WorldWideScience

Sample records for high scatter rejection

  1. Using Compton scattering for random coincidence rejection

    International Nuclear Information System (INIS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  2. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  3. Study of a new scatter rejection technique in digital radiography

    International Nuclear Information System (INIS)

    Bottari, S.; Ciocci, M.A.; Fortunato, M.; Maestro, P.; Malakhov, N.; Marrocchesi, P.S.; Meucci, M.; Millucci, V.; Paoletti, R.; Scribano, A.; Turini, N.

    2001-01-01

    A new technique for digital mammography based on the use of a collimator and an anti-scatter grid coupled with a mosaic detector has been studied with a Monte Carlo program. The simulation, with a low-energy spectrum X-ray beam and a breast phantom, provides a quantitative assessment of the capability of the method to reduce the physical background of the image due to scattering in the body, without introducing image artifacts. With minor modifications to the existing X-ray facilities, the method could also be applied to area detectors. To verify the results of the simulation, an experimental setup based on a CCD camera coupled via a fiber optic plate to a CsI(Tl) scintillator is under test

  4. Study of a new scatter rejection technique in digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bottari, S.; Ciocci, M.A. E-mail: ciocci@pi.infn.it; Fortunato, M.; Maestro, P.; Malakhov, N.; Marrocchesi, P.S.; Meucci, M.; Millucci, V.; Paoletti, R.; Scribano, A.; Turini, N

    2001-04-01

    A new technique for digital mammography based on the use of a collimator and an anti-scatter grid coupled with a mosaic detector has been studied with a Monte Carlo program. The simulation, with a low-energy spectrum X-ray beam and a breast phantom, provides a quantitative assessment of the capability of the method to reduce the physical background of the image due to scattering in the body, without introducing image artifacts. With minor modifications to the existing X-ray facilities, the method could also be applied to area detectors. To verify the results of the simulation, an experimental setup based on a CCD camera coupled via a fiber optic plate to a CsI(Tl) scintillator is under test.

  5. High-testosterone men reject low ultimatum game offers.

    Science.gov (United States)

    Burnham, Terence C

    2007-09-22

    The ultimatum game is a simple negotiation with the interesting property that people frequently reject offers of 'free' money. These rejections contradict the standard view of economic rationality. This divergence between economic theory and human behaviour is important and has no broadly accepted cause. This study examines the relationship between ultimatum game rejections and testosterone. In a variety of species, testosterone is associated with male seeking dominance. If low ultimatum game offers are interpreted as challenges, then high-testosterone men may be more likely to reject such offers. In this experiment, men who reject low offers ($5 out of $40) have significantly higher testosterone levels than those who accept. In addition, high testosterone levels are associated with higher ultimatum game offers, but this second finding is not statistically significant.

  6. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  7. Comparison of Sociometrically High Visibility Rejected and Low Visibility Rejected Children on Teacher, Parent, and Self-Rating Measures.

    Science.gov (United States)

    Neighbor, Jonelle C.

    The study looked at differences between groups of children identified as high visibility rejected (HVR) and low visibility rejected (LVR) on a sociometric measure with 952 fourth, fifth, and sixth grade students. Questionnaires were analyzed to determine the number of positive and negative nominations from peers received by each child. HVR…

  8. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  9. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  10. Brillouin scattering at high pressures

    International Nuclear Information System (INIS)

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  11. Anxious and angry rejection sensitivity, social withdrawal, and retribution in high and low ambiguous situations.

    Science.gov (United States)

    Zimmer-Gembeck, Melanie J; Nesdale, Drew

    2013-02-01

    Rejection sensitivity (RS) is a tendency to expect, perceive, and overreact to rejection. Our objective was to examine whether anxious and angry RS have specific associations with negative social reactions, and whether responses are intensified in situations of high rejection ambiguity. In two studies, youth (N = 464 and N = 371) reported their RS and anticipated responses to social scenarios. In Study 1, all scenarios portrayed overt rejection events. In Study 2, participants were randomly assigned to conditions portraying overt or ambiguous rejection. Greater rejection expectation was associated with more negative reactions to rejection. Moreover, as expected, anxiety about rejection was uniquely associated with withdrawal, and anger about rejection was uniquely associated with retribution (i.e., reactive aggression). In the second study, RS persons responded more negatively than others to both overt and high ambiguous rejections, but retribution was intensified among participants high in rejection expectation when rejection was ambiguous, and withdrawal was intensified among participants high in anxious RS in overt rejection situations. Consistent with the revised RS model, there are different patterns of emotions, cognitions, and behaviors in response to high and low ambiguous rejection events, which are heightened in youth sensitive to rejection. © 2012, Wiley Periodicals, Inc.

  12. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  13. High-testosterone men reject low ultimatum game offers

    OpenAIRE

    Burnham, Terence C

    2007-01-01

    The ultimatum game is a simple negotiation with the interesting property that people frequently reject offers of ‘free’ money. These rejections contradict the standard view of economic rationality. This divergence between economic theory and human behaviour is important and has no broadly accepted cause. This study examines the relationship between ultimatum game rejections and testosterone. In a variety of species, testosterone is associated with male seeking dominance. If low ultimatum game...

  14. High solute rejecting membranes for reverse osmosis: Polyetheramide hydrazide

    International Nuclear Information System (INIS)

    Bindal, R.C.; Ramachandhran, V.; Misra, B.M.; Ramani, M.P.S.

    1991-01-01

    Synthesis of benzhydrazide polymers and determination of reverse osmosis properties of their membranes were reported earlier. Their performance was not adequate for seawater desalination or for high radioactive decontamination factors (DF). The same hydrazide polymers modified by incorporation of additional monomers with ether linkages were synthesized by low temperature polycondensation of freshly prepared m-amino benzhydrazide, p-amino benzhydrazide, and 4,4'-diamino diphenyl ether, with isophthaloyl chloride and terephthaloyl chloride in dimethyl acetamide solvent. A series of film-forming polymers prepared by altering the molar ratios of the reacting monomers were characterized in terms of percent moisture regain, inherent viscosity, solubility parameters, and interfacial sorption characteristics. Asymmetric membranes prepared from these polymer samples were characterized in terms of the pure water permeability constant and the solute transport parameter, and were tested for their reverse osmosis performance. An optimum mole ratio of reaching monomers has been identified for the synthesis of polymer and the resulting membrane offered the best performance for reverse osmosis (salt rejection as high as 99.4% for 3.5% sodium chloride solution). The incorporation of aromatic ether linkages in the polyamide benzhydrazide polymeric chains appears to alter the polar and nonpolar character of the bulk polymer, and also the membrane solution interface characteristics, resulting in enhanced solute separation. These membranes appear to be potential candidates for single-stage seawater desalination and also for a variety of industrial effluent treatment applications for significantly high DF radioactive effluent treatment

  15. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  16. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Shaw, D.J.; Crawshaw, I.; Rimmer, S.D.

    2013-01-01

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV p ) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV p relative to 109 kV p , though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p p . Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique

  17. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.J., E-mail: daniel.shaw@christie.nhs.uk [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Crawshaw, I. [Diagnostic X-ray Department, York Teaching Hospital NHS Foundation Trust, The York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Rimmer, S. D. [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom)

    2013-11-15

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV{sub p}) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV{sub p} relative to 109 kV{sub p}, though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p < 0.01). For FPD imaging the anti-scatter grid offered slightly improved image quality relative to the air gap (p = 0.038) but this was not seen for CR (p = 0.404). Conclusions: For FPD chest imaging of the anthropomorphic phantom there was no dependence of image quality on tube potential. Scatter rejection improved image quality, with the anti-scatter grid giving greater improvements than an air-gap, but at the expense of increased effective dose. CR imaging of the chest phantom demonstrated negligible dependence on tube potential except at 125 kV{sub p}. Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique.

  18. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  19. Background Rejection of Charged Particles in the Simbol-X Telescope: Preliminary Study of Protons Scattering

    Science.gov (United States)

    Dell'Orto, E.; Barbera, M.; Bulgarelli, A.; Fioretti, V.; Malaguti, G.; Mineo, T.; Pareschi, G.; Rigato, V.; Spiga, D.; Tagliaferri, G.

    2009-05-01

    X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror module; for this reason a detailed simulation about the interaction of particles with the mirror surface is necessary. Here we will present the scattering protons models currently under consideration, suggesting a preliminary solution for the design of the magnetic diverter. We will also discuss an ad hoc experiment to study this problem.

  20. Background Rejection of Charged Particles in the Simbol-X Telescope: Preliminary Study of Protons Scattering

    International Nuclear Information System (INIS)

    Dell'Orto, E.; Barbera, M.; Bulgarelli, A.; Fioretti, V.; Malaguti, G.; Mineo, T.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Rigato, V.

    2009-01-01

    X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror module; for this reason a detailed simulation about the interaction of particles with the mirror surface is necessary. Here we will present the scattering protons models currently under consideration, suggesting a preliminary solution for the design of the magnetic diverter. We will also discuss an ad hoc experiment to study this problem.

  1. High pre-transplant soluble CD30 levels are predictive of the grade of rejection.

    Science.gov (United States)

    Rajakariar, Ravindra; Jivanji, Naina; Varagunam, Mira; Rafiq, Mohammad; Gupta, Arun; Sheaff, Michael; Sinnott, Paul; Yaqoob, M M

    2005-08-01

    In renal transplantation, serum soluble CD30 (sCD30) levels in graft recipients are associated with increased rejection and graft loss. We investigated whether pre-transplant sCD30 concentrations are predictive of the grade of rejection. Pre-transplant sera of 51 patients with tubulointerstitial rejection (TIR), 16 patients with vascular rejection (VR) and an age-matched control group of 41 patients with no rejection (NR) were analyzed for sCD30. The transplant biopsies were immunostained for C4d. The median sCD30 level was significantly elevated in the group with VR (248 Units (U)/mL, range: 92-802) when compared with TIR (103 U/mL, range: 36-309, psCD30 levels compared to NR. Based on C4d staining, a TH2 driven process, the median sCD30 levels were significantly raised in C4d+ patients compared with C4d- group (177 U/mL vs. 120 U/mL, psCD30 levels measured at time of transplantation correlate with the grade of rejection. High pre-transplant levels are associated with antibody-mediated rejection which carries a poorer prognosis. sCD30 could be another tool to assess immunological risk prior to transplantation and enable a patient centered approach to immunosuppression.

  2. High serum soluble CD30 does not predict acute rejection in liver transplant patients.

    Science.gov (United States)

    Matinlauri, I; Höckerstedt, K; Isoniemi, H

    2006-12-01

    Increased pre- and posttransplantation values of soluble CD30 (sCD30) have been shown to be associated with acute kidney transplant rejection. We sought to study whether high sCD30 could predict rejection early after liver transplantation. The study population included 54 consecutive liver transplant patients, whose samples were collected before liver transplantation and at discharge, which was at a mean time of 3 weeks after transplantation. During the first 6 months posttransplantation, 22 patients experienced an acute rejection episode. Serum sCD30 concentrations were measured by an enzyme-linked immunoassay; changes in serum sCD30 levels posttransplantation were also expressed as relative values compared with pretransplantation results. Liver patients before transplantation displayed higher serum sCD30 values compared with healthy controls: mean values +/- SD were 93 +/- 58 IU/mL vs 17 +/- 8 IU/mL, respectively. At 3 weeks after transplantation the mean sCD30 concentration in liver transplant patients decreased to 59 +/- 42 IU/mL (P = .005). The mean pretransplantation serum sCD30 value was slightly lower among rejecting vs nonrejecting patients: 78 +/- 43 IU/mL vs 104 +/- 65 IU/mL (P = NS). Posttransplantation values in both groups decreased significantly: 47 +/- 34 IU/mL in patients with rejection (P = .014) vs 69 +/- 45 IU/mL in patients without rejection (P = .012). The relative value at 3 weeks posttransplantation decreased slightly more among patients with vs without rejection (70% vs 88%; NS). No correlation was found between serum sCD30 and anti-HLA class I antibodies or crossmatch positivity. In conclusion, neither pre- nor posttransplantation sCD30 levels were associated with acute rejection in liver transplant patients.

  3. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R. [Max-Planck-Institut fuer Physik, Munich (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Angloher, G.; Ferreiro, N.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Reindl, F.; Seidel, W.; Stodolsky, L.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Schaeffner, K. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Erb, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Feilitzsch, F. von; Guetlein, A.; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Roth, S.; Schoenert, S.; Stanger, M.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Jochum, J.; Loebell, J.; Rottler, K.; Sailer, C.; Scholl, S.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Kluck, H. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Vienna University of Technology, Atominstitut, Wien (Austria); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Schieck, J. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Sivers, M. von [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-08-15

    The cryogenic dark matter experiment CRESSTII aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO{sub 4} crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO{sub 4} sticks instead of metal clamps to hold the target crystal, a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of ∝0.60 keV and a resolution of σ ∼ 0.090 keV (at 2.60 keV).With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3GeV/c{sup 2}. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail. (orig.)

  4. Timing information and pileup rejection for the High Granularity Calorimeter

    CERN Document Server

    MONET, Geoffrey

    2015-01-01

    The Large Hadron Collider (LHC) at CERN is the world’s largest and most energetic hadron collider. The first run of the LHC (March 2010 - December 2012) has led to several measurements and discoveries, amongst which the Higgs boson candidate. In order to further increase its discovery potential beyond 2020 a leap in luminosity, by a factor of 10, is needed. It is what we call High Luminosity LHC (HL-LHC). Increase the total number of collision would provide more accurate measurements of new particles and enable observation of rare processes that occur below the current sensitivity level. The increase in luminosity will be achieved at the cost of an increase in pileup, i.e. the number of simultaneous collisions. Not only the LHC machine will be upgraded but also the detectors, namely CMS . To cope with this high pileup environment and reconstruct physics objects such as electrons, photons, jets and taus, High Granularity Calorimeter is being proposed as a substitute of the current endcap calorimeters of CMS...

  5. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  6. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  7. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  8. Neutron Scattering and High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.

  9. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  10. Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.

    Science.gov (United States)

    Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L

    1994-02-01

    Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others

    2017-09-15

    The rejection of forward jets originating from additional proton-proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range vertical stroke η vertical stroke > 2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb{sup -1} of proton-proton collisions at a centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 < vertical stroke η vertical stroke < 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton-proton interactions, thus enhancing the reach for such signatures. (orig.)

  12. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  13. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  14. Pile-up Rejection in the High Granularity Time Detector for the High Luminosity LHC

    CERN Document Server

    McNulty, Paul

    2016-01-01

    The High Granularity Timing Detector, a proposed upgrade to the Liquid Argon Calorimeter during the transition to the High Luminosity LHC, will provide increased resolution in the time domain and offer an avenue for efficiently mitigating the expected increase in pile-up jets. This study analyzes how effectively current algorithms are using a signal jet peak calculation to disentangle desired information from other events. Two samples, one with only hard-scattering events and another that also included pile-up events, were used. A transverse momentum range of 30GeV to 70GeV and pseudo-rapidity range of 2.4 to 4.8 divided the sample to see how the HGTD performed when calculating the signal peak for each jet and how many cells had detections in and out of that peak for each sample.

  15. Study of a Multivariate Approach for the Background Rejection in the Scattering of Two Like-Charge $W^{\\pm}$ Bosons with the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2100403; Kobel, Michael; Straessner, Arno

    This thesis presents the study of a multivariate approach for the background rejection in the scattering of two like-charge $W^{\\pm}$ bosons with the ATLAS detector at the Large Hadron Collider. The scattering process can be accessed through the measurement of purely electroweak production of two like-charge $W^{\\pm}$ bosons and two jets in the fully leptonic decay channel of the $W^{\\pm}$ bosons. Although the characteristic signature of the final state of this production process already reduces most Standard Model backgrounds, other processes exist that leave the same experimental signature in the detector. QCD-initiated production of a $W^{\\pm}$ boson and a $Z$ boson in association with two jets with leptonic decay of the $W^{\\pm}$ and the $Z$ boson accounts for the largest background contribution. Thus, the focus of this thesis is set on the rejection of this background. As a very promising technique for this classification problem, boosted decision trees are studied in this thesis. The variable ranking of...

