WorldWideScience

Sample records for high shear viscosity

  1. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  2. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  3. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  4. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  5. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Kaushal, Rohan; Tankeshwar, K.

    2002-06-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  6. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  7. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  8. Shear viscosity, cavitation and hydrodynamics at LHC

    International Nuclear Information System (INIS)

    Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  9. Shear viscosity and out of equilibrium dynamics

    CERN Document Server

    El, Andrej; Xu, Zhe; Greiner, Carsten

    2009-01-01

    Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...

  10. Shear viscosity and out of equilibrium dynamics

    CERN Document Server

    El, Andrej; Xu, Zhe; Greiner, Carsten

    2009-01-01

    Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...

  11. Shear viscosity and out of equilibrium dynamics

    International Nuclear Information System (INIS)

    El, Andrej; Xu Zhe; Greiner, Carsten; Muronga, Azwinndini

    2009-01-01

    Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling α s ∼0.3 (with η/s≅0.18) and is a factor of 2-3 larger at a small coupling α s ∼0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small α s . On the other hand, we demonstrate that for such small α s , the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large α s (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p T > or approx. 3 GeV but is still a reasonably good approximation.

  12. Shear viscosity coefficient from microscopic models

    International Nuclear Information System (INIS)

    Muronga, Azwinndini

    2004-01-01

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times

  13. Wave anisotropy of shear viscosity and elasticity

    Science.gov (United States)

    Rudenko, O. V.; Sarvazyan, A. P.

    2014-11-01

    The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.

  14. Sensor for Viscosity and Shear Strength Measurement

    International Nuclear Information System (INIS)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  15. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  16. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  17. Shear viscosity of liquid argon and liquid rubidium

    International Nuclear Information System (INIS)

    Chiakwelu, O.

    1978-01-01

    A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon

  18. Effect of soft mode on shear viscosity of quark matter

    International Nuclear Information System (INIS)

    Fukutome, Takahiko; Iwasaki, Masaharu

    2008-01-01

    We calculate the shear viscosity of quark matter at finite temperature and density. If we assume that the quark interacts with the soft mode, which is a collective mode of a quark-antiquark pair, the self-energy of the quark is calculated by quasi-particle random phase approximation. It is shown that its imaginary part is large and its mean free path is short. With the use of the Kubo formula, the shear viscosity of quark matter decreases. The Reynolds number of quark matter is estimated to be about 10. As temperature increases, shear viscosity increases gradually for T>200 MeV. Moreover it is shown that the shear viscosity also increases with the chemical potential for μ>200 MeV. (author)

  19. Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations

    Science.gov (United States)

    Fan, Jishan; Jiang, Song; Nakamura, Gen

    2007-03-01

    We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.

  20. Steady shear viscosity of stirred yoghurts with varying ropiness

    NARCIS (Netherlands)

    van Marle, M.E.; van Marle, M.E.; van den Ende, Henricus T.M.; de Kruif, C.G.; de Kruif, C.G.; Mellema, J.

    1999-01-01

    Stirred yogurt was viewed as a concentrated dispersion of aggregates consisting of protein particles. The steady-shear behavior of three types of stirred yogurt with varying ropiness was investigated experimentally. To describe the shear-dependent viscosity, a microrheological model was used which

  1. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  2. Shear viscosity enhancement in water–nanoparticle suspensions

    International Nuclear Information System (INIS)

    Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.

    2012-01-01

    Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.

  3. Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity

    Science.gov (United States)

    Syrakos, Alexandros; Dimakopoulos, Yannis; Tsamopoulos, John

    2018-03-01

    The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a finite volume method, at various excitation frequencies. The oil is modeled by the Carreau-Yasuda (CY) and Phan-Thien and Tanner (PTT) constitutive equations. Both models account for shear-thinning, but only the PTT model accounts for elasticity. The CY and other generalised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic constitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies, the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from large amplitude oscillatory shear theory. The CY model also overestimates the damper force relative to the PTT model because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity. The consequences of using lower-viscosity silicone oil are also briefly examined.

  4. Estimation of shear viscosity based on transverse momentum correlations

    International Nuclear Information System (INIS)

    Sharma, Monika

    2009-01-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of 'shear viscosity-to-entropy' ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at √(s NN )=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  5. Estimation of shear viscosity based on transverse momentum correlations

    Science.gov (United States)

    STAR Collaboration; Sharma, Monika; STAR Collaboration

    2009-11-01

    Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.

  6. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks

    International Nuclear Information System (INIS)

    Walton, O.R.; Braun, R.L.

    1986-01-01

    Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities

  7. Sensor for viscosity and shear strength measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

  8. Empirical Modelling of Nonmonotonous Behaviour of Shear Viscosity

    Czech Academy of Sciences Publication Activity Database

    David, Jiří; Filip, Petr; Kharlamov, Alexander

    2013-01-01

    Roč. 2013, August (2013) ISSN 1687-6822 R&D Projects: GA ČR GA103/09/2066 Institutional support: RVO:67985874 Keywords : shear viscosity * Galindo-rosales * Carreau-yasuda Subject RIV: BK - Fluid Dynamics Impact factor: 0.500, year: 2012 http://www.hindawi.com/journals/amse/2013/658187/

  9. Shear viscosity and thermal conductivity of nuclear 'pasta'

    International Nuclear Information System (INIS)

    Horowitz, C. J.; Berry, D. K.

    2008-01-01

    We calculate the shear viscosity η and thermal conductivity κ of a nuclear pasta phase in neutron star crusts. This involves complex nonspherical shapes. We use semiclassical molecular dynamics simulations involving 40, 000 to 100, 000 nucleons. The viscosity η can be simply expressed in terms of the height Z* and width Δq of the peak in the static structure factor S p (q). We find that η increases somewhat, compared to a lower density phase involving spherical nuclei, because Z* decreases from form factor and ion screening effects. However, we do not find a dramatic increase in η from nonspherical shapes, as may occur in conventional complex fluids

  10. Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures

    Science.gov (United States)

    1980-07-01

    HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD

  11. Effective Shear Viscosity of Iron under Shock-Loading Condition

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Sun Yan-Yun; Zhang Ming-Jian; Peng Xiao-Juan; Li Yong-Hong

    2011-01-01

    We combine the flyer-impact experiment and improve the finite difference method to solve whether the shear viscosity coefficient of shock iron is more reliable. We find that the numerical simulated profile agrees well with the measured one, from which the determined effective shear viscosity coefficients of shocked iron are 3000 ± 100 Pa·s and 4000 ± 100 Pa·s, respectively, at 103 GPa and 159 GPa. These values are more than 2000 ± 300 Pa·s of Li Y L et al.[Chin. Phys. Lett. 26 (2009) 038301] Our values are more reasonable because they are obtained from a comprehensive simulation for the full-shocked perturbation evolving process. (fundamental areas of phenomenology(including applications))

  12. Shear viscosity and entropy of a pion gas

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Jean-Bernard; Oliinychenko, Dmytro; Schaefer, Anna; Petersen, Hannah [FIAS, Goethe University, Frankfurt (Germany)

    2016-07-01

    A model of microscopic non-equilibrium dynamics for classical point particles is used to calculate the transport coefficients of dense hadronic matter. Specifically, the shear viscosity to entropy density ratio is investigated, and the temperature dependence between 100 MeV and 300 MeV is explored. Calculations are made at corresponding particle densities going from 0.01 to 0.34 in a pion box simulating infinite matter. The results for the entropy and shear viscosity are then compared to analytic estimates. In addition, massless particles as well as ρ-meson resonance excitations are included. This will be the starting point for the calculation of more transport coefficients as functions of T and μ{sub B}; expanding systems could also be considered.

  13. The shear viscosity of a trapped Bose-condensed gas

    International Nuclear Information System (INIS)

    Shahzamanian, M.A.; Yavary, H.

    2006-01-01

    By obtaining Kubo formula type and using nonequilibrium Green's functions, we calculate the shear viscosity of a trapped Bose-condensed gas below and above the Bose-Einstein condensation temperature (T BEC ). The contributions of the interactions between condensate and noncondensate atoms and between noncondensate atoms take into account to the viscous relaxation time, by evaluating second order self-energies in Beliaev approximation

  14. Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling

    CERN Document Server

    Bluhm, M; Redlich, K

    2012-01-01

    The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.

  15. Blood viscosity during coagulation at different shear rates

    Science.gov (United States)

    Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina

    2014-01-01

    Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896

  16. Shear viscosity from Kubo formalism: NJL model study

    International Nuclear Information System (INIS)

    Lang, Robert; Weise, Wolfram

    2014-01-01

    A large-N c expansion is combined with the Kubo formalism to study the shear viscosity η of strongly interacting matter in the two-flavor NJL model. We discuss analytical and numerical approaches to η and investigate systematically its strong dependence on the spectral width and the momentum-space cutoff. Thermal effects on the constituent quark mass from spontaneous chiral symmetry breaking are included. The ratio η/s and its thermal dependence are derived for different parameterizations of the spectral width and for an explicit one-loop calculation including mesonic modes within the NJL model. (orig.)

  17. The shear viscosity of the non-commutative plasma

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Mas, Javier

    2007-01-01

    We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory

  18. Shear viscosity to entropy density ratio in nuclear multifragmentation

    International Nuclear Information System (INIS)

    Pal, Subrata

    2010-01-01

    Nuclear multifragmentation in intermediate-energy heavy-ion collisions has long been associated with liquid-gas phase transition. We calculate the shear viscosity to entropy density ratio η/s for an equilibrated system of nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model. The temperature dependence of η/s exhibits behavior surprisingly similar to that of H 2 O. In the coexistence phase of fragments and light particles, the ratio η/s reaches a minimum of depth comparable to that for water in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and surface symmetry energy on η/s in multifragmentation are studied.

  19. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  20. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  1. Shear viscosities from Kubo formalism in a large-Nc Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Lang, Robert; Kaiser, Norbert; Weise, Wolfram

    2015-01-01

    In this work the shear viscosity of strongly interacting matter is calculated within a two-flavor Nambu-Jona-Lasinio model as a function of temperature and chemical potential. The general Kubo formula is applied, incorporating the full Dirac structure of the thermal quark spectral function and avoiding commonly used on-shell approximations. Mesonic fluctuations contributing via Fock diagrams provide the dominant dissipative processes. The resulting ratio η/s (shear viscosity over entropy density) decreases with temperature and chemical potential. Interpolating between our NJL results at low temperatures and hard thermal loop results at high temperatures a minimum slightly above the AdS/CFT benchmark η/s = 1/4τ is obtained. (orig.)

  2. Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids

    Science.gov (United States)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2014-12-01

    In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.

  3. Determination of liquid viscosity at high pressure by DLS

    International Nuclear Information System (INIS)

    Fukui, K; Asakuma, Y; Maeda, K

    2010-01-01

    The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.

  4. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  5. Steady flow on to a conveyor belt - Causal viscosity and shear shocks

    Science.gov (United States)

    Syer, D.; Narayan, Ramesh

    1993-01-01

    Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.

  6. Shear viscosity of phase-separating polymer blends with viscous asymmetry

    International Nuclear Information System (INIS)

    Jeon, H. S.; Hobbie, E. K.

    2001-01-01

    Rheo-optical measurements of phase separating polymer mixtures under simple shear flow have been used to investigate the influence of domain morphology on the viscosity of emulsionlike polymer blends, in which the morphology under weak shear is droplets of one coexisting phase dispersed in a matrix of the second. The structure and viscosity of low-molecular-weight polybutadiene and polyisoprene mixtures, phase separated by quenching to a temperature inside the coexistence region of the phase diagram, were measured as a function of shear rate and composition. In the weak shear regime, the data are in qualitative agreement with an effective medium model for non-dilute suspensions of slightly deformed interacting droplets. In the strong shear regime, where a stringlike pattern appears en route to a shear-homogenized state, the data are in qualitative agreement with a simple model that accounts for viscous asymmetry in the components

  7. Bulk and shear viscosities of the gluon plasma in a quasiparticle description

    CERN Document Server

    Bluhm, M; Redlich, K

    2011-01-01

    Bulk and shear viscosities of deconfined gluonic matter are investigated within an effective kinetic theory by describing the strongly interacting medium phenomenologically in terms of quasiparticle excitations with medium-dependent self-energies. In this approach, local conservation of energy and momentum follows from a Boltzmann-Vlasov type kinetic equation and guarantees thermodynamic self-consistency. We show that the resulting transport coefficients reproduce the parametric dependencies on temperature and coupling obtained in perturbative QCD at large temperatures and small running coupling. The extrapolation into the non-perturbative regime results in a decreasing specific shear viscosity with decreasing temperature, exhibiting a minimum in the vicinity of the deconfinement transition temperature, while the specific bulk viscosity is sizeable in this region falling off rapidly with increasing temperature. The temperature dependence of specific bulk and shear viscosities found within this quasiparticle d...

  8. The effect of viscosity on the resistive tearing mode with the presence of shear flow

    International Nuclear Information System (INIS)

    Chen, X.L.; Morrison, P.J.

    1990-01-01

    The effect of small isotropic viscosity on the ''constant ψ'' tearing mode in the presence of shear flow, is analyzed by the boundary layer approach. It is found that the influence of viscosity depends upon the parameter (G'(0)/F'(0)), where G'(0) and F'(0) denote that shear and magnetic field shear at the magnetic null plane, respectively. When |(G'(0)/F'(0))| much-lt 1, the tearing mode growth rate is suppressed by the viscosity, but not completely stabilized. When |(G'(0)/F'(0))| ∼ in the order of (1) and the viscosity is comparable with the resistivity, the growth rate vanishes as ((1 - G'(0) 2 /F'(0) 2 ) 1/3 ), when G'(0) 2 → F'(0) 2 from below. In the case where (1 - G'(0) 2 /F'(0) 2 ) < 0 matching cannot be achieved. 8 refs

  9. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method

    International Nuclear Information System (INIS)

    Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu

    2014-01-01

    Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on

  10. Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions

    International Nuclear Information System (INIS)

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-01-01

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly ''perfect.'' It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty

  11. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  12. Online shear viscosity measurement of starchy melts enriched in wheat bran.

    Science.gov (United States)

    Robin, Frédéric; Bovet, Nicolas; Pineau, Nicolas; Schuchmann, Heike P; Palzer, Stefan

    2011-01-01

    Addition of wheat bran to flours modifies their expansion properties after cooking extrusion. This can be attributed to changes in the melt shear viscosity at the die. The effect of wheat bran concentration added to achieve 2 levels of dietary fibers of 12. 6% and 24.4%, and process conditions on the shear viscosity of wheat flour was therefore assessed using an online twin-slit rheometer. The shear viscosity measured at 30 s⁻¹ ranged from 9.5 × 10³ to 53.4 × 10³ Pa s. Regardless of the process conditions and bran concentration, the extruded melts showed a pseudoplastic behavior with a power law index n ranging from 0.05 to 0.27. Increasing the barrel temperature of the extruder from 120 to 180 °C, the water content from 18% to 22% or the screw speed from 400 to 800 rpm significantly decreased the melt shear viscosity at the extruder exit. The addition of bran significantly increased the melt shear viscosity only at the highest bran concentration. The effect was process condition dependant. Mathematical interpretations, based upon observations, of the experimental data were carried out. They can be used to predict the effect of the process conditions on the melt shear viscosity at the die of extruded wheat flour with increasing bran concentration. The viscosity data will be applied in future works to study the expansion properties of extruded wheat flour supplemented with bran. Incorporation of wheat bran, a readily available and low cost by-product, in extruded puffed foods is constrained due to its negative effect on the product texture. Understanding the effect of wheat bran on rheological properties of extruded melts, driving the final product properties, is essential to provide solutions to the food industry and enhance its use. © 2011 Institute of Food Technologists®

  13. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    International Nuclear Information System (INIS)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-01-01

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow

  14. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

    Science.gov (United States)

    Forsyth, Alison M; Wan, Jiandi; Owrutsky, Philip D; Abkarian, Manouk; Stone, Howard A

    2011-07-05

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold.

  15. Shear Viscosity of Hot QED at Finite Chemical Potential from Kubo Formula

    International Nuclear Information System (INIS)

    Liu Hui; Hou Defu; Li Jiarong

    2008-01-01

    Within the framework of finite temperature feld theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively

  16. Study of shear viscosity of SU(2)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny, 141700 (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,Protvino, 142281 Russian Federation (Russian Federation); Far Eastern Federal University, School of Biomedicine,Vladivostok, 690950 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),Kashirskoe highway, 31, Moscow, 115409 (Russian Federation)

    2015-09-14

    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor 〈T{sub 12}T{sub 12}〉 for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T{sub c}≃1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density η/s=0.134±0.057.

  17. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  18. Temperature dependence of shear viscosity of SU(3)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Moscow Institute of Physics and Technology,9 Institutskii per., 141700, Dolgoprudny (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,1 Pobedy St., Protvino, 142281 (Russian Federation); School of Biomedicine, Far Eastern Federal University,8 Sukhanova St., 690950, Vladivostok (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation)

    2017-04-18

    In this paper we study the SU(3)-gluodynamics shear viscosity temperature dependence on the lattice. To do so, we measure the correlation functions of the energy-momentum tensor in the range of temperatures T/T{sub c}∈[0.9,1.5]. To extract the shear viscosity we used two approaches. The first one is to fit the lattice data with a physically motivated ansatz for the spectral function with unknown parameters and then determine the shear viscosity. The second approach is to apply the Backus-Gilbert method allowing to extract the shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the range T/T{sub c}∈[0.9,1.5] the SU(3)-gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s close to the value 1/4π of the N=4 Supersymmetric Yang-Mills theory.

  19. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  20. A microscopic calculation of the fourth-rank shear viscosity tensors of superfluid phases of 3He

    International Nuclear Information System (INIS)

    Shahzamanian, M.A.

    1988-01-01

    The fourth-rank shear viscosity tensor of the superfluid phases of 3 He is obtained by using the Kubo formula approach. The viscosity coefficients of 3 He-A, and shear viscosity of 3 He-B are calculated with two different relaxation time approximations. The results for the temperature- and energy-independent relaxation times are in agreement with existing experimental data. (author)

  1. Study of magnetorheological fluids at high shear rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojie; Gordaninejad, Faramarz [University of Nevada, Department of Mechanical Engineering, Reno, NV (United States)

    2006-08-15

    The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s{sup -1}. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported. (orig.)

  2. Shear viscosities from Kubo formalism in a large-Nc Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Lang, Robert Friedrich

    2015-01-01

    The quark-gluon plasma produced in heavy-ion collisions at RHIC and LHC is a hot and dense state of strongly correlated matter. It behaves like an almost-perfect fluid featuring a small ratio of shear viscosity to entropy density. In this thesis we calculate within a two-flavor Nambu-Jona-Lasinio model the shear viscosity as function of temperature and chemical potential. A new Kubo formula is developed, incorporating the full Dirac structure of the quark spectral function and avoiding commonly used on-shell approximations. Mesonic fluctuations occurring at Fock level provide the dominant dissipative process. The resulting parameter-free ratio is an overall decreasing function of temperature and chemical potential. In combination with hard-thermal-loop results we nd this ratio to feature a minimum slightly above the AdS/CFT benchmark.

  3. Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism

    Science.gov (United States)

    Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.

    2018-05-01

    The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.

  4. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Gerhard, E-mail: jungge@uni-mainz.de; Schmid, Friederike, E-mail: friederike.schmid@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099 Mainz (Germany)

    2016-05-28

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions — one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.

  6. Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition

    International Nuclear Information System (INIS)

    Khonik, Vitaly A.; Kobelev, N. P.

    2008-01-01

    It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate

  7. Electrical conductivity and shear viscosity of quark gluon plasma in a quasiparticle model

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Mohanty, B.

