

    To demonstrate feasibility of monitoring high-intensity focused ultrasound (HIFU) treatment with passive acoustic mapping of broadband and harmonic emissions reconstructed from filtered-channel radiofrequency data in ex vivo bovine tissue...

  4. Effect of high-intensity interval exercise on basal triglyceride metabolism in non-obese men

    National Research Council Canada - National Science Library

    Bellou, Elena; Magkos, Faidon; Kouka, Tonia; Bouchalaki, Eirini; Sklaveniti, Dimitra; Maraki, Maria; Tsekouras, Yiannis E; Panagiotakos, Demosthenes B; Kavouras, Stavros A; Sidossis, Labros S

    2013-01-01

    A single bout of high-intensity interval aerobic exercise has been shown to produce the same or greater metabolic benefits as continuous endurance exercise with considerably less energy expenditure...

  5. Short-term effects of implemented high intensity shoulder elevation during computer work

    DEFF Research Database (Denmark)

    Larsen, Mette K; Samani, Afshin; Madeleine, Pascal

    2009-01-01

    contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE) as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction...... on productivity, RPE and upper trapezius activity and rest during computer work and a subsequent pause from computer work. METHODS: 18 female computer workers performed 2 sessions of 15 min standardized computer mouse work preceded by 1 min pause with and without prior high intensity contraction of shoulder....... RESULTS: The main findings were that a high intensity shoulder elevation did not modify RPE, productivity or EMG activity of the upper trapezius during the subsequent pause and computer work. However, the high intensity contraction reduced the relative rest time of the uppermost (clavicular) trapezius...

  6. Endurance capacity and neuromuscular fatigue following high- vs moderate-intensity endurance training: A randomized trial.

    Science.gov (United States)

    O'Leary, T J; Collett, J; Howells, K; Morris, M G

    2017-12-01

    High-intensity exercise induces significant central and peripheral fatigue; however, the effect of endurance training on these mechanisms of fatigue is poorly understood. We compared the effect of cycling endurance training of disparate intensities on high-intensity exercise endurance capacity and the associated limiting central and peripheral fatigue mechanisms. Twenty adults were randomly assigned to 6 weeks of either high-intensity interval training (HIIT, 6-8×5 minutes at halfway between lactate threshold and maximal oxygen uptake [50%Δ]) or volume-matched moderate-intensity continuous training (CONT, ~60-80 minutes at 90% lactate threshold). Two time to exhaustion (TTE) trials at 50%Δ were completed pre- and post-training to assess endurance capacity; the two post-training trials were completed at the pretraining 50%Δ (same absolute intensity) and the "new" post-training 50%Δ (same relative intensity). Pre- and post-exercise responses to femoral nerve and motor cortex stimulation were examined to determine peripheral and central fatigue, respectively. HIIT resulted in greater increases in TTE at the same absolute and relative intensities as pre-training (148% and 43%, respectively) compared with CONT (38% and -4%, respectively) (P≤.019). Compared with pre-training, HIIT increased the level of potentiated quadriceps twitch reduction (-34% vs -43%, respectively, P=.023) and attenuated the level of voluntary activation reduction (-7% vs -3%, respectively, P=.047) following the TTE trial at the same relative intensity. There were no other training effects on neuromuscular fatigue development. This suggests that central fatigue resistance contributes to enhanced high-intensity exercise endurance capacity after HIIT by allowing greater performance to be extruded from the muscle. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Influence of mature men way of life on highly intensive physical activity

    Directory of Open Access Journals (Sweden)

    O.B. Pryshva

    2017-04-01

    Full Text Available Highly intensive physical activity is the most effective for men’s health protection. In modern life conditions its level is insufficient. It requires organism’s appropriate physical activity, which is determined by way of life. Especially important it is before trainings. Purpose: to study special aspects of different intensity’s physical activity; of eating special food and sleeping regime of mature men before their highly intensive physical trainings. Material: in experiment men (n=26, age - 35-53years, who practice healthy life style and independent physical activity of high intensity, participated. We used bio-register Basis B1. Every day we registered: Peak - physical activity of different intensity; duration and quality of sleep; relative weight of consumed food. Besides, we calculated body mass index and physical condition. The study was conducted during 30 days in winter period. The following results were compared: indicators before not planned physical activity and average-monthly indicators. Results: Before arbitrary physical functioning we found in men: confident weakening of average intensity (by 9-11% and low intensity (by 10% physical activity; confident increase of consumed food’s relative weight (by 6.82%, vegetarian food (by 10.64% and raw food (by 7.61%; confident reduction of animal origin food (by 8.7%. No changes were found in duration and quality of sleep before highly intensive physical functioning. Conclusions: specific features of mature men’s way of life before their not planned highly intensive physical functioning are as follows: reduction of general physical activity; increase of consumed food. These factors facilitate energy accumulation in organism for its realization in highly intensive physical functioning the next day.