  16. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  17. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  18. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  19. Vector Boson Scattering at High Mass

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Here, we investigate $WW $scalar and vector resonances, $WZ$ vector resonances and a $ZZ$ scalar resonance over a range of diboson centre-of-mass energies. Particular attention is paid to the application of forward jet tagging and to the reconstruction of dijet pairs with low opening angle resulting from the decay of highly boosted vector bosons. The performances of different jet algorithms are compared. We find that resonances in vector boson scattering can be discovered with a few tens of inverse femtobarns of integrated luminosity.

  20. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  1. High-sensitivity cardiac troponin I assay to screen for acute rejection in patients with heart transplant.

    Science.gov (United States)

    Patel, Parag C; Hill, Douglas A; Ayers, Colby R; Lavingia, Bhavna; Kaiser, Patricia; Dyer, Adrian K; Barnes, Aliessa P; Thibodeau, Jennifer T; Mishkin, Joseph D; Mammen, Pradeep P A; Markham, David W; Stastny, Peter; Ring, W Steves; de Lemos, James A; Drazner, Mark H

    2014-05-01

    A noninvasive biomarker that could accurately diagnose acute rejection (AR) in heart transplant recipients could obviate the need for surveillance endomyocardial biopsies. We assessed the performance metrics of a novel high-sensitivity cardiac troponin I (cTnI) assay for this purpose. Stored serum samples were retrospectively matched to endomyocardial biopsies in 98 cardiac transplant recipients, who survived ≥3 months after transplant. AR was defined as International Society for Heart and Lung Transplantation grade 2R or higher cellular rejection, acellular rejection, or allograft dysfunction of uncertain pathogenesis, leading to treatment for presumed rejection. cTnI was measured with a high-sensitivity assay (Abbott Diagnostics, Abbott Park, IL). Cross-sectional analyses determined the association of cTnI concentrations with rejection and International Society for Heart and Lung Transplantation grade and the performance metrics of cTnI for the detection of AR. Among 98 subjects, 37% had ≥1 rejection episode. cTnI was measured in 418 serum samples, including 35 paired to a rejection episode. cTnI concentrations were significantly higher in rejection versus nonrejection samples (median, 57.1 versus 10.2 ng/L; P<0.0001) and increased in a graded manner with higher biopsy scores (P(trend)<0.0001). The c-statistic to discriminate AR was 0.82 (95% confidence interval, 0.76-0.88). Using a cut point of 15 ng/L, sensitivity was 94%, specificity 60%, positive predictive value 18%, and negative predictive value 99%. A high-sensitivity cTnI assay seems useful to rule out AR in cardiac transplant recipients. If validated in prospective studies, a strategy of serial monitoring with a high-sensitivity cTnI assay may offer a low-cost noninvasive strategy for rejection surveillance. © 2014 American Heart Association, Inc.

  2. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  3. Vector Boson Scattering at High Mass

    CERN Document Server

    Sherwood, P

    2009-01-01

    In the absence of a light Higgs boson, the mechanism of electroweak symmetry breaking will be best studied in processes of vector boson scattering at high mass. Various models predict resonances in this channel. Here, we investigate W W scalar and vector resonances, W Z vector resonances and a Z Z scalar resonance over a range of diboson centre-of-mass energies. Particular attention is paid to the application reconstruction of dijet pairs with low opening angle resulting from the decay of highly boosted vector bosons.

  4. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  5. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection.

    Science.gov (United States)

    van Amerom, Joshua F P; Lloyd, David F A; Price, Anthony N; Kuklisova Murgasova, Maria; Aljabar, Paul; Malik, Shaihan J; Lohezic, Maelene; Rutherford, Mary A; Pushparajah, Kuberan; Razavi, Reza; Hajnal, Joseph V

    2018-01-01

    Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image-based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user-defined region of interest delineating the fetal heart. The method was evaluated in 30 mid- to late gestational age singleton pregnancies scanned without maternal breath-hold. The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact-free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. The proposed method shows promise as a motion-tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image-space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med 79:327-338, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  6. Multiple exchange and high-energy fixed-angle scattering

    CERN Document Server

    Halliday, I G; Orzalesi, C A; Tau, M

    1975-01-01

    The application of the eikonal ansatz to fermion fermion elastic scattering with Abelian vector gluon exchanges is discussed. The behaviours of the elastic scattering amplitude and the elastic form factor are considered and an important mechanism for fixed angle high energy elastic scattering is identified. (6 refs).

  7. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  8. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  9. High energy lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Sciulli, F.

    1982-01-01

    The author summarizes the general expressions expected for neutrino scattering, and the formula for the electromagnetic process which is involved for minor scattering. He discusses the complications of quark binding and the historical development of fits from deep inelastic data. He also evaluates the signifigance of the results gained from the data, concluding his discussion by asking basic questions about the tests of the quark model and suggesting that there is still much to be learned about inelastic scattering, that more precision is necessary. The author is hopeful that the work now being conducted on the CFRR data will help solve some of the discrepancy

  10. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  11. Non-eikonal effects in high-energy scattering IV. Inelastic scattering

    International Nuclear Information System (INIS)

    Gurvitz, S.A.; Kok, L.P.; Rinat, A.S.

    1978-01-01

    Amplitudes of inelastically scattered high-energy projections were calculated. In the scattering on 12 C(Tsub(P)=1 GeV) sizeable non-eikonal corrections in diffraction extrema even for relatively small q 2 are demonstrated. At least part of the anomaly in the 3 - distribution may be due to these non-eikonal effects. (B.G.)

  12. Sendai High Court rejects residents' appeal to nullify gov't permit for Fukushima II-1

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Sendai High Court on March 20 rejected an appeal made by 33 residents in Naraha-cho, Fukushima Prefecture, to nullify the government permit for Tokyo Electric Power Co.'s plan to establish Fukushima II Nuclear Power Plant Unit 1 (1,100 MW, BWR) near their homes, upholding the Fukushima District Court's 1984 ruling that the government's examination is adequate to ensure safety of the Unit. The plaintiffs are considering taking the case to the Supreme Court. This is the first ruling on the safety of a nuclear power plant in Japan, after the Chernobyl accident in 1986. Unit 1 is currently in operation. Presiding Judge Yoshio Ishikawa approved almost entirely the government's arguments except that on the competence of the plaintiff. The judgement said that the 33 residents living within the radius of fifty and several kilometers from the reactor facilities have plaintiff competency, because if the safety of the reactor facilities could not be assured, the facilities could possibly present a grave danger to the lives and health of the residents. The ruling said that issuing the reactor installation permit was committed to the government's special technical discretion. (N.K.)

  13. Preventing Rejection

    Science.gov (United States)

    ... After the transplant Preventing rejection Post-transplant medications Types of immunosuppressants Switching immunosuppressants Side effects Other medications Generic and brand name drugs Post-transplant tests Infections and immunity Lifestyle changes Health concerns Back to work or ...

  14. Scattering and extinction from high-aspect-ratio trenches

    DEFF Research Database (Denmark)

    Roberts, Alexander Sylvester; Søndergaard, Thomas; Chirumamilla, Manohar

    2015-01-01

    We construct a semi-analytical model describing the scattering, extinction and absorption properties of a high aspect-ratio trench in a metallic film. We find that these trenches act as highly efficient scatterers of free waves. In the perfect conductor limit, which for many metals is approached...

  15. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  16. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  17. Lepton-nucleon scattering at high energies

    International Nuclear Information System (INIS)

    Buchmueller, W.

    1993-12-01

    Recent theoretical developments in the field of inelastic lepton-nucleon scattering are reviewed with emphasis on physics at HERA. Structure functions at small Bjorken-x are discussed in detail. Further topics are photoproduction of jets, the gluon densities in proton and photon, charm physics, electroweak processes and the search for new particles and interactions. (orig.)

  18. High energy proton-nucleus scattering

    International Nuclear Information System (INIS)

    Beurtey, R.M.

    1977-01-01

    This paper is restricted to an overall global criticism of what has been produced, experimentally and theoretically, during the past ten years, concerning elastic proton scattering at intermediate energy: theoretical models and approximations, phenomenological analysis, criticisms and suggestions on experimental methods

  19. Approximation of rejective sampling inclusion probabilities and application to high order correlations

    NARCIS (Netherlands)

    Boistard, H.; Lopuhää, H.P.; Ruiz-Gazen, A.

    2012-01-01

    This paper is devoted to rejective sampling. We provide an expansion of joint inclusion probabilities of any order in terms of the inclusion probabilities of order one, extending previous results by Hájek (1964) and Hájek (1981) and making the remainder term more precise. Following Hájek (1981), the

  20. Single-shot, high-dose rabbit ATG for rejection prophylaxis after kidney transplantation

    NARCIS (Netherlands)

    R. Zietse (Bob); E.P.M. van Steenberge (E. P M); C.J. Hesse (Cees); L.B. Vaessen (L.); J.N.M. IJzermans (Jan); W. Weimar (Willem)

    1993-01-01

    textabstractWe studied the effects of a single intravenous injection of rabbit ATG (RIVM, Bilthoven, The Netherlands) in a dose of 8 mg/kg body weight administered 6 h after kidney transplantation on graft survival, rejection incidence, T-cell subsets, and cost-effectiveness. A total of 58 (37

  1. Practices for Identifying and Rejecting Hemolyzed Specimens Are Highly Variable in Clinical Laboratories.

    Science.gov (United States)

    Howanitz, Peter J; Lehman, Christopher M; Jones, Bruce A; Meier, Frederick A; Horowitz, Gary L

    2015-08-01

    Hemolysis is an important clinical laboratory quality attribute that influences result reliability. To determine hemolysis identification and rejection practices occurring in clinical laboratories. We used the College of American Pathologists Survey program to distribute a Q-Probes-type questionnaire about hemolysis practices to Chemistry Survey participants. Of 3495 participants sent the questionnaire, 846 (24%) responded. In 71% of 772 laboratories, the hemolysis rate was less than 3.0%, whereas in 5%, it was 6.0% or greater. A visual scale, an instrument scale, and combination of visual and instrument scales were used to identify hemolysis in 48%, 11%, and 41% of laboratories, respectively. A picture of the hemolysis level was used as an aid to technologists' visual interpretation of hemolysis levels in 40% of laboratories. In 7.0% of laboratories, all hemolyzed specimens were rejected; in 4% of laboratories, no hemolyzed specimens were rejected; and in 88% of laboratories, some specimens were rejected depending on hemolysis levels. Participants used 69 different terms to describe hemolysis scales, with 21 terms used in more than 10 laboratories. Slight and moderate were the terms used most commonly. Of 16 different cutoffs used to reject hemolyzed specimens, moderate was the most common, occurring in 30% of laboratories. For whole blood electrolyte measurements performed in 86 laboratories, 57% did not evaluate the presence of hemolysis, but for those that did, the most common practice in 21 laboratories (24%) was centrifuging and visually determining the presence of hemolysis in all specimens. Hemolysis practices vary widely. Standard assessment and consistent reporting are the first steps in reducing interlaboratory variability among results.

  2. Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy

    International Nuclear Information System (INIS)

    Tang, Yanmei; Bai, Yan; Huang, Congzhi; Du, Bin

    2015-01-01

    Highlights: • A disturbance rejection solution to the load frequency control issue is proposed. • Several power systems with wind energy conversation system have been tested. • A tuning algorithm of the controller parameters was proposed. • The performance of the proposed approach is better than traditional controllers. - Abstract: A new grid load frequency control approach is proposed for the doubly fed induction generator based wind power plants. The load frequency control issue in a power system is undergoing fundamental changes due to the rapidly growing amount of wind energy conversation system, and concentrating on maintaining generation-load balance and disturbance rejection. The prominent feature of the linear active disturbance rejection control approach is that the total disturbance can be estimated and then eliminated in real time. And thus, it is a feasible solution to deal with the load frequency control issue. In this paper, the application of the linear active disturbance rejection control approach in the load frequency control issue for a complex power system with wind energy conversation system based on doubly fed induction generator is investigated. The load frequency control issue is formulated as a decentralized multi-objective optimization control problem, the solution to which is solved by the hybrid particle swarm optimization technique. To show the effectiveness of the proposed control scheme, the robust performance testing based on Monte-Carlo approach is carried out. The performance superiority of the system with the proposed linear active disturbance rejection control approach over that with the traditional proportional integral and fuzzy-proportional integral-based controllers is validated by the simulation results

  3. High energy asymptotics of the scattering amplitude for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Scattering matrix; asymptotic expansion; high energy; diagonal singula- ..... (see subsection 2 of § 3) with functions of the generator of dilations. A = 1. 2 d ..... ness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor.

  4. High energy scattering in gravity and supergravity

    CERN Document Server

    Giddings, Steven B; Andersen, Jeppe R

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and gravity appears not to reggeize. These arguments sharpen the need to find a nonpert...

  5. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Rajesh V., E-mail: pairajesh007@gmail.com [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Mollick, P.K. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ashok [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Banerjee, J. [Radiometullurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Radhakrishna, J. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Chakravartty, J.K. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-05-15

    UO{sub 2} microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO{sub 2} based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO{sub 2} microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800–1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO{sub 2} microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method. - Highlights: • The oxidation behaviour of coated particles was studied in air, O{sub 2} and moist O{sub 2}. • It was observed that coated layers cannot be completely removed by mere oxidation. • Complete recovery of uranium from the rejected coated particles has been carried out using a combination of dry and wet recovery scheme. • A crushing step prior to oxidation is needed for full recovery of uranium from the coated particles.

  6. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    International Nuclear Information System (INIS)

    Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.

    2010-01-01

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the γ-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the γ rays originated outside the target, the new generation of position sensitive γ-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the γ rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back γ rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  7. Inclusive quasielastic and deep inelastic electron scattering at high energies

    International Nuclear Information System (INIS)

    Day, D.B.

    1990-01-01

    With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs

  8. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  9. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  10. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  11. High-energy expansion for nuclear multiple scattering

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1975-01-01

    The Watson multiple scattering series is expanded to develop the Glauber approximation plus systematic corrections arising from three (1) deviations from eikonal propagation between scatterings, (2) Fermi motion of struck nucleons, and (3) the kinematic transformation which relates the many-body scattering operators of the Watson series to the physical two-body scattering amplitude. Operators which express effects ignored at the outset to obtain the Glauber approximation are subsequently reintroduced via perturbation expansions. Hence a particular set of approximations is developed which renders the sum of the Watson series to the Glauber form in the center of mass system, and an expansion is carried out to find leading order corrections to that summation. Although their physical origins are quite distinct, the eikonal, Fermi motion, and kinematic corrections produce strikingly similar contributions to the scattering amplitude. It is shown that there is substantial cancellation between their effects and hence the Glauber approximation is more accurate than the individual approximations used in its derivation. It is shown that the leading corrections produce effects of order (2kR/subc/) -1 relative to the double scattering term in the uncorrected Glauber amplitude, hk being momentum and R/subc/ the nuclear char []e radius. The leading order corrections are found to be small enough to validate quatitative analyses of experimental data for many intermediate to high energy cases and for scattering angles not limited to the very forward region. In a Gaussian model, the leading corrections to the Glauber amplitude are given as convenient analytic expressions

  12. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  13. Mechanical Design of the NSTX High-k Scattering Diagnostic

    International Nuclear Information System (INIS)

    Feder, R.; Mazzucato, E.; Munsat, T.; Park, H.; Smith, D.R.; Ellis, R.; Labik, G.; Priniski, C.