    2014-01-01

    Relativistic heavy-ion collisions (HIC) have reported the formation of a strongly coupled quark gluon plasma (sQGP). To study the properties of this sQGP is the main focus nowadays. Among these the shear viscosity (η) and electrical conductivity (σ el ) could reflect the transport properties of the medium. By studying the shear viscosity or more specifically shear viscosity to entropy density ratio (η/s), one can understand the nature of interactions among the constituents of the produced medium, it gives a measure of the fluidity. Electrical conductivity represents the linear response of the system to an applied external electric field. The basic question one could ask is that whether the matter created at heavy ion collision experiment is an electrical conductor or an insulator. Recent lattice QCD as well as phenomenological studies have shown that these transport quantities show some kind of minimum in its variation with respect to temperature near the temperature corresponding to the transition from hadronic phase to quark-gluon phase

  8. Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.; Evans, D.J.; Hickman, R.B.; Ladd, A.J.C.; Ashurst, W.T.; Moran, B.

    1980-01-01

    A new Hamiltonian method for deformation simulations is related to the Green-Kubo fluctuation theory through perturbation theory and linear-response theory. Numerical results for the bulk and shear viscosity coefficients are compared to corresponding Green-Kubo calculations. Both viscosity coefficients depend similarly on frequency, in a way consistent with enhanced ''long-time tails.''

  9. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  10. Inverse shear viscosity (fluidity) scaled with melting point properties: Almost 'universal' behaviour of heavier alkalis

    International Nuclear Information System (INIS)

    Tankeshwar, K.; March, N.H.

    1997-07-01

    Some numerical considerations relating to the potential of mean force at the melting point of Rb metal are first presented, which argue against the existence of a well defined activation energy for the shear viscosity of this liquid. Therefore, a scaling approach is developed, based on a well established formula for the viscosity η m of sp liquid metals at their melting points T m . This approach is shown to lead to an 'almost' universal plot of scaled fluidity η -1 η m against (T/T m ) 1/2 for the liquid alkali metals, excluding Li. This metal is anomalous because it is a strong scattering liquid, in marked contrast to the other alkali metals. (author). 9 refs, 3 figs, 1 tab

  11. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity

    Czech Academy of Sciences Publication Activity Database

    Hirn, A.; Lanzendörfer, Martin; Stebel, Jan

    2012-01-01

    Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012

  12. Elliptic Flow at Finite Shear Viscosity in a Kinetic Approach at RHIC

    International Nuclear Information System (INIS)

    Greco, V.; Colonna, M.; Di Toro, M.; Ferini, G.

    2010-01-01

    Within a covariant parton cascade, we discuss the impact of both finite shear viscosity η and freeze-out dynamics on the elliptic flow generated at RHIC. We find that the enhancement of η/s in the cross-over region of the QGP phase transition cannot be neglected in order to extract the information from the QGP phase. We also point out that the elliptic flow v 2 (p T ) for a fluid at η/s∼0.1-0.2 is consistent with the one needed by quark number scaling drawing a nice consistency between the nearly perfect fluid property of QGP and the coalescence process.

  13. Nonperturbative calculation of the shear viscosity in hot $\\phi^{4}$ theory in real time

    CERN Document Server

    Wang, E; Wang, Enke; Heinz, Ulrich

    1999-01-01

    Starting from the Kubo formula we calculate the shear viscosity in hot phi**4 theory nonperturbatively by resumming ladders with a real-time version of the Bethe-Salpeter equation at finite temperature. In the weak coupling limit, the generalized Fluctuation-Dissipation Theorem is shown to decouple the Bethe-Salpeter equations for the different real-time components of the 4-point function. The resulting scalar integral equation is identical with the one obtained by Jeon using diagrammatic ``cutting rules'' in the Imaginary Time Formalism.

  14. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  15. Shear viscosity of the Lennard-Jones fluid near the triple point: Green-Kubo results

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.

    1988-01-01

    The long-standing disagreement over the shear viscosity coefficient of the Lennard-Jones fluid near the triple point is reexamined through a series of very extensive Monte Carlo molecular-dynamics calculations of this transport coefficient based on the Green-Kubo theory. The stress autocorrelation function is shown to exhibit a slow decay, principally in the kinetic-potential and the potential-potential terms, which is large compared with the kinetic-kinetic long-time tail predicted by simple mode-coupling theory. Nonetheless, the viscosity coefficient, exclusive of any correction for this tail for times greater than are accessible numerically, is found to agree with that of Schoen and Hoheisel (who discounted the existence of such a tail) as well as nonequilibrium molecular-dynamics calculations. The large value of the viscosity coefficient found by Levesque and co-workers for 864 particles is brought into statistical agreement with the present results by a modest, but not unrealistic, increase in its statistical uncertainty. The pressure is found to exhibit an anomalous dependence on the size of the system, but the viscosity as well as the self-diffusion constant appear to be linear in the inverse of the number of particles, within the precision of our calculations. The viscosity coefficient, including a long-time-tail contribution based on the extended mode-coupling theory is (3.796 +- 0.068)σepsilon-c/m)/sup 1/2/ for the Lennard-Jones potential, fitted to a cubic spline, and (3.345 +- 0.068)σepsilon-c/m)/sup 1/2/ for the potential truncated at 2.5σ

  16. Shear viscosity of neutron-rich nucleonic matter near its liquid–gas phase transition

    International Nuclear Information System (INIS)

    Xu, Jun; Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Ma, Yu Gang

    2013-01-01

    Within a relaxation time approach using free nucleon–nucleon cross sections modified by the in-medium nucleon masses that are determined from an isospin- and momentum-dependent effective nucleon–nucleon interaction, we investigate the specific shear viscosity (η/s) of neutron-rich nucleonic matter near its liquid–gas phase transition. It is found that as the nucleonic matter is heated at fixed pressure or compressed at fixed temperature, its specific shear viscosity shows a valley shape in the temperature or density dependence, with the minimum located at the boundary of the phase transition. Moreover, the value of η/s drops suddenly at the first-order liquid–gas phase transition temperature, reaching as low as 4–5 times the KSS bound of ℏ/4π. However, it varies smoothly for the second-order liquid–gas phase transition. Effects of the isospin degree of freedom and the nuclear symmetry energy on the value of η/s are also discussed

  17. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  18. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  19. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  20. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  1. The effects of geometrical confinement and viscosity ratio on the coalescence of droplet pairs in shear flow

    NARCIS (Netherlands)

    Bruyn, De P.; Chen, Dongju; Moldenaers, P.; Cardinaels, R.M.

    2014-01-01

    The effects of geometrical confinement and viscosity ratio on droplet coalescence in shear flow are experimentally investigated by means of a counter rotating parallel plate device, equipped with a microscope. The ratio of droplet diameter to gap spacing is varied between 0.03 and 0.33 to study both

  2. Modified free volume theory of self-diffusion and molecular theory of shear viscosity of liquid carbon dioxide.

    Science.gov (United States)

    Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan

    2005-04-28

    In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.

  3. Communication: Simple liquids' high-density viscosity

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  4. Communication: Simple liquids' high-density viscosity.

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C

    2018-02-28

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  5. Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity

    International Nuclear Information System (INIS)

    Yepez, Jeffrey

    2006-01-01

    Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory

  6. Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.

    Science.gov (United States)

    Heyes, D M; Brańka, A C

    2008-07-21

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).

  7. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    Science.gov (United States)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  8. Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log

    Science.gov (United States)

    Li, Shiyong; Yee, Ho-Ung

    2018-03-01

    We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).

  9. Use of the McQuarrie equation for the computation of shear viscosity via equilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Chialvo, A.A.; Debenedetti, P.G.

    1991-01-01

    To date, the calculation of shear viscosity for soft-core fluids via equilibrium molecular dynamics has been done almost exclusively using the Green-Kubo formalism. The alternative mean-squared displacement approach has not been used, except for hard-sphere fluids, in which case the expression proposed by Helfand [Phys. Rev. 119, 1 (1960)] has invariably been selected. When written in the form given by McQuarrie [Statistical Mechanics (Harper ampersand Row, New York, 1976), Chap. 21], however, the mean-squared displacement approach offers significant computational advantages over both its Green-Kubo and Helfand counterparts. In order to achieve comparable statistical significance, the number of experiments needed when using the Green-Kubo or Helfand formalisms is more than an order of magnitude higher than for the McQuarrie expression. For pairwise-additive systems with zero linear momentum, the McQuarrie method yields frame-independent shear viscosities. The hitherto unexplored McQuarrie implementation of the mean-squared displacement approach to shear-viscosity calculation thus appears superior to alternative methods currently in use

  10. Kubo formulae for the shear and bulk viscosity relaxation times and the scalar field theory shear $\\tau_\\pi$ calculation

    OpenAIRE

    Czajka, Alina; Jeon, Sangyong

    2017-01-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...

  11. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  12. The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler.

    Science.gov (United States)

    Broniarz-Press, L; Sosnowski, T R; Matuszak, M; Ochowiak, M; Jabłczyńska, K

    2015-05-15

    The paper contains results of the experimental study on atomization process of aqueous solutions of glycerol and aqueous solutions of glycerol-polyacrylamide (Rokrysol WF1) in an ultrasonic inhaler. In experiments the different concentration aqueous solutions of glycerol and glycerol-polyacrylamide have been tested. The results have been obtained by the use of laser diffraction technique. The differences between characteristics of ultrasonic atomization for test liquids have been observed. The analysis of drop size histograms shows that the different sizes of drops have been formed during atomization process. The present study confirmed the previous reports which suggested that the drops size changes with the increase in viscosity of solution changes in spray characteristics were also observed. It has been shown that the shear and extensional viscosities affect the process of atomization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter

    Directory of Open Access Journals (Sweden)

    Лев Николаевич Катюхин

    2014-12-01

    Full Text Available It is proposed a physiological and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in capillaries using the profile analyses of osmotic deformability of red blood cells. It was shown the dose-dependent change of the erythrocytes deformability in the stage of isotropic spheres after forming artificial water pores (nystatin and occlusion (PbCl2 of available pores. The Sigma-effect reducing of hematocrit and viscosity in a shear flow of blood through the vessels of a small diameter was conditioned by the interchange of liquid phase between the erythrocyte and the plasma.

  14. Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations

    Science.gov (United States)

    Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.

    2018-03-01

    Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.

  15. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  16. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena

  17. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R. [and others

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  18. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  19. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    Science.gov (United States)

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  20. Resistor capacitor, primitive variable solution of buoyant fluid flow within an enclosure with highly temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.P. [Texas Univ., Austin, TX (United States); Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    A numerical solution for buoyant natural convection within a square enclosure containing a fluid with highly temperature dependent viscosity is presented. Although the fluid properties employed do not represent any real fluid, the large variation in the fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-viscosity concepts. Results are obtained using a primitive variable formulation and the resistor method. The results presented include velocity, temperature and pressure distributions within the enclosure as well as shear stress and heat flux distributions along the enclosure walls. Three mesh refinements were employed and uncertainty values are suggested for the final mesh refinement. These solutions are part of a contributed benchmark solution set for the subject problem.

  1. Magnetic viscosity by localized shear flow instability in magnetized accretion disks

    International Nuclear Information System (INIS)

    Matsumoto, R.; Tajima, T.

    1995-01-01

    Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at ω d = ± ω A , where ω d is the Doppler-shifted wave frequency, and ω A = k parallel v A is the Alfven frequency. The radial width of the unstable eigenfunction is Δx ∼ ω A /(Ak y ), where A is the Oort's constant, and k y is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k y /k z . The maximum growth rate when k y /k z ∼ 0.1 is ∼ 0.2Ω for the Keplerian disk with local angular velocity Ω. It is found that the purely growing mode disappears when k y /k z > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity η depends on the instability-induced turbulent magnetic fields δB as η([δB 2 ]), the marginal stability condition self-consistently determines the α parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter α B is between 0.001 and 1. The authors' three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the α parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller α in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop

  2. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    Science.gov (United States)

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  3. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  4. Kinetic transport is needed to reliably extract shear viscosity from pA and AA data arXiv

    CERN Document Server

    Kurkela, Aleksi; Wu, Bin

    The azimuthal anisotropies $v_n$ of particle spectra measured in proton-nucleus (pA) and nucleus-nucleus (AA) collisions play a key role in constraining QCD matter properties like the shear viscosity over entropy density ratio $\\eta/s$. Here, we compare calculations of $v_n$'s from viscous fluid dynamics and from kinetic transport which start both from the same initial conditions and which implement the same matter properties. We observe that both approaches lead to parametrically different $\\eta/s$-dependencies of the elliptic anisotropy $v_2$ and they may thus lead to quantitatively different results for the phenomenologically inferred value of $\\eta/s$. The parametric differences can be traced to the boost-invariant longitudinal expansion of pA and AA collisions which induces in fluid dynamic results of the $\\eta/s$-dependence of $v_2$ a dominant sensitivity on the initial conditions. Transport theory is free of this problem and it accounts for the order of magnitude of experimentally observed signal stren...

  5. The micromechanics model analysis of the viscosity regulation of ultra-high strength concrete with low viscosity

    Science.gov (United States)

    Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.

    2017-02-01

    The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.

  6. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  7. Shear viscosity of glass-forming melts in the liquid-glass transition region

    International Nuclear Information System (INIS)

    Sanditov, D. S.

    2010-01-01

    A new approach to interpreting the hole-activation model of a viscous flow of glass-forming liquids is proposed. This model underlies the development of the concept on the exponential temperature dependence of the free energy of activation of a flow within the range of the liquid-glass transition in complete agreement with available experimental data. The 'formation of a fluctuation hole' in high-heat glass-forming melts is considered as a small-scale low-activation local deformation of a structural network, i.e., the quasi-lattice necessary for the switching of the valence bond, which is the main elementary event of viscous flow of glasses and their melts. In this sense, the hole formation is a conditioned process. A drastic increase in the activation free energy of viscous flow in the liquid-glass transition region is explained by a structural transformation that is reduced to a limiting local elastic deformation of the structural network, which, in turn, originates from the excitation (critical displacement) of a bridging atom like the oxygen atom in the Si-O-Si bridge. At elevated temperatures, as a rule, a necessary amount of excited bridging atoms (locally deformed regions of the structural network) always exists, and the activation free energy of viscous flow is almost independent of temperature. The hole-activation model is closely connected with a number of well-known models describing the viscous flow of glass-forming liquids (the Avramov-Milchev, Nemilov, Ojovan, and other models).

  8. Clustering of color sources and the shear viscosity of the QGP in heavy ion collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Dias de Deus, J. [Instituto Superior Tecnico, CENTRA, Lisbon (Portugal); Hirsch, A.S.; Scharenberg, R.P.; Srivastava, B.K. [Purdue University, Department of Physics, West Lafayette, IN (United States); Pajares, C. [Universidale de Santiago de Compostela and Instituto Galego de Fisica de Atlas Enerxias (IGFAE), Departamento de Fisica de Particulas, Santiago, de Compostela (Spain)

    2012-08-15

    We present our results on the shear viscosity to entropy ratio ({eta}/s) in the framework of the clustering of the color sources of the matter produced at RHIC and LHC energies. The onset of de-confinement transition is identified by the spanning percolating cluster in 2D percolation. The relativistic kinetic theory relation for {eta}/s is evaluated using the initial temperature (T) and the mean free path ({lambda}{sub mfp}). The analytic expression for {eta}/s covers a wide temperature range. At T{proportional_to}150 MeV below the hadron to QGP transition temperature of {proportional_to}168 MeV, with increasing temperatures the {eta}/s value drop sharply and reaches a broad minimum {eta}/s{proportional_to}0.20 at T{proportional_to}175-185 MeV. Above this temperature {eta}/s grows slowly. The measured values of {eta}/s are 0.204{+-}0.020 and 0.262{+-}0.026 at the initial temperature of 193.6{+-}3 MeV from central Au+Au collisions at {radical}(s{sub NN})=200{proportional_to}GeV (RHIC) and 262.2{+-}13 MeV in central Pb+Pb collisions at {radical}(s{sub NN})= 2.76{proportional_to}TeV (LHC). These {eta}/s values are 2.5 and 3.3 times the AdS/CFT conjectured lower bound 1/4{pi} but are consistent with theoretical {eta}/s estimates for a strongly coupled QGP. (orig.)

  9. Behavior of pressure and viscosity at high densities for two-dimensional hard and soft granular materials

    NARCIS (Netherlands)

    Otsuki, Michio; Hayakawa, Hisao; Luding, Stefan

    2010-01-01

    The pressure and the viscosity in two-dimensional sheared granular assemblies are investigated numerically. The behavior of both pressure and viscosity is smoothly changing qualitatively when starting from a mono-disperse hard-disk system without dissipation and moving towards a system of (i)

  10. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  11. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations.

    Science.gov (United States)

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles

    2016-12-01

    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Low Rm magnetohydrodynamics as a means of measuring the surface shear viscosity of a liquid metal: A first attempt on Galinstan

    Science.gov (United States)

    Delacroix, Jules; Davoust, Laurent; Patouillet, Kévin

    2018-01-01

    This paper introduces an experimental apparatus which generates the end-driven annular flow of a liquid metal pervaded by a uniform magnetic field. Unlike past viscometers involving an annular channel with particular values of the depth-to-width ratio, the present experiment enables us to drive the viscous shear at the surface of an annular liquid metal bath put in rotation. The magnetic interaction parameter N and the Boussinesq number related to the surface shear viscosity can be monitored from the magnitude of the applied magnetic field; the latter being set large enough for avoiding artefacts related to centrifugation and surface dilatation. This essential feature is obtained due to the ability of the magnetic field to set dimensionality of the annular flow in the channel between 2D-1/2 (swirling flow) and 2D axisymmetric (extinction of the overturning flow if N is large enough). By tracking the azimuthal velocity of tracers seeded along the oxidised surface of liquid Galinstan, an estimate for the surface shear viscosity of a liquid metal can be given.

  13. Estimation of the shear viscosity from 3FD simulations of Au + Au collisions at √(sNN) = 3.3-39 GeV

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Soldatov, A.A.

    2016-01-01

    An effective shear viscosity in central Au+Au collisions is estimated in the range of incident energies 3.3 GeV≤√(s NN )≤39 GeV. The simulations are performed within a three-fluid model employing three different equations of state with and without the deconfinement transition. In order to estimate this effective viscosity, we consider the entropy produced in the 3FD simulations as if it is generated within the conventional one-fluid viscous hydrodynamics. It is found that the effective viscosity within the different considered scenarios is very similar at the expansion stage of the collision: as a function of temperature (T) the viscosity-to-entropy ratio behaves as η/s∝1/T 4 ; as a function of the net-baryon density (n B ), η/s∝1/s, i.e. it is mainly determined by the density dependence of the entropy density. The above dependences take place along the dynamical trajectories of Au+Au collisions. At the final stages of the expansion the η/s values are ranged from ∝0.05 at the highest considered energies to ∝.5 at the lowest ones. (orig.)

  14. glutamic acid from high-viscosity fermentation broth

    African Journals Online (AJOL)

    Measurement of IR spectrum was performed using an IR spectrophotometer with ... Results: The results showed that the γ-PGA yield was 35 g/L. The viscosity of ... of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ...

  15. Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine

    Science.gov (United States)

    Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (Pgroup, high dose group (Pgroup (Pblood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.

  16. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    Science.gov (United States)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  17. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (Pviscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  18. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization.