  8. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    Science.gov (United States)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  9. Short-term effects of implemented high intensity shoulder elevation during computer work.

    Science.gov (United States)

    Larsen, Mette K; Samani, Afshin; Madeleine, Pascal; Olsen, Henrik B; Søgaard, Karen; Holtermann, Andreas

    2009-08-10

    Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE) as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction on productivity, RPE and upper trapezius activity and rest during computer work and a subsequent pause from computer work. 18 female computer workers performed 2 sessions of 15 min standardized computer mouse work preceded by 1 min pause with and without prior high intensity contraction of shoulder elevation. RPE was reported, productivity (drawings per min) measured, and bipolar surface electromyography (EMG) recorded from the dominant upper trapezius during pauses and sessions of computer work. Repeated measure ANOVA with Bonferroni corrected post-hoc tests was applied for the statistical analyses. The main findings were that a high intensity shoulder elevation did not modify RPE, productivity or EMG activity of the upper trapezius during the subsequent pause and computer work. However, the high intensity contraction reduced the relative rest time of the uppermost (clavicular) trapezius part during the subsequent pause from computer work (p shoulder elevation did not impose a negative impact on perceived effort, productivity or upper trapezius activity during computer work, implementation of high intensity contraction during computer work to prevent neck-shoulder pain may be possible without affecting the working routines. However, the unexpected reduction in clavicular trapezius rest during a pause with preceding high intensity contraction requires further investigation before high

  10. High-Intensity Interval Training Versus Moderate-Intensity Continuous Training in the Prevention/Management of Cardiovascular Disease.

    Science.gov (United States)

    Hussain, Syed R; Macaluso, Andrea; Pearson, Stephen J

    Moderate-intensity continuous training (MICT) has long been considered the most effective exercise treatment modality for the prevention and management of cardiovascular disease (CVD), but more recently high-intensity interval training (HIIT) has been viewed as a potential alternative to MICT in accruing such benefits. HIIT was initially found to induce significant improvements in numerous physiological and health-related indices, to a similar if not superior extent to MICT. Since then, many studies have attempted to explore the potential clinical utility of HIIT, relative to MICT, with respect to treating numerous cardiovascular conditions, such as coronary artery disease, heart failure, stroke, and hypertension. Despite this, however, the efficacy of HIIT in reversing the specific symptoms and risk factors of these cardiovascular pathologies is not well understood. HIIT is often perceived as very strenuous, which could render it unsafe for those at risk of or afflicted with CVD, but these issues are also yet to be reviewed. Furthermore, the optimal HIIT protocol for each of the CVD cohorts has not been established. Thus, the purpose of this review article is to (1) evaluate the efficacy of HIIT relative to MICT in the prevention and management of cardiovascular conditions, and (2) explore any potential safety issues surrounding the suitability and/or tolerability of HIIT for patients with CVD, and the potential optimal prescriptive variables of HIIT for application in the clinical environment.

  11. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training.

    Science.gov (United States)

    Stöggl, Thomas L; Björklund, Glenn

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg-1·min-1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes.

  12. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Science.gov (United States)

    Stöggl, Thomas L.; Björklund, Glenn

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes. PMID:28824457

  13. Symptom experiences of family members of intensive care unit patients at high risk for dying.

    Science.gov (United States)

    McAdam, Jennifer L; Dracup, Kathleen A; White, Douglas B; Fontaine, Dorothy K; Puntillo, Kathleen A

    2010-04-01

    To describe the symptom experiences of family members of patients at high risk for dying in the intensive care unit and to assess risk factors associated with higher symptom burden. Prospective, cross-sectional study. Three intensive care units at a large academic medical center. A sample of 74 family members of 74 intensive care unit patients who had a grave prognosis and were judged to be at high risk for dying. Patients at high risk for dying were identified as having Acute Physiology and Chronic Health Evaluation II scores >20, an intensive care unit length of stay >72 hrs, and being mechanically ventilated. None. We assessed the degree of symptom burden approximately 4 days after the patient's admission to the intensive care unit in the following domains: traumatic stress, anxiety, and depression. Overall, the prevalence of symptoms was high, with more than half (57%) of family members having moderate to severe levels of traumatic stress, 80% having borderline symptoms of anxiety, and 70% having borderline symptoms of depression. More than 80% of family members had other physical and emotional symptoms, such as fatigue, sadness, and fear, and these were experienced at the moderate to severe levels of distress. Factors independently associated with greater severity of symptoms included younger age, female gender, and non-white race of the family member. The only patient factor significantly associated with symptom severity was younger age. Despite their symptom experience, the majority of the family members were coping at moderate to high levels and functioning at high levels during the intensive care unit experience. We document a high prevalence of psychological and physical symptoms among family members during an intensive care unit admission. These data complement existing data on long-term symptom burden and highlight the need to improve family centered care in intensive care units.