    2005-01-01

    The NSTX High-k Scattering Diagnostic measures small-scale density fluctuations by the heterodyne detection of waves scattered from a millimeter wave probe beam at 280 GHz and λ = 1.07 mm. To enable this measurement, major alterations were made to the NSTX vacuum vessel and Neutral Beam armor. Close collaboration between the PPPL physics and engineering staff resulted in a flexible system with steerable launch and detection optics that can position the scattering volume either near the magnetic axis (ρ ∼ .1) or near the edge (ρ ∼ .8). 150 feet of carefully aligned corrugated waveguide was installed for injection of the probe beam and collection of the scattered signal in to the detection electronics

  14. Mechanical Design of the NSTX High-k Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R.; Mazzucato, E.; Munsat, T.; Park, H,; Smith, D. R.; Ellis, R.; Labik, G.; Priniski, C.

    2005-09-26

    The NSTX High-k Scattering Diagnostic measures small-scale density fluctuations by the heterodyne detection of waves scattered from a millimeter wave probe beam at 280 GHz and {lambda}=1.07 mm. To enable this measurement, major alterations were made to the NSTX vacuum vessel and Neutral Beam armor. Close collaboration between the PPPL physics and engineering staff resulted in a flexible system with steerable launch and detection optics that can position the scattering volume either near the magnetic axis ({rho} {approx} .1) or near the edge ({rho} {approx} .8). 150 feet of carefully aligned corrugated waveguide was installed for injection of the probe beam and collection of the scattered signal in to the detection electronics.

  15. Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutron up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.

  16. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where

  17. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    Science.gov (United States)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  18. The Effect of Local Irradiation in Prevention and Reversal of Acute Rejection of Transplanted Kidney with High-dose Steroid Pulse

    International Nuclear Information System (INIS)

    Kim, I. H.; Ha, S. W.; Park, C. I.; Kim, S. T.

    1986-01-01

    From 1979 to 1984, 39 local allograft irradiations were given to 29 patients: 10 irradiations were administered for prevention and 29 for reversal of acute rejection of transplanted kidney. Three doses of 150 cGy every other day were combined with high-dose of methylprednisolone pulse (1 gm/day) for 3 days. For prevention of acute rejection, local irradiation was delivered on the days 1, 3, and 5 after the transplantation, and for reversal, irradiation started after the diagnosis of acute rejection. Eight out of 10 patients irradiated for prevention had acute allograft rejection, and, what is more, there was no surviving graft at 15 months after transplantation. Reversal of acute rejection was achieved in 71%. When the pre-irradiation level of serum creatinine was below 5.5 mg%, the reversal rate was 93%, but above 5.5 mg% the reversal rate was only 17% (p<0.01). Reirradiation after failure was not successful. Among 15 reversed patients, 7 (47%) had subsequent rejection (s). The functional graft survivals at 6 month, 1, 2, and 3 year were 70%, 65%, 54%, and 65%, respectively. Therapeutic irradiation resulted in better graft survival when serum creatinine was below 5.5 mg% (p<0.001) or when irradiation started within 15 days after the diagnosis of acute rejection (p<0.001)

  19. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  20. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Cable, J.W. Chakoumakos, B.C.; Dai, P.

    1995-01-01

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  1. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  2. A high pressure sample facility for neutron scattering

    International Nuclear Information System (INIS)

    Carlile, C.J.; Glossop, B.H.

    1981-06-01

    Commissioning tests involving deformation studies and tests to destruction as well as neutron diffraction measurements of a standard sample have been carried out on the SERC high pressure sample facility for neutron scattering studies. A detailed description of the pressurising equipment is given. (author)

  3. High vacuum general purpose scattering chamber for nuclear reaction study

    International Nuclear Information System (INIS)

    Suresh Kumar; Ojha, S.C.

    2003-01-01

    To study the nuclear reactions induced by beam from medium energy accelerators, one of the most common facility required is a scattering chamber. In the scattering chamber, projectile collides with the target nucleus and the scattered reaction products are detected with various type of nuclear detector at different angles with respect to the beam. The experiments are performed under high vacuum to minimize the background reaction and the energy losses of the charged particles. To make the chamber general purpose various requirement of the experiments are incorporated into it. Changing of targets, changing angle of various detectors while in vacuum are the most desired features. The other features like ascertaining the beam spot size and position on the target, minimizing the background counts by proper beam dump, accurate positioning of the detector as per plan etc. are some of the important requirements

  4. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  5. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  6. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  7. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  8. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  9. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  10. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  11. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  12. Large-angle hadron scattering at high energies

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1981-01-01

    Basing on the quasipotential Logunov-Tavkhelidze approach, corrections to the amplitude of high-energy large-angle meson-nucleon scattering are estimated. The estimates are compared with the available experimental data on pp- and π +- p-scattering, so as to check the adequacy of the suggested scheme to account for the preasymptotic deffects. The compared results are presented in the form of tables and graphs. The following conclusions are drawn: 1. the account for corrections, due to the long-range interaction, to the amplituda gives a good aghreee main asymptotic termment between the theoretical and experimental data. 2. in the case of π +- p- scattering the corrections prove to be comparable with the main asymptotic term up to the values of transferred pulses psub(lambdac)=50 GeV/c, which results in a noticeable deviation form the quark counting rules at such energies. Nevertheless, the preasymptotic formulae do well, beginning with psub(lambdac) approximately 6 GeV/c. In case of pp-scattering the corrections are mutually compensated to a considerable degree, and the deviation from the quark counting rules is negligible

  13. Eliminating high-order scattering effects in optical microbubble sizing.

    Science.gov (United States)

    Qiu, Huihe

    2003-04-01

    Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.

  14. Unifying logarithmic and factorial behavior in high-energy scattering

    International Nuclear Information System (INIS)

    Cornwall, J.M.; Morris, D.A.

    1995-01-01

    The elegant instanton calculus of Lipatov and others used to find factorially divergent behavior (g N N exclamation point) for N g much-gt 1 in gφ 4 perturbation theory is strictly only applicable when all external momenta vanish; a description of high-energy 2→N scattering with N massive particles is beyond the scope of such techniques. On the other hand, a standard multiperipheral treatment of scattering with its emphasis on leading logarithms gives a reasonable picture of high-energy behavior but does not result in factorial divergences. Using a straightforward graphical analysis we present a unified picture of both these phenomena as they occur in the two-particle total cross section of gφ 4 theory. We do not attempt to tame the unitarity violations associated with either multiperipheralism or the Lipatov technique at strong coupling

  15. Systematics of elastic scattering at high and intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Dias De Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)

    1977-01-01

    A model for elastic scattering valid in the intermediate and high-energy region is proposed. The model includes three kinds of entities: the pomeron, a universal GS pomeron; the reggeons, also universal and of GS type; and the core, a low-energy central real piece required by dispersion relations. The number of free functions and parameters is rather small. The approach supports naive duality and, in general, agrees with the results of absorptive models.

  16. Recent developments on high-energy gravitational scattering

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After a quick reminder of earlier results I will discuss some recent progress in the high-energy gravitational scattering of particles, strings, and branes and, in particular: 1. Gravitational bremsstrahlung; 2. Causality constraints in the presence of higher derivative corrections; 3. Absorption of an energetic closed string by a stack of D-branes. These developments should eventually help us understand how information is preserved in the quantum analog of classical gravitational collapse.

  17. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  18. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng [Department of Imaging Physics, Digital Imaging Research Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2011-01-15

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full

  19. Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging

    International Nuclear Information System (INIS)

    Liu Xinming; Shaw, Chris C.; Lai, Chao-Jen; Wang Tianpeng

    2011-01-01

    Purpose: To investigate and compare the scatter rejection properties and low-contrast performance of the scan equalization digital radiography (SEDR) technique to the slot-scan and conventional full-field digital radiography techniques for chest imaging. Methods: A prototype SEDR system was designed and constructed with an a-Se flat-panel (FP) detector to improve image quality in heavily attenuating regions of an anthropomorphic chest phantom. Slot-scanning geometry was used to reject scattered radiation without attenuating primary x rays. The readout scheme of the FP was modified to erase accumulated scatter signals prior to image readout. A 24-segment beam width modulator was developed to regulate x-ray exposures regionally and compensate for the low x-ray flux in heavily attenuating regions. To measure the scatter-to-primary ratios (SPRs), a 2 mm thick lead plate with a 2-D array of aperture holes was used to measure the primary signals, which were then subtracted from those obtained without the lead plate to determine scatter components. A 2-D array of aluminum beads (3 mm in diameter) was used as the low-contrast objects to measure the contrast ratios (CRs) and contrast-to-noise ratios (CNRs) for evaluating the low-contrast performance in chest phantom images. A set of two images acquired with the same techniques were subtracted from each other to measure the noise levels. SPRs, CRs, and CNRs of the SEDR images were measured in four anatomical regions of chest phantom images and compared to those of slot-scan images and full-field images acquired with and without antiscatter grid. Results: The percentage reduction of SPR (percentage of SPRs reduced with scatter removal/rejection methods relative to that for nongrid full-field imaging) averaged over four anatomical regions was measured to be 80%, 83%, and 71% for SEDR, slot-scan, and full-field with grid, respectively. The average CR over four regions was found to improve over that for nongrid full

  20. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  1. Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aaboud, M.; Aad, G.; Abbott, B.; Chudoba, Jiří; Hejbal, Jiří; Hladík, Ondřej; Jakoubek, Tomáš; Kepka, Oldřich; Kroll, Jiří; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek

    2017-01-01

    Roč. 77, č. 9 (2017), s. 1-32, č. článku 580. ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : ATLAS * CERN LHC Coll * new physics * topological * background * signature * tracks * data analysis method * experimental results * 13000 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  2. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  3. Endpoint behavior of high-energy scattering cross sections

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2010-01-01

    In high-energy processes near the endpoint, there emerge new contributions associated with spectator interactions. Away from the endpoint region, these new contributions are suppressed compared to the leading contribution, but the leading contribution becomes suppressed as we approach the endpoint and the new contributions become comparable. We present how the new contributions scale as we reach the endpoint and show that they are comparable to the suppressed leading contributions in deep inelastic scattering by employing a power-counting analysis. The hadronic tensor in deep inelastic scattering is shown to factorize including the spectator interactions, and it can be expressed in terms of the light cone distribution amplitudes of initial hadrons. We also consider the contribution of the spectator contributions in Drell-Yan processes. Here the spectator interactions are suppressed compared to double parton annihilation according to the power counting.

  4. Spin effects in high energy quark-quark scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Selyugin, O.V.

    1993-01-01

    The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab

  5. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  6. Effective channel approach to nuclear scattering at high energies

    International Nuclear Information System (INIS)

    Rule, D.W.

    1975-01-01

    The description of high energy nuclear reactions is considered within the framework of the effective channel approach. A variational procedure is used to obtain an expression for the Green's function in the effective channel, which includes the average fluctuation potential, average energy, and an additional term arising from the non-commutability of the kinetic energy operator and the effective target wave function. The resulting expression for the effective channel, containing one variational parameter, is used to obtain the coupling potential. The resulting formulation is applied to the elastic scattering of 1 GeV protons by 4 He nuclei. A simple Gaussian form is used for the spin--isospin averaged proton--nucleon interaction. The variational parameter in the effective channel wave function is fixed a posteriori via the total p-- 4 He cross section. The effect of the coupling to the effective channel is demonstrated, as well as the effect of each term in the coupled equation for this channel. The calculated elastic cross sections were compared to both the recent data from Saclay and the earlier Brookhaven data for the 1-GeV p-- 4 He elastic scattering cross section. Using proton--nucleus elastic scattering experiments to study the proton--nucleon elastic scattering amplitude is discussed. The main purpose of our study is to investigate the effects on the cross section of varying, within its estimated range of uncertainty, each parameter which enters into the coupled equations. The magnitude of these effects was found to be large enough to conclude that any effects due to dynamical correlations would be obscured by the uncertainties in the input parameters

  7. Inelastic neutron scattering from high-density fcc 4He

    International Nuclear Information System (INIS)

    Thomlinson, W.; Eckert, J.; Shirane, G.

    1978-01-01

    The phonon dispersion relations in high-density crystals of fcc 4 He have been measured along high-symmetry directions by the neutron-inelastic-scattering technique. A recent study of the lattice dynamics of fcc 4 He by Eckert et al. has been extended to cover the fcc phase diagram at pressures below 5 kbar. Molar volumes of 9.03, 9.43, and 9.97 cm 3 /mole have been studied in the temperature range from near the melting curve to near the fcc-hcp transition line. The phonon dispersion relations are in good agreement with a first-order self-consistent phonon theory calculation by Goldman. The observed phonon-group line shapes at large energy and momentum transfers show evidence for multiphonon scattering in agreement with calculations by Glyde. Eckert et al. reported extremely large anharmonic isochoric temperature shifts of the phonon energies. The present work studied the shifts as a function of molar volume and temperature. Mode-Grueneisen-parameter dispersion curves have been measured using the present data and earlier measurements at lower density in the fcc phase by Traylor et al. Macroscopic Grueneisen parameters have been calculated from the phonon density of states obtained from the data

  8. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    Science.gov (United States)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  9. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  10. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    International Nuclear Information System (INIS)

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data

  11. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  12. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  13. Neutron scattering on liquid He4 at high momentum transfers

    International Nuclear Information System (INIS)

    Parlinski, K.

    1975-01-01

    Using the Sears method of expansion of the dynamic structure factor into a series over the inverse powers of the wave vector and five moments of the velocity correlation function, the distribution of neutrons scattered on liquid helium at T=0 K and at the momentum transfer k=14.33 A -1 is calculated. The calculated distribution takes into account the interaction among helium atoms. The distributions are compared with the experimental data. The results show that proper information of the occupation fraction of the zero-momentum state - the condensate - can be obtained by the neutron scatterng method at high-momentum transfers only when the interaction among helium atoms is taken into account. (author)

  14. The High Energy Asymptotics of Scattering Processes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, Rikard; Golec-Biernat, K.; Munier, S.

    2005-05-12

    High energy scattering in the QCD parton model was recently shown to be a reaction-diffusion process, and thus to lie in the universality class of the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation. We recall that the latter appears naturally in the context of the parton model. We provide a thorough numerical analysis of the mean field approximation, given in QCD by the Balitsky-Kovchegov equation. In the framework of a simple stochastic toy model that captures the relevant features of QCD, we discuss and illustrate the universal properties of such stochastic models. We investigate in particular the validity of the mean field approximation and how it is broken by fluctuations. We find that the mean field approximation is a good approximation in the initial stages of the evolution in rapidity.

  15. High-energy vector boson scattering after the Higgs discovery

    International Nuclear Information System (INIS)

    Kilian, Wolfgang; Sekulla, Marco; Ohl, Thorsten; Reuter, Juergen

    2014-08-01

    Weak vector-boson W,Z scattering at high energy probes the Higgs sector and is most sensitive to any new physics associated with electroweak symmetry breaking. We show that in the presence of the 125 GeV Higgs boson, a conventional effective-theory analysis fails for this class of processes. We propose to extrapolate the effective-theory ansatz by an extension of the parameter-free K-matrix unitarization prescription, which we denote as direct T-matrix unitarization. We generalize this prescription to arbitrary non-perturbative models and describe the implementation, as an asymptotically consistent reference model matched to the low-energy effective theory. We present exemplary numerical results for full six-fermion processes at the LHC.

  16. Gaussian basis functions for highly oscillatory scattering wavefunctions

    Science.gov (United States)

    Mant, B. P.; Law, M. M.

    2018-04-01

    We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.

  17. Inelastic two composite particle systems scattering at high energy

    International Nuclear Information System (INIS)

    Zhang Yushun.