    Science.gov (United States)

    Farzi, Mina; Yarmand, Mohammad Saeed; Safari, Mohammad; Emam-Djomeh, Zahra; Mohammadifar, Mohammad Amin

    2015-08-01

    The effect of high-shear homogenization on the rheological and particle size characteristics of three species of gum tragacanth (GT) was detected. Dispersions were subjected to 0-20 min treatment. Static light scattering techniques and rheological tests were used to study the effect of treatment. The results showed that the process caused a decrease in particle size parameters for all three species, but interestingly, the apparent viscosities increased. The highest increase of apparent viscosity was found for solutions containing Astragalus gossypinus, which possessed the highest insoluble fraction. The viscoelastic behaviors of dispersions were also significantly influenced by the process. Homogenization caused an increase in both G' and G″, in all three species. The alterations seem to be highly dependent on GT species and structure. The results could be of high importance in the industry, since the process will lead to textural modifications of food products containing GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap

    Science.gov (United States)

    Golinelli, Nicola; Spaggiari, Andrea

    2018-07-01

    This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.

  20. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  1. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    Science.gov (United States)

    Svehla, Roger A.

    1962-01-01

    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  2. High pressure changes of the castor oil viscosity by ultrasonic method

    International Nuclear Information System (INIS)

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M

    2008-01-01

    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  3. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    Science.gov (United States)

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  4. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    International Nuclear Information System (INIS)

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  5. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  6. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  7. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  8. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  9. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  10. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik

    2013-01-01

    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  11. Gas Near a Wall: Shortened Mean Free Path, Reduced Viscosity, and the Manifestation of the Knudsen Layer in the Navier-Stokes Solution of a Shear Flow

    Science.gov (United States)

    Abramov, Rafail V.

    2018-06-01

    For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.

  12. On the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable. II. Some cases of special interest (Poynting-Thomson, Jeffreys, Maxwell, Kelvin-Voigt, Hooke and Newton media)

    NARCIS (Netherlands)

    Ciancio, V.; Turrisi, E.; Kluitenberg, G.A.

    1986-01-01

    In a previous paper the propagation of linear longitudinal acoustic waves in isotropic media with shear and volume viscosity and a tensorial internal variable was considered and the expressions for the velocity and attenuation of the waves were obtained. In the present paper we investigate the

  13. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Automation of a high-speed imaging setup for differential viscosity measurements

    Science.gov (United States)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F.

    2013-12-01

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an "unknown" solution of hydroxyethyl cellulose.

  15. Automation of a high-speed imaging setup for differential viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F. [Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, 425 N 5th Street, Phoenix, Arizona 85004 (United States)

    2013-12-28

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.

  16. Viscosity-based high temperature waste form compositions

    International Nuclear Information System (INIS)

    Reimann, G.A.

    1994-01-01

    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO 2 + Al 2 O 3 producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing

  17. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  18. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Science.gov (United States)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  19. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Non-perturbative unitarity constraints on the ratio of shear viscosity to entropy density in UV complete theories with a gravity dual

    CERN Document Server

    Brustein, Ram

    2011-01-01

    We reconsider, from a novel perspective, how unitarity constrains the corrections to the ratio of shear viscosity \\eta\\ to entropy density s. We start with higher-derivative extensions of Einstein gravity in asymptotically anti-de Sitter spacetimes. It is assumed that these theories are derived from string theory and thus have a unitary UV completion that is dual to a unitary, UV-complete boundary gauge theory. We then propose that the gravitational perturbations about a solution of the UV complete theory are described by an effective theory whose linearized equations of motion have at most two time derivatives. Our proposal leads to a concrete prescription for the calculation of \\eta/s for theories of gravity with arbitrary higher-derivative corrections. The resulting ratio can take on values above or below 1/4\\pi\\ and is consistent with all the previous calculations, even though our reasoning is substantially different. For the purpose of calculating \\eta/s, our proposal also leads to only two possible cand...

  1. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    DEFF Research Database (Denmark)

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene

    2016-01-01

    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  2. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  3. Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures

    International Nuclear Information System (INIS)

    Torín-Ollarves, Geraldine A.; Martín, M. Carmen; Chamorro, César R.; Segovia, José J.

    2014-01-01

    Highlights: • The densities of cyclohexane and its mixtures with 1-butanol were measured. • The excess molar volumes were calculated and correlated. • The viscosities were measured at atmospheric pressure. • The isobaric heat capacities were measured at p = (0.1 to 25) MPa at T = (293.15 and 313.15) K. • A positive deviation from the ideal behavior is observed. - Abstract: The cyclohexane and the system of 1-butanol + cyclohexane have been characterized using densities, viscosities and isobaric heat capacities measurements. For that, the densities were measured in a high-pressure vibrating tube densimeter at five temperatures from (293.15 to 333.15) K and pressures up to 100 MPa. The measurements were correlated with the empirical Tamman–Tait equation. Moreover, the isobaric heat capacities of the binary system were measured in a high-pressure automated flow calorimeter at T = (293.15 and 313.15) K and pressures up to 25 MPa for pure cyclohexane and in admixture with 1-butanol. The excess molar heat capacities were assessed for the mixture and a positive deviation from the ideality was obtained, except for a small part in the region rich in alkanol. The viscosity measurements were carried out, at the calorimeter conditions, for correcting the experimental values of isobaric heat capacities due to friction along the tube. The viscosity was measured at atmospheric pressure in a Stabinger Anton Paar SVM 3000 viscometer in the temperature range of (293.15 to 333.15) K for cyclohexane and the mixtures. At high pressure, the viscosities were estimated using Lucas method

  4. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  5. Neste Oy starts the production of extra high viscosity index lubricating oil in Porvoo

    International Nuclear Information System (INIS)

    Kilander, H.

    1997-01-01

    Neste Oy is starting the manufacture of basic oil, used in advanced motor lubricants, in Finland. The plant will start the manufacture of the EHVI (Extra High Viscosity) by the end of 1997. The EHVI basic oil is a synthetic-like oil product, suitable for manufacture of high-quality lubricants. In the beginning the production of the basic oil will be about 50 000 tons/a. The investment costs of the plants are 180 million FIM

  6. Dynamic Viscosity and Compensation Effect in Hydrocarbon Media with a High Content of Resins and Paraffins

    Science.gov (United States)

    Boitsova, A. A.; Kondrasheva, N. K.; Dolomatov, M. Yu.

    2017-11-01

    Linear dependences have been obtained for multicomponent hydrocarbon media (oils and high-boiling fractions), which relate the preexponent and the activation energy of viscous flow in the Arrhenius equation. A distinctive feature of the established kinetic compensation effect is it existing before and after the phase-transition temperature. The obtained results have been confirmed by statistical data and make it possible to predict the dynamic viscosity of multicomponent hydrocarbon systems, such as oil and high-boiling fractions.

  7. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations.

    Science.gov (United States)

    Quinchia, L A; Delgado, M A; Valencia, C; Franco, J M; Gallegos, C

    2009-03-15

    Although most common lubricants contain mineral or synthetic oils as basestocks, new environmental regulations are demanding environmentally friendly lubricants. In this sense, vegetable oils represent promising alternatives to mineral-based lubricants because of their high biodegradability, good lubricity, and low volatility. However, their poor thermooxidative stability and the small range of viscosity represent a clear disadvantage to be used as suitable biolubricants. The main objective of this work was to develop new environmentally friendly lubricant formulations with improved kinematic viscosity values and viscosity thermal susceptibility. With this aim, a high-oleic sunflower oil (HOSO) was blended with polymeric additives, such as ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS) copolymers, at different concentrations (0.5-5% w/w). Dynamic viscosity and density measurements were performed in a rotational rheometer and capillary densimeter, respectively, in a temperature range between 25 and 120 degrees C. An Arrhenius-like equation fits the evolution of viscosity with temperature fairly well. Both EVA and SBS copolymers may be satisfactorily used as additives to increase the viscosity of HOSO, thus improving the low viscosity values of this oil. HOSO viscosity increases with polymer concentration. Specifically, EVA/HOSO blends exhibit higher viscosity values, which are needed for applications such as lubrication of bearings and four-stroke engines. On the other hand, viscositythermal susceptibility of HOSO samples increases with EVA or SBS concentration.

  8. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  9. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    Science.gov (United States)

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  10. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.

    2010-09-17

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  11. Theory of the high-frequency limiting viscosity of a dilute polymer solution. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M; Nakajima, H; Wada, Y

    1976-06-01

    High-frequency limiting viscosities of dilute polymer solutions are calculated on the basis of the author's previous theory for (1) necklace model of a chain with constant bond length and bond angle under a hindering rotational potential, and (2) broken rod model consisting of N rods with equal length connected by universal joints. Exact treatment is possible for a once-broken rod model, but the Monte Carlo method is used in the other calculations.

  12. High-Viscosity Oil Filtration in the Pool Under Thermal Action

    Science.gov (United States)

    Shagapov, V. Sh.; Yumagulova, Yu. A.; Gizzatullina, A. A.

    2018-05-01

    We have developed a mathematical model and constructed numerical solutions of the problem of heating a high-viscosity oil pool through one horizontal well or a system of wells and have shown the possibility of their further operation until the limiting profitable discharge of oil is attained. The expenditure of heat in heating the oil pool, the evolution of discharge of oil, and the mass of extracted oil over the considered period have been considered.

  13. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.; Pasquetti, R.

    2010-01-01

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  14. Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede

    International Nuclear Information System (INIS)

    Poirier, J.P.; Sotin, C.; Peyronneau, J.

    1981-01-01

    The viscosity of high pressure ice VI has been measured at room temperature and pressures of 1.1 to 1.2 GPa giving a value of approximately equal to 10 14 P which suggests that solid state convection might have taken place during the early evolution of Ganymede, thus preventing melting and differentiation. Measurements were carried out in a sapphire anvil cell using fine particles to visualize the flow of ice down the radial pressure gradient. (U.K.)

  15. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  16. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.

    Science.gov (United States)

    Martin, Shawn; Pratt, Harry D; Anderson, Travis M

    2017-07-01

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-09-08

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  18. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev; Berry, Joseph D.; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2016-01-01

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  19. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  20. Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets.

    Science.gov (United States)

    Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P

    2016-02-01

    This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.

  1. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  2. Improvements in gastric diagnosis by using high density contrast media with low viscosity

    International Nuclear Information System (INIS)

    Toischer, H.P.

    1983-01-01

    In a retrospective clinical study, 150 unselected double contrast examinations of the stomach using conventional contrast media (100 g/100 ml barium sulphate) were compared with a similar number of examinations using a high density contrast medium of flow viscosity (250 g/100 ml barium sulphate). The high density contrast medium was distinctly better for demonstrating detail of the gastric mucosa. The uneveness of coating and instability of the older high density contrast media was observed in 15.5% of cases and, in no instance, did this make it impossible to reach a diagnosis. (orig.) [de

  3. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-03-01

    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  4. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  5. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  6. Effects of oxygenation and the stress hormones adrenaline and cortisol on the viscosity of blood from the trout oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Weber, Roy

    1995-01-01

    Although the concentrations of the stress hormones adrenaline and cortisol in rainbow trout (Oncorhynchus mykiss) blood increase upon hypoxic exposure, the combined effects of these hormones and O2 lack upon fish blood rheology have not been investigated. Deoxygenated blood taken by caudal puncture...... exhibited lower viscosities than oxygenated samples at low shear rates, whereas the opposite was true at high shear rates. However, blood from cannulated trout had similar viscosities in its deoxygenated and oxygenated states. In the deoxygenated state, addition of adrenaline lowered viscosity at low shear...... rates and increased it at high shear rates, resembling the effects of deoxygenation observed in blood taken by venepuncture. In oxygenated blood on the contrary, no marked adrenaline effects were observed. In deoxygenated blood, addition of cortisol lowered viscosity at all measured shear rates compared...

  7. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  8. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  9. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  10. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  11. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Science.gov (United States)

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  12. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  13. Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method

    Science.gov (United States)

    Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic

    2011-08-01

    We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.

  14. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    International Nuclear Information System (INIS)

    Marín-Santibáñez, Benjamín M.; Pérez-González, José; Rodríguez-González, Francisco

    2014-01-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shear stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics

  15. Experiment in foam-drive process for exploiting high-viscosity crude in conglomeratic reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jinkui, L.; Shiyuan, Y.; Wukui, H.

    1985-01-01

    Due to high heterogeneity of pay zones and high viscosity of oil in place in the conglomeratic reservoirs of the Karamayi oil field, water fingering is serious and waterflooding inefficient. To remedy the situation, a foam-drive process was proposed to enhance oil recovery during period of medium water cut. Foaming agents have been selected, optimized and tested, and analog studies on tube/plane models and in the fields have been conducted for the last 16 years until finally a better agent Alkyl Benzene Sodium Sulfonate is tried out which proves to be efficient in reducing the water cut and raising the ultimate rate of recovery by 7-8% (from 26-28%). 10 figures, 7 tables.

  16. Detection of irradiated peppers by viscosity measurement at extremely high pH

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    1996-01-01

    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  17. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.

    2005-01-01

    measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior...... interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg-Nissan and the Katti-Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify...

  18. A different interpretation of Einstein's viscosity equation provides accurate representations of the behavior of hydrophilic solutes to high concentrations.

    Science.gov (United States)

    Zavitsas, Andreas A

    2012-08-23

    Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).

  19. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  20. Research of operational properties of compound based on high viscosity styrene-butadiene rubber SSBR-2560 TDAE HV

    Directory of Open Access Journals (Sweden)

    M. I. Falyakhov

    2016-01-01

    Full Text Available The article consider the influence of replacement of SSBR-2560 TDAE batch production on high viscosity SSBR-2560-TDAE HV in the tread recipe on the tire performance properties. Obtained samples were highly viscosity styrene butadiene rubber did not differ in the microstructure of the SSBR-2560 TDAE batch production. Increasing the molecular weight possible to increase the Mooney viscosity of the rubber, however, is known to one of adverse factors is the deterioration of processability of rubber compounds based on polymers. In this connection, investigated the behavior in the step mixing compound based on high viscosity SSBR rubber. We chose recipes tread of the tire with a high content of organic silicon filler. It is established that the equivalent replacement of the polymer in the tread recipe does not lead to significant changes in the basic parameters of rubber mixing. We observed a slight increase in the energy consumption for the preparation of the rubber compounds, as well as the discharge temperature at each stage. It was shown to improve the distribution of the filler in the polymer matrix for the compound based on SSBR-2560 TDAE HV. The results showed that compound based on high viscosity SSBR improves rolling resistance and traction characteristics, while maintaining abrasion in comparison with the SSBR-2560-M27 batch production. Recommended use this brand in the production of rubber car tires.

  1. Characterization of high viscosity materials by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Custo, G.; Boeykens, S.; Vazquez, C.

    2000-01-01

    Gel are soft, solid or solid-like materials of two or more components, one of which is a liquid present in substantial amount. It consists of three-dimensional polymer network and solvent and is an important state of matter. Polymer is a long-chain molecule that is composed of a large number of repeating units of identical structure. These macromolecules assemblies recently developed have interesting properties, which depends of their structure. Their impurities change these physical properties. The great inconvenient of these systems is their high viscosity that difficult sample preparation and analysis by most common chemical techniques. The purpose of this work is to explore the applicability of the TRXRF for the multi-elemental and structural analysis of synthetic and natural aqueous gels (mean polymer molecular weight greater than 10 3 ). The polymers investigated are scleroglucan, polyacrilamide, polyoxyethylene and xhantan. (author)

  2. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.; Buckley, Mark R.; Cohen, Itai; Archer, Lynden A.

    2008-01-01

    spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response

  3. Shear wave elastography for breast masses is highly reproducible.

    Science.gov (United States)

    Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude

    2012-05-01

    To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.

  4. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    Science.gov (United States)

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  5. ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR

    International Nuclear Information System (INIS)

    Hrma, Pavel R.

    2008-01-01

    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values of -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550 C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450 C and viscosity range of 0.4 to 250 Pa.s

  6. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  7. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  8. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  9. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  10. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 open-quotes Removal and Encapsulation of Heavy Metals from Ground Water,close quotes EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers

  11. Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids

    International Nuclear Information System (INIS)

    Fang, J. Y.; Hsu, C. P.; Kang, Y. W.; Fang, K. C.; Kao, W. L.; Yao, D. J.; Chen, C. C.; Li, S. S.; Yeh, J. A.; Wang, Y. L.; Lee, G. Y.; Chyi, J. I.; Hsu, C. H.; Huang, Y. F.; Ren, F.

    2013-01-01

    The drain current fluctuation of ungated AlGaN/GaN high electron mobility transistors (HEMTs) measured in different fluids at a drain-source voltage of 0.5 V was investigated. The HEMTs with metal on the gate region showed good current stability in deionized water, while a large fluctuation in drain current was observed for HEMTs without gate metal. The fluctuation in drain current for the HEMTs without gate metal was observed and calculated as standard deviation from a real-time measurement in air, deionized water, ethanol, dimethyl sulfoxide, ethylene glycol, 1,2-butanediol, and glycerol. At room temperature, the fluctuation in drain current for the HEMTs without gate metal was found to be relevant to the dipole moment and the viscosity of the liquids. A liquid with a larger viscosity showed a smaller fluctuation in drain current. The viscosity-dependent fluctuation of the drain current was ascribed to the Brownian motions of the liquid molecules, which induced a variation in the surface dipole of the gate region. This study uncovers the causes of the fluctuation in drain current of HEMTs in fluids. The results show that the AlGaN/GaN HEMTs may be used as sensors to measure the viscosity of liquids within a certain range of viscosity

  12. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  13. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  14. Study on Relaxation Damage Properties of High Viscosity Asphalt Sand under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yazhen Sun

    2018-01-01

    Full Text Available Laboratory investigations of relaxation damage properties of high viscosity asphalt sand (HVAS by uniaxial compression tests and modified generalized Maxwell model (GMM to simulate viscoelastic characteristics coupling damage were carried out. A series of uniaxial compression relaxation tests were performed on HVAS specimens at different temperatures, loading rates, and constant levels of input strain. The results of the tests show that the peak point of relaxation modulus is highly influenced by the loading rate in the first half of an L-shaped curve, while the relaxation modulus is almost constant in the second half of the curve. It is suggested that for the HVAS relaxation tests, the temperature should be no less than −15°C. The GMM is used to determine the viscoelastic responses, the Weibull distribution function is used to characterize the damage of the HVAS and its evolution, and the modified GMM is a coupling of the two models. In this paper, the modified GMM is implemented through a secondary development with the USDFLD subroutine to analyze the relaxation damage process and improve the linear viscoelastic model in ABAQUS. Results show that the numerical method of coupling damage provides a better approximation of the test curve over almost the whole range. The results also show that the USDFLD subroutine can effectively predict the relaxation damage process of HVAS and can provide a theoretical support for crack control of asphalt pavements.

  15. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  16. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  17. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  18. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  19. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  20. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  1. Dynamics of bubble-bubble interaction in sheared low-viscosity magma imaged by X-ray computed micro-tomography

    Science.gov (United States)

    Helo, C.; Flaws, A.; Hess, K.-U.; Franz, A.; Clague, D. A.; Dingwell, D. B.

    2012-04-01

    X-ray computed tomography of vesicles in basaltic pyroclastic glass fragments has been used to investigate the syn-eruptive shear environment and resulting bubble-bubble interaction during mild pyroclastic eruptions in a mid-ocean ridge environment. We have imaged vesicles present in two different types of pyroclastic fragments produced by mildly explosive activity on Axial Seamount, limu o Pele, that is, thin glass films often described as bubble walls, and tube scoria fragments. Rapid quenching of the glass has prevented extensive bubble relaxation preserving the syn-eruptive geometry of the bubbles in these fragments. Isolated, ellipsoid-shaped vesicles in low-vesicular limu o Pele indicate deformation in a simple shear environment. Under these shear conditions higher vesiculated parts of the erupting magma show strong bubble-bubble interactions partially leading to coalscence and formation of tubular vesicles. These tubular vesicles can reach significant lengths, exceeding the dimensions of the small glass fragments (2 mm). Their unreformed radius can be more then one order of magnitude larger than that of the isolated vesicles in the limu o Pele fragments. We can distinguish two principle modes of interaction based on the relative orientation of the bubbles. Interaction along the sidewalls of two bubbles, and tip-to-tip interaction. At interdistances of less than a few tens of micrometre, interaction of the sidewalls results in deformation of the bubbles to more irregular shapes, with depressions caused by close, small bubbles or in some cases bubbles being partially mantled around tubular bubbles. This often leads to a more close packing of bubbles. At distances of less than a few microns, the melt films between the bubbles destabilize leading to coalescence. This mechanism appears to involve a bulging of the larger bubble into the smaller, followed by melt film rapture and coalescence. The complete digestion of one bubble by the other is the slow rate

  2. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  3. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  4. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-09-01

    A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.