  14. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review.

    Science.gov (United States)

    Eddolls, William T B; McNarry, Melitta A; Stratton, Gareth; Winn, Charles O N; Mackintosh, Kelly A

    2017-11-01

    Whilst there is increasing interest in the efficacy of high-intensity interval training in children and adolescents as a time-effective method of eliciting health benefits, there remains little consensus within the literature regarding the most effective means for delivering a high-intensity interval training intervention. Given the global health issues surrounding childhood obesity and associated health implications, the identification of effective intervention strategies is imperative. The aim of this review was to examine high-intensity interval training as a means of influencing key health parameters and to elucidate the most effective high-intensity interval training protocol. Studies were included if they: (1) studied healthy children and/or adolescents (aged 5-18 years); (2) prescribed an intervention that was deemed high intensity; and (3) reported health-related outcome measures. A total of 2092 studies were initially retrieved from four databases. Studies that were deemed to meet the criteria were downloaded in their entirety and independently assessed for relevance by two authors using the pre-determined criteria. From this, 13 studies were deemed suitable. This review found that high-intensity interval training in children and adolescents is a time-effective method of improving cardiovascular disease biomarkers, but evidence regarding other health-related measures is more equivocal. Running-based sessions, at an intensity of >90% heart rate maximum/100-130% maximal aerobic velocity, two to three times a week and with a minimum intervention duration of 7 weeks, elicit the greatest improvements in participant health. While high-intensity interval training improves cardiovascular disease biomarkers, and the evidence supports the effectiveness of running-based sessions, as outlined above, further recommendations as to optimal exercise duration and rest intervals remain ambiguous owing to the paucity of literature and the methodological limitations of

  15. High-intensity aerobic interval training in a patient with stable angina pectoris.

    Science.gov (United States)

    Meyer, Philippe; Guiraud, Thibaut; Gayda, Mathieu; Juneau, Martin; Bosquet, Laurent; Nigam, Anil

    2010-01-01

    Recently, high-intensity aerobic interval training was shown to be more effective than continuous moderate-intensity exercise for improving maximal aerobic capacity and endurance in patients with coronary heart disease. However, patients with exercise-induced ischemia were not included in those studies. We present the acute cardiopulmonary responses of a 67-yr-old man with stable angina pectoris during a 34-min session of high-intensity aerobic interval training. Exercise was well tolerated with neither significant arrhythmia nor elevation of cardiac troponin-T. We observed a complete disappearance of symptoms and signs of myocardial ischemia after 24 mins of exercise. This observation is similar to the warm-up angina phenomenon, an adaptation to myocardial ischemia that remains poorly understood. We conclude that high-intensity aerobic interval training is a promising mode of training for patients with stable coronary heart disease that should also be investigated further in patients with exercise-induced ischemia.

  16. Reducing airborne pathogens, dust and Salmonella transmission in experimental hatching cabinets using an electrostatic space charge system.

    Science.gov (United States)

    Mitchell, B W; Buhr, R J; Berrang, M E; Bailey, J S; Cox, N A

    2002-01-01

    Electrostatic charging of particles in enclosed spaces has been shown to be an effective means of reducing airborne dust. Dust generated during the hatching process has been strongly implicated in Salmonella transmission, which complicates the cleaning and disinfecting processes for hatchers. Following two preliminary trials in which dust reduction was measured, four trials were conducted to evaluate the effectiveness of an electrostatic space charge system (ESCS) on the levels of total aerobic bacteria (TPC), enterobacteriaceae (ENT), and Salmonella within an experimental hatching cabinet. The ESCS was placed in a hatching cabinet that was approximately 50% full of 18-d-old broiler hatching eggs. The ESCS operated continuously to generate a strong negative electrostatic charge throughout the cabinet through hatching, and dust was collected in grounded trays containing water and a degreaser. An adjacent hatching cabinet served as an untreated control. Air samples from hatchers were collected daily, and sample chicks from each hatcher were grown out to 7 d of age for cecal analysis in three of the trials. The ESCS significantly (P < 0.05) reduced TPC and ENT by 85 to 93%. Dust concentration was significantly reduced (P < 0.0001) during the preliminary trials with an average reduction of 93.6%. The number of Salmonella per gram of cecal contents in birds grown to 7 d of age was significantly (P < 0.001) reduced by an average log10 3.4 cfu/g. This ionization technology is relatively inexpensive and could be used to reduce airborne bacteria and dust within the hatching cabinet.