    1986-11-01

    In this paper, by using the collective coordinate of Bohr and phenomenological deformed optical potentials, the scattering amplitudes of two composite particle systems can be obtained and the collective excitation for two composite particle systems in the scattering process is discussed. (author). 10 refs, 6 figs, 2 tabs

  18. High energy deep inelastic scattering in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Wallon, S.

    1996-01-01

    In this PhD thesis, we deal with high energy Deep Inelastic Scattering in Perturbative Quantum Chromodynamics (QCD). In this work, two main topics are emphasized: The first one deals with dynamics based on perturbative renormalization group, and on perturbative Regge approaches. We discuss the applicability of these predictions, the possibility of distinguishing them in the HERA experiments, and their unification. We prove that the perturbative Regge dynamic can be successfully applied to describe the HERA data. Different observables are proposed for distinguishing these two approaches. We show that these two predictions can be unified in a system of equations. In the second one, unitarization and saturation problems in high energy QCD are discussed. In the multi-Regge approach, equivalent to the integrable one-dimensional XXX Heisenberg spin chain, we develop methods in order to solve this system, based on the Functional Bethe Ansatz. In the dipole model context, we propose a new formulation of unitarity and saturation effects, using Wilson loops. (author)

  19. High-rep-rate Thomson scattering for LHD

    Science.gov (United States)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  20. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  1. The spectrometer of the High-Resolution Multi position Thomson Scattering Diagnostic for TJ-II

    International Nuclear Information System (INIS)

    Herranz, J.; Barth, C. J.; Castejon, F.; Lopez-Sanchez, A.; Mirones, E.; Pastor, I.; Perez, D.; Rodriguez, C.

    2001-01-01

    Since 1998, a high-resolution multiposition thompson scattering system is in operation at the stellarator TJ-II, combining high accuracy and excellent spatial resolution. A description of the diagnostic spectrometer is presented. The main characteristics of the spectrometer that allow YJ-II Thomson scattering diagnostic to have high spatial and spectral resolution are described in this paper. (Author)

  2. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  3. First high-repetition-rate Thomson scattering for fusion plasmas

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Schramm, G.; Hirsch, K.; Salzmann, H.

    1982-01-01

    Electron temperature and density measurements by Thomson scattering were performed for the first time for the whole duration of a tokamak discharge. A Nd:YAG laser of 60 pulses per second at 1.06μm was used in ASDEX in combination with silicon avalanche photodiode detectors. Density calibration was done by rotational anti-Stokes Raman scattering from hydrogen. The system is used for measurements at electron densities as low as 3x10 12 cm -3 . (author)

  4. Recent advances in Thomson scattering: high repetition rate Thomson scattering diagnostics on large plasma devices

    International Nuclear Information System (INIS)

    Roehr, H.; Steuer, K.H.; Hirsch, K.; Salzmann, H.

    1982-09-01

    In contrast to conventional ruby laser scattering devices allowing only singly pulse measurements, time evolution of Te and ne can be obtained with multipulse lasers. Within a short time interval ( proportional 1 ms) rapid variations can be investigated by employing a periodically Q-switched ruby laser. Several scattering systems under construction in different laboratories to register the time evolution of Tsub(e) and nsub(e) during the whole plasma discharge will be reported. The set-up operating successfully on the Garching tokamak ASDEX will be described in detail. This scattering system uses a Nd:YAG laser (1 J/pulse, up to 100 pps, pulse duration 30 ns, burst of max. 400 pulses) and silicon avalanche diodes as detectors. Time resolved nsub(e) and Tsub(e) measurements on different types of ASDEX discharges are shown, e.g. the electron density and electron heating during neutral beam injection in a divertor discharge. As an example of relatively fast changes of nsub(e) and Tsub(e), results on pellet injection are presented. Interferometric and ECE measurements are in good agreement with the Thomson results. Stationary ''long pulse discharges'' in ASDEX (10 s) at low densitites (10 12 cm -3 ) were diagnosed with reduced time resolution by averaging over several laser pulses. Measurements of the time evolution of electron temperature and -density profiles were done in a first step with a scanning mirror system. These results enables optimazing out 15 spatial-point Thomson scattering system on ASDEX. (orig./AH)

  5. Entropy-Based Clutter Rejection for Intrawall Diagnostics

    Directory of Open Access Journals (Sweden)

    Raffaele Solimene

    2012-01-01

    Full Text Available The intrawall diagnostic problem of detecting localized inhomogeneities possibly present within the wall is addressed. As well known, clutter arising from masonry structure can impair detection of embedded scatterers due to high amplitude reflections that wall front face introduces. Moreover, internal multiple reflections also can make it difficult ground penetrating radar images (radargramms interpretation. To counteract these drawbacks, a clutter rejection method, properly tailored on the wall features, is mandatory. To this end, here we employ a windowing strategy based on entropy measures of temporal traces “similarity.” Accordingly, instants of time for which radargramms exhibit entropy values greater than a prescribed threshold are “silenced.” Numerical results are presented in order to show the effectiveness of the entropy-based clutter rejection algorithm. Moreover, a comparison with the standard average trace subtraction is also included.

  6. Scattering of a high-order Bessel beam by a spheroidal particle

    Science.gov (United States)

    Han, Lu

    2018-05-01

    Within the framework of generalized Lorenz-Mie theory (GLMT), scattering from a homogeneous spheroidal particle illuminated by a high-order Bessel beam is formulated analytically. The high-order Bessel beam is expanded in terms of spheroidal vector wave functions, where the spheroidal beam shape coefficients (BSCs) are computed conveniently using an intrinsic method. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident Bessel beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by nonspherical particles and particle manipulation applications using Bessel beams.

  7. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  8. Electron scattering from high-momentum neutrons in deuterium

    International Nuclear Information System (INIS)

    Klimenko, A.V.; Kuhn, S.E.; Bueltmann, S.; Careccia, S.L.; Dharmawardane, K.V.; Dodge, G.E.; Guler, N.; Hyde-Wright, C.E.; Klein, A.; Tkachenko, S.; Weinstein, L.B.; Zhang, J.; Butuceanu, C.; Griffioen, K.A.; Baillie, N.; Fersch, R.G.; Funsten, H.; Egiyan, K.S.; Asryan, G.; Dashyan, N.B.

    2006-01-01

    We report results from an experiment measuring the semiinclusive reaction 2 H(e,e ' p s ) in which the proton p s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p → s , and momentum transfer Q 2 . The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a 'bound neutron structure function' F 2n eff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For p s >0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of F 2n eff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's 'off-shell-ness' is one possible effect that can cause the observed deviation

  9. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, H.; Skutella, M.; Woeginger, Gerhard

    2003-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  10. Preemptive scheduling with rejection

    NARCIS (Netherlands)

    Hoogeveen, J.A.; Skutella, M.; Woeginger, G.J.; Paterson, M.

    2000-01-01

    We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-dependent penalties for each rejected job, and he must construct a schedule for the remaining

  11. Model of K+p elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem

    1985-01-01

    Very recent measurements of the angular distribution for K + p elastic scattering which show a structure near -t = 3.8(GeV/c) 2 , together with the total cross section and ratio of the real and imaginary parts of the scattering amplitude for 50 2 , have been fitted by using a simple Regge-pole model with phenomenological residue functions. The break in the slope near -t = 0.5 (GeV/c) 2 observed in the differential cross section has also been explained

  12. High repetition Thomson scattering profile measurements using a nonimaging technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1983-01-01

    The Thomson scattering technique is one of the most useful diagnostics for the study of magnetically confined plasmas. In this work, a simple multi-space and time Thomson scattering technique has been proposed. The spatial resolution is obtained by conversion of the scattered laser light collected from different plasma points into a time sequence. This can be done by focusing the image of the laser beam through a wideangle lens onto an array of fiber optic light pipes. Since the laser emits relatively short pulses (1020 nsec), scattered light pulses from each of the light pipes can be delayed relative to one another without overlapping. Such delays can be achieved by using an array of fiber optics of differing lengths (2-4 meters). The light is transmitted then into a spectrometer and detected by fast detectros (few nsec rise and fall time). Reconstruction from the time sequence to the spatial structure is obtained by using existing fast gate circuits. The data then is A/D converted and handled by using a data acquisition system

  13. Heavy ion scattering: High energy limits of RBS and ERD

    International Nuclear Information System (INIS)

    Rauhala, E.

    1994-01-01

    Elastic scattering of 7 Li ions by oxygen and 12 C, 14 N and 16 O ions by aluminum, silicon, titanium and sulfur have been studied below the Coulomb barrier energies 3-30 MeV in the angular range of 78 degrees - 170 degrees. By kinematically reversing the reactions, the recoiling of carbon, nitrogen and oxygen by 40-100 MeV 27 Al, 28 Si, 32S and 48 Ti ions into recoil angles of 20 degrees, 25 degrees, 30 degrees and 40 degrees has also been investigated. Excitation functions and angular distributions are presented. Contrary to the case of light H and He ions, the heavy ion scattering cross sections fall off rapidly above the non-Rutherford threshold energy, rendering heavy ion RBS and ERD spectrometry worthless. Both classical and wave mechanical calculations have been attempted for predicting the RBS threshold energies. Simple calculations give moderate accuracy, while the more extensive nuclear potential perturbation approach relies on parameters fitted for the particular experiment. The authors present a general classical semi-empirical model for both direct scattering (RBS) and the kinematically reversed reactions (ERD), accurately reproducing the experimental data. The model is based on parameters fitted from the present scattering experiments and from an extensive literature survey

  14. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  15. The Current Status of High Energy Elastic Scattering

    Science.gov (United States)

    Block, Martin M.; Kang, Kyungsik; White, Alan R.

    The recent total cross section, σtot, and ρ-value results from the Fermilab Tevatron Collider experiments,1,2 presented at the 4th “Blois” Workshop on Elastic and Diffractive Scattering, held at Elba in May 1991, provide a natural springboard from which to launch a focused review of the field.

  16. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  17. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  18. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    Science.gov (United States)

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  19. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-01-01

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  20. Advanced Thomson scattering system for high-flux linear plasma generator

    NARCIS (Netherlands)

    Meiden, van der H.J.; Lof, A.R.; Berg, van den M.A.; Brons, S.; Donné, A.J.H.; Eck, van H.J.N.; Koelman, Peter; Koppers, W.R.; Kruijt, O.G.; Naumenko, N.N.; Oyevaar, T.; Prins, P.R.; Rapp, J.; Scholten, J.; Schram, D.C.; Smeets, P.H.M.; Star, van der G.; Tugarinov, S.N.; Zeijlmans van Emmichoven, P.A.

    2012-01-01

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating

  1. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  2. Scattering of high-energy α particles on 12C

    International Nuclear Information System (INIS)

    Ahmad, I.

    1977-04-01

    Glauber multiple scattering theory is applied to analyse the elastic and inelastic scattering of 1.37 GeV α particles on 12 C. An approach which treats the N-α amplitude at the incident nucleon kinetic energy equal to the α-kinetic energy per particle as the basic interaction is adopted. Using the gaussian model for 4 He to obtain the N-α amplitude in terms of the NN amplitude, it is found that, in general, the experimental data are qualitatively explained. However, large discrepancies in terms of the magnitude of the cross-sections in the small angle region and the positions of the minima in the angular distribution at larger angles are generally present. Effects of the two-body correlations in the projectile as well as in the target are also investigated

  3. α4He elastic scattering at high energies

    International Nuclear Information System (INIS)

    Usmani, A.A.; Usmani, Q.N.

    1988-03-01

    Differential cross sections for α 4 He elastic scattering have been calculated at incident α particle momenta of 4.32, 5.07 and 7.0 GeV/c within the framework of the Glauber multiple scattering theory. The full Glauber amplitude is calculated using the Monte Carlo method for evaluating multidimensional integrals. We find that, in general, the more realistic double Gaussian model for the density brings theory closer to experiment as compared to the generally used single Gaussian model. Our results with the double Gaussian model are in fairly good agreement with the experimented data at 4.32 and 5.07 GeV/c. (author). 11 refs, 4 figs, 1 tab

  4. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  5. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  6. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  7. Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars

    Science.gov (United States)

    Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.

    2018-02-01

    Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.

  8. Hard scattering processes in high energy γ-induced reactions

    International Nuclear Information System (INIS)

    D'Agostini, G.

    1994-09-01

    Recent results from photoproduction and γγ collisions are reviewed, with special focus on hard interactions, featuring the jets as the best evidence, as manifestation of parton-parton and photon-parton scattering. The experimental results are in good agreement with perturbative QCD expectations and the data are going to have the appropriate accuracy to discriminate between the available parameterizations of the photon structure functions. In particular, the combination of F 2 γ measured in γγ and the jet cross sections measured in γγ and γp will probably constrain in the near future the gluon content of the photon. (orig.)

  9. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general ...... and is a prerequisite for measurements of ion Bernstein wave signatures in CTS spectra. The first results from the new acquisition system are shown to be consistent with theory and with simultaneous measurements by the standard receiver system. © 2010 EURATOM...

  10. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  11. High-energy electroweak neutrino-nucleon deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets

  12. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  13. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  14. The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study.

    Directory of Open Access Journals (Sweden)

    Silke Roedder

    2014-11-01

    Full Text Available Development of noninvasive molecular assays to improve disease diagnosis and patient monitoring is a critical need. In renal transplantation, acute rejection (AR increases the risk for chronic graft injury and failure. Noninvasive diagnostic assays to improve current late and nonspecific diagnosis of rejection are needed. We sought to develop a test using a simple blood gene expression assay to detect patients at high risk for AR.We developed a novel correlation-based algorithm by step-wise analysis of gene expression data in 558 blood samples from 436 renal transplant patients collected across eight transplant centers in the US, Mexico, and Spain between 5 February 2005 and 15 December 2012 in the Assessment of Acute Rejection in Renal Transplantation (AART study. Gene expression was assessed by quantitative real-time PCR (QPCR in one center. A 17-gene set--the Kidney Solid Organ Response Test (kSORT--was selected in 143 samples for AR classification using discriminant analysis (area under the receiver operating characteristic curve [AUC] = 0.94; 95% CI 0.91-0.98, validated in 124 independent samples (AUC = 0.95; 95% CI 0.88-1.0 and evaluated for AR prediction in 191 serial samples, where it predicted AR up to 3 mo prior to detection by the current gold standard (biopsy. A novel reference-based algorithm (using 13 12-gene models was developed in 100 independent samples to provide a numerical AR risk score, to classify patients as high risk versus low risk for AR. kSORT was able to detect AR in blood independent of age, time post-transplantation, and sample source without additional data normalization; AUC = 0.93 (95% CI 0.86-0.99. Further validation of kSORT is planned in prospective clinical observational and interventional trials.The kSORT blood QPCR assay is a noninvasive tool to detect high risk of AR of renal transplants. Please see later in the article for the Editors' Summary.

  15. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  16. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  17. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    Science.gov (United States)

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  18. p-barp elastic scattering at high energies

    International Nuclear Information System (INIS)

    Padua, A.B. de.