  5. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  6. On equivalent roughness of mobile bed at high shear stress

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan

    2009-01-01

    Roč. 57, č. 3 (2009), s. 191-199 ISSN 0042-790X R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : bed shear * experiment * hydraulic transport * sediment transport Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009

  7. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Science.gov (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  8. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  9. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  10. THE LIME PURIFICATION OF SUGAR –CONTAINING SOLUTION USING HIGH VISCOSITY COLLOIDAL SOLUTIONS

    Directory of Open Access Journals (Sweden)

    K. V.

    2015-12-01

    Full Text Available Aim of the work was to determine the efficiency of combined application of lime and high-viscous suspensions, containing the aluminium nanoparticles as a precursor in treatment of sugar-containing solutions. At the first stage the aluminium nanopowder, encapsulated into a salt matrix, was produced by the combined precipitation from a gas phase of metal and halogenide of alkali metal (NaCl. For the long-term stabilization of aluminum nanoparticles the method, developed by the authors, for dispersing these powders in the composition of polyethylene glycols was used, providing the colloidal solution of high viscosity (gel. At the second stage, as an object of investigation a juice of sugar beet, produced in the laboratory conditions by water extracting from the beet chips, was applied. In the produced juice the main characteristics of its quality were determined: the content of solids, sucrose, its purity was calculated (ratio of sucrose to solids content, in%. The content of protein and pectin components was also determined (as the main components of the colloidal fraction of the diffusion juice. Conventionally, as a basic reagent for the process of a lime pretreatment a lime milk of 1.18 g/cm3 density, prepared by liming the burned lime using hot water, was used. During the experiments the effectiveness of reagents, containing aluminum in nanoform, on the degree of removal of the colloidal dispersion substances in the process of juice purification in sugar beet production and improvement of its quality, is shown. However, the obtained results show that, depending on the method of producing, the additional reagents with aluminium nanoparticles have different effect on change of diffusion juice purity in the process of its treatment by the lime milk.

  11. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    Science.gov (United States)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing

  12. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  13. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    Science.gov (United States)

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and

  14. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress resistant spores

    NARCIS (Netherlands)

    Dijksterhuis, J.; Nijsse, J.; Hoekstra, F.A.; Golovina, E.A.

    2007-01-01

    Ascospores of the fungus Talaromyces macrosporus are dormant and extremely stress resistant, whereas fungal conidia¿the main airborne vehicles of distribution¿are not. Here, physical parameters of the cytoplasm of these types of spores were compared. Cytoplasmic viscosity and level of anisotropy as

  15. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    International Nuclear Information System (INIS)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z.; Perezhogin, I. A.; Karaeva, A. R.; Popov, M. Y.; Sorokin, P. B.; Blank, V. D.

    2016-01-01

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp"3-hybridized region but internal core keeps the tubular structure.

  16. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); Perezhogin, I. A. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Karaeva, A. R. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Popov, M. Y.; Sorokin, P. B.; Blank, V. D. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); National University of Science and Technology MISiS, 4 Leninskiy Prospekt, Moscow 119049 (Russian Federation)

    2016-08-22

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.

  17. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  18. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  19. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  20. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cholet, H.

    1993-03-12

    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  1. Shear flow simulations of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  2. In vitro marginal adaptation of high-viscosity resin composite restorations bonded to dentin cavities.

    Science.gov (United States)

    Rahiotis, Christos; Tzoutzas, John; Kakaboura, Afrodite

    2004-01-01

    The aim of this study was to evaluate the marginal adaptation of high-viscosity resin composite restoratives bonded to dentin in a cylindrical cavity model. The buccal enamel of 64 human premolars was removed and cylindrical cavities 3 mm in diameter and 1.3 mm in depth were prepared on each dentin surface. The cavities were divided into 8 groups of 8 cavities each and restored according to the manufacturers' instructions with the following adhesive/composite systems: Bond 1/Alert, Stae/Glacier, OptiBond Solo/Prodigy Condensable, One-Step/Pyramid, Solidbond/Solitaire, Prime&Bond NT/Surefil, One Coat Bond/Synergy, and Scotchbond 1/Z250. The composite surfaces were pressed against mylar strips, covered with cover slips, and photopolymerized in a single increment for 40 s. The restorations were polished with wet SiC papers of 320 to 1000 grit size to expose dentin margins. The marginal adaptation was evaluated immediately after photopolymerization and again after 1 week of storage in water at 37 +/- 1 degrees C. Evaluation was performed under a metallographic microscope at 200X magnification by recording the frequency of gap-free restorations (GF), the percentage length of the debonded margins relative to the cavity periphery (DM), the width of the maximum marginal gap (MG), and the marginal index (MI = MG x DM / 100). The results were statistically analyzed with one-way ANOVA and the Mann-Whitney U-test at alpha = 0.05. No incidence of gaps was found in 62.5% of One Coat Bond/Synergy and 37.5% of OptiBond Solo/Prodigy Condensable restorations. All the other restorative systems exhibited restorations with gaps. One Coat Bond/Synergy, Scotchbond 1/Z250, and OptiBond Solo/Prodigy Condensable were the groups with the lowest DM values, while Stae/Glacier showed the highest DM values. One Coat Bond/Synergy and OptiBond Solo/Prodigy Condensable revealed the lowest MI values and Stae/Glacier the highest. No statistically significant differences were recorded between

  3. High Viscosity Liquid Flow through the Round Orifices at Small Reynold’s Numbe rs

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available The paper presents research results of the mineral oil flow process with viscosity of 30 cSt through a round orifice with the sharp inlet edge of 0.9 mm in diameter. Pilot studies were conducted using a module from the transparent plexiglas that allowed to visualize hydrodynamic processes. The intake and off-take channels of the module with their sufficient extension had diameter of 20 mm (24 diameters of an orifice that allows us to consider compression of a stream as perfect. Drawing the enameled nichrome wire with a mark as a stripping isolation of 0.1 mm width enabled sounding of electric processes in the stream sections. Intensive high- frequency electric processes were revealed in cavitation stream. The paper gives experimental values of coefficientsof volumetric and mass flow at low (150

  4. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity

    Science.gov (United States)

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong

    2018-01-01

    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.

  5. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  6. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  7. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  8. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  9. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  10. Searching for perfect fluids: quantum viscosity in a universal Fermi gas

    International Nuclear Information System (INIS)

    Cao, C; Elliott, E; Wu, H; Thomas, J E

    2011-01-01

    We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and transport coefficients are universal functions of density n and temperature T. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of ℎn is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low-temperature data are obtained from the damping rate of the radial breathing mode, whereas high-temperature data are obtained from hydrodynamic expansion measurements. We also show that the best fit to the high-temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of shear viscosity to entropy density, which is compared with that conjectured for a perfect fluid.

  11. Effect of lipid viscosity and high-pressure homogenization on the physical stability of "Vitamin E" enriched emulsion.

    Science.gov (United States)

    Alayoubi, Alaadin; Abu-Fayyad, Ahmed; Rawas-Qalaji, Mutasem M; Sylvester, Paul W; Nazzal, Sami

    2015-01-01

    Recently there has been a growing interest in vitamin E for its potential use in cancer therapy. The objective of this work was therefore to formulate a physically stable parenteral lipid emulsion to deliver higher doses of vitamin E than commonly used in commercial products. Specifically, the objectives were to study the effects of homogenization pressure, number of homogenizing cycles, viscosity of the oil phase, and oil content on the physical stability of emulsions fortified with high doses of vitamin E (up to 20% by weight). This was done by the use of a 27-run, 4-factor, 3-level Box-Behnken statistical design. Viscosity, homogenization pressure, and number of cycles were found to have a significant effect on particle size, which ranged from 213 to 633 nm, and on the percentage of vitamin E remaining emulsified after storage, which ranged from 17 to 100%. Increasing oil content from 10 to 20% had insignificant effect on the responses. Based on the results it was concluded that stable vitamin E rich emulsions could be prepared by repeated homogenization at higher pressures and by lowering the viscosity of the oil phase, which could be adjusted by blending the viscous vitamin E with medium-chain triglycerides (MCT).

  12. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  13. On the behaviour of gelled fibre suspensions in steady shear

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Bettina [Unilever Corporate Research, Bedford (United Kingdom); University of Nottingham, Division of Food Sciences, Loughborough (United Kingdom); White, Duncan; Melrose, John R.; Frith, William J. [Unilever Corporate Research, Bedford (United Kingdom)

    2007-03-15

    The shear rheological properties of suspensions of gelled agar fibres in a low viscosity Newtonian matrix fluid were investigated. Two classes of fibres, low aspect ratio fibres and high aspect ratio fibres with an aspect ratio of the order of 10 and 100 respectively were included in the investigations. For all fibre phase volumes investigated, from as low as 0.01 upwards, the flow curves are characterised by an apparent yield stress followed by shear-thinning which was independent of the fibre aspect ratio. Based on our analysis of the flow curves, we conclude that the high aspect ratio fibres behave like flexible threads in contrast to the low aspect ratio fibres whose high shear relative viscosity is successfully described by a relation for long rigid rods. These findings are supported by flow visualisation using an optical shearing stage coupled to a light microscope. (orig.)

  14. Dynamic viscosity of polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterlin, A

    1982-03-01

    The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.

  15. Effect of renal replacement therapy on viscosity in end-stage renal disease patients.

    Science.gov (United States)

    Feriani, M; Kimmel, P L; Kurantsin-Mills, J; Bosch, J P

    1992-02-01

    Viscosity, an important determinant of microcirculatory hemodynamics, is related to hematocrit (HCT), and may be altered by renal failure or its treatment. To assess these factors, we studied the effect of dialysis on the viscosity of whole blood, plasma, and reconstituted 70% HCT blood of eight continuous ambulatory peritoneal dialysis (CAPD) and nine hemodialysis (HD) patients under steady shear flow conditions at different shear rates, before and after dialysis, compared with nine normal subjects. The density of the red blood cells (RBCs), a marker of cell hydration, was measured in HD patients by a nonaqueous differential floatation technique. Whole blood viscosity was higher in controls than patients, and correlated with HCT before treatment (P less than 0.05) at shear rates of 11.5 to 230 s-1) in HD patients, and 23 to 230 s-1 in all end-stage renal disease (ESRD) patients. In contrast, whole blood viscosity correlated with HCT in CAPD patients only at the lowest shear rates (2.3 and 5.75 s-1, P less than 0.05). Plasma viscosity was higher in CAPD patients than both HD patients before treatment and controls (P less than 0.05, analysis of variance [ANOVA]), despite lower plasma total protein, albumin, and similar fibrinogen concentration compared with HD patients. When all samples were reconstituted to 70% HCT, CAPD patients had higher whole blood viscosity than control subjects'. The high HCT blood viscosity of the ESRD patients was higher than control subjects' at capillary shear rates, suggesting increased RBC aggregation and decreased RBC deformability in patients with renal disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Altruism Can Proliferate through Population Viscosity despite High Random Gene Flow

    Science.gov (United States)

    Schonmann, Roberto H.; Vicente, Renato; Caticha, Nestor

    2013-01-01

    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic alleles, applicable under broad conditions. PMID:23991035

  17. Altruism can proliferate through population viscosity despite high random gene flow.

    Directory of Open Access Journals (Sweden)

    Roberto H Schonmann

    Full Text Available The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.

  18. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  19. Suppression of endothelial t-PA expression by prolonged high laminar shear stress

    International Nuclear Information System (INIS)

    Ulfhammer, Erik; Carlstroem, Maria; Bergh, Niklas; Larsson, Pia; Karlsson, Lena; Jern, Sverker

    2009-01-01

    Primary hypertension is associated with an impaired capacity for acute release of endothelial tissue-type plasminogen activator (t-PA), which is an important local protective response to prevent thrombus extension. As hypertensive vascular remodeling potentially results in increased vascular wall shear stress, we investigated the impact of shear on regulation of t-PA. Cultured human endothelial cells were exposed to low (≤1.5 dyn/cm 2 ) or high (25 dyn/cm 2 ) laminar shear stress for up to 48 h in two different experimental models. Using real-time RT-PCR and ELISA, shear stress was observed to time and magnitude-dependently suppress t-PA transcript and protein secretion to approximately 30% of basal levels. Mechanistic experiments revealed reduced nuclear protein binding to the t-PA specific CRE element (EMSA) and an almost completely abrogated shear response with pharmacologic JNK inhibition. We conclude that prolonged high laminar shear stress suppresses endothelial t-PA expression and may therefore contribute to the enhanced risk of arterial thrombosis in hypertensive disease.

  20. Viscosidade extensional e em cisalhamento de suspensões acidificadas de amido de amaranto e caseinato de sódio Extensional and shear viscosity of acidified amaranth starch-sodium caseinate suspensions

    Directory of Open Access Journals (Sweden)

    Angela Maria Gozzo

    2009-09-01

    Full Text Available Foram avaliadas as viscosidades extensional e em cisalhamento de suspensões acidificadas de amido de amaranto-caseinato de sódio. Sistemas mistos de amido de amaranto-caseinato de sódio acidificados com glucona-delta-lactona (GDL foram estudados por ensaios reológicos em compressão biaxial e cisalhamento. Os efeitos da velocidade de acidificação (lenta e rápida e pH final (neutro e no ponto isoelétrico da caseína foram avaliados considerando as interações entre os biopolímeros e sua consequente influência nos parâmetros reológicos. Todas as amostras apresentaram comportamento pseudoplástico, no entanto, a adição de caseinato de sódio nas suspensões de amido, em pH neutro, promoveu um efeito negativo sobre a viscosidade aparente. Amostras acidificadas apresentaram um aumento na complexidade do sistema devido à formação da rede de amido e caseína, observando que a força necessária para o escoamento foi sempre maior para as amostras contendo concentrações maiores de caseinato. Isso mostra que a agregação e gelificação da proteína promovidas pela acidificação, impediram a microsseparação de fases. Esta rede foi mais forte em sistemas gelificados lentamente, devido à formação de uma rede de proteína mais organizada. Apesar da técnica de compressão biaxial imperfeita ser limitada para avaliação de determinados sistemas, neste estudo, mostrou ser um modo prático e eficiente de se mensurar o comportamento reológico.Extensional and shear viscosity of acidified amaranth starch-sodium caseinate suspensions were evaluated. Mixed systems of amaranth starch-sodium caseinate acidified with glucone-delta-lactone (GDL were studied using rheological measurements under biaxial compression and shear. The effects of the acidification rate (slow and fast and final pH (neutral and isoelectric point of casein were evaluated considering the interactions between biopolymers and their influence on the rheological parameters

  1. Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel

    Directory of Open Access Journals (Sweden)

    J Hona

    2016-10-01

    Full Text Available The flow field under study is characterized by velocity components, temperature and pressure in non-dimensional formulation. The flow is driven by suction through the horizontal channel with permeable walls fixed at different temperatures. In order to ascertain a better understanding of the dynamic behavior of the flow, the Navier-Stokes equations and the energy equation are solved concurrently applying a similarity transformation technique. The hydrodynamic structures obtained from the numerical integration include flow reversal or backward flow, collision zones due to the coexistence of wall suction and flow reversal inside the channel, the inflection through temperature distribution, the growth of thermal gradients near the walls, and the sensitivity of normal pressure gradients to the difference of temperatures at boundaries. These hydrodynamic structures are investigated considering the influences of the Péclet number P and the sensitivity of viscosity to thermal variations α which are the main control parameters of the problem.

  2. Numerical modeling of frozen wave instability in fluids with high viscosity contrast

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, D V; Ivantsov, A O; Lyubimova, T P [Theoretical Physics Department, Perm State University, Perm (Russian Federation); Khilko, G L, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)

    2016-12-15

    This paper deals with the direct numerical simulation of quasi-stationary (frozen) wave formation at the interface of two immiscible fluids with large viscosity contrast, in a rectangular container subjected to the horizontal vibrations of finite frequency and amplitude. The critical conditions for the origination of a frozen wave as well as the dependences of the frozen wave height and wavelength on the vibration intensity are obtained. The time-evolution of the interface shape during the vibration period is analyzed. Numerical results are found to be in a good agreement with known experimental and linear stability results. The average deformation of the interface and the structure of average flows are calculated for different vibration intensities. It is shown that a change in the dependencies of the frozen wave characteristics on the vibration intensity follows a change in average flow structure. (paper)

  3. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  4. Simulation of shear thickening in attractive colloidal suspensions.

    Science.gov (United States)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F

    2017-03-01

    The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.

  5. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  6. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging.

    Science.gov (United States)

    Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C

    2012-01-01

    The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.

  7. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Arezoumandi, Mahdi; Volz, Jeffery S.; Ortega, Carlos A.; Myers, John J.

    2013-01-01

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m 3 ) and the other mix having a relatively low total cementitious content (337 kg/m 3 ). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  8. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  9. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  10. Microturbulence and Flow Shear in High-performance JET ITB Plasma; TOPICAL

    International Nuclear Information System (INIS)

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-01-01

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists

  11. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    Science.gov (United States)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  12. Analyzing shear band formation with high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  14. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    -friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  15. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation

    Science.gov (United States)

    Law, Junhui; Kong, Ka Wai; Chan, Ho-Yin; Sun, Winston; Li, Wen Jung; Chau, Eric Boa Fung; Chan, George Kak Man

    2017-01-01

    The development of a novel lead-free microelectromechanical-system (MEMS)-based atomizer using the principle of thermal bubble actuation is presented. It is a low-cost, lead-free design that is environmentally friendly and harmless to humans. It has been tested to be applicable over a wide range of fluid viscosities, ranging from 1 cP (e.g., water) to 200 cP (e.g., oil-like fluid) at room temperature, a range that is difficult to achieve using ordinary atomizers. The results demonstrate that the average power consumption of the atomizer is approximately 1 W with an atomization rate of 0.1 to 0.3 mg of deionized (DI) water per cycle. The relationships between the micro-heater track width and the track gap, the size of the micro-cavities and the nucleation energy were studied to obtain an optimal atomizer design. The particle image velocimetry (PIV) results indicate that the diameter of the ejected droplets ranges from 30 to 90 μm with a speed of 20 to 340 mm/s. In addition, different modes of spraying are reported for the first time. It is envisioned that the successful development of this MEMS-based atomizing technology will revolutionize the existing market for atomizers and could also benefit different industries, particularly in applications involving viscous fluids.

  16. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  17. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2016-04-01

    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  18. High resolution geodynamo simulations with strongly-driven convection and low viscosity

    Science.gov (United States)

    Schaeffer, Nathanael; Fournier, Alexandre; Jault, Dominique; Aubert, Julien

    2015-04-01

    Numerical simulations have been successful at explaining the magnetic field of the Earth for 20 years. However, the regime in which these simulations operate is in many respect very far from what is expected in the Earth's core. By reviewing previous work, we find that it appears difficult to have both low viscosity (low magnetic Prandtl number) and strong magnetic fields in numerical models (large ratio of magnetic over kinetic energy, a.k.a inverse squared Alfvén number). In order to understand better the dynamics and turbulence of the core, we have run a series of 3 simulations, with increasingly demanding parameters. The last simulation is at the limit of what nowadays codes can do on current super computers, with a resolution of 2688 grid points in longitude, 1344 in latitude, and 1024 radial levels. We will show various features of these numerical simulations, including what appears as trends when pushing the parameters toward the one of the Earth. The dynamics is very rich. From short time scales to large time scales, we observe at large scales: Inertial Waves, Torsional Alfvén Waves, columnar convective overturn dynamics and long-term thermal winds. In addition, the dynamics inside and outside the tangent cylinder seem to follow different routes. We find that the ohmic dissipation largely dominates the viscous one and that the magnetic energy dominates the kinetic energy. The magnetic field seems to play an ambiguous role. Despite the large magnetic field, which has an important impact on the flow, we find that the force balance for the mean flow is a thermal wind balance, and that the scale of convective cells is still dominated by viscous effects.