  17. High but not moderate-intensity endurance training increases pain tolerance: a randomised trial.

    Science.gov (United States)

    O'Leary, Thomas J; Collett, Johnny; Howells, Ken; Morris, Martyn G

    2017-11-01

    To examine the effect of high-intensity interval training (HIIT) compared to volume-matched moderate-intensity continuous training (CONT) on muscle pain tolerance and high-intensity exercise tolerance. Twenty healthy adults were randomly assigned (1:1) to either 6 weeks of HIIT [6-8 × 5 min at halfway between lactate threshold and maximal oxygen uptake (50%Δ)] or volume-matched CONT (~60-80 min at 90% lactate threshold) on a cycle ergometer. A tourniquet test to examine muscle pain tolerance and two time to exhaustion (TTE) trials at 50%Δ to examine exercise tolerance were completed pre- and post-training; the post-training TTE trials were completed at the pre-training 50%Δ (same absolute-intensity) and the post-training 50%Δ (same relative-intensity). HIIT and CONT resulted in similar improvements in markers of aerobic fitness (all P ≥ 0.081). HIIT increased TTE at the same absolute- and relative-intensity as pre-training (148 and 43%, respectively) to a greater extent than CONT (38 and -4%, respectively) (both P ≤ 0.019). HIIT increased pain tolerance (41%, P intensity (r = 0.51, P = 0.011) as pre-training. The repeated exposure to a high-intensity training stimulus increases muscle pain tolerance, which is independent of the improvements in aerobic fitness induced by endurance training, and may contribute to the increase in high-intensity exercise tolerance following HIIT.

  18. Fast Faraday cup to measure neutralized drift compression in intense ion charge bunches

    Directory of Open Access Journals (Sweden)

    A. B. Sefkow

    2006-05-01

    Full Text Available Heavy ion drivers for heavy ion fusion and high energy density physics applications use space-charge-dominated ion beams which must undergo longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The Neutralized Drift Compression Experiment-1A (NDCX-1A at Lawrence Berkeley National Laboratory is used to determine the effective limits of neutralized drift compression, which occurs due to an imposed longitudinal velocity tilt on the drifting beam and subsequent neutralization of the beam’s space charge with background plasma. The accurate and temporally resolved measurement of the ion beam’s current and pulse length, which has been longitudinally compressed to a few nanoseconds duration at its focal plane, is a critical diagnostic. This paper describes the design and experimental results for a fast and accurate ion beam probe, which reliably measures the absolute beam current in the presence of high density plasma at the focal plane as a function of time. A particle-in-cell code has been used to model the propagation of the intense ion beam and to design the diagnostic probe.

  19. Study in Parkinson disease of exercise (SPARX): translating high-intensity exercise from animals to humans.

    Science.gov (United States)

    Moore, Charity G; Schenkman, Margaret; Kohrt, Wendy M; Delitto, Anthony; Hall, Deborah A; Corcos, Daniel

    2013-09-01

    A burgeoning literature suggests that exercise has a therapeutic benefit in persons with Parkinson disease (PD) and in animal models of PD, especially when animals exercise at high intensity. If exercise is to be prescribed as "first-line" or "add-on" therapy in patients with PD, we must demonstrate its efficacy and dose-response effects through testing phases similar to those used in the testing of pharmacologic agents. The SPARX Trial is a multicenter, randomized, controlled, single-blinded, Phase II study that we designed to test the feasibility of using high-intensity exercise to modify symptoms of PD and to simultaneously test the nonfutility of achieving a prespecified change in patients' motor scores on the Unified Parkinson Disease Rating Scale (UPDRS). The trial began in May 2102 and is in the process of screening, enrolling, and randomly assigning 126 patients with early-stage PD to 1 of 3 groups: usual care (wait-listed controls), moderate-intensity exercise (4 days/week at 60%-65% maximal heart rate [HRmax]), or high-intensity exercise (4 days/week at 80%-85% HRmax). At 6-month follow-up, the trial is randomly reassigning usual care participants to a moderate-intensity or high-intensity exercise group for the remaining 6 months. The goals of the Phase II trial are to determine if participants can exercise at moderate and high intensities; to determine if either exercise yields benefits consistent with meaningful clinical change (nonfutility); and to document safety and attrition. The advantage of using a non-futility approach allows us to efficiently determine if moderate- or high-intensity exercise warrants further large-scale investigation in PD. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    Science.gov (United States)

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  1. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise.