    1986-01-01

    The p-bar p elastic scattering is analysed in the energy range 9.78 pp werefitted under the hypothesis of a pure imaginary amplitude and writted as a sum of exponentials, that is, a(s,t) = a(s,O) Σ n i=l α i exp β i t. Using the parameters a(s,O), α i and β i we obtained the absorption constante K- pp , the form factor and the mean square radius of the - p matter distribution by the Chou-Yang model. These calculations reveal a dip around -t ≅ 1.3 (GeV/c) 2 at 31 and 62 GeV. (author) [pt

  19. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1989-01-01

    There are four areas where major progress has occurred this year. We have applied the Fourier-transform method of describing and analyzing Moessbauer effect (ME) line shapes to make measurements of the temperature dependence of the recoilless fraction in tungsten. We have carried out quasi-elastic measurements of the gamma scattering from viscous liquids, learning about diffusive motion in polydimethylsiloxane, pentadecane, and glycerol. We have made major progress in fundamental physics, having shown for the first time how to determine precise quantum interference parameters, obtaining experimental results on the 46.5 keV line of 183 W and the 129 keV line of 191 Ir. Finally, we have continued our development of MICE detectors, with a theoretical analysis of the MICE lineshape and its relation to the lineshape of conventional transmission ME spectroscopy. 12 refs

  20. An experimental study on inhibiting graft rejection following high-risk penetrating keratoplasty by CD25 siRNA nanocarrier in rats

    Directory of Open Access Journals (Sweden)

    Yun-jie SHI

    2015-06-01

    Full Text Available Objective To investigate the effects of CD25 siRNA nanoparticles against immune rejection and prolongation of corneal graft survival time after high-risk corneal grafting in rats. Methods Orthotopic corneal transplantation was performed in SD rats with alkali burned corneas to mimic high-risk rat models. Donor cornea (Wistar rats was grafted into the right cornea of SD recipients on day 14 after alkali burn. The grafted rats were randomly divided into control group (Group A, EntransterTM-control CD25siRNA instillation treatment (Group B, EntransterTM-CD25siRNA instillation treatment (Group C and EntransterTM-CD25siRNA twice instillation treatment (Group D, first administration at 2-hour post-surgery and second on day 7 post-surgery. The recipient eyes were examined using a slit lamp microscope. Then, the mean survival time and rejection index (RI were calculated. The morphologies of grafts were microscopically examined with HE staining, and TEM. CD25 expression after operation was determined by quantitative RT-PCR and immunohistochemistry. Results The survival curves of transplanted cornea showed that the mean survival time in rats of groups C and D was significantly longer than that in groups A and B (P<0.05. No significant difference was found in survival time between group A and group B, and the same between group C and group D. The grafts in groups A and B showed obvious edema and thickening, with irregular arrangement of collagen fibers and infiltration of a large amount of inflammatory cells. Immunohistochemical results showed that expression of CD25 was found in the corneal epithelium, stroma and endothelium in all rats, and higher CD25 expression was observed in groups A and B. Transmission electron microscopy revealed that the degree of stromal fibroblast apoptosis and necrosis in corneal graft was obviously lower in groups C and D than that of groups A and B, with a significant statistical difference. The expression of CD25 m

  1. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  2. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  3. Analytical calculations of multiple scattering for high energy photons and neutrons

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1994-04-01

    Radiography of large dense objects often require the use of highly penetrating radiation. For example, a couple of centimeters of steel attenuates 50 keV x-rays by a factor of approximately 10 -14 whereas this same amount of steel would attenuate a 500 keV photon beam by only a factor of about 0.25. However, this increase in penetrating power comes with a price. In the case of x-radiation there are two bills to pay: (1) For projection radiography, this increase in penetration directly causes a corresponding decrease in resolution. (2) This increase in penetration occurs in a region where the interaction of radiation and matter is changing from absorption to scattering. In the above example the fraction of scattering goes from about 0.1 at 50 keV to over 0.99 at 500 keV. These scattered photons can significantly degrade contrast. In order to overcome some of these difficulties, radiography using scattered photons has been studied by myself and numerous other authors. In all the above cases, calculation of the intensity of scattered radiation is of primary importance. In cases where scattering is probable, multiple scattering can also be probable. Calculations of multiple scattering are generally very difficult and usually require the use of extremely sophisticated Monte Carlo simulations. It is not unusual for these calculations to require several hours of CPU time on some of the worlds largest and fastest supercomputers. In this paper I will present an alternative approach. I will present an analytical solution to the equations of double scattering, and show how this solution can extended to the case of higher order scattering. Finally, I will give numerical examples of these solutions and compare them to solutions obtained by Monte Carlo simulations

  4. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics.

  5. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    International Nuclear Information System (INIS)

    2005-01-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics

  6. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1992-01-01

    The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs

  7. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1991-01-01

    This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented

  8. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    Science.gov (United States)

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  9. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  10. Patterns of High energy Massive String Scatterings in the Regge Regime

    International Nuclear Information System (INIS)

    Lee Jen Chi

    2009-01-01

    We calculate high energy massive string scattering amplitudes of open bosonic string in the Regge regime (RR). We found that the number of high energy amplitudes for each fixed mass level in the RR is much more numerous than that of Gross regime (GR) calculated previously. Moreover, we discover that the leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. In particular, based on a summation algorithm for Stirling number identities developed recently, we discover that the ratios calculated previously among scattering amplitudes in the GR can be extracted from this Kummer function in the RR. We conjecture and give evidences that the existence of these GR ratios in the RR persists to sub-leading orders in the Regge expansion of all string scattering amplitudes. Finally, we demonstrate the universal power-law behavior for all massive string scattering amplitudes in the RR. (author)

  11. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  12. Structure of high excited nuclear states and elastic scattering

    International Nuclear Information System (INIS)

    Zhivopistsev, F.A.; Rzhevskij, E.S.

    1979-01-01

    An approach to a unified description of nuclear reactions and nuclear structure based on the formalism of the quantum Green functions and on the ideas of the theory of finite Fermi systems has been formulated. New structural vertices are introduced, which are responsible for nucleon collectivization in an atomic nucleus and for the excitation of many-phonon, quasideuteron, quasitriton and other configurations. The vertices define both the processes of particle scattering by atomic nuclei (T matrix and optical potentials) and the nuclear structure (secular equations and wave functions). The vertices are determined from the equations with effective many-particle forces Fsub(nm)sup(c). In their turn the Fsub(nm)sup(c) forces are either determined from a comparison of theory and experiment, or calculated from the equations with more fundamental nucleon-nucleon forces in a nucleus. The effective forces Fsub(nm)sup(c) are more universal than the constants of the theory of finite Fermi-systems, which extends the boundaries of applicability of the particle-hole formalism in the description of nuclear processes. In this approach the traditional methods of description of the nuclear structure, based on particular models of hamiltonian and wave functions, acquire a natural interpretation

  13. Studies of high energy lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Ingelman, G.

    1982-05-01

    The first part of this thesis is related to the problem of detecting charmed particles. A new technique for observing very short decay paths in nuclear emulsions is developed and applied on a sample of neutrino induced reactions. Techniques for producing thick pellicles of nuclear track emulsion are also developed. In the second part, phenomenological investigations of deep inelastic lepton-nucleon scattering are made. Monte Carlo computer programs, based on the parton model and perturbative QCD for the initial hard process and the Lund model for the following soft hadronization, are used to simulate these reactions and thereby obtain explicit results. Generally good agreement is found when comparing these with experimental data, thus supporting this basic framework. Predictions to test QCD are made. Transverse momentum properties are studied in detail, in particular effects from soft gluon emission. The properties of a model for baryon production, both from the target remnant and the colour force field, are discussed and the results found to agree with data. It is shown that, at the presently available energies, the observable energy flow is not due to QCD, but arises from the baryon production in the target fragmentation. In a model to explain the observed Λ polarization, a connection between the confinement of quarks and these polarization phenomena is suggested. (Auth.)

  14. Corrections to the leading eikonal amplitude for high-energy scattering and quasipotential approach

    International Nuclear Information System (INIS)

    Nguyen Suan Hani; Nguyen Duy Hung

    2003-12-01

    Asymptotic behaviour of the scattering amplitude for two scalar particle at high energy and fixed momentum transfers is reconsidered in quantum field theory. In the framework of the quasipotential approach and the modified perturbation theory a systematic scheme of finding the leading eikonal scattering amplitudes and its corrections is developed and constructed. The connection between the solutions obtained by quasipotential and functional approaches is also discussed. (author)

  15. Secure data storage by three-dimensional absorbers in highly scattering volume medium

    International Nuclear Information System (INIS)

    Matoba, Osamu; Matsuki, Shinichiro; Nitta, Kouichi

    2008-01-01

    A novel data storage in a volume medium with highly scattering coefficient is proposed for data security application. Three-dimensional absorbers are used as data. These absorbers can not be measured by interferometer when the scattering in a volume medium is strong enough. We present a method to reconstruct three-dimensional absorbers and present numerical results to show the effectiveness of the proposed data storage.

  16. "Science" Rejects Postmodernism.

    Science.gov (United States)

    St. Pierre, Elizabeth Adams

    2002-01-01

    The National Research Council report, "Scientific Research in Education," claims to present an inclusive view of sciences in responding to federal attempts to legislate educational research. This article asserts that it narrowly defines science as positivism and methodology as quantitative, rejecting postmodernism and omitting other theories. Uses…

  17. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  18. Large-angle theory for pion-nucleus scattering at high energies

    International Nuclear Information System (INIS)

    Hoock, D.W. Jr.

    1978-01-01

    An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections

  19. ‘Healthy’ identities? : Revisiting rejection-identification and rejection-disidentification models among voluntary and forced immigrants

    NARCIS (Netherlands)

    Bobowik, Magdalena; Martinovic, Borja; Basabe, Nekane; Barsties, Lisa S.; Wachter, Gusta

    2017-01-01

    Rejection-identification and rejection-disidentification models propose that low-status groups identify with their in-group and disidentify with a high-status out-group in response to rejection by the latter. Our research tests these two models simultaneously among multiple groups of foreign-born

  20. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies.

    Science.gov (United States)

    Fuss, Alexander; Hope, Christopher M; Deayton, Susan; Bennett, Greg Donald; Holdsworth, Rhonda; Carroll, Robert P; Coates, P Toby H

    2015-07-01

    Acute antibody-mediated rejection can occur in absence of circulating donor-specific antibodies. Agonistic antibodies targeting the anti-angiotensin II type 1 receptor (anti-AT1 R) are emerging as important non-human leucocyte antigen (HLA) antibodies. Elevated levels of anti-angiotensin II receptor antibodies were first observed in kidney transplant recipients with malignant hypertension and allograft rejection. They have now been studied in three separate kidney transplant populations and associate to frequency of rejection, severity of rejection and graft failure. We report 11 cases of biopsy-proven, Complement 4 fragment d (C4d)-negative, acute rejection occurring without circulating donor-specific anti-HLA antibodies. In eight cases, anti-angiotensin receptor antibodies were retrospectively examined. The remaining three subjects were identified from our centre's newly instituted routine anti-angiotensin receptor antibody screening. All subjects fulfilled Banff 2013 criteria for antibody-mediated rejection and all responded to anti-rejection therapy, which included plasma exchange and angiotensin receptor blocker therapy. These cases support the routine assessment of anti-AT1 R antibodies in kidney transplant recipients to identify subjects at risk. Further studies will need to determine optimal assessment protocol and the effectiveness of pre-emptive treatment with angiotensin receptor blockers. © 2015 Asian Pacific Society of Nephrology.

  1. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.; Murphy, J.W. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Kim, J. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Rozhdestvenskyy, S.; Mejia, I. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Park, H. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Allee, D.R. [Flexible Display Center, Arizona State University, Phoenix, AZ 85284 (United States); Quevedo-Lopez, M. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Gnade, B., E-mail: beg031000@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-12-01

    Solid-state neutron detectors offer an alternative to {sup 3}He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10{sup −6} gamma-ray efficiency.

  2. Development of High Spectral Resolution Technique for Registration Quasielastic Light Scattering Spectra Including Rayleigh and Brillouin Scattering as a Diagnostic Tool in Materials Characterization

    National Research Council Canada - National Science Library

    Bairamov, Bakhysh

    2004-01-01

    ...: As detailed in an on-line proposal the contractor will: 1) develop and build an optical device, fitted to a Fabry-Perot interferometer, to perform high-resolution quasieleastic light scattering spectroscopy; 2...

  3. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  4. A bibliography of high energy two-body and inclusive scattering data

    International Nuclear Information System (INIS)

    Gault, F.D.; Read, B.J.; Roberts, R.G.

    1977-09-01

    A bibliography is presented of the data on high energy two-body and quasi-two-body final state scattering processes. This updated edition also covers one and two-particle inclusive production. It contains references to those published papers whose main purpose is to provide data on high energy two-body and inclusive hadronic scattering cross-sections rather than just properties of the produced particles. It covers the leading high energy physics journals and the period up to June 1977. The entries are grouped by process in the order indicated in the Table of Contents, and an author index is also provided. (author)

  5. Photon-photon scattering at the high-intensity frontier

    Science.gov (United States)

    Gies, Holger; Karbstein, Felix; Kohlfürst, Christian; Seegert, Nico

    2018-04-01

    The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study is the first to predict the precise angular spread of the signal photons, and paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.

  6. Action against Kruemmel rejected

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In its verdict dated September 2nd, 1976 - 10 A 211/74 -, the administrative court of Schleswig-Holstein at Schleswig has rejected with costs the action of a plaintiff resident in Hessen concerning the contestation of the 2nd partial licence for the erection of a nuclear power station at Kruemmel near Hamburg. The verdict is not subject to appeal. Furthermore, the administrative court of Schleswig-Holstein at Schleswig, in its verdict dated September 2nd, 1976 - 10 A 214/74 - has rejected with costs the actions of eight plaintiffs living in Hamburg and surroundings, concerning the contestation of the 1st, 2nd and 3rd partial licence for the erection of a nuclear power station at Kruemmel near Hamburg. An appeal against this verdict has been lodged at the higher administrative court at Lueneburg. The main gounds for the two judgments are given in full text. (orig./HP) [de

  7. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  8. Temporal reflectance from a light pulse irradiated medium embedded with highly scattering cores

    International Nuclear Information System (INIS)

    Hsu Peifeng; Lu Xiaodong

    2007-01-01

    This paper presents a new approach to utilize ultrashort pulsed laser for optical diagnostics with numerical simulations. The method is based on the use of ultrafast pulses with a pulsewidth selected according to the probed medium's radiative property and/or size. Our previous work in nonhomogeneous media has shown that the resulting time-resolved reflectance signal will have a unique characteristic: it will show a direct correlation of ballistic photon travel time and interface location, which is in between different layers or nonhomogeneous regions. The premise is based on utilizing the medium's structural information carried by the ballistic and snake photons without being masked by the diffuse photons. In this study, the space-time correlation is further explored in the case of minimally scattered photons from a large scattering coefficient core region embedded within a less-scattering medium. Time-resolved reflectance signals of the single scattering core and multiple scattering cores within a three-dimensional medium demonstrate the concept and illustrate the additional effect due to the scattered photons from the core region. A unique temporal signal profile's correlation at various detector positions with respect to the scattering core is explained in detail. The result has important implications. This approach will lead to a much simpler and more precise determination of the probed medium's composition or structure. Due to the large computational requirement to obtain the physical details of the light pulse propagation inside highly scattering multi-dimensional media, the reverse Monte-Carlo method is used. The potential applications of the method include non-destructive diagnostics, optical imaging, and remote sensing of underwater objects

  9. Eikonal propagators and high-energy parton-parton scattering in gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2001-01-01

    In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed

  10. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  11. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  12. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH ...

  13. Structure functions and parton distributions in deep inelastic lepton-hadron scattering at high energies

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1993-08-01

    The possibilities to measure structure functions, to extract parton distributions, and to measure α s and Λ QCD in current and future high energy deep inelastic scattering experiments are reviewed. A comparison is given for experiments at HERA, an ep option at LEP xLHC, and a high energy neutrino experiment. (orig.)

  14. Direct label-free electrical immunodetection of transplant rejection protein biomarker in physiological buffer using floating gate AlGaN/GaN high electron mobility transistors.