  19. Experimental investigation of the effects of high-frequency electroactive morphing on the shear-layer

    Science.gov (United States)

    Scheller, Johannes; Rizzo, Karl-Joseph; Jodin, Gurvan; Duhayon, Eric; Rouchon, Jean-François; Hunt, Julian; Braza, Marianna

    2015-11-01

    Time-resolved PIV measurements are conducted at a Reynolds number of 270 . 000 downstream of the trailing edge of a NACA4412 airfoil equipped with trailing-edge piezoelectric tab actuators to investigate the high-frequency low-amplitude actuation's effect on the shear-layer. A comparison of the time-averaged Reynolds stress tensor components at different actuation frequency reveals a significant impact of the actuation on the shear-layer dynamics. A proper orthogonal decomposition analysis is conducted in order to investigate the actuation's impact on the vortex breakdown. It will be shown that a specific low-amplitude actuation frequency enables a reduction of the predominant shear-layer frequencies.

  20. Conditions of viscosity measurement for detecting irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-01-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)

  1. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  2. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  3. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction-friendly so......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  4. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  5. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  6. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  7. Laser Induced Forward Transfer of High Viscosity Silver Paste for New Metallization Methods in Photovoltaic and Flexible Electronics Industry

    Science.gov (United States)

    Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.

    Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.

  8. High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture

    Science.gov (United States)

    2017-11-22

    High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating

  9. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers

  10. Nonlinear interaction of Rayleigh--Taylor and shear instabilities

    International Nuclear Information System (INIS)

    Finn, J.M.

    1993-01-01

    Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed

  11. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    Science.gov (United States)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  12. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    Science.gov (United States)

    Meng, Xuhui; Guo, Zhaoli

    2015-10-01

    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  13. The viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2007-01-01

    and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...

  14. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2014-01-01

    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  15. Laboratory Tests for Dispersive Soil Viscosity Determining

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.

    2017-11-01

    There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

  16. Comparative evaluation of aqueous humor viscosity.

    Science.gov (United States)

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  17. High-shear granulation as a manufacturing method for cocrystal granules

    DEFF Research Database (Denmark)

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka

    2013-01-01

    and the respective excipients). The drug release was slightly decreased by cocrystal formation, most likely due to the lower solubility of the cocrystal. In the presence of calcium hydrogenphosphate however, no influence of cocrystal formation on either compactability or on drug release were observed, compared...... with the reference tablets. It was concluded that high-shear wet granulation is a valuable, however complex, manufacturing method for cocrystals. Cocrystal formation may influence compactability and drug release and thus affect drug performance and should be investigated during pre-formulation.......Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation...

  18. The influence of high shear mixing on ternary dry powder inhaler formulations.

    Science.gov (United States)

    Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina

    2017-12-20

    The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  20. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  1. Applying the technology of hydrodynamic cavitation treatment of high-viscosity oils to increase the efficiency of transportation

    Science.gov (United States)

    Brand, A. E.; Vershinina, S. V.; Vengerov, A. A.; Mostovaya, N. A.

    2015-10-01

    The article investigates the possibility of applying hydrodynamic cavitation treatment to reduce oil viscosity in Russian pipeline transportation system and increase its performance. The result of laboratory tests and suggestions on technology application are given

  2. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.

    1983-01-01

    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  3. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2

  4. Effect of ionic and non-ionic contrast media on whole blood viscosity, plasma viscosity and hematocrit in vitro

    International Nuclear Information System (INIS)

    Aspelin, P.

    1978-01-01

    The effect of the ionic contrast media diatrizoate, iocarmate and metrizoate and the non-ionic metrizamide on whole blood viscosity, plasma viscosity and hematocrit was investigated. All the contrast media increased whole blood and plasma viscosity and reduced the hematocrit. The whole blood viscosity increased with increasing osmolality of the contrast medium solutions, whereas the plasma viscosity increased with increasing viscosity of the contrast medium solutions. The higher the osmolality of the contrast media, the lower the hematocrit became. The normal shear-thinning (decreasing viscosity with increasing shear rate) property of blood was reduced when contrast medium was added to the blood. At 50 per cent volume ratio (contrast medium to blood), the ionic contrast media converted the blood into a shear-thickening (increasing viscosity with increasing shear rate) suspension, indicating a marked rigidification of the single red cell, while the non-ionic contrast medium still produced shear-thinning, indicating less rigidification of the red cell (p<0.01). (Auth.)

  5. Equations of viscous flow of silicate liquids with different approaches for universality of high temperature viscosity limit

    Directory of Open Access Journals (Sweden)

    Ana F. Kozmidis-Petrović

    2014-06-01

    Full Text Available The Vogel-Fulcher-Tammann (VFT, Avramov and Milchev (AM as well as Mauro, Yue, Ellison, Gupta and Allan (MYEGA functions of viscous flow are analysed when the compositionally independent high temperature viscosity limit is introduced instead of the compositionally dependent parameter η∞ . Two different approaches are adopted. In the first approach, it is assumed that each model should have its own (average high-temperature viscosity parameter η∞ . In that case, η∞ is different for each of these three models. In the second approach, it is assumed that the high-temperature viscosity is a truly universal value, independent of the model. In this case, the parameter η∞ would be the same and would have the same value: log η∞ = −1.93 dPa·s for all three models. 3D diagrams can successfully predict the difference in behaviour of viscous functions when average or universal high temperature limit is applied in calculations. The values of the AM functions depend, to a greater extent, on whether the average or the universal value for η∞ is used which is not the case with the VFT model. Our tests and values of standard error of estimate (SEE show that there are no general rules whether the average or universal high temperature viscosity limit should be applied to get the best agreement with the experimental functions.

  6. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  7. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and ...

  8. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    International Nuclear Information System (INIS)

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  9. Viscosity of particle laden films

    Directory of Open Access Journals (Sweden)

    Timounay Yousra

    2017-01-01

    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  10. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.

    Science.gov (United States)

    Bircher, Benjamin A; Duempelmann, Luc; Renggli, Kasper; Lang, Hans Peter; Gerber, Christoph; Bruns, Nico; Braun, Thomas

    2013-09-17

    A microcantilever based method for fluid viscosity and mass density measurements with high temporal resolution and microliter sample consumption is presented. Nanomechanical cantilever vibration is driven by photothermal excitation and detected by an optical beam deflection system using two laser beams of different wavelengths. The theoretical framework relating cantilever response to the viscosity and mass density of the surrounding fluid was extended to consider higher flexural modes vibrating at high Reynolds numbers. The performance of the developed sensor and extended theory was validated over a viscosity range of 1-20 mPa·s and a corresponding mass density range of 998-1176 kg/m(3) using reference fluids. Separating sample plugs from the carrier fluid by a two-phase configuration in combination with a microfluidic flow cell, allowed samples of 5 μL to be sequentially measured under continuous flow, opening the method to fast and reliable screening applications. To demonstrate the study of dynamic processes, the viscosity and mass density changes occurring during the free radical polymerization of acrylamide were monitored and compared to published data. Shear-thinning was observed in the viscosity data at higher flexural modes, which vibrate at elevated frequencies. Rheokinetic models allowed the monomer-to-polymer conversion to be tracked in spite of the shear-thinning behavior, and could be applied to study the kinetics of unknown processes.

  11. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  12. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    International Nuclear Information System (INIS)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K.

    2012-01-01

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  13. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  14. Gluon gas viscosity in nonperturbative region

    International Nuclear Information System (INIS)

    Il'in, S.V.; Mogilevskij, O.A.; Smolyanskij, S.A.; Zinov'ev, G.M.

    1992-01-01

    Using the Green-Kubo-type formulae and the cutoff model motivated by Monte Carlo lattice gluodynamics simulations we find the temperature behaviour of shear viscosity of gluon gas in the region of deconfinement phase transition. 22 refs.; 1 fig. (author)

  15. Effect of high-pressure-jet processing on the viscosity and foaming properties of pasteurized whole milk.

    Science.gov (United States)

    Tran, M; Roberts, R; Felix, T L; Harte, F M

    2018-05-01

    The processing of milk using high-pressure technologies has been shown to dissociate casein micelles, denature whey proteins, and change the appearance and rheological properties of milk. A novel high-pressure processing technology called high-pressure-jet (HPJ) processing is currently being investigated for use in the food industry. Few studies have evaluated the effects of HPJ technology on dairy foods. The present study investigated the physicochemical and foaming properties of homogenized pasteurized whole milk processed at pressures from 0 to 500 MPa using HPJ processing. The apparent particle size exhibited a monomodal distribution in whole milk samples processed up to 125 MPa and a bimodal distribution for samples processed at 250, 375, and 500 MPa. The viscosity increased from approximately 2 to 5 mPa·s when whole milk was processed using HPJ at 375 MPa, and foam expansion increased from approximately 80 to 140% after processing at >125 MPa. Foam stability was limited to pressures in the 375 to 500 MPa range. We hypothesized that the increase in apparent particle size was due to the dissociation of casein micelles into surface-active casein protein monomers, and the formation of casein-casein and casein-fat particles. Ultracentrifugation of samples into 3 milk fractions (supernatant, serum, and precipitate), and subsequent fat and protein analysis on the 3 fractions, showed that a strong interaction between casein proteins and fat triglycerides occurred, evidenced by the increase in fat content associated with the precipitate fraction with increasing pressure. This suggests that stable casein-fat aggregates are formed when whole milk is processed using HPJ at pressure >125 MPa. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    International Nuclear Information System (INIS)

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  17. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    Science.gov (United States)

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the

  18. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  19. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  20. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  1. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  2. Momentum Transport Studies in High E x B Shear Plasmas in NSTX

    International Nuclear Information System (INIS)

    Solomon, W.M.; Kaye, S.M.; Bell, S.M.; LeBlanc, B.P.; Menard, B.P.; Rewoldt, B.P.; Wang, W.; Levinton, F.M.; Yuh, H.; Sabbagh, S.A.

    2008-01-01

    Experiments have been conducted on NSTX to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with E x B shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after non-resonant magnetic perturbations are applied to brake the plasma

  3. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  4. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    assessment of the structural behaviour of coupled shear wall bents in mixed shear wall ... efficient lateral load resisting system against wind and earthquake effects. .... can be obtained from the second derivative of equation (11) which must be ...

  5. Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure

    DEFF Research Database (Denmark)

    Boned, C.; Allal, A.; Baylaucq, A.

    2004-01-01

    applied to dynamic viscosity, has been considered and generalized. In this generalized model the compound is characterized by only four parameters. But if the quadratic length is known, the number of adjustable parameters is three. The compounds considered in this work are benzene, carbon tetrachloride...

  6. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  7. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  8. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    Science.gov (United States)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in

  9. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production

    International Nuclear Information System (INIS)

    Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G.

    2015-01-01

    A new simple flow system which is made up of a multi-rotor high-shear mixer connected to a multimode microwave reactor has been assembled. This simple loop reactor has been successfully used in the NaOH-catalyzed transesterification of refined palm oil in methanol. Thanks to optimal mass/heat transfer, full conversion was achieved within 5 min (biodiesel yield of 99.80%). High-quality biodiesel was obtained that is in accordance with international specifications and analytical ASTM standards. The procedure's high efficiency and low energy consumption should pave the way for process scale up. - Highlights: • The combination of HSM-MW flow system for biodiesel production has been proposed. • Highly efficient mass and heat transfer in transesterification reaction. • The hybrid reactor enables a complete conversion in 5 min reaction time. • The new system halved the energy consumption of conventional processes

  10. Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet

    Science.gov (United States)

    Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.

    2013-01-01

    Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.

  11. High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration

    Directory of Open Access Journals (Sweden)

    Moinuddin Ghauri

    2016-06-01

    Full Text Available The ambient temperature high pressure oxydesulphurisation technique was investigated to reduce the sulphur content. Prince of Wales coal was chosen for this study. The focus of the study was to investigate the reduction of both pyritic and organic sulphur while changing the KMnO4/Coal ratio, agitation speed, agitator configuration, and shear. The effect of different concentrations of acetone as a solvent and effect of particle size on the sulphur removal was also studied by a series of experimental runs at ambient temperature. Heating value recovery was found to be increased with the decreased KMnO4/Coal ratio and with decreased acetone concentration. It was found that sulphur removal was enhanced with the increase in shear using a turbine impeller. The effect of particle size was more significant on the pyritic sulphur removal as compared to the organic sulphur removal while heating value recovery was found to increase with decreased desulphurization tome for both, under atmospheric and high pressure.

  12. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  13. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  14. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  15. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  16. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shahsavar, Amin [Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Salimpour, Mohammad Reza; Saghafian, Mohsen [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Shafii, M. B. [Sharif University of Technology, Tehran(Iran, Islamic Republic of)

    2016-02-15

    The present work examines experimentally the effect of magnetic field on the viscosity and thermal conductivity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe{sub 3}O{sub 4} nanoparticles and Gum arabic (GA) coated carbon nanotubes (CNTs). The hybrid nanofluid was prepared by using ultrasonic dispersion method. Magnetic field was created by a pair of spaced apart magnet plates. The effect of temperature on the time variation of thermal conductivity under applied magnetic field was also investigated. According to the results of this study, viscosity of the hybrid nanofluid increases with the strength of magnetic field, while it decreases with the increase of temperature. Additionally, it is found that the hybrid nanofluid behaves as a shear thinning fluid at low shear rates while it exhibits Newtonian behavior at high shear rates. Furthermore, results show that when an external magnetic field is applied to the studied magnetic nanofluids, the thermal conductivity experiences a peak.

  17. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  18. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  19. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  20. Outcome of long-axis percutaneous sacroplasty for the treatment of sacral insufficiency fractures with a radiofrequency-induced, high-viscosity bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, Katrin [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); J. W. Goethe University of Frankfurt, Institute for Diagnostic and Interventional Radiology, Frankfurt (Germany); Zangos, Stephan; Vogl, Thomas J. [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mack, Martin G. [Radiology Munich, Munich (Germany); Marzi, Ingo [University of Frankfurt, Department of Trauma, Hand and Reconstructive Surgery, Frankfurt (Germany)

    2014-04-15

    Our goal was to assess the technical results in patients who underwent long-axis sacroplasty for the treatment of sacral insufficiency fractures (SIF) by radiofrequency-induced high-viscosity bone cement augmentation. Twelve patients with bilateral sacral fractures were treated by augmentation with radiofrequency-activated, high-viscosity polymethylmethacrylate (PMMA) bone cement under local anesthesia. CT-guided sacroplasty was performed by using a long-axis approach through a single entry point. Thirty-six vertebrae were treated in 12 sessions under a combination of CT and fluoroscopic guidance using a bilateral access and a cavity-creating osteotome prior to remote-controlled, hydraulically driven cement injection. The visual analogue scale (VAS) score before sacroplasty and at 1 and 3 months after the treatment was obtained. PMMA leaks were evaluated retrospectively using the post-interventional CT. The mean amount of high-viscosity PMMA injected per patient was 7.8 ml. No major adverse events were observed. In the first 4 days after the procedure, the mean VAS score decreased from 8.1 ± 1.9 to mean 3.1 ± 1.2 and was followed by a gradual but continuous decrease throughout the rest of the follow-up period at 24 weeks (mean 2.2 ± 1.1) and 48 weeks (mean 2.1 ± 1.4). CT fluoroscopy-guided sacral augmentation was safe and effective in all 12 patients with osteoporotic SIF. (orig.)

  1. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  2. Variation of velocity profile according to blood viscosity in a microfluidic channel

    Science.gov (United States)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  3. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Takashi; Kaneda, Yukio [Graduate School of Engineering, Nagoya University (Japan); Hunt, Julian C R, E-mail: ishihara@cse.nagoya-u.ac.jp [University College of London (United Kingdom)

    2011-12-22

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R{sub {lambda}} = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10{eta}, where {eta} is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, {kappa}) from scales larger than 1/{kappa} to scales smaller than 1/{kappa} at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  4. Shear-lag effect and its effect on the design of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Dat Bui Thanh

    2018-01-01

    Full Text Available For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc., but also to resist lateral loads (wind and earthquake loads. As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  5. Shear-lag effect and its effect on the design of high-rise buildings

    Science.gov (United States)

    Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina

    2018-03-01

    For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  6. A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning

    International Nuclear Information System (INIS)

    Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun

    2014-01-01

    An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time

  7. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  8. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    Science.gov (United States)

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  9. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    Science.gov (United States)

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V

    2012-09-19

    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  10. Shear rheological properties of fresh human faeces with different ...

    African Journals Online (AJOL)

    Samples were further tested for moisture content, total solids, volatile content, and ash content. Faecal samples were found to have a yield stress; there was a decrease in apparent viscosity with increasing shear rate. For any given shear rate, higher apparent viscosities are associated with lower moisture contents. Across a ...

  11. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Science.gov (United States)

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  12. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  13. High wall shear stress and spatial gradients in vascular pathology: a review.

    Science.gov (United States)

    Dolan, Jennifer M; Kolega, John; Meng, Hui

    2013-07-01

    Cardiovascular pathologies such as intracranial aneurysms (IAs) and atherosclerosis preferentially localize to bifurcations and curvatures where hemodynamics are complex. While extensive knowledge about low wall shear stress (WSS) has been generated in the past, due to its strong relevance to atherogenesis, high WSS (typically >3 Pa) has emerged as a key regulator of vascular biology and pathology as well, receiving renewed interests. As reviewed here, chronic high WSS not only stimulates adaptive outward remodeling, but also contributes to saccular IA formation (at bifurcation apices or outer curves) and atherosclerotic plaque destabilization (in stenosed vessels). Recent advances in understanding IA pathogenesis have shed new light on the role of high WSS in pathological vascular remodeling. In complex geometries, high WSS can couple with significant spatial WSS gradient (WSSG). A combination of high WSS and positive WSSG has been shown to trigger aneurysm initiation. Since endothelial cells (ECs) are sensors of WSS, we have begun to elucidate EC responses to high WSS alone and in combination with WSSG. Understanding such responses will provide insight into not only aneurysm formation, but also plaque destabilization and other vascular pathologies and potentially lead to improved strategies for disease management and novel targets for pharmacological intervention.

  14. Performance of a Polymer Flood with Shear-Thinning Fluid in Heterogeneous Layered Systems with Crossflow

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2011-08-01

    Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation

  15. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  16. Viscosity Control Experiment Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.

  17. Sustainment of high confinement in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ide, S.; Takeji, S.; Sakamoto, Y.; Isayama, A.; Suzuki, T.; Oikawa, T.; Fukuda, T.

    2001-01-01

    confinement is achieved owing to strong internal transport barriers (ITBs), are reported. In a high current plasma with an L-mode edge, deuterium-tritium-equivalent fusion power gain, Q DT eq =0.5 was sustained for 0.8 s (∼ energy confinement time) by adjusting plasma beta precisely using feedback control of stored energy. In a high triangularity plasma with an ELMy H-mode edge, the shrinkage of reversed shear region was suppressed and quasi steady sustainment of high confinement was achieved by raising the poloidal beta and enhancing the bootstrap current peaked at the ITB layer. High bootstrap current fraction (∼80%) was obtained in a high q regime (q 95 ∼9), which leaded to full non-inductive current drive condition. The normalized beta (β N ) of ∼ 2 and H-factor of H 89 ∼3.5 (HH 98y2 ∼2.2) were sustained for 2.7 s (∼ 6 times energy confinement time). (author)

  18. Shear thinning and shear thickening of a confined suspension of vesicles

    Science.gov (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  19. Comparison between apparent viscosity related to irradiation dose for corn starch and black pepper

    International Nuclear Information System (INIS)

    Casandroiu, T.; Oprita, N.; Ferdes, O.S.