    Science.gov (United States)

    Little, Jonathan P; Chilibeck, Philip D; Ciona, Dawn; Forbes, Scott; Rees, Huw; Vandenberg, Albert; Zello, Gordon A

    2010-12-01

    Consuming carbohydrate-rich meals before continuous endurance exercise improves performance, yet few studies have evaluated the ideal preexercise meal for high-intensity intermittent exercise, which is characteristic of many team sports. The authors' purpose was to investigate the effects of low- and high-glycemic-index (GI) meals on metabolism and performance during high-intensity, intermittent exercise. Sixteen male participants completed three 90-min high-intensity intermittent running trials in a single-blinded random order, separated by ~7 d, while fasted (control) and 2 hr after ingesting an isoenergetic low-GI (lentil), or high-GI (potato and egg white) preexercise meal. Serum free fatty acids were higher and insulin lower throughout exercise in the fasted condition (p carbohydrates are not provided during exercise both low- and high-GI preexercise meals improve high-intensity, intermittent exercise performance, probably by increasing the availability of muscle glycogen. However, the GI does not influence markers of substrate oxidation during high-intensity, intermittent exercise.

  2. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    Science.gov (United States)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  3. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  4. High-Intensity Interval Training as an Efficacious Alternative to Moderate-Intensity Continuous Training for Adults with Prediabetes

    Directory of Open Access Journals (Sweden)

    Mary E. Jung

    2015-01-01

    Full Text Available Aims. High-intensity interval training (HIIT leads to improvements in various markers of cardiometabolic health but adherence to HIIT following a supervised laboratory intervention has yet to be tested. We compared self-report and objective measures of physical activity after one month of independent exercise in individuals with prediabetes who were randomized to HIIT (n=15 or traditional moderate-intensity continuous training (MICT, n=17. Method. After completing 10 sessions of supervised training participants were asked to perform HIIT or MICT three times per week for four weeks. Results. Individuals in HIIT (89 ± 11% adhered to their prescribed protocol to a greater extent than individuals in MICT (71 ± 31% as determined by training logs completed over one-month follow-up (P = 0.05, Cohen’s d = 0.75. Minutes spent in vigorous physical activity per week measured by accelerometer were higher in HIIT (24 ± 18 as compared to MICT (11 ± 10 at one-month follow-up (P = 0.049, Cohen’s d = 0.92. Cardiorespiratory fitness and systolic blood pressure assessed at one-month follow-up were equally improved (P’s < 0.05. Conclusions. This study provides preliminary evidence that individuals with prediabetes can adhere to HIIT over the short-term and do so at a level that is greater than MICT.

  5. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    Science.gov (United States)

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-09

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.

  6. Physiological Acute Response to High-Intensity Intermittent and Moderate-Intensity Continuous 5 km Running Performance: Implications for Training Prescription

    Science.gov (United States)

    Cabral-Santos, Carolina; Gerosa-Neto, José; Inoue, Daniela S.; Rossi, Fabrício E.; Cholewa, Jason M.; Panissa, Valéria L. G.; Lira, Fábio S.

    2017-01-01

    Abstract The aim of this study was to investigate the physiological responses to moderate-intensity continuous and high-intensity intermittent exercise. Twelve physically active male subjects were recruited and completed a 5-km run on a treadmill in two experimental sessions in randomized order: continuously (70% sVO2max) and intermittently (1:1 min at sVO2max). Oxygen uptake, excess post-exercise oxygen consumption, lactate concentration, heart rate and rating of perceived exertion data were recorded during and after each session. The lactate levels exhibited higher values immediately post-exercise than at rest (High-Intensity: 1.43 ± 0.25 to 7.36 ± 2.78; Moderate-Intensity: 1.64 ± 1.01 to 4.05 ± 1.52 mmol⋅L−1, p = 0.0004), but High-Intensity promoted higher values (p = 0.001) than Moderate-Intensity. There was a difference across time on oxygen uptake at all moments tested in both groups (High-Intensity: 100.19 ± 8.15L; Moderate-Intensity: 88.35 ± 11.46, p exercise conditions promoted increases in excess postexercise oxygen consumption (High-Intensity: 6.61 ± 1.85 L; Moderate-Intensity: 5.32 ± 2.39 L, p exercise protocol. High-Intensity was more effective at modifying the heart rate and rating of perceived exertion (High-Intensity: 183 ± 12.54 and 19; Moderate-Intensity: 172 ± 8.5 and 16, respectively, p exercise exhibited different lactate concentrations, heart rate and rating of perceived exertion. As expected, the metabolic contribution also differed, and High-Intensity induced higher energy expenditure, however, the total duration of the session may have to be taken into account. Moreover, when following moderate-intensity training, the percentage of sVO2max and the anaerobic threshold might influence exercise and training responses. PMID:28469751

  7. High-intensity versus low-intensity non-invasive ventilation in patients with stable hypercapnic COPD: a randomised crossover trial.