    Science.gov (United States)

    Tulip, Fahmida S; Eteshola, Edward; Desai, Suchita; Mostafa, Salwa; Roopa, Subramanian; Evans, Boyd; Islam, Syed Kamrul

    2014-06-01

    Monokine induced by interferon gamma (MIG/CXCL9) is used as an immune biomarker for early monitoring of transplant or allograft rejection. This paper demonstrates a direct electrical, label-free detection method of recombinant human MIG with anti-MIG IgG molecules in physiologically relevant buffer environment. The sensor platform used is a biologically modified GaN-based high electron mobility transistor (HEMT) device. Biomolecular recognition capability was provided by using high affinity anti-MIG monoclonal antibody to form molecular affinity interface receptors on short N-hydroxysuccinimide-ester functionalized disulphide (DSP) self-assembled monolayers (SAMs) on the gold sensing gate of the HEMT device. A floating gate configuration has been adopted to eliminate the influences of external gate voltage. Preliminary test results with the proposed chemically treated GaN HEMT biosensor show that MIG can be detected for a wide range of concentration varying from 5 ng/mL to 500 ng/mL.

  15. Factors Predicting Risk for Antibody-mediated Rejection and Graft Loss in Highly Human Leukocyte Antigen Sensitized Patients Transplanted After Desensitization.

    Science.gov (United States)

    Vo, Ashley A; Sinha, Aditi; Haas, Mark; Choi, Jua; Mirocha, James; Kahwaji, Joseph; Peng, Alice; Villicana, Rafael; Jordan, Stanley C

    2015-07-01

    Desensitization with intravenous immunoglobulin and rituximab (I+R) significantly improves transplant rates in highly sensitized patients, but antibody-mediated rejection (ABMR) remains a concern. Between July 2006 and December 2012, 226 highly sensitized patients received transplants after desensitization. Most received alemtuzumab induction and standard immunosuppression. Two groups were examined: ABMR (n = 181) and ABMR (n = 45, 20%). Risk factors for ABMR, pathology, and outcomes were assessed. Significant risks for ABMR included previous transplants and pregnancies as sensitizing events, donor-specific antibody (DSA) relative intensity scores greater than 17, presence of both class I and II DSAs at transplant and time on waitlist. The ABMR showed a significant benefit for graft survival and glomerular filtration rate at 5 years (P desensitized with I+R who remain ABMR have long-term graft and patient survival. The ABMR patients have significantly reduced graft survival and glomerular filtration rate at 5 years, especially TMA. Severe ABMR episodes benefit from treatment with PLEX + Eculizumab. The DSA-relative intensity scores at transplant was a strong predictor of ABMR. Donor-specific antibody avoidance and reduction strategies before transplantation are critical to avoiding ABMR and improving long-term outcomes.

  16. Thomson scattering measurements on the high beta pinch Extrap-T1

    International Nuclear Information System (INIS)

    Karlsson, P.

    1989-11-01

    Electron temperature and density measurement on a high beta discharge in the Extrap-T1 device have been performed with Thomson scattering. It was found that the signal levels were low and the plasma background radiation high. The spread of the measured temperatures and densities was large. A computer code was developed to investigate whether this spread in measured temperatures was due to shot to shot variations or to photon statistics. The code showed that the scattered data could be explained by photon statistics

  17. High-energy string-brane scattering: leading eikonal and beyond

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2010-01-01

    We extend previous techniques for calculations of transplanckian-energy string-string collisions to the high-energy scattering of massless closed strings from a stack of N Dp-branes in Minkowski spacetime. We show that an effective non-trivial metric emerges from the string scattering amplitudes by comparing them against the semiclassical dynamics of high-energy strings in the extremal p-brane background. By changing the energy, impact parameter and effective open string coupling, we are able to explore various interesting regimes and to reproduce classical expectations, including tidal-force excitations, even beyond the leading-eikonal approximation.

  18. Understanding Rejection between First-and-Second-Grade Elementary Students through Reasons Expressed by Rejecters.

    Science.gov (United States)

    García Bacete, Francisco J; Carrero Planes, Virginia E; Marande Perrin, Ghislaine; Musitu Ochoa, Gonzalo

    2017-01-01

    Objective: The aim of this research was to obtain the views of young children regarding their reasons for rejecting a peer. Method: To achieve this goal, we conducted a qualitative study in the context of theory building research using an analysis methodology based on Grounded Theory. The collected information was extracted through semi-structured individual interviews from a sample of 853 children aged 6 from 13 urban public schools in Spain. Results: The children provided 3,009 rejection nominations and 2,934 reasons for disliking the rejected peers. Seven reason categories emerged from the analysis. Four categories refer to behaviors of the rejected children that have a cost for individual peers or peer group such as: direct aggression, disturbance of wellbeing, problematic social and school behaviors and dominance behaviors. A further two categories refer to the identities arising from the preferences and choices of rejected and rejecter children and their peers: personal identity expressed through preferences and disliking, and social identity expressed through outgroup prejudices. The "no-behavior or no-choice" reasons were covered by one category, unfamiliarity. In addition, three context categories were found indicating the participants (interpersonal-group), the impact (low-high), and the subjectivity (subjective-objective) of the reason. Conclusion: This study provides researchers and practitioners with a comprehensive taxonomy of reasons for rejection that contributes to enrich the theoretical knowledge and improve interventions for preventing and reducing peer rejection.

  19. Theoretical aspects of high energy elastic nucleon scattering

    CERN Document Server

    Kundrat, Vojtech; Lokajicek, Milos

    2010-01-01

    The eikonal model must be denoted as strongly preferable for the analysis of elastic high-energy hadron collisions. The given approach allows to derive corresponding impact parameter profiles that characterize important physical features of nucleon collisions, e.g., the range of different forces. The contemporary phenomenological analysis of experimental data is, however, not able to determine these profiles unambiguously, i.e., it cannot give the answer whether the elastic hadron collisions are more central or more peripheral than the inelastic ones. However, in the collisions of mass objects (like protons) the peripheral behavior of elastic collisions should be preferred.

  20. High-speed scattering of charged and uncharged particles in general relativity

    International Nuclear Information System (INIS)

    Westphal, K.

    1985-01-01

    After a brief consideration of the high-speed scattering of two point charges high-speed scattering is thoroughly discussed for a charged particle by a fixed mass and of two uncharged particles of comparable masses. Perturbation technique is used over Minkowski spacetime in the de Donder gauge and the field equations and the resulting equations of motion (which take the reaction of the particles' quasistatic self-field into account) are solved by iteration. The obtained energy-momentum conservation laws allow the computation of second-order corrections for the scattering angle and the cross section. The asymptotic structure of the far-field indicates synchrotron radiation (electromagnetic and gravitational, respectively) which causes an energy loss whose reaction on the motion is briefly considered in the low-velocity limit including bound motion. (For neutral particles this is a third-order effect.) (author)

  1. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  2. Investigation of high-energy inelastic neutron scattering from liquid water confined in silica xerogel

    International Nuclear Information System (INIS)

    Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.

    2006-01-01

    High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions

  3. Significance of scatter radar studies of E and F region irregularities at high latitudes

    International Nuclear Information System (INIS)

    Greenwald, R.A.

    1983-01-01

    This chapter considers the mechanisms by which electron density irregularities may be generated in the high latitude ionosphere and the techniques through which they are observed with ground base radars. The capabilities of radars used for studying these irregularities are compared with the capabilities of radars used for incoherent scatter measurements. The use of irregularity scatter techniques for dynamic studies of larger scale structured phenomena is discussed. Topics considered include E-region irregularities, observations with auroral radars, plasma drifts associated with a westward travelling surge, and ionospheric plasma motions associated with resonant waves. It is shown why high latitude F-region irregularity studies must be made in the HF frequency band (3-30 MHz). The joint use of the European Incoherent Scatter Association (EISCAT), STARE and SAFARI facilities is examined, and it is concluded that the various techniques will enhance each other and provide a better understanding of the various processes being studied

  4. Probe high-Tc Superconductors by neutron scattering

    International Nuclear Information System (INIS)

    Fauque, B.

    2007-10-01

    This research thesis explores two aspects of the phase diagram of high critical temperature superconductors: the evolution of AF correlations and the nature of the pseudo-gap phase. The author presents the problematic associated with these particular semiconductors, describes the neutron diffusion probe used in this study, and presents the three families of semiconductors investigated during this research: Bi 2 Sr 2 CaCu 2 O 8+x , YBa 2 Cu 3 O 6+x and La 2-x Sr x CuO 4 . He reports the results of the investigation of the spin dynamics in the Bi 2 Sr 2 CaCu 2 O 8+x . He reports a detailed investigation of the magnetic cross section associated with different types of non conventional magnetic orders proposed as candidates for the pseudo-gap phase. He reports and comments the results obtained for the pseudo-gap phase for the YBa 2 Cu 3 O 6+x and La 2-x Sr x CuO 4 families. Finally, the author discusses the consequences of the obtained results for the description of the diagram phase of high critical temperature semiconductors

  5. Simulation of hydrodynamic effects of salt rejection due to permafrost. Hydrogeological numerical model of density-driven mixing, at a regional scale, due to a high salinity pulse

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Svensson, Urban; Follin, Sven

    2006-10-01

    The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process

  6. Disparate rates of acute rejection and donor-specific antibodies among high-immunologic risk renal transplant subgroups receiving antithymocyte globulin induction.

    Science.gov (United States)

    Patel, Samir J; Suki, Wadi N; Loucks-DeVos, Jennifer; Graviss, Edward A; Nguyen, Duc T; Knight, Richard J; Kuten, Samantha A; Moore, Linda W; Teeter, Larry D; Gaber, Lillian W; Gaber, A Osama

    2016-08-01

    Lymphocyte-depleting induction lowers acute rejection (AR) rates among high-immunologic risk (HIR) renal transplant recipients, including African Americans (AAs), retransplants, and the sensitized. It is unclear whether different HIR subgroups experience similarly low rates of AR. We aimed to describe the incidence of AR and de novo donor-specific antibody (dnDSA) among HIR recipients categorized by age, race, or donor type. All received antithymocyte globulin (ATG) induction and triple maintenance immunosuppression. A total of 464 HIR recipients from 2007 to 2014 were reviewed. AR and dnDSA rates at 1 year for the entire population were 14% and 27%, respectively. AR ranged from 6.7% among living donor (LD) recipients to 30% in younger AA deceased donor (DD) recipients. De novo donor-specific antibody at 1 year ranged from 7% in older non-AA LD recipients to 32% in AAs. AA race remained as an independent risk factor for AR among DD recipients and for dnDSA among all HIR recipients. Development of both AR and dnDSA within the first year was associated with a 54% graft survival at 5 years and was an independent risk factor for graft loss. Despite utilization of recommended immunosuppression for HIR recipients, substantial disparities exist among subgroups, warranting further consideration of individualized immunosuppression in certain HIR subgroups. © 2016 Steunstichting ESOT.

  7. Development and characterization of high refractive index and high scattering acrylate polymer layers

    Science.gov (United States)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-11-01

    In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.

  8. Percutaneous implantation of the CoreValve aortic valve prosthesis in patients at high risk or rejected for surgical valve replacement: Clinical evaluation and feasibility of the procedure in the first 30 patients in the AMC-UvA

    NARCIS (Netherlands)

    Baan, J.; Yong, Z. Y.; Koch, K. T.; Henriques, J. P. S.; Bouma, B. J.; de Hert, S. G.; van der Meulen, J.; Tijssen, J. G. P.; Piek, J. J.; de Mol, B. A. J. M.

    2010-01-01

    Objective. To report the feasibility, safety and efficacy of percutaneous aortic valve implantation (PAVI) with the CoreValve self-expanding aortic valve bioprosthesis in elderly patients with aortic valve stenosis who are rejected for surgery or have a high surgical risk.Methods. PAVI using the

  9. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    International Nuclear Information System (INIS)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )

    2009-01-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics

  10. Small angle scattering methods to study porous materials under high uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, Sylvie, E-mail: sylvie.le-floch@univ-lyon1.fr; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  11. High-energy gravitational scattering and the general relativistic two-body problem

    Science.gov (United States)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  12. Modeling rejection immunity

    Directory of Open Access Journals (Sweden)

    Gaetano Andrea De

    2012-05-01

    Full Text Available Abstract Background Transplantation is often the only way to treat a number of diseases leading to organ failure. To overcome rejection towards the transplanted organ (graft, immunosuppression therapies are used, which have considerable side-effects and expose patients to opportunistic infections. The development of a model to complement the physician’s experience in specifying therapeutic regimens is therefore desirable. The present work proposes an Ordinary Differential Equations model accounting for immune cell proliferation in response to the sudden entry of graft antigens, through different activation mechanisms. The model considers the effect of a single immunosuppressive medication (e.g. cyclosporine, subject to first-order linear kinetics and acting by modifying, in a saturable concentration-dependent fashion, the proliferation coefficient. The latter has been determined experimentally. All other model parameter values have been set so as to reproduce reported state variable time-courses, and to maintain consistency with one another and with the experimentally derived proliferation coefficient. Results The proposed model substantially simplifies the chain of events potentially leading to organ rejection. It is however able to simulate quantitatively the time course of graft-related antigen and competent immunoreactive cell populations, showing the long-term alternative outcomes of rejection, tolerance or tolerance at a reduced functional tissue mass. In particular, the model shows that it may be difficult to attain tolerance at full tissue mass with acceptably low doses of a single immunosuppressant, in accord with clinical experience. Conclusions The introduced model is mathematically consistent with known physiology and can reproduce variations in immune status and allograft survival after transplantation. The model can be adapted to represent different therapeutic schemes and may offer useful indications for the optimization of

  13. High variation of individual soluble serum CD30 levels of pre-transplantation patients: sCD30 a feasible marker for prediction of kidney allograft rejection?

    Science.gov (United States)

    Altermann, Wolfgang; Schlaf, Gerald; Rothhoff, Anita; Seliger, Barbara

    2007-10-01

    Previous studies have suggested that the pre-transplant levels of the soluble CD30 molecule (sCD30) represent a non-invasive tool which can be used as a biomarker for the prediction of kidney allograft rejections. In order to evaluate the feasibility of sCD30 for pre-transplantation monitoring the sera of potential kidney recipients (n = 652) were collected four times in a 3 months interval. Serum from healthy blood donors (n = 203) served as controls. The sCD30 concentrations of all samples were determined using a commercially available ELISA. This strategy allowed the detection of possible variations of individual sCD30 levels over time. Heterogeneous sCD30 concentrations were found in the samples obtained from individual putative kidney transplant recipients when quarterly measured over 1 year. Total 95% of serum samples obtained from healthy controls exhibited sCD30 values 30 U/ml). Total 524 patients (80.4%) constantly exhibited serum concentrations of sCD30 values >100 U/ml was significantly lower than that previously reported. The high degree of variation does not allow the stratification of patients into high and low immunological risk groups based on a single sCD30 value > 100 U/ml. Due to the heterogeneity of sCD30 levels during time course and the high values of SD, its implementation as a pre-transplant marker cannot be justified to generate special provisions for the organ allocation to patients with single sCD30 values > 100 U/ml.

  14. High energy charge exchange np and antipp scattering using the dual fermion model

    International Nuclear Information System (INIS)

    Weigt, G.

    1976-01-01

    The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)

  15. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  16. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  17. High speed low power optical detection of sub-wavelength scatterer

    NARCIS (Netherlands)

    Roy, S.; Bouwens, M.A.J.; Wei, L.; Pereira, S.F.; Urbach, H.P.; Walle, P. van der

    2015-01-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique,

  18. Neutron scattering studies on the high Tc superconductor YBa2Cu306+x

    International Nuclear Information System (INIS)

    Jurgens, M.J.G.M.