    1999-01-01

    Dose-effect relationship was studied in the rheoviscometric behaviour of geliffied suspensions of irradiated corn starch and black pepper, as the variation of the apparent viscosity and the shear stress related to the dose. Irradiation has been performed up to 16 kGy. Black pepper was ground and sieved to three particle sizes to analyse also the influence of particle size on the apparent viscosity variation by dose. The rheoviscometric measurements have been carried out by a rotationary viscometer on geliffied suspensions of starch and black pepper, into equivalent starch concentration and alkalinised suspensions for pepper. For starch, shear stress variation by dose is exponential, where the coefficients depend on the shear rate. For black pepper, the curves of apparent viscosity relation to dose also fit an exponential equation and the influence of particle size is discussed, too. Viscometric behaviour similar to irradiation of both corn starch and black pepper could be attributed to starch degradation at relatively high doses and should be used to develop an identification and control method for the ionizing treatment of starch-based food materials. (author)

  20. Nondimensional quasi-steady analysis of magnetorheological dampers utilizing a Herschel-Bulkley model with preyield viscosity

    Science.gov (United States)

    John, Shaju; Wereley, Norman M.

    2003-07-01

    Dampers based on electrorheological (ER) and magnetorheolgical (MR) fluids can be analyzed under assumptions of quasi-steady, fully developed flow behavior. Models that have been used to characterize ER and MR dampers include the Bingham-plastic, the Herschel-Bulkley and biviscous models. In the Bingham-plastic and the Herschel-Bulkley models, the fluid exhibits rigid behavior in the preyield flow region. The difference between these two models lie in the modeling of the postyield behavior. In the case of the Bingham-plastic model, the postyield behavior is such that the shear stress is proportional to the shear rate. In contrast, the Herschel-Bulkley model assumes that the shear stress is proportional to a power law of the shearrate. In the biciscous model, the relationship between the shear stres and shear rate is linear in both the preyield and postyield regions with constant values of viscosities for the two regions. However, the preyield flow behavior exhibits a much high viscosity than that in the postyield. In the propose model, the assumption of preyield rigid behavior within the Herschel-Bulkley model has been relaxed while the postyield relationship based on the power law has been retained. Here the fluid undergoes Newtonian preyield viscous flow and has a non-Newtonian postyield behavior. Based on this model, we have analyzed the performance of a rectangular duct ER or MR valve. Typical results include shear stress and velocity profiles across the valve gap, equivalent damping and damping coefficients.

  1. Production of improved infant porridges from pearl millet using a lactic acid fermentation step and addition of sorghum malt to reduce viscosity of porridge with high protein, energy and solids (30%) content

    CSIR Research Space (South Africa)

    Thaoge, ML

    2003-04-01

    Full Text Available With the aim of improving the safety and nutritional quality of traditional African weaning porridge, the reduction of the viscosity of high solids fermented pearl millet porridge by addition of sorghum malt (amylase rich flour, ARF...

  2. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  3. The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement

  4. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  5. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  6. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-01-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  7. Shear dilatancy and acoustic emission in dry and saturated granular materials

    Science.gov (United States)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  8. Remotely-Controlled Shear for Dismantling Highly Radioactive Tools In Rokkasho Vitrification Facility - 12204

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Sawa, Shusuke; Sadaki, Akira; Awano, Toshihiko [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Cole, Matt [S.A. Technology Inc, 3985 S. Lincoln Ave., Ste. 100, Loveland CO 80537 (United States); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2012-07-01

    A high-level liquid waste vitrification facility in the Japanese Rokkasho Reprocessing Plant (RRP) is right in the middle of hot commissioning tests toward starting operation in fall of 2012. In these tests, various tools were applied to address issues occurring in the vitrification cell. Because of these tools' unplanned placement in the cell it has been necessary to dismantle and dispose of them promptly. One of the tools requiring removal is a rod used in the glass melter to improve glass pouring. It is composed of a long rod made of Inconel 601 or 625 and has been highly contaminated. In order to dismantle these tools and to remotely put them in a designated waste basket, a custom electric shear machine was developed. It was installed in a dismantling area of the vitrification cell by remote cranes and manipulators and has been successfully operated. It can be remotely dismantled and placed in a waste basket for interim storage. This is a very good example of a successful deployment of a specialty remote tool in a hot cell environment. This paper also highlights how commissioning and operations are done in the Japanese Rokkasho Reprocessing Plant. (authors)

  9. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  10. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  11. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  12. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  13. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  14. A mathematical model for the movement of food bolus of varying viscosities through the esophagus

    Science.gov (United States)

    Tripathi, Dharmendra

    2011-09-01

    This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.

  15. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer; Merah, N.; Mezghani, Khaled S.; Khan, Zafarullah; Gasem, Zuhair Mattoug Asad; Sougrat, Rachid

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  16. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  19. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  20. Effective viscosity of two-dimensional suspensions: Confinement effects

    Science.gov (United States)

    Doyeux, Vincent; Priem, Stephane; Jibuti, Levan; Farutin, Alexander; Ismail, Mourad; Peyla, Philippe

    2016-08-01

    We study the rheology of a sheared two-dimensional (2D) suspension of non-Brownian disks in the presence of walls. Although it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension provides valuable insights and helps in the understanding of 3D results. Due to the direct visualization of the whole 2D flow (the shear plane), we are able to give a clear interpretation of the full hydrodynamics of semidilute confined suspensions. For instance, we examine the role of disk-wall and disk-disk interactions to determine the dissipation of confined sheared suspensions whose effective viscosity depends on the area fraction ϕ of the disks as ηeff=η0[1 +[η ] ϕ +β ϕ2+O (ϕ3) ] . We provide numerical estimates of [η ] and β for a wide range of confinements. As a benchmark for our simulations, we compare the numerical results obtained for [η ] and β for very weak confinements with analytical values [η] ∞ and β∞ obtained for an infinite fluid. If the value [η] ∞=2 is well known in the literature, much less is published on the value of β . Here we analytically calculate with very high precision β∞=3.6 . We also reexamine the 3D case in the light of our 2D results.

  1. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  2. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    , in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...

  3. Improved viscosity modeling in patients with type 2 diabetes mellitus by accounting for enhanced red blood cell aggregation tendency

    NARCIS (Netherlands)

    Mutsaerts, Henri J. M. M.; Out, Mattijs; Goedhart, Peter T.; Ince, Can; Hardeman, Max R.; Romijn, Johannes A.; Rabelink, Ton J.; Reiber, Johan H. C.; Box, Frieke M. A.

    2010-01-01

    Aims: Distorted wall shear stress (WSS) in patients with type 2 diabetes mellitus (T2DM) may be partly explained by an altered red blood cell aggregation tendency (RAT) on viscosity at low shear rate (SR). The present study evaluates viscosity modeling by implementation of hematocrit and RAT in

  4. Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.; Velduis, A.C.

    2008-01-01

    Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)

  5. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    Science.gov (United States)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  6. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    International Nuclear Information System (INIS)

    Di Stefano, C. A.; Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.

    2014-01-01

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description

  7. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.

    Science.gov (United States)

    Boehning, Fiete; Mejia, Tzahiry; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    Reducing hemolysis has been one of the major goals of rotary blood pump development and in the investigational phase, the capability of hemolysis estimation for areas of elevated shear stresses is valuable. The degree of hemolysis is determined by the amplitude of shear stress and the exposure time, but to date, the exact hemolytic behavior at elevated shear stresses and potential thresholds for subcritical shear exposure remain vague. This study provides experimental hemolysis data for a set of shear stresses and exposure times to allow better estimations of hemolysis for blood exposed to elevated shearing. Heparinized porcine blood with a hematocrit of 40% was mechanically damaged in a flow-through laminar Couette shear flow at a temperature of 23°C. Four levels of shear stress, 24, 592, 702, and 842 Pa, were replicated at two exposure times, 54 and 873 ms. For the calculation of the shear stresses, an apparent viscosity of 5 mPas was used, which was verified in an additional measurement of the blood viscosity. The hemolysis measurements were repeated four times, whereby all conditions were measured once within the same day and with blood from the same source. Samples were taken at the inlet and outlet of the shear region and an increase in plasma-free hemoglobin was measured. An index of hemolysis (IH) was thereby calculated giving the ratio of free to total hemoglobin. The results are compared with data from previously published studies using a similar shearing device. Hemolysis was found to increase exponentially with shear stress, but high standard deviations existed at measurements with elevated IH. At short exposure times, the IH remained low at under 0.5% for all shear stress levels. For high exposure times, the IH increased from 0.84% at 592 Pa up to 3.57% at the highest shear stress level. Hemolysis was significant for shear stresses above ∼600 Pa at the high exposure time of 873 ms. Copyright © 2014 International Center for Artificial

  8. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    International Nuclear Information System (INIS)

    Holmes, M J; Parker, N G; Povey, M J W

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  9. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.

    Science.gov (United States)

    Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar

    2016-01-01

    Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.

  10. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Science.gov (United States)

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  11. Extremely high wall-shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  12. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    International Nuclear Information System (INIS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-01-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response

  13. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Energy Technology Data Exchange (ETDEWEB)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  14. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  15. High resolution 3-D shear wave velocity structure in South China from surface wave tomography

    Science.gov (United States)

    Ning, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP

  16. Pressure effects on viscosity and flow stability of polyethylene melts during extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Enric Santanach; Kissi, Nadia El; Piau, Jean-Michel; Toussaint, Fabrice; Nigen, Sophie [Domaine Universitaire, Laboratoire de Rheologie, Universite Joseph Fourier-Grenoble I, Institut National Polytechnique de Grenoble, CNRS (UMR 5520), B. P. 53, Grenoble cedex 9 (France)

    2006-01-01

    In the present work, the effects of pressure on the viscosity and flow stability of four commercial grade polyethylenes (PEs) have been studied: linear-low-density polyethylene copolymer, high-density polyethylene, metallocene polyethylenes with short-chain branches (mPE-SCB), and metallocene polyethylenes with long chain branching (mPE-LCB). The range of shear rates considered covers both stable and unstable flow regimes. ''Enhanced exit-pressure'' experiments have been performed attaining pressures of the order of 500 x 10{sup 5} Pa at the die exit. The necessary experimental conditions have been clearly defined so that dissipative heating can be neglected and pressure effects isolated. The results obtained show an exponential increase in both shear and entrance-flow pressure drop with mean pressure when shear rate is fixed and as long as flow is stable. These pressure effects are described by two pressure coefficients, {beta}{sub S} under shear and, {beta}{sub E} under elongation, that are calculated using time-pressure superposition and that are independent of mean pressure and flow rate. For three out of four PE, pressure coefficient values can be considered equal under shear and under elongation. However, for the mPE-LCB, the pressure coefficient under elongation is found to be about 30% lower than under shear. Flow instabilities in the form of oscillating flows or of upstream instabilities appear at lower shear rates as mean pressure increases. Nevertheless, the critical shear stress at which they are triggered remains independent of mean pressure. Moreover, it is found that the {beta}{sub S} values obtained for stable flows do not differ much from the values obtained during upstream instability regimes, and differ really from pressure effects observed under oscillating flow and slip conditions. (orig.)

  17. Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8-13 years in 4 teeth.

    NARCIS (Netherlands)

    Frencken, J.E.F.M.; Wolke, J.G.C.

    2010-01-01

    OBJECTIVES: Resin composite sealants are retained longer than low-viscosity glass-ionomer sealants. Nevertheless, a systematic review showed that there is no evidence that resin composite sealants are superior to low-viscosity glass-ionomers in preventing dentine carious lesion development. This

  18. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  19. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  20. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries

    International Nuclear Information System (INIS)

    Xu, Feng; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Sun, Litao; Ge, Binghui; Chen, Jing; Cui, Yiping; Nathan, Arokia; Xin, Linhuo L; Ma, Hongyu; Wu, Lijun; Zhu, Yimei

    2016-01-01

    Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ∼1.25 × 10 4 s −1 . The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs. (paper)

  1. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  2. Evidence for modified transport due to sheared E x B flows in high-temperature plasmas

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Austin, M.E.

    1994-11-01

    Sheared mass flows are generated in many fluids and are often important for the dynamics of instabilities in these fluids. Similarly, large values of the E x B velocity have been observed in magnetic confinement machines and there is theoretical and experimental evidence that sufficiently large shear in this velocity may stabilize important instabilities. Two examples of this phenomenon have been observed in the DIII-D tokamak. In the first example, sufficient heating power can lead to the L-H transition, a rapid improvement in confinement in the boundary layer of the plasma. For discharges with heating power close to the threshold required to get the transition, changes in the edge radial electric field are observed to occur prior to the transition itself. In the second example, certain classes of discharges with toroidal momentum input from neutral beam injection exhibit a further improvement of confinement in the plasma core leading to a regime called the VH-mode. In both examples, the region of improved confinement is characterized by an increase of shear in the radial electric field E r , reduced levels of turbulence and increases in gradients of temperatures and densities. These observations are consistent with the hypothesis that the improved confinement is caused by an increase in shear of the E x B velocity which leads to a reduction of turbulence. For the VH-mode, the dominant term controlling E r is the toroidal rotation v φ , indicating that the E r profile is controlled by the source and transport of toroidal momentum

  3. Excessive Additive Effect On Engine Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2014-01-01

    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  4. Dynamic viscosity study of barley malt and chicory concentrates

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2016-01-01

    Full Text Available The purpose of research is to find optimal conditions for dispersing and subsequent dehydration of liquid food environments in the nozzle spray drying chamber through the study of dynamic changes in viscosity according to temperature, velocities gradients and dry residue content. The objects of study were roasted chicory and malt barley concentrates with dry residue content of 20, 40, 60 and 80%. Research of dynamic viscosity were carried out at the measuring complex based on the rotational viscometer Rheotest II, analog-to-digital converter, module Laurent and a personal computer with a unique software that allows to record in real time (not only on a tape recorder, but also in the form of graphic files the behavior of the viscosity characteristics of concentrates. Registration of changes of dynamic viscosity was carried out at a shear rate gradient from 1,0 с -1 to 27,0 с -1 and the products temperature thermostating : 35, 55, 75˚ C. The research results are presented in the form of graphic dependences of effective viscosity on shear rate and flow curves (dependencies of shear stresses on the velocity gradient, which defined flow regimes, the optimal modes of dispersion concentrates into spray dryer chambers in obtaining of powdered semi-finished products and instanting were found: dry residue content - 40 %, concentrate temperature - 75 ˚C, velocity gradient in the air channel of the nozzle at least 20 c-1

  5. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    Science.gov (United States)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  6. The Effect of the Operating Conditions on the Apparent Viscosity of Crude Palm Oil During Oil Clarification

    OpenAIRE

    Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr

    2012-01-01

    This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used...

  7. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kehr, Mirko

    2009-10-29

    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  8. On Lateral Viscosity Contrast in the Mantle and the Rheology of Low-Frequency Geodynamics

    Science.gov (United States)

    Ivins, Erik R.; Sammis, Charles G.

    1995-01-01

    Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of long- wavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, (Delta)eta(bar)(sub i), of volumetric concentration, phi(sub i). For the upper mantle deeper than 340 km the following reasonable limits are estimated for (delta)eta(bar) approx. equal 10(exp -2): 0.01 less than or equal to phi less than or equal to 0.15. A spectrum of ratios (Delta)eta(bar)(sub i) less than 0.1 at concentration level eta(sub i) approx. equal 10(exp -6) - 10(exp -1) in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.

  9. Blood and plasma viscosity in diabetes: possible contribution to late organ complications?

    NARCIS (Netherlands)

    Schut, N. H.; van Arkel, E. C.; Hardeman, M. R.; Bilo, H. J.; Michels, R. P.; Vreeken, J.

    1992-01-01

    It has been postulated that an increased whole blood and plasma viscosity contribute to diabetic organ complications. Blood viscosity was measured in 30 controls and four groups of insulin-dependent diabetic patients at three shear rates: 70 sec-1, 0.5 sec-1 and 0.05 sec-1. Results were compared

  10. Viscosity of saturated helium-3-helium-4 mixture below 200 mK

    NARCIS (Netherlands)

    Zeegers, J.C.H.; Waele, de A.T.A.M.; Gijsman, H.M.

    1991-01-01

    The shear viscosity of saturated3He-4He mixture has been measured at temperatures between 7 mK and 200 mK using a vibrating-wire viscometer and a calibrated pressure cell. The reliability of the vibrating-wire technique was tested by measuring the viscosity of pure4He. The results are internally

  11. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    International Nuclear Information System (INIS)

    Donnelly, R.J.; LaMar, M.M.

    1987-01-01

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II

  12. The role of viscosity in TATB hot spot ignition

    Science.gov (United States)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  13. Numerical Simulation of Neoclassical Currents, Parallel Viscosity, and Radial Current Balance in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Kiviniemi, T.

    2001-01-01

    One of the principal problems en route to a fusion reactor is that of insufficient plasma confinement, which has lead to both theoretical and experimental research into transport processes in the parameter range relevant for fusion energy production. The neoclassical theory of tokamak transport is well-established unlike the theory of turbulence driven anomalous transport in which extensive progress has been made during last few years. So far, anomalous transport has been dominant in experiments, but transport may be reduced to the neoclassical level in advanced tokamak scenarios. This thesis reports a numerical study of neoclassical fluxes, parallel viscosity, and neoclassical radial current balance in tokamaks. Neoclassical parallel viscosity and particle fluxes are simulated over a wide range of collisionalities, using the fully kinetic five-dimensional neoclassical orbit-following Monte Carlo code ASCOT. The qualitative behavior of parallel viscosity derived in earlier analytic models is shown to be incorrect for high poloidal Mach numbers. This is because the poloidal dependence of density was neglected. However, in high Mach number regime, it is the convection and compression terms, rather than the parallel viscosity term, that are shown to dominate the momentum balance. For fluxes, a reasonable agreement between numerical and analytical results is found in the collisional parameter regime. Neoclassical particle fluxes are additionally studied in the banana regime using the three-dimensional Fokker-Planck code DEPORA, which solves the drift-kinetic equation with finite differencing. Limitations of the small inverse aspect ratio approximation adopted in the analytic theory are addressed. Assuming that the anomalous transport is ambipolar, the radial electric field and its shear at the tokamak plasma edge can be solved from the neoclassical radial current balance. This is performed both for JET and ASDEX Upgrade tokamaks using the ASCOT code. It is shown that

  14. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  15. Nonlinear damping for vibration isolation of microsystems using shear thickening fluid

    Science.gov (United States)

    Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.

    2013-06-01

    This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.

  16. Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure.

    Science.gov (United States)

    Viseras, C; Meeten, G H; Lopez-Galindo, A

    1999-05-10

    The effect of mixing conditions on the flow curves of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm Copyright, UK) were selected as model clays. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Rheological measurements were taken and the corresponding flow curves obtained immediately after interposition and then after a period of 24 h under low shear caused by a roller apparatus. Aqueous sepiolite dispersions showed the highest viscosity and were easily interposed, whereas palygorskite dispersions were more difficult to obtain, resulting in low to medium viscosity gels. Bentonite dispersions provided medium viscosity systems, which greatly increased their viscosity after the low shear treatment (as a result of swelling), whereas the viscosity of the fibrous clays stayed at approximately the same values or even decreased. A linear relation was found between mixing energy and apparent viscosity in the bentonite systems, while apparent viscosity in the sepiolite samples was related to mixing power, with minor influence of mixing times. All the systems studied had thixotropic behaviour, changing from clearly positive to even negative thixotropy in some palygorskite systems. Finally, we studied the effect of drastic pH changes on the system structure. Results showed that rheological properties were highly sensitive to pH in the fibrous dispersions, but less sensitive behaviour was found in the laminar clay systems. Copyright.