    Science.gov (United States)

    Dreher, Michael; Storre, Jan H; Schmoor, Claudia; Windisch, Wolfram

    2010-04-01

    The conventional approach of low-intensity non-invasive positive pressure ventilation (NPPV) produces only minimal physiological and clinical benefits in patients with stable hypercapnic chronic obstructive pulmonary disease (COPD). To determine whether the novel approach of high-intensity NPPV is superior to low-intensity NPPV in controlling nocturnal hypoventilation. A randomised controlled crossover trial comparing 6 weeks of high-intensity NPPV (using controlled ventilation with mean inspiratory pressures of 28.6+/-1.9 mbar) with low-intensity NPPV (using assisted ventilation with mean inspiratory pressures of 14.6+/-0.8 mbar) was performed in 17 patients with severe stable hypercapnic COPD. Two patients refused low-intensity NPPV and two patients dropped out while on low-intensity NPPV. Thirteen patients (mean forced expiratory volume in 1 s (FEV(1)) 0.76+/-0.29 l) completed the trial. High-intensity NPPV produced higher pneumotachographically-measured expiratory volumes, with a mean treatment effect of 96 ml (95% CI 23 to 169) (p=0.015). This resulted in a mean treatment effect on nocturnal arterial carbon dioxide tension (Paco(2)) of -9.2 mm Hg (95% CI -13.7 to -4.6) (p=0.001) in favour of high-intensity NPPV. Daily use of NPPV was increased in high-intensity NPPV compared with low-intensity NPPV, with a mean difference of 3.6 h/day (95% CI 0.6 to 6.7) (p=0.024). In addition, compared with baseline, only high-intensity NPPV resulted in significant improvements in exercise-related dyspnoea, daytime Paco(2), FEV(1), vital capacity and the Severe Respiratory Insufficiency Questionnaire Summary Score. High-intensity NPPV is better tolerated by patients with severe chronic hypercapnic COPD and has been shown to be superior to the conventional and widely-used form of low-intensity NPPV in controlling nocturnal hypoventilation. High-intensity NPPV therefore offers a new promising therapeutic option for these patients.

  8. Effect of Eight Weeks High Intensity Interval Training and Medium Intensity Interval Training and Aloe vera Intake on Serum Vaspin and Insulin Resistance in Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Darya Asgari Hazaveh

    2018-02-01

    Full Text Available Abstract Background: The use of herbal supplements and exercise training for the treatment of diabetic has increased.The purpose of this study was to investigate the effect of eight weeks high intensity interval training and moderate intensity interval training and Aloe vera intake on serum vaspin and insulin resistance in diabetic male rats. Materials and Methods: During this experimental study, 32 diabetic rats with STZ Wistar were randomly divided into four groups including the control, high intensity interval training +supplement, moderate intensity interval training + supplement and supplement. Training program was planned for 8 weeks and 3 sessions per week. Each session consisted of 6 to 12 periods of 2-minute activity with the intensity of 90% and 60% with one minute rest (speed: 10m/min. In the supplement groups, 300milligrams Aloe vera solution per kilogram of body weight Gavage was given 5 sessions per week for 8 weeks. The data were analyzed using one-way analysis of variance (ANOVA. Results: The results showed that high and moderate intensity interval training with supplement has no significant effect on the of serum vaspin (p=0.112. High intensity interval training with supplement had significant effects on insulin in diabetic male rats (0.000. Conclusion: .Based on the findings of this study, it seems that supplementation of Aloe vera with high intensity interval training can have better effects on serum insulin in diabetic rats.

  9. [High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT].

    Science.gov (United States)

    Espinoza Salinas, Alexis; Aguilera Eguía, Raúl; Cofre Bolados, Cristian; Zafra Santos, Edson; Pavéz Von Martens, Gustavo

    2014-06-06

    A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR), low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. To verify the validity and applicability of using high intensity interval training (HIIT) in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91). In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  10. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  11. High-intensity focused ultrasound ablation for treatment of hepatocellular carcinoma and hypersplenism: preliminary study.