    1990-01-01

    The aim of the work described in this thesis is to clarify some of the magnetic aspects of high T c superconductors across the phase diagram as a function of doping and temperature, for which YBa 2 Cu 3 o 6+x has been chosen. Mainly the neutron scattering technique has been employed, which supplies a very powerful tool for this kind of research, for it directly shows the microscopic phenomena of the magnetism involved. First an introduction to the neutron scattering technique is given and a description of the spectrometers employed (ch. 2). The determination of the crystal structure of YBa 2 Cu 3 o 6+x is described, and the single crystals which were used during all the experiments on the magnetic properties as described in this thesis, are characterized (ch. 3). Ch. 4 deals with the phase diagram of the insulating antiferromagnetic phase in YBa 2 Cu 3 o 6+x , as obtained with neutron scattering. The inelastic scattering experiments on the magnetic excitations in this system are presented in ch. 5. In ch. 6 the total susceptibility, measure with a AQUID, is discussed. The local magnetizations, as determined with a polarized neutron scattering technique are the subject of ch. 7. (author). 254 refs.; 77 figs.; 25 tabs

  19. High-k Scattering Receiver Mixer Performance for NSTX-U

    Science.gov (United States)

    Barchfeld, Robert; Riemenschneider, Paul; Domier, Calvin; Luhmann, Neville; Ren, Yang; Kaita, Robert

    2016-10-01

    The High-k Scattering system detects primarily electron-scale turbulence k θ spectra for studying electron thermal transport in NSTX-U. A 100 mW, 693 GHz probe beam passes through plasma, and scattered power is detected by a 4-pixel quasi optical, mixer array. Remotely controlled receiving optics allows the scattering volume to be located from core to edge with a k θ span of 7 to 40 cm-1. The receiver array features 4 RF diagonal input horns, where the electric field polarization is aligned along the diagonal of a square cross section horn, at 30 mm channel spacing. The local oscillator is provided by a 14.4 GHz source followed by a x48 multiplier chain, giving an intermediate frequency of 1 GHz. The receiver optics receive 4 discreet scattering angles simultaneously, and then focus the signals as 4 parallel signals to their respective horns. A combination of a steerable probe beam, and translating receiver, allows for upward or downward scattering which together can provide information about 2D turbulence wavenumber spectrum. IF signals are digitized and stored for later computer analysis. The performance of the receiver mixers is discussed, along with optical design features to enhance the tuning and performance of the mixers. Work supported in part by U.S. DOE Grant DE-FG02-99ER54518 and DE-AC02-09CH1146.

  20. Glucose detection in a highly scattering medium with diffuse photon-pair density wave

    Directory of Open Access Journals (Sweden)

    Li-Ping Yu

    2017-01-01

    Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.

  1. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  2. High resolution Thomson scattering system for steady-state linear plasma sources

    Science.gov (United States)

    Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.

  3. Nucleus-Nucleus Scattering in the High-Energy Approximation and the Optical Folding Potential

    CERN Document Server

    Lukyanov, V K; Lukyanov, K V

    2004-01-01

    For the nucleus-nucleus scattering, the complex potential is obtained which corresponds to the eikonal phase of an optical limit of the Glauber-Sitenko high-energy approximation. The potential does not include free parameters, its real and imaginary parts depend on energy and are determined by the reported data on the nuclear density distributions and nucleon-nucleon scattering amplitude. Alternatively, for the real part, the folding potential can be utilized which includes the effective NN-forces and the exchange term, as well. As a result, the microscopic optical potential is constructed where contributions of the calculated real and imaginary parts are formed by fitting the two respective factors. An efficient of the approach is confirmed by agreements of calculations with the experimental data on elastic scattering cross-sections.

  4. High energy deeply virtual Compton scattering on a photon and related meson exclusive production

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential cross section for the high energy deeply virtual Compton scattering on a photon target, γ*γ→γγ, within the QCD dipole-dipole scattering formalism. For the phenomenology, a saturation model for the dipole-dipole cross section for two photon scattering is considered. Its robustness is supported by a good description of current accelerator data. In addition, we consider the related exclusive vector meson production processes, γ*γ→Vγ. This analysis is focused on the light ρ and φ meson production, which produces larger cross sections. The phenomenological results are compared with the theoretical calculation using the color-dipole Balitsky-Fadin-Kuraev-Lipatov approach

  5. The importance of anisotropic scattering in high energy neutron transport problems

    International Nuclear Information System (INIS)

    Prillinger, G.; Mattes, M.

    1984-01-01

    To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)

  6. Triple parton scatterings in high-energy proton-proton collisions arXiv

    CERN Document Server

    d'Enterria, David

    2017-01-01

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS. The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5±4.5  mb. Estimates for triple charm (cc¯) and bottom (bb¯) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc¯, bb¯ cross sections. At s≈100  TeV, about 15% of the pp collisions produce three cc¯ pairs from three different parton-parton scatterings.

  7. Performance of n-γ pulse-shape discrimination with simple pile-up rejection at high γ-ray count rates

    International Nuclear Information System (INIS)

    Okuda, T.; Yamazaki, H.; Kawabata, M.; Kasagi, J.; Harada, H.

    1999-01-01

    The performance of n-γ pulse-shape discrimination for a liquid scintillation detector has been investigated for γ-ray count rates up to 50 kcps. A method in which the ratio of the total to partial charge in the anode pulse is directly measured has shown much improved quality of the pulse-shape discrimination when pile-up events are rejected; it can discriminate neutron events of 50 cps from γ-ray events of 29 kcps. The method with simple pile-up rejection has the advantage that only general purpose electronics are required

  8. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Létourneau, Pierre-David

    2016-09-19

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.

  9. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  10. Image rejects in general direct digital radiography.

    Science.gov (United States)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-10-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality.

  11. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  12. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}high energy transfer (-bar {omega}>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  13. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  14. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  15. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  16. Rejection Sensitivity Moderates the Impact of Rejection on Self-Concept Clarity

    Science.gov (United States)

    Ayduk, Özlem; Gyurak, Anett; Luerssen, Anna

    2014-01-01

    Self-concept clarity (SCC) refers to the extent to which self-knowledge is clearly and confidently defined, internally consistent, and temporally stable. Research shows that SCC can be undermined by failures in valued goal domains. Because preventing rejection is an important self-relevant goal for people high in rejection sensitivity (RS), it is hypothesized here that failures to attain this goal would cause them to experience diminished SCC. Study 1, an experimental study, showed that high-RS people’s SCC was undermined following rejection but not following an aversive experience unrelated to rejection. Study 2, a daily diary study of couples in relationships, used occurrence of partner conflicts to operationalize rejection. Replicating the findings in Study 1, having a conflict on any given diary day predicted a greater reduction in the SCC of high- compared to low-RS people on the following day. The implications for understanding the conditions under which rejection negatively affects the self-concept are discussed. PMID:19713567

  17. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Science.gov (United States)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  18. High energy behaviour of the scattering amplitude in the presence of confined channels

    International Nuclear Information System (INIS)

    Gehlen, G.; Rittenberg, V.

    1977-09-01

    The two-channel potential scattering problem in three space-dimensions is considered in the case when one channel is permanently confined. Two examples of confining potentials are considered: the harmonic oscillator and the infinite well. The two cases give radically different results: for the infinite well there is no high energy limit; in the case of the harmonic oscillator the amplitude has properties similar to that of dual absorptive models. (orig.) [de

  19. A dynamic elastic and inelastic scattering theory of high-energy electrons

    International Nuclear Information System (INIS)

    Wang Zhonglin

    1990-01-01

    A review is given on the applications of elastic multislice theory for simulating the images and diffractions of reflection electron microscopy. The limitation of this theory is illustrated according to some experimental observations. A generalized elastic and inelastic multislice theory is then introduced from quantum mechanics; its applications for approaching inelastic plasmon excitation and phonon excitation (or thermal diffuse scattering) are discussed. The energy-filtered inelastic high resolution images can be simulated based on this theory

  20. Thomson scattering measuring device using high sensitivity photomultipliers: 16% up to 860nm

    International Nuclear Information System (INIS)

    Hesse, M.

    1976-03-01

    Photomultipliers with high quantum efficiency were used to observe the entire rubis laser light spectrum scattered by a plasma. The optical and electronic acquisition device used to study this spectrum is described. The spectra obtained revealed a dissymmetry larger than that expected from relativistic theory. These results could not be interpreted. The diagnostic sensitivity allows the measurement of low electron densities (2.10 12 ecm -3 ) [fr

  1. Dipole pomeron and. pi. /sup -/p elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-E-Aleem (Panjab Univ., Lahore (Pakistan). Physics Dept.)

    1982-10-16

    The differential cross-sections for high-energy ..pi../sup -/p elastic scattering showing structure near -t=4 (GeV/c)/sup 2/ for psub(L)=50 and 200 GeV/c together with total cross-sections for 50<=psub(L)<=370 GeV/c, and with -t extending up to 11 (GeV/c)/sup 2/ have been fitted by using a dipole pomeron model.

  2. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45...... model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state....

  3. High-Energy antipp and pp Elastic Scattering and Nucleon Structure

    International Nuclear Information System (INIS)

    Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.

    1987-01-01

    High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out

  4. High-Energy antipp and pp Elastic Scattering and Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.

    1987-07-15

    High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out.

  5. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2010-03-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH=σsp(RH/σsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH is available so far. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  6. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  7. Discrete ordinates transport methods for problems with highly forward-peaked scattering

    International Nuclear Information System (INIS)

    Pautz, S.D.

    1998-04-01

    The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method

  8. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  9. Final-photon polarization in the scattering of photons by high-energy electrons

    International Nuclear Information System (INIS)

    Choi, J.; Choi, S.Y.; Ie, S.H.; Song, H.S.; Good, R.H. Jr.

    1987-01-01

    A general method for calculating the polarization of the outgoing photon beam in any reaction is presented. As an example the method is applied to the high-energy photon beam produced in Compton scattering of a laser beam by a high-energy electron beam. The Stokes parameters of the outgoing photon beam, relative to a unit vector normal to the photon momentum and including their dependence on the polarization of incident photon and electron beams, are obtained explicitly. It is expected that this method will be useful, both in photon production reactions and in the subsequent high-energy photon reactions

  10. Generalized Chou-Yang model for p(antip)p and. lambda. (anti. lambda. )p elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem; Azhar, I.A.

    1988-06-01

    The various characteristics of pp and antipp elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting colliding particles. The model is also used to extract the form factor and radius of the ..lambda.. particle.

  11. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  12. Radionuclide diagnosis of allograft rejection

    International Nuclear Information System (INIS)

    George, E.A.

    1982-01-01

    Interaction with one or more anatomical and physiopathological characteristics of the rejecting renal allograft is suggested by those radioagents utilized specifically for the diagnosis of allograft rejection. Rejection, the most common cause of declining allograft function, is frequently mimicked clinically or masked by other immediate or long term post transplant complications. Understanding of the anatomical pathological features and kinetics of rejection and their modification by immunosuppressive maintenance and therapy are important for the proper clinical utilization of these radioagents. Furthermore, in selecting these radionuclides, one has to consider the comparative availability, preparatory and procedural simplicity, acquisition and display techniques and the possibility of timely report. The clinical utilities of radiofibrinogen, /sup 99m/Tc sulfur colloid and 67 Ga in the diagnosis of allograft rejection have been evaluated to a variable extent in the past. The potential usefulness of the recently developed preparations of 111 In labeled autologous leukocytes and platelets are presently under investigation

  13. Scattering of W and Z bosons at high-energy lepton colliders

    International Nuclear Information System (INIS)

    Fleper, Christian; Kilian, Wolfgang; Reuter, Juergen; Sekulla, Marco

    2016-07-01

    We present a new study of quasi-elastic W and Z scattering processes in high-energy e"+e"- collisions, based on and extrapolating the low-energy effective theory which extends the Standard Model with a 125 GeV Higgs boson. Besides parameterizing deviations in terms of the dimension-8 operators that arise in the effective theory, we also study simplified models of new physics in W/Z scattering in terms of scalar and tensor resonance multiplets. The high-energy asymptotics of all models is regulated by a universal unitarization procedure. This enables us to provide benchmark scenarios which can be meaningfully evaluated off-shell and in exclusive event samples, and to determine the sensitivity of an e"+e"- collider to the model parameters. We analyze the longitudinal vector boson scattering modes, where we optimize the cuts for the fiducial cross section for different collider scenarios. Here, we choose energy stages of 1.0, 1.4 and 3 TeV, as motivated by the extendability of the ILC project and the staging scenario of the CLIC project.

  14. A new impact picture for low and high energy proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Bourrely, C.; Soffer, J.; Wu, Tai Tsun

    1978-05-01

    The impact picture that was used several years ago to predict the increase of total and integrated differential cross sections at high energies was improved significantly. The major improvements consist of the following: (1) the dependence of the Pomeron term on the momentum transfer is taken from a modified version of the relation between matter distribution and charge distribution; (2) Regge backgrounds are properly taken into account; and (3) a simple non-trivial form is used for the hadronic matter current in the proton. For proton-proton elastic scattering, the phenomenological differential cross section is in good agreement with the experimental data in the laboratory momentum range of 14 GeV/c to 2000 GeV/c, and is predicted for ISABELLE energy. Because of the third improvement, predictions are obtained for both polarization and R parameters for proton-proton elastic scattering

  15. Proposal to Measure Hadron Scattering with a Gaseous High Pressure TPC for Neutrino Oscillation Measurements

    CERN Document Server

    Andreopoulos, C; Bordoni, S; Boyd, S; Brailsford, D; Brice, S; Catanesi, G; Chen-Wishart, Z; Denner, P; Dunne, P; Giganti, C; Gonzalez Diaz, D; Haigh, J; Hamacher-Baumann, P; Hallsjo, S; Hayato, Y; Irastorza, I; Jamieson, B; Kaboth, A; Korzenev, A; Kudenko, Y; Leyton, M; Luk, K-B; Ma, W; Mahn, K; Martini, M; McCauley, N; Mermod, P; Monroe, J; Mosel, U; Nichol, R; Nieves, J; Nonnenmacher, T; Nowak, J; Parker, W; Raaf, J; Rademacker, J; Radermacher, T; Radicioni, E; Roth, S; Saakyan, R; Sanchez, F; Sgalaberna, D; Shitov, Y; Sobczyk, J; Soler, F; Touramanis, C; Valder, S; Walding, J; Ward, M; Wascko, M; Weber, A; Yokoyama, M; Zalewska, A; Ziembicki, M

    2017-01-01

    We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino oscillation searches. The motivation for this work is to improve knowledge of final state interactions, in order to ultimately achieve 1-2% systematic error on neutrino-nucleus scattering for oscillation measurements at 0.6 GeV and 2.5 GeV neutrino energy, as required for the Charge-Parity (CP) violation sensitivity projections by the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). The final state interaction uncertainties in neutrino-nucleus interactions dominate cross-section systematic errors, currently 5–10% at these energies, and therefore R&D is needed to explore new approaches to achieve this substantial improvement.

  16. High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    International Nuclear Information System (INIS)

    Giddings, Steven B.

    2003-01-01

    High-energy scattering in nonconformal gauge theories is investigated using the AdS/conformal field theory (CFT) dual string-gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross section that grows with center of mass energy as ln 2 E, saturating the Froissart bound

  17. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography

    Science.gov (United States)

    Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.

    2016-07-01

    An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.

  18. UCN up-scattering as a source of highly intense monochromatic pulsed beams

    International Nuclear Information System (INIS)

    Rauch, H.; Geltenborg, P.; Zimmer, O.