  17. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    Science.gov (United States)

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  18. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  19. Electron treatment of wood pulp for the viscose process

    Science.gov (United States)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  20. Role of shear stress in nitric oxide-dependent modulation of renal angiotensin II vasoconstriction.

    Science.gov (United States)

    Endlich, K; Muller, C; Barthelmebs, M; Helwig, J J

    1999-08-01

    1. Renal vasoconstriction in response to angiotensin II (ANGII) is known to be modulated by nitric oxide (NO). Since shear stress stimulates the release of a variety of vasoactive compounds from endothelial cells, we studied the impact of shear stress on the haemodynamic effect of ANGII in isolated perfused kidneys of rats under control conditions and during NO synthase inhibition with L-NAME (100 microM). 2. Kidneys were perfused in the presence of cyclo-oxygenase inhibitor (10 microM indomethacin) with Tyrode's solution of relative viscosity zeta=1 (low viscosity perfusate, LVP) or, in order to augment shear stress, with Tyrode's solution containing 7% Ficoll 70 of relative viscosity zeta=2 (high viscosity perfusate, HVP). 3. Vascular conductance was 3.5+/-0.4 fold larger in HVP as compared with LVP kidneys, associated with an augmentation of overall wall shear stress by 37+/-5%. During NO inhibition, vascular conductance was only 2.5+/-0.2 fold elevated in HVP vs LVP kidneys, demonstrating shear stress-induced vasodilatation by NO and non-NO/non-prostanoid compound(s). 4. ANGII (10 - 100 pM) constricted the vasculature in LVP kidneys, but was without effect in HVP kidneys. During NO inhibition, in contrast, ANGII vasoconstriction was potentiated in HVP as compared with LVP kidneys. 5. The potentiation of ANGII vasoconstriction during NO inhibition has been shown to be mediated by endothelium-derived P450 metabolites and to be sensitive to AT2 receptor blockade in our earlier studies. Accordingly, in HVP kidneys, increasing concentrations of the AT2 receptor antagonist PD123319 (5 and 500 nM) gradually abolished the potentiation of ANGII vasoconstriction during NO inhibition, but did not affect vasoconstriction in response to ANGII in LVP kidneys. 6. Our results demonstrate, that augmentation of shear stress by increasing perfusate viscosity induces vasodilatation in the rat kidney, which is partially mediated by NO. Elevated levels of shear stress attenuate

  1. Technological characteristics of meat - viscosity

    OpenAIRE

    DIBĎÁK, Tomáš

    2012-01-01

    This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...

  2. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  3. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  4. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina

    2013-01-01

    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  5. Viscosity of glasses containing simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1978-08-01

    The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated

  6. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  7. Dispensing of very low volumes of ultra high viscosity alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping of scaffolds and implants.

    Science.gov (United States)

    Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko

    2009-01-01

    We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.

  8. Determination of Viscosity Versus Pressure by Means of a Clearance Seal

    DEFF Research Database (Denmark)

    Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl

    2018-01-01

    This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...

  9. On the measurement of the relative viscosity of suspensions

    International Nuclear Information System (INIS)

    Acrivos, A.; Fan, X.; Mauri, R.

    1994-01-01

    The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement with those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. 41, 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number A, and should attain its correct value for a well-mixed suspension only as A→∞. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate

  10. Effects of Nattokinase on Whole Blood Viscosity and Mortality

    Directory of Open Access Journals (Sweden)

    Melike Cengiz

    2011-12-01

    Full Text Available Objective: Nattokinase is a serin protease having potent fibrinolytic effect derived from fermentation of boiled soy bean by the use of Basillus Subtilis Natto. The aim of this experimental study is to investigate the effects of intragastric Nattokinase (6 mg/day administration for 7 days prior to formation of sepsis on plasma fibrinogen levels, whole blood viscosity and mortality in rats. Materials and Methods: Intraabdominal sepsis were performed by cecal ligation and puncture in rats supplemented with nattokinase or olive oil for 7 days prior to sepsis formation. Plasma fibrinogen, whole blood viscosity analysis and survival analysis was performed after intraabdominal sepsis formation. Results: Mean blood viscosity of rats was lower in Nattokinase and cecal ligation group at lowest shear rate (p<0.05. However, the differences between groups were not significant at higher shear rates. No difference was found in survival rates and survival times of Nattokinase and cecal ligation and cecal ligation and puncture groups. Conclusion: Our results were unable to show the effects of intragastric nattokinase supplementation prior to sepsis on plasma fibrinogen levels or whole blood viscosity, except low shear rate. Nattokinase did not altered survival in septic rats. (Journal of the Turkish Society Intensive Care 2011; 9: 85-9

  11. Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results

    Science.gov (United States)

    Bertolini, Davide; Tani, Alessandro

    1995-08-01

    The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the

  12. Nondimensional scaling of magnetorheological rotary shear mode devices using the Mason number

    Science.gov (United States)

    Becnel, Andrew C.; Sherman, Stephen; Hu, Wei; Wereley, Norman M.

    2015-04-01

    Magnetorheological fluids (MRFs) exhibit rapidly adjustable viscosity in the presence of a magnetic field, and are increasingly used in adaptive shock absorbers for high speed impacts, corresponding to high fluid shear rates. However, the MRF properties are typically measured at very low (γ ˙10,000 s-1) Searle cell magnetorheometer, along with a full scale rotary-vane magnetorheological energy absorber (γ ˙>25,000 s-1) are employed to analyze MRF property scaling across shear rates using a nondimensional Mason number to generate an MRF master curve. Incorporating a Reynolds temperature correction factor, data from both experiments is shown to collapse to a single master curve, supporting the use of Mason number to correlate low- and high-shear rate characterization data.

  13. Shear viscosity to electric conductivity ratio of the QGP

    Directory of Open Access Journals (Sweden)

    Puglisi A.

    2016-01-01

    Full Text Available The transport coefficients of strongly interacting matter are currently subject of intense theoretical and phenomenological studies due to their relevance for the characterization of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions (uRHIC. We predict that (η/s/(σel/T, independently on the running coupling αs(T, should increase up to about ~ 20 for T → Tc, while it goes down to a nearly flat behavior around ≃ 4 for T ≥ 4 Tc. Therefore we find a stronger T-dependence of σel/T with respect to η/s that in a quasiparticle approach is constrained by lQCD thermodynamics. A conformal theory, instead, predicts a similar T dependence of η/s and σel/T.

  14. Shear viscosity of binary mixtures: The Gay-Berne potential

    Science.gov (United States)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  15. Shear viscosity of binary mixtures: The Gay–Berne potential

    International Nuclear Information System (INIS)

    Khordad, R.

    2012-01-01

    Highlights: ► Most useful potential model to study the real systems is the Gay–Berne (GB) potential. ► We use GB model to examine thermodynamical properties of some anisotropic binary mixtures in two different phases. ► The integral equation methods are applied to solve numerically the Percus–Yevick (PY) equation. ► We obtain expansion coefficients of correlation functions needed to calculate the properties of studied mixtures. ► The results are compared with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, etc.] - Abstract: The Gay–Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus–Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  16. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  17. Skyrmions and Hall viscosity

    Science.gov (United States)

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  18. High performance with modified shear in JET D-D and D-T plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    The observation of Internal Transport Barriers (ITBs) in which ion thermal diffusivity is reduced to a neo- classical level and the electron thermal diffusivity is substantially reduced has been made in JET with the optimised shear scenario with the MkII divertor both in D-D and in D-T. Central ion temperatures of 40keV and plasma pressure gradient of 10 6 Pa/m were observed in D-T leading to a fusion triple product n i T i τ E =1x10 21 m -3 keVs and 8.2MW of fusion power. ITBs have also been produced in the new Gas Box divertor configuration with a similar behaviour. With the new divertor an L-mode edge has only been produced using edge radiation cooling. For the first time, ITBs have been triggered by radiating about 40% of the power with a krypton puff. A tentative scaling of the power needed to trigger an ITB with magnetic field is indicated. (author)

  19. Shear induced phase transition in PbO under high pressure

    International Nuclear Information System (INIS)

    Giefers, Hubertus; Porsch, Felix

    2007-01-01

    We have studied the structural behavior of lead monoxide (PbO) as a function of pressure via angular dispersive X-ray diffraction employing two different pressure transmitting media that were quasi-hydrostatic (N 2 ) and non-hydrostatic (MgO), respectively. Besides litharge (α-PbO) and massicot (β-PbO), which are both stable at ambient pressure, there is an orthorhombic γ-PbO phase which appears upon application of pressure to α-PbO. We have found that the orthorhombic γ-PbO phase is favored by shear stress under non-hydrostatic conditions. α-PbO shows strong anisotropy in compressibility. The a-axis is rather incompressible with a linear stiffness coefficient of K a0 =540(30) GPa whereas the c-axis stiffness is K c0 =25(1) GPa. The bulk modulus of α-PbO is K 0 =23.1(3) GPa and its derivative K 0 ' =7.0(3)

  20. Viscosities in the Gluon-Plasma within a Quasiparticle Model

    CERN Document Server

    Bluhm, M; Redlich, K

    2009-01-01

    A phenomenological quasiparticle model, featuring dynamically generated self-energies of excitation modes, successfully describes lattice QCD results relevant for the QCD equation of state and related quantities both at zero and non-zero net baryon density. Here, this model is extended to study bulk and shear viscosities of the gluon-plasma within an effective kinetic theory approach. In this way, the compatibility of the employed quasiparticle ansatz with the apparent low viscosities of the strongly coupled deconfined gluonic medium is shown.

  1. An eddy viscosity model for flow in a tube bundle

    International Nuclear Information System (INIS)

    Soussan, D.; Grandotto, M.

    1998-01-01

    The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)

  2. Effect of viscosity on tear drainage and ocular residence time.

    Science.gov (United States)

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  3. Process analytical technology (PAT) approach to the formulation of thermosensitive protein-loaded pellets: Multi-point monitoring of temperature in a high-shear pelletization.

    Science.gov (United States)

    Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza

    2016-12-01

    In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    Science.gov (United States)

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P

    2016-06-28

    RAFT solution polymerization of N -(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA 63 -PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in M n with increasing PNMEP DP. A gradual increase in M w / M n was also observed when targeting higher DPs. However, this problem could be minimized ( M w / M n RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1 H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA 63 -PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather convenient low-viscosity form. Finally, the relatively expensive PGMA macro-CTA was replaced with a poly(methacrylic acid) (PMAA) macro-CTA. High conversions were also achieved for PMAA 85 -PNMEP x diblock copolymers prepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when

  5. Determination of relationship between sensory viscosity rating and instrumental flow behaviour of soluble dietary fibers.

    Science.gov (United States)

    Arora, Simran Kaur; Patel, A A; Kumar, Naveen; Chauhan, O P

    2016-04-01

    The shear-thinning low, medium and high-viscosity fiber preparations (0.15-1.05 % psyllium husk, 0.07-0.6 % guar gum, 0.15-1.20 % gum tragacanth, 0.1-0.8 % gum karaya, 0.15-1.05 % high-viscosity Carboxy Methyl Cellulose and 0.1-0.7 % xanthan gum) showed that the consistency coefficient (k) was a function of concentration, the relationship being exponential (R(2), 0.87-0.96; P flow behaviour index (n) (except for gum karaya and CMC) was exponentially related to concentration (R(2), 0.61-0.98). The relationship between k and sensory viscosity rating (SVR) was essentially linear in nearly all cases. The SVR could be predicted from the consistency coefficient using the regression equations developed. Also, the relationship of k with fiber concentration would make it possible to identify the concentration of a particular gum required to have desired consistency in terms of SVR.

  6. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2011-01-01

    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6

  7. Local viscosity distribution in bifurcating microfluidic blood flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2018-03-01

    The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

  8. A viscosity and density meter with a magnetically suspended rotor

    International Nuclear Information System (INIS)

    Bano, Mikulas; Strharsky, Igor; Hrmo, Igor

    2003-01-01

    A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K

  9. Evaluation of Shear Wall-RC Frame Interaction of High-Rise Buildings using 2-D model Approach

    Directory of Open Access Journals (Sweden)

    Dipali Patel

    2015-09-01

    Full Text Available The usefulness of structural walls in the framing of buildings has long been recognized. It is generally preferred to use shear wall in combination with moment resisting frame. In the present study, an effort is also made to investigate the shear wall-RC frame interaction using 2-D modeling of 20, 30 and 35 storey RC frame building with shear wall. In equivalent simplified 2-D model, two exterior frames with shear wall modeled as single frame with double stiffness, strength and weight. The interior frames without shear wall are modeled as a single frame with equivalent stiffness, strength and weight. The modeled frames are connected with rigid link at each floor level. Using 2-D plane frame model the lateral force distribution between Exterior frame with shear wall and Interior frame without shear wall is investigated. From the analysis, it is observed that up to bottom seven/eight storey more than 50% load is taken by frame with shear wall and the lower most three storeys take about 75% of total storey shear.

  10. Numerical study of shear thickening fluid with discrete particles embedded in a base fluid

    Directory of Open Access Journals (Sweden)

    W Zhu

    2016-09-01

    Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.

  11. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Shear and extensional properties of kefiran.

    Science.gov (United States)

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-05

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.

    Science.gov (United States)

    Shi, Limin; Feng, Yushi; Sun, Changquan Calvin

    2011-05-18

    The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Viscosity calculations of simulated ion-exchange resin waste glasses

    International Nuclear Information System (INIS)

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre

    2000-01-01

    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  15. Magnetically-charged black branes and viscosity/entropy ratios

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Shan [Institute for Advanced Physics & Mathematics,Zhejiang University of Technology, Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2016-12-19

    We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of Np-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n−2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n−2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.

  16. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  17. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  18. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

    2011-01-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  19. Non-Invasive Diagnostics for Measuring Physical Properties and Processes in High Level Wastes

    International Nuclear Information System (INIS)

    Robert Powell; David Pfund

    2005-01-01

    This research demonstrated the usefulness of tomographic techniques for determining the physical properties of slurry suspensions. Of particular interest was the measurement of the viscosity of suspensions in complex liquids and modeling these. We undertook a long rage program that used two techniques, magnetic resonance imaging and ultrasonic pulsed Doppler velocimetry. Our laboratory originally developed both of these for the measurement of viscosity of complex liquids and suspensions. We have shown that the relationship between shear viscosity and shear rate can be determined over a wide range of shear rates from a single measurement. We have also demonstrated these techniques for many non-Newtonian fluids which demonstrate highly shear thinning behavior. This technique was extended to determine the yield stress with systems of interacting particles. To model complex slurries that may be found in wastes applications, we have also used complex slurries that are found in industrial applications

  20. The shear and bulk relaxation times from the general correlation functions

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  1. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    Science.gov (United States)

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  2. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  3. Viscosity of aluminum under shock-loading conditions

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa·s, (2800±100) Pa·s and (3500±100) Pa·s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement. (interdisciplinary physics and related areas of science and technology)

  4. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  5. Direct contra naïve-indirect comparison of clinical failure rates between high-viscosity GIC and conventional amalgam restorations: an empirical study.

    Science.gov (United States)

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2013-01-01

    Naïve-indirect comparisons are comparisons between competing clinical interventions' evidence from separate (uncontrolled) trials. Direct comparisons are comparisons within randomised control trials (RCTs). The objective of this empirical study is to test the null-hypothesis that trends and performance differences inferred from naïve-indirect comparisons and from direct comparisons/RCTs regarding the failure rates of amalgam and direct high-viscosity glass-ionomer cement (HVGIC) restorations in permanent posterior teeth have similar direction and magnitude. A total of 896 citations were identified through systematic literature search. From these, ten and two uncontrolled clinical longitudinal studies for HVGIC and amalgam, respectively, were included for naïve-indirect comparison and could be matched with three out twenty RCTs. Summary effects sizes were computed as Odds ratios (OR; 95% Confidence intervals) and compared with those from RCTs. Trend directions were inferred from 95% Confidence interval overlaps and direction of point estimates; magnitudes of performance differences were inferred from the median point estimates (OR) with 25% and 75% percentile range, for both types of comparison. Mann-Whitney U test was applied to test for statistically significant differences between point estimates of both comparison types. Trends and performance differences inferred from naïve-indirect comparison based on evidence from uncontrolled clinical longitudinal studies and from direct comparisons based on RCT evidence are not the same. The distributions of the point estimates differed significantly for both comparison types (Mann-Whitney U  =  25, n(indirect)  =  26; n(direct)  =  8; p  =  0.0013, two-tailed). The null-hypothesis was rejected. Trends and performance differences inferred from either comparison between HVGIC and amalgam restorations failure rates in permanent posterior teeth are not the same. It is recommended that clinical practice

  6. Dynamics of shear-induced ATP release from red blood cells.

    Science.gov (United States)

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  7. Improved brachial artery shear patterns and increased flow-mediated dilation after low-volume high-intensity interval training in type 2 diabetes.

    Science.gov (United States)

    Ghardashi Afousi, Alireza; Izadi, Mohammad Reza; Rakhshan, Kamran; Mafi, Farnoosh; Biglari, Soheil; Gandomkar Bagheri, Habibalah

    2018-06-22

    What is the central question of this study? Endothelial function is impaired because of increased oscillatory and retrograde shear in patients with type 2 diabetes. It is unclear whether low-volume high-intensity interval training and continuous moderate intensity exercise can modulate oscillatory and retrograde shear, blood flow and flow-mediated arterial dilation in these patients. What is the main finding and its importance? We found that low-volume high-intensity interval training, by increasing anterograde shear and decreasing retrograde shear and oscillatory index, can increase nitric oxide production and consequently result in increased flow-mediated dilation and outward arterial remodelling in patients with type 2 diabetes. Atherosclerosis in patients with type 2 diabetes is characterized by endothelial dysfunction associated with impaired flow-mediated dilation (FMD) and increases retrograde and oscillatory shear. The present study investigated endothelium-dependent vasodilation and shear rate in patients with type 2 diabetes at baseline and follow-up after 12 weeks of low-volume high-intensity interval training (LV-HIIT) or continuous moderate intensity training (CMIT). Seventy five sedentary patients with type 2 diabetes and untreated pre- or stage I hypertension were randomly divided into LV-HIIT, CMIT and control groups. The LV-HIIT group intervention was 12 intervals of 1.5 min at 85%-90% HR max and 2 min at 55%-60% HR max . The CMIT group intervention was 42 min of exercise at 70% HR max for 3 sessions per week during 12 weeks. High-resolution Doppler ultrasound was used to measure FMD, arterial diameter, anterograde and retrograde blood flow and shear rate patterns. Brachial artery FMD increased significantly in the LV-HIIT group (3.83 ± 1.13 baseline, 7.39 ± 3.6% follow-up), whereas there were no significant increase in the CMIT group (3.45 ± 0.97 baseline, 4.81 ± 2.36% follow-up) compared to the control group (3.16 ± 0

  8. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  9. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  10. Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.

    Science.gov (United States)

    Hitt, Darren L.; Lowe, Mary L.