    Science.gov (United States)

    Zhu, Jing; Zhu, Hui; Mei, Zhechuan; Jin, Chengbing; Ran, Lifeng; Zhou, Kun; Yang, Wei; Zhang, Lian; She, Chaokun

    2013-10-01

    The purpose of this work was to preliminarily investigate the efficacy and safety of high-intensity focused ultrasound treatment of hepatocellular carcinoma and hypersplenism. Nine patients with hepatocellular carcinoma complicated by hypersplenism (5 male and 4 female; median age, 56 years; range, 51-66 years) were treated with ultrasound-guided high-intensity focused ultrasound. Complications were recorded. Laboratory examination and magnetic resonance imaging were used to evaluate the efficacy. After high-intensity focused ultrasound treatment, mean spleen ablation ± SD of 28.76% ± 6.1% was discovered; meanwhile, the white blood cell count, platelet count, and liver function of the patients were substantially improved during the follow-up period. In addition, symptoms such as epistaxis and gingival bleeding were ameliorated or even eliminated, and the quality of life was improved. Follow-up imaging showed a nonperfused volume in the spleen and an absence of a tumor blood supply at the treated lesions in the liver. For the first time to our knowledge, high-intensity focused ultrasound ablation was used to treat hepatocellular carcinoma complicated by hypersplenism. High-intensity focused ultrasound may be an effective and safe alternative for treatment of hepatocellular carcinoma complicated by hypersplenism, but further studies are necessary to clarify the mechanisms.

  12. Comparison of Two Intensities of Aerobic Training (low intensity and High Intensity on Expression of Perlipin 2 Skeletal Muscle, Serum Glucose and Insulin levels in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M Ghafari

    2017-06-01

    Full Text Available Abstract   Background & aim: Lipid metabolism disorder plays an important role in insulin resistance in skeletal muscle and lipid drop proteins such as perlipine 2 (PLIN2 are effective in regulating intracellular fat metabolism. One of the suggested pathways for the effects of endurance activity in metabolic diseases is the effect of physical activity on intramuscular. Therefore, the purpose of this study was compare the intensity of aerobic exercise intensity (low intensity and high intensity on expression of PLIN2 skeletal muscle, serum glucose and insulin levels in streptozotocin-diabetic rats.   Methods: In this experimental study, 24 male Wistar rats were randomly divided into three groups of 8, including two intervention groups (low intensity endurance training group and high intensity continuous exercise group and one control group. After induction of diabetic rats by injection streptozotocin (55 mg / kg body weight, Intraperitoneally, endurance training was applied for eight weeks, three sessions per week in diabetic rats. Exercise intensity in the low-intensity group was equal to 5-8 m / min (equivalent to 50-60% Vo2max, the intensity of training in a high intensity training group was equivalent to a speed of 22-25 m / min (equivalent to 80% Vo2max and the control group did not receive intervene in this time. Relative protein expression of PLIN2 was performed using western blot technique. Data were analyzed by one-way ANOVA and Tukey's post hoc test.   Results: The results of the intergroup comparison revealed a significant difference among three groups in the PLIN2 variables (p = 0.037. The results of post hoc test showed a significant increase in PLIN2 in high intensity training diabetic group compared to the control group (p = 0.033 However, there was no significant difference in PLIN2 level in the low exercise group compared to the control group (p = 0.18. Also, there was no significant difference between the low intensity and

  13. A study of daily variation in cosmic ray intensity during high/low ...

    Indian Academy of Sciences (India)

    A study of daily variation in cosmic ray intensity during high/low amplitude days ... A detailed study has been conducted on the long-term changes in the diurnal, semi-diurnal and tri-diurnal anisotropies of cosmic rays in terms of the high/low amplitude ... Model Science College (Autonomous), Jabalpur 482 001, India ...

  14. Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam

    NARCIS (Netherlands)

    Lu, Yuan; Katz, Joseph; Prosperetti, Andrea

    2013-01-01

    In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line

  15. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Directory of Open Access Journals (Sweden)

    Thomas L. Stöggl

    2017-08-01

    Full Text Available The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR in well-trained endurance athletes.Methods: Thirty-six male (n = 33 and female (n = 3 runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak: 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT. A maximal anaerobic running/cycling test (MART/MACT was performed prior to and following a 9-week training period.Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P < 0.001 and peak lactate (P = 0.001 during the MART/MACT, while, unexpectedly, in none of the groups the performance at the established lactate concentrations (4, 6, 10 mmol·L−1 was changed (P > 0.05. Acute HRR was improved in HIIT (11.2%, P = 0.002 and POL (7.9%, P = 0.023 with no change in the HVLIT oriented control group.Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT had no effect on any performance or HRR outcomes.

  16. Predictors of individual adaptation to high-volume or high-intensity endurance training in recreational endurance runners.

    Science.gov (United States)

    Vesterinen, V; Häkkinen, K; Laine, T; Hynynen, E; Mikkola, J; Nummela, A

    2016-08-01

    The aim of this study was to investigate factors that can predict individual adaptation to high-volume or high-intensity endurance training. After the first 8-week preparation period, 37 recreational endurance runners were matched into the high-volume training group (HVT) and high-intensity training group (HIT). During the next 8-week training period, HVT increased their running training volume and HIT increased training intensity. Endurance performance characteristics, heart rate variability (HRV), and serum hormone concentrations were measured before and after the training periods. While HIT improved peak treadmill running speed (RSpeak ) 3.1 ± 2.8% (P endurance training in recreational runners. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Warm-up strategy and high-intensity endurance performance in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Bangsbo, Jens

    2015-01-01

    to HI20 (7.85±0.82 L; P=0.008) and MOD6 (7.90±0.74 L; P=0.012). CONCLUSIONS: Warm-up exercise including race-pace and sprint intervals combined with short recovery can reduce subsequent performance in a 4-min maximal test in highly trained cyclists. Thus, a reduced time at high exercise intensity......PURPOSE: To evaluate the influence of warm-up exercise intensity and subsequent recovery on intense endurance performance, selected blood variables and the VO2 response. METHODS: Twelve highly trained male cyclists (VO2-max: 72.4±8.0·mL/min/kg, incremental-test peak power output (iPPO): 432±31 W......; means±SD) performed three warm-up strategies lasting 20 min before a 4-min maximal performance test (PT). Strategies consisted of moderate intensity exercise (50%iPPO) followed by 6 min of recovery (MOD6) or progressive-high intensity exercise (10-100%iPPO and 2x20-s sprints) followed by recovery for 6...

  18. Effects of high-intensity exercise on leptin and testosterone concentrations in well-trained males.

    Science.gov (United States)

    Kraemer, Robert R; Durand, Robert J; Acevedo, Edmund O; Johnson, Lisa G; Synovitz, Linda B; Kraemer, Ginger R; Gimpel, Terry; Castracane, V Daniel

    2003-08-01

    A number of investigations have examined the effect of exercise on leptin concentrations, because leptin is associated with obesity, satiety, and reproductive function. High-intensity exercise is known to increase testosterone, an inhibitor of leptin. The objective of the study was to determine whether the leptin responses to a progressive, intermittent exercise protocol were related to serum testosterone concentrations. Most previous studies have examined leptin responses to low or moderately high exercise intensities. A second objective was to determine whether leptin responses were different than previous experiments using intermittent moderate and high-intensity exercise. Well-trained runners completed strenuous intermittent exercise consisting of treadmill running at 60, 75, 90, and 100% VO(2 max) and a subsequent resting control trial was also conducted. There were significant increases in mean serum levels of leptin and testosterone with both quickly returning to baseline during recovery, but no relationship between the two hormones was found. After examining individual data for both hormones, it was discovered that subjects could be classified as leptin responders or nonresponders, whereas testosterone increased in all subjects. Responders had elevated serum leptin levels at baseline and exhibited increases after high-intensity exercise, whereas nonresponders did not show changes in leptin during exercise. Data suggest testosterone levels do not acutely affect leptin responses to exercise or 1-h of recovery. Moreover, varied leptin responses to intense exercise in comparable well-trained runners was observed and was associated with baseline leptin concentrations.

  19. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  20. Psychological symptoms of family members of high-risk intensive care unit patients.

    Science.gov (United States)

    McAdam, Jennifer L; Fontaine, Dorrie K; White, Douglas B; Dracup, Kathleen A; Puntillo, Kathleen A

    2012-11-01

    Family members of patients in intensive care are at increased risk for psychological symptoms. To compare levels of posttraumatic stress disorder, anxiety, and depression during and 3 months after the intensive care experience in family members of patients at high risk for dying and to determine if differences were related to the patient's final disposition. Longitudinal descriptive study of 41 family members in 3 tertiary care intensive care units. By repeated-measures analysis of variance, family members' levels of posttraumatic stress disorder were significantly lower (P = .01) at 3 months after (mean score, 1.27; SD, 0.86) than during (mean, 1.61; SD, 0.81) the experience. Mean anxiety and depression scores were significantly lower (P intensive care experience and did not differ according to the patients' final disposition. However, many family members still had significant risk for posttraumatic stress disorder and borderline anxiety and depression at 3 months.