    1996-11-01

    In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633

  11. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    Science.gov (United States)

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    Science.gov (United States)

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    Science.gov (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of Viscosity on Liquid Curtain Stability

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  16. The Contribution of Red Blood Cell Dynamics to Intrinsic Viscosity and Functional ATP Release

    Science.gov (United States)

    Forsyth, Alison; Abkarian, Manouk; Wan, Jiandi; Stone, Howard

    2010-11-01

    In shear flow, red blood cells (RBCs) exhibit a variety of behaviors such as rouleaux formation, tumbling, swinging, and tank-treading. The physiological consequences of these dynamic behaviors are not understood. In vivo, ATP is known to signal vasodilation; however, to our knowledge, no one has deciphered the relevance of RBC microrheology to the functional release of ATP. Previously, we correlated RBC deformation and ATP release in microfluidic constrictions (Wan et al., 2008). In this work, a cone-plate rheometer is used to shear a low hematocrit solution of RBCs at varying viscosity ratios (λ) between the inner cytoplasmic hemoglobin and the outer medium, to determine the intrinsic viscosity of the suspension. Further, using a luciferin-luciferase enzymatic reaction, we report the relative ATP release at varying shear rates. Results indicate that for λ = 1.6, 3.8 and 11.1, ATP release is constant up to 500 s-1, which suggests that the tumbling-tanktreading transition does not alter ATP release in pure shear. For lower viscosity ratios, λ = 1.6 and 3.8, at 500 s-1 a change in slope occurs in the intrinsic viscosity data and is marked by an increase in ATP release. Based on microfluidic observations, this simultaneous change in viscosity and ATP release occurs within the tank-treading regime.

  17. Structure and conformation of α-glucan extracted from Agaricus blazei Murill by high-speed shearing homogenization.

    Science.gov (United States)

    Zhang, Anqiang; Deng, Jiaying; Liu, Xiaoqing; He, Pengfei; He, Liang; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2018-07-01

    Agaricus blazei Murill is an edible and medicinal mushroom favored in many countries, by virtue of both its delicious taste and its potential health benefits such as its purported anticancer activity. A neutral α-glucan (ABM40-1) with a carbohydrate content of 96% was purified from the high-speed shearing homogenization extracts of A. Blazei Murill by ethanol precipitation and column chromatography. Methylation analysis along with nuclear magnetic resonance spectroscopy revealed that ABM40-1 was an α-(1→4)-d-glucopyranan with O-6 position occasionally occupied with α-Glcp-(1→or α-Glcp-(1→6)-β-Glcp-(1→side chains. A weight-average molecular weight of 7.34×10 6 Da was determined for ABM40-1 and its chain in solution was revealed as a compact sphere by size exclusion chromatography (SEC) coupled with a laser light scattering. This spherical conformation was also further confirmed by Congo red test and using atom force microscopy. These results suggest it would be worthwhile to further study the potential bioactivities of ABM40-1. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Characteristics of the scrape-off layer in DIII-D high-performance negative central magnetic shear discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, C.J. [General Atomics, San Diego, CA (United States); Maingi, R. [General Atomics, San Diego, CA (United States); Leonard, A.W. [General Atomics, San Diego, CA (United States); Allen, S.L. [General Atomics, San Diego, CA (United States); Buchenauer, D.A. [General Atomics, San Diego, CA (United States); Burrell, K.H. [General Atomics, San Diego, CA (United States); Casper, T.A. [General Atomics, San Diego, CA (United States); Cuthbertson, J.W. [General Atomics, San Diego, CA (United States); Fenstermacher, M.E. [General Atomics, San Diego, CA (United States); Hill, D.N. [General Atomics, San Diego, CA (United States); Jong, R.A. [General Atomics, San Diego, CA (United States); Lao, L.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [General Atomics, San Diego, CA (United States); Moyer, R.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Porter, G.D. [General Atomics, San Diego, CA (United States); Rice, B.W. [General Atomics, San Diego, CA (United States); Stallard, B.W. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); Watkins, J.G. [General Atomics, San Diego, CA (United States)

    1997-02-01

    In this paper we present measurements of the global power and particle balance in the high-performance phase of negative central magnetic shear (NCS) discharges and compare with reference VH-mode discharges. The principal differences observed are that NCS has a much lower fraction of the total input power flowing into the boundary, less core radiation, and larger rate of stored energy increase as a fraction of total power. Scrape-off layer (SOL) temperature and divertor heat flux profiles, and radiation profiles at the midplane, are similar to VH-mode. Due to the good core particle confinement and efficient fueling by neutral beam injection (NBI), with little gas puffing, the gas load on the walls and the recycling are very low during the NCS discharges. This results in a rate of density rise relative to beam fueling at the L to H transition time which is 1/3 of the value for VH transitions, which is in turn 1/2 that for L-to-ELMing-H-mode transitions. (orig.).

  19. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.

    Science.gov (United States)

    Philippe, A M; Baravian, C; Bezuglyy, V; Angilella, J R; Meneau, F; Bihannic, I; Michot, L J

    2013-04-30

    In the present study, we investigate the evolution with shear of the viscosity of aqueous suspensions of size-selected natural swelling clay minerals for volume fractions extending from isotropic liquids to weak nematic gels. Such suspensions are strongly shear-thinning, a feature that is systematically observed for suspensions of nonspherical particles and that is linked to their orientational properties. We then combined our rheological measurements with small-angle X-ray scattering experiments that, after appropriate treatment, provide the orientational field of the particles. Whatever the clay nature, particle size, and volume fraction, this orientational field was shown to depend only on a nondimensional Péclet number (Pe) defined for one isolated particle as the ratio between hydrodynamic energy and Brownian thermal energy. The measured orientational fields were then directly compared to those obtained for infinitely thin disks through a numerical computation of the Fokker-Plank equation. Even in cases where multiple hydrodynamic interactions dominate, qualitative agreement between both orientational fields is observed, especially at high Péclet number. We have then used an effective approach to assess the viscosity of these suspensions through the definition of an effective volume fraction. Using such an approach, we have been able to transform the relationship between viscosity and volume fraction (ηr = f(φ)) into a relationship that links viscosity with both flow and volume fraction (ηr = f(φ, Pe)).

  20. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  1. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes

    Science.gov (United States)

    2014-01-01

    Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45°C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the

  2. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  3. Synergy of plasma resistivity and electron viscosity in mediating double tearing modes in cylindrical plasmas

    International Nuclear Information System (INIS)

    He Zhixiong; He, H D; Long, Y X; Mou, Z Z; Dong, J Q; Gao Zhe

    2010-01-01

    The linear behaviors of the double tearing mode (DTM) mediated by parallel electron viscosity and plasma resistivity in cylindrical plasmas with reversed magnetic shear and thus two resonant rational flux surfaces are numerically investigated in this paper. It is shown that DTMs mediated by electron viscosity alone behave similarly to the DTMs mediated by resistivity alone. DTMs mediated by electron viscosity are found to be enhanced by plasma resistivity, which is in such a range that the growth rate of the modes induced by the latter alone is comparable with that of the modes mediated by the former alone, and vice versa. Otherwise the growth rate of the modes is equal to the higher of the modes mediated by resistivity or electron viscosity alone when both resistivity and electron viscosity are taken into account. The enhancement is found to be closely related to the profiles of the stream function.

  4. The Effect of the Operating Conditions on the Apparent Viscosity of Crude Palm Oil During Oil Clarification

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr

    2012-10-01

    Full Text Available This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used in design of crude palm oil settlers and in determining the optimum operating conditions.Key Words:  Crude palm oil, apparent viscosity, shear rate, modelling, separation 

  5. Study of viscosity of aluminum melt during glass transition by molecular dynamics and Green–Kubo formula

    International Nuclear Information System (INIS)

    Kirova, E M; Pisarev, V V

    2016-01-01

    Molecular dynamics study of shear viscosity behavior of liquid aluminum is performed. The embedded atom method potential is used at the simulation of isobaric cooling. The viscosity is calculated using the Green–Kubo formula. The stress autocorrelation functions are obtained in the range 300-1200 K. The calculated kinematic viscosity is in agreement with the experimental data for the temperatures above melting temperature. The steep change of the shear viscosity is found below 650 K which we associate with the glass transition and is in a good agreement with the temperature which is obtained using the calorimetric criterion Kolotova et al (2015 J. Non-Cryst. Solids 429 98). The viscosity coefficient can not be calculated using the direct atomistic simulations below that temperature. (paper)

  6. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Directory of Open Access Journals (Sweden)

    L. Renbaum-Wolff

    2013-01-01

    Full Text Available Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions. The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η ranging between 10−3 and 103 Pascal seconds (Pa s in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures.

  7. Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure

    International Nuclear Information System (INIS)

    Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.

    1979-01-01

    Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear

  8. Estimation of viscosity based on transverse momentum correlations

    Science.gov (United States)

    Sharma, Monika

    2010-02-01

    The heavy ion program at RHIC created a paradigm shift in the exploration of strongly interacting hot and dense matter. An important milestone achieved is the discovery of the formation of strongly interacting matter which seemingly flows like a perfect liquid at temperatures on the scale of T ˜ 2 x10^12 K [1]. As a next step, we consider measurements of transport coefficients such as kinematic, shear or bulk viscosity? Many calculations based on event anisotropy measurements indicate that the shear viscosity to the entropy density ratio (η/s) of the fluid formed at RHIC is significantly below that of all known fluids including the superfluid ^4He [2]. Precise determination of η/s ratio is currently a subject of extensive study. We present an alternative technique for the determination of medium viscosity proposed by Gavin and Aziz [3]. Preliminary results of measurements of the evolution of the transverse momentum correlation function with collision centrality of Au + Au interactions at √sNN = 200 GeV will be shown. We present results on differential version of the correlation measure and describe its use for the experimental determination of η/s.[4pt] [1] J. Adams et al., [STAR Collaboration], Nucl. Phys. A 757 (2005) 102.[0pt] [2] R. A. Lacey et al., Phys. Rev. Lett. 98 (2007) 092301.[0pt] [3] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302. )

  9. The influence of viscosity stratification on boundary-layer turbulence

    Science.gov (United States)

    Lee, Jin; Jung, Seo Yoon; Sung, Hyung Jin; Zaki, Tamer A.

    2012-11-01

    Direct numerical simulations of turbulent flows over isothermally-heated walls were performed to investigate the influence of viscosity stratification on boundary-layer turbulence and drag. The adopted model for temperature-dependent viscosity was typical of water. The free-stream temperature was set to 30°C, and two wall temperatures, 70°C and 99°C, were simulated. In the heated flows, the mean shear-rate is enhanced near the wall and reduced in the buffer region, which induces a reduction in turbulence production. On the other hand, the turbulence dissipation is enhanced near the wall, despite the the reduction in fluid viscosity. The higher dissipation is attributed to a decrease in the smallest length scales and near-wall fine-scale motions. The combined effect of the reduced production and enhanced dissipation leads to lower Reynolds shear stresses and, as a result, reduction of the skin-friction coefficient. Supported by the Engineering and Physical Sciences Research Council (Grant EP/F034997/1) and partially supported by the Erasmus Mundus Build on Euro-Asian Mobility (EM-BEAM) programme.

  10. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Energy Technology Data Exchange (ETDEWEB)

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail: sxglm@126.com; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)

    2009-06-24

    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  11. Comparison of parallel viscosity with neoclassical theory

    International Nuclear Information System (INIS)

    Ida, K.; Nakajima, N.

    1996-04-01

    Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)

  12. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  13. Utilizing the non-bridge oxygen model to predict the glass viscosity

    International Nuclear Information System (INIS)

    Choi, Kwansik; Sheng, Jiawei; Maeng, Sung Jun; Song, Myung Jae

    1998-01-01

    Viscosity is the most important process property of waste glass. Viscosity measurement is difficult and costs much. Non-bridging Oxygen (NBO) model which relates glass composition to viscosity had been developed for high level waste at the Savannah River Site (SRS). This research utilized this NBO model to predict the viscosity of KEPRI's 55 glasses. It was found that there was a linear relationship between the measured viscosity and the predicted viscosity. The NBO model could be used to predict glass viscosity in glass formulation development. However the precision of predicted viscosity is out of satisfaction because the composition ranges are very different between the SRS and KEPRI glasses. The modification of NBO calculation, which included modification of alkaline earth elements and TiO 2 , could not strikingly improve the precision of predicted values

  14. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Science.gov (United States)

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  15. A sensitive dynamic viscometer for measuring the complex shear modulus in a steady shear flow using the method of orthogonal superposition

    NARCIS (Netherlands)

    Zeegers, J.C.H.; Zeegers, Jos; van den Ende, Henricus T.M.; Blom, C.; Altena, E.G.; Beukema, Gerrit J.; Beukema, G.J.; Mellema, J.

    1995-01-01

    A new instrument to carry out complex viscosity measurements in equilibrium and in a steady shear flow has been developed. A small amplitude harmonic excitation is superimposed orthogonally to the steady shear rate component. It is realized by a thin-walled cylinder, which oscillates in the axial

  16. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    Science.gov (United States)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  17. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  18. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  19. [Relations between plasma-erythrocyte viscosity factors and ESR].

    Science.gov (United States)

    Cortinovis, A; Crippa, A; Crippa, M; Bosoni, T; Moratti, R

    1992-09-01

    The ESR is usually put in relationship: to the real density of the RBCs (erythrocytes) (difference between the RBC specific gravity and the plasma one), and to the resistance that the RBCs meet moving in a medium, which is due to the plasma viscosity and to the total external RBC surface. When the RBCs take shape of aggregates, their external surface is decreased and ESR increases. The most important plasma factor causing changes in ESR is the fibrinogen level followed by the plasma globulins and by the products arising from the tissue damage. The resistance that the RBCs meet moving in the plasma is well expressed by the measurement of the plasma-RBC viscosity considering that is inclusive of both factors that are the plasma viscosity and the external RBC surface. The plasma-RBC viscosity is the resultant of several factors: Fa = Fb - Fe - Fs - Fm, were: Fa is the resultant, Fb the attracting forces due to the proteic macromolecules, Fe the repulsing forces due the negative charges. Fs the repulsing forces due to the shear-stress, Fm the force which opposes itself against the surface tension of the aggregation; it depends on the RBC morphology and on the RBC rigidity. The ESR has been recently used like an index of the RBC aggregation. The Authors study the relationship between several hemorheological parameters and the ESR in infective and inflammatory processes.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  1. Maslov shear-waveforms in highly anisotropic shales and implications for shear-wave splitting analyses; Formes d`onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de birefringence des ondes transversales

    Energy Technology Data Exchange (ETDEWEB)

    Caddick, J. [Leeds Univ. (United Kingdom). Dept. of Earth Sciences; Kendall, J.M.; Raymer, D.G. [Western Geophysical, Middlesex (United Kingdom). Dept. of Earth Sciences

    1998-09-01

    Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platy nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslow asymptotic theory (MAT). This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding) where ray theory amplitudes are unstable. Asymptotic ray theory (ART) is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Ray-paths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line). One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. (authors) 21 refs.

  2. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  3. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  4. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    Science.gov (United States)

    Yunus, Muhammad; Arifin, A.

    2018-03-01

    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  5. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  6. Experimental investigation of non-Newtonian droplet collisions : the role of extensional viscosity

    NARCIS (Netherlands)

    Finotello, Giulia; De, Shauvik; Vrouwenvelder, Jeroen C.R.; Padding, J.T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J.

    2018-01-01

    We investigate the collision behaviour of a shear thinning non-Newtonian fluid xanthan, by binary droplet collision experiments. Droplet collisions of non-Newtonian fluids are more complex than their Newtonian counterpart as the viscosity no longer remains constant during the collision process.

  7. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide.

    Science.gov (United States)

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T

    2015-10-05

    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus

    Directory of Open Access Journals (Sweden)

    Mickleborough Timothy D

    2008-09-01

    Full Text Available Abstract Background Normalization of brachial artery flow-mediated dilation (FMD to individual shear stress area under the curve (peak FMD:SSAUC ratio has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS. Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak, hyperemic shear stress, and peak FMD responses (all p AUC (p = 0.785. Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.

  9. Evaluation of Heating and Shearing on the Viscoelastic Properties of Calcium Hydroxyapatite Used in Injection Laryngoplasty.

    Science.gov (United States)

    Mahboubi, Hossein; Mohraz, Ali; Verma, Sunil P

    2016-03-01

    To compare the viscoelastic properties of calcium hydroxyapatite (CaHA) to carboxymethylcellulose (CMC) injectables used for injection laryngoplasty and determine if they are affected by heating and shearing. Experimental. University laboratory. Vocal fold injection laryngoplasty with CaHA is oftentimes challenging due to the amount of pressure necessary to push the injectate through a needle. Anecdotal techniques, such as heating the product, have been suggested to facilitate injection. The viscoelastic properties of CaHA and CMC were measured with a rheometer. The effects of heating and shearing on sample viscoelasticity were recorded. CaHA was 9.5 times more viscous than CMC (43,100 vs 4540 Pa·s). Heating temporarily decreased the viscosity of CaHA by 32%. However, it also caused the viscosity to subsequently increase after time. Shearing of CaHA reduced its viscosity by 26%. Heating and shearing together temporarily reduced the viscosity of CaHA by 52%. A combination of heating and shearing had a more profound effect than heating or shearing alone on the viscosity of CaHA, potentially making it easier to inject temporarily. Long-term and in vivo studies are required to further analyze the effect of heating and shearing on CaHA injectables. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  10. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    Science.gov (United States)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  11. Equation of state and viscosities from a gravity dual of the gluon plasma

    Directory of Open Access Journals (Sweden)

    R. Yaresko

    2015-07-01

    Full Text Available Employing new precision data of the equation of state of the SU(3 Yang–Mills theory (gluon plasma the dilaton potential of a gravity-dual model is adjusted in the temperature range (1–10Tc within a bottom-up approach. The ratio of bulk viscosity to shear viscosity follows then as ζ/η≈πΔvs2 for Δvs2<0.2 and achieves a maximum value of 0.94 at Δvs2≈0.3, where Δvs2≡1/3−vs2 is the non-conformality measure and vs2 is the velocity of sound squared, while the ratio of shear viscosity to entropy density is known as (4π−1 for the considered set-up with Hilbert action on the gravity side.

  12. Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM

    Directory of Open Access Journals (Sweden)

    T. Chourushi

    2017-01-01

    Full Text Available Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E≈5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E.

  13. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  14. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...

  15. Viscosity and density models for copper electrorefining electrolytes

    OpenAIRE

    Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari

    2016-01-01

    Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...

  16. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  17. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.; Shankaran, Harish; Neelamegham, Sriram

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.

  18. Hydrolysis of polyacrylamide containing associative hydrophobic groups: effect of the degree of hydrolysis and ionic strength on the viscosity in aqueous medium

    International Nuclear Information System (INIS)

    Lima, Bruna V. de; Vidal, Rosangela R.L.; Reis, Jeanne H.C. dos; Balaban, Rosangela de C.

    2009-01-01

    The HAPAM-10N polymer (hydrophobically modified and partially hydrolyzed polyacrylamide) was obtained by partial hydrolysis of HAPAM (hydrophobically modified polyacrylamide) precursor containing very low amount of hydrophobic groups (0.75%) in 0.1 M NaCl and 0.25 M NaOH aqueous solutions, at 40 deg C for 10 min. Hydrolysis degree of 44.64 % was obtained by 13 C NMR. The viscosity of polymers solutions was evaluated as a function of polymer concentration, ionic strength and temperature, at constant shear rate. The viscosity of HAPAM solutions increased with polymer concentration, however, it did not change significantly with the increase of ionic strength, and decreased with the temperature enhancement. The viscosity of HAPAM-10N solutions increased significantly in distilled water, due to electrostatic repulsions among carboxylate groups. However, with the increase of polymer concentration, ionic strength and temperature, it was not observed a significant increase of viscosity, probably due to the low amount of hydrophobic groups and high hydrolysis degree. (author)

  19. Viscosity bound violation in holographic solids and the viscoelastic response

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2016-07-14

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  20. Viscosity bound violation in holographic solids and the viscoelastic response

    International Nuclear Information System (INIS)

    Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.