    2011-01-01

    The present proposal opens new possibilities to increase the usable neutron flux by advanced neutron cooling and phase space transformation methods. Thus a new instrument should be installed where the available neutron flux is used more efficiently. The essential point is an increase of phase space density and brilliance due to a more effective production of ultra-cold neutrons and a following transformation of these neutrons to higher energies. Recently reported progresses in the production of UCN's and in the up-scattering of such neutrons make the time mature to step towards a new method to produce high intense pulsed neutron beams. The up-scattering is made by fast moving Bragg crystals

  19. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  20. Modifications Of Discrete Ordinate Method For Computations With High Scattering Anisotropy: Comparative Analysis

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2012-01-01

    A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on separation of the diffuse light field into anisotropic and smooth parts is presented. The analysis uses three different algorithms based on the discrete ordinate method (DOM). Two methods, DOMAS and DOM2+, that do not use the truncation of the phase function, are compared against the TMS-method. DOMAS and DOM2+ use the Small-Angle Modification of RTE and the single scattering term, respectively, as an anisotropic part. The TMS method uses Delta-M method for truncation of the phase function along with the single scattering correction. For reference, a standard discrete ordinate method, DOM, is also included in analysis. The obtained results for cases with high scattering anisotropy show that at low number of streams (16, 32) only DOMAS provides an accurate solution in the aureole area. Outside of the aureole, the convergence and accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found more accurate in cases with coarse aerosol and liquid water cloud models, except low optical depth, while the TMS showed better results in case of ice cloud.

  1. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  2. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  3. Rejection Sensitivity, Jealousy, and the Relationship to Interpersonal Aggression.

    Science.gov (United States)

    Murphy, Anna M; Russell, Gemma

    2018-07-01

    The development and maintenance of interpersonal relationships lead individuals to risk rejection in the pursuit of acceptance. Some individuals are predisposed to experience a hypersensitivity to rejection that is hypothesized to be related to jealous and aggressive reactions within interpersonal relationships. The current study used convenience sampling to recruit 247 young adults to evaluate the relationship between rejection sensitivity, jealousy, and aggression. A mediation model was used to test three hypotheses: Higher scores of rejection sensitivity would be positively correlated to higher scores of aggression (Hypothesis 1); higher scores of rejection sensitivity would be positively correlated to higher scores of jealousy (Hypothesis 2); jealousy would mediate the relationship between rejection sensitivity and aggression (Hypothesis 3). Study results suggest a tendency for individuals with high rejection sensitivity to experience higher levels of jealousy, and subsequently have a greater propensity for aggression, than individuals with low rejection sensitivity. Future research that substantiates a link between hypersensitivity to rejection, jealousy, and aggression may provide an avenue for prevention, education, or intervention in reducing aggression within interpersonal relationships.

  4. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  5. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1989-01-01

    One of the iterative methods which is used to solve the discretized transport equation is called the Source Iteration Method (SI). The SI method converges very slowly for problems with optically thick regions and scattering ratios (σ s /σ t ) near unity. The Diffusion-Synthetic Acceleration method (DSA) is one of the methods which has been devised to improve the convergence rate of the SI method. The DSA method is a good tool to accelerate the SI method, if the particle which is being dealt with is a neutron. This is because the scattering process for neutrons is not severely anisotropic. However, if the particle is a charged particle (electron), DSA becomes ineffective as an acceleration device because here the scattering process is severely anisotropic. To improve the DSA algorithm for electron transport, the author approaches the problem in two different ways in this thesis. He develops the first approach by accelerating more angular moments (φ 0 , φ 1 , φ 2 , φ 3 ,...) than is done in DSA; he calls this approach the Modified P N Synthetic Acceleration (MPSA) method. In the second approach he modifies the definition of the transport sweep, using the physics of the scattering; he calls this approach the Modified Diffusion Synthetic Acceleration (MDSA) method. In general, he has developed, analyzed, and implemented the MPSA and MDSA methods in this thesis and has shown that for a high order quadrature set and mesh widths about 1.0 cm, they are each about 34 times faster (clock time) than the DSA method. Also, he has found that the MDSA spectral radius decreases as the mesh size increases. This makes the MDSA method a better choice for large spatial meshes

  6. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    International Nuclear Information System (INIS)

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  7. Local graft irradiation in renal transplant rejection

    International Nuclear Information System (INIS)

    Kawamura, Masashi; Kataoka, Masaaki; Itoh, Hisao

    1990-01-01

    From 1977 to 1988, of 142 renal transplantations, seven recipients (4.9%) received local graft irradiation following rejective reaction refractory to antirejection medical managements. Concurrent with the administration of pulsed high dose methylprednisolone and other antirejection medical managements, the graft was irradiated with a total dose of 6.0 Gy-150 cGy per fraction every other day at the midplane of the graft using two opposing portals of 4MX Linac. The fields were defined by palpation and echography. All patients had improvements in serum creatinine on the 10th day after beginning the irradiation. Four patients with peripheral lymphocytosis during the irradiation combined with pulsed high dose methylprednisolone improved in renal functions. On the other hand, out of 3 patients with lymphcytopenic changes, in two the transplanted graft was removed due to deteriorations, and the other patient is currently suffering from chronic rejection. Local graft irradiation can be useful in maintaining a rejective graft and reversing its functions in some patients whose rejective reaction failed to respond to the antirejection medical managements. (author)

  8. Is the bitter rejection response always adaptive?

    Science.gov (United States)

    Glendinning, J I

    1994-12-01

    The bitter rejection response consists of a suite of withdrawal reflexes and negative affective responses. It is generally assumed to have evolved as a way to facilitate avoidance of foods that are poisonous because they usually taste bitter to humans. Using previously published studies, the present paper examines the relationship between bitterness and toxicity in mammals, and then assesses the ecological costs and benefits of the bitter rejection response in carnivorous, omnivorous, and herbivorous (grazing and browsing) mammals. If the bitter rejection response accurately predicts the potential toxicity of foods, then one would expect the threshold for the response to be lower for highly toxic compounds than for nontoxic compounds. The data revealed no such relationship. Bitter taste thresholds varied independently of toxicity thresholds, indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter food as it is by a harmful one. Thus, it is not necessarily in an animal's best interest to have an extremely high or low bitter threshold. Based on this observation, it was hypothesized that the adaptiveness of the bitter rejection response depends upon the relative occurrence of bitter and potentially toxic compounds in an animal's diet. Animals with a relatively high occurrence of bitter and potentially toxic compounds in their diet (e.g., browsing herbivores) were predicted to have evolved a high bitter taste threshold and tolerance to dietary poisons. Such an adaptation would be necessary because a browser cannot "afford" to reject all foods that are bitter and potentially toxic without unduly restricting its dietary options. At the other extreme, animals that rarely encounter bitter and potentially toxic compounds in their diet (e.g., carnivores) were predicted to have evolved a low bitter threshold. Carnivores could "afford" to utilize such a stringent rejection mechanism because foods containing bitter and potentially

  9. High-resolution inelastic X-ray scattering to study the high-frequency atomic dynamics of disordered systems

    International Nuclear Information System (INIS)

    Monaco, G.

    2008-01-01

    The use of momentum-resolved inelastic X-ray scattering with meV energy resolution to study the high-frequency atomic dynamics in disordered systems is here reviewed. The typical realization of this experiment is described together with some common models used to interpret the measured spectra and to extract parameters of interest for the investigation of disordered systems. With the help of some selected examples, the present status of the field is discussed. Particular attention is given to those results which are still open for discussion or controversial, and which will require further development of the technique to be fully solved. Such an instrumental development seems nowadays possible at the light of recently proposed schemes for advanced inelastic X-ray scattering spectrometers. (author)

  10. Model-based design evaluation of a compact, high-efficiency neutron scatter camera

    Science.gov (United States)

    Weinfurther, Kyle; Mattingly, John; Brubaker, Erik; Steele, John

    2018-03-01

    This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x , y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x , y) position in the scintillator "block", and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x , y , z) -positions of two sequential neutron-proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x , y , z) -position of neutron-proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors' response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of

  11. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    Science.gov (United States)

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  12. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-01-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. -1 ) and high energy (unlimited) transfer -bar ω>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A -1 -1 ) and high energy transfer (-bar ω>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed

  13. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    Science.gov (United States)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    Science.gov (United States)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  15. Corneal allograft rejection: Risk factors, diagnosis, prevention, and treatment

    Directory of Open Access Journals (Sweden)

    Dua Harminder

    1999-01-01

    Full Text Available Recent advances in corneal graft technology, including donor tissue retrieval, storage and surgical techniques, have greatly improved the clinical outcome of corneal grafts. Despite these advances, immune mediated corneal graft rejection remains the single most important cause of corneal graft failure. Several host factors have been identified as conferring a "high risk" status to the host. These include: more than two quadrant vascularisation, with associated lymphatics, which augment the afferent and efferent arc of the immune response; herpes simplex keratitis; uveitis; silicone oil keratopathy; previous failed (rejected grafts; "hot eyes"; young recipient age; and multiple surgical procedures at the time of grafting. Large grafts, by virtue of being closer to the host limbus, with its complement of vessels and antigen-presenting Langerhans cells, also are more susceptible to rejection. The diagnosis of graft rejection is entirely clinical and in its early stages the clinical signs could be subtle. Graft rejection is largely mediated by the major histocompatibility antigens, minor antigens and perhaps blood group ABO antigens and some cornea-specific antigens. Just as rejection is mediated by active immune mediated events, the lack of rejection (tolerance is also sustained by active immune regulatory mechanisms. The anterior chamber associated immune deviation (ACAID and probably, conjunctiva associated lymphoid tissue (CALT induced mucosal tolerance, besides others, play an important role. Although graft rejection can lead to graft failure, most rejections can be readily controlled if appropriate management is commenced at the proper time. Topical steroids are the mainstay of graft rejection management. In the high-risk situations however, systemic steroids, and other immunosuppressive drugs such as cyclosporin and tacrolimus (FK506 are of proven benefit, both for treatment and prevention of rejection.

  16. Moeller scattering polarimetry for high energy e sup + e sup - linear colliders

    CERN Document Server

    Alexander, G

    2002-01-01

    The general features of the Moeller scattering and its use as an electron polarimeter are described and studied in view of the planned future high energy e sup + e sup - linear colliders. In particular the study concentrates on the TESLA collider which is planned to operate with longitudinal polarised beams at a centre of mass energy of the order of 0.5 TeV with a luminosity of 3.4x10 sup 3 sup 4 cm sup - sup 2 s sup - sup 1.

  17. Inclusive gluon production in deep inelastic scattering at high parton density

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Tuchin, Kirill

    2002-01-01

    We calculate the cross section of single inclusive gluon production in deep inelastic scattering at very high energies in the saturation regime, where the parton densities inside hadrons and nuclei are large and the evolution of structure functions with energy is nonlinear. The expression we obtain for the inclusive gluon production cross section is generated by this nonlinear evolution. We analyze the rapidity distribution of the produced gluons as well as their transverse momentum spectrum given by the derived expression for the inclusive cross section. We propose an ansatz for the multiplicity distribution of gluons produced in nuclear collisions which includes the effects of nonlinear evolution in both colliding nuclei

  18. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    International Nuclear Information System (INIS)

    Barbiellini, Bernardo

    2013-01-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La 2−x Sr x CuO 4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La 2 CuO 4 . Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  19. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    Science.gov (United States)

    Barbiellini, Bernardo

    2013-06-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  20. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  1. Local nuclear slope and curvature in high energy pp and pp-bar elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Desgrolard, P. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Kontros, J.; Lengyel, A.I. [Inst. of Electron Physics, Uzhgorod (Ukraine); Martynov, E.S. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Bogolyubov Inst. for Theoretical Physics

    1997-05-01

    The local nuclear slope is reconstructed from the experimental angular distributions with a procedure that uses overlapping t-bins, for an energy that ranges from the ISR to the Sp-bar pS and the Tevatron. Predictions of several models of (p-bar,p) elastic scattering at high energy are tested. Only a model with two-components Pomeron and Odderon gives a satisfactory agreement with the (non fitted) slope data. The extreme sensitivity of the local nuclear curvature with the choice for a Pomeron model is emphasized. (author). 30 refs.

  2. Backward elastic p3He-scattering and high momentum components of 3He wave function

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c

  3. Raman scattering diagnostics of YBa2Cu3Ox high temperature superconducting films

    International Nuclear Information System (INIS)

    Bagratashvili, V.N.; Burimov, V.N.; Denisov, V.N.

    1988-01-01

    Superconducting YBa 2 Cu 3 O x films produced by laser spraying of ceramic material are investigated by light Raman scattering (LCS). It is shown that using LCS it is possible to obtain data on phase composition and prevailing film orientation and to find optical conditions for their synthesis. The LCS method feature consists in a possibility of non-destructive remote control and high space resolution (several microns). Experimental results have shown that the best parameters (the highest T c and the narrowest Δ T c interval) are typical of films with prevailing orientation of 0 xy crystallite plane parallel to the surface

  4. Low and high frequency asymptotics acoustic, electromagnetic and elastic wave scattering

    CERN Document Server

    Varadan, VK

    2013-01-01

    This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.

  5. Field-theoretic model of Harari's two component phenomenological theory of high energy hadron scattering

    International Nuclear Information System (INIS)

    Dymski, T.C.

    1976-01-01

    For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature

  6. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2008-01-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A -1 . This opens a still unexplored region of the kinematical (q,ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure

  7. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M. [Dipartimento di Fisica ' G. Occhialini' , Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Pietropaolo, A. [Dipartimento di Fisica ' G. Occhialini' , CNISM-Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); NAST Center - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Andreani, C.; Senesi, R. [Dipartimento di Fisica and Centro NAST - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Rhodes, N.J.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom)

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A{sup -1}. This opens a still unexplored region of the kinematical (q,{omega}) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  8. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  9. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  10. High resolution measurements and study of the neutron inelastic scattering reaction on 56Fe

    International Nuclear Information System (INIS)

    Dupont, E.

    1998-01-01

    High resolution measures of neutrons inelastic scattering cross section, have been performed on 56 Fe from 862 KeV to 3 MeV. The time of flight method has been used on the GELINA source of the IRMM in Geel (Belgium). Four barium fluoride scintillators, placed around the samples, recorded the gamma rays emissions coming from the iron and the boron. A study of the correlations between the partial elastic and inelastic lengths has been performed taking into account first transmission measures realized at Geel. (A.L.B.)

  11. Development of high-spatial resolution TV Thomson scattering system for JFT-2M

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Shiina, Tomio; Kozawa, Teruo; Ishige, Youichi.

    1996-01-01

    The JFT-2M TV Thomson scattering system (TVTS) with high spatial resolution was completed in the cooperation of the fusion research and development for the DOE-JAERI collaborative program, and has been operated for 3 years. The system is composed of six subsystems; vacuum components, optics, detector, control and data acquisition, software and laser subsystems. TVTS was totally tested in the JFT-2M tokamak and the electron temperature and density profiles are measured with good reproducibility, and the increase of electron temperature by increasing toroidal magnetic field is also measured with TVTS. (author)

  12. Charged Particle Production in High Q2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, $\\xp$, of charged final state hadrons are measured in deep-inelastic $\\ep$ scattering at high $Q^2$ in the Breit frame of reference. The analysis covers the range of photon virtuality $100 < Q^2 < 20 000 \\GeV^{2}$. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher $Q^{2}$ and to the full range of $\\xp$. The results are compared with $e^+e^-$ annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process.

  13. High-energy effective action from scattering of QCD shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  14. A new description of high energy antiproton (proton)-proton elastic scattering

    International Nuclear Information System (INIS)

    Barshay, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics); Goldberg, J.

    1987-01-01

    We develop a generalization of the geometric picture for high-energy antiproton (proton)-proton elastic scattering. The eikonal at each impact parameter is considered to have fluctuations about an average value, and is thus characterized by a distribution. A connection to parton branching is made through the specific form of the distribution function for the eikonal. A unified physical theory with significant fluctuations accurately describes the anti p(p)-p data at both √s = 546 GeV and 53 GeV. The fluctuation parameter is remarkably well given by that directly observed in multiparticle production. (orig.)

  15. New description of high energy antiproton (proton)-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Barshay, S; Goldberg, J

    1987-10-15

    We develop a generalization of the geometric picture for high-energy antiproton (proton)-proton elastic scattering. The eikonal at each impact parameter is considered to have fluctuations about an average value, and is thus characterized by a distribution. A connection to parton branching is made through the specific form of the distribution function for the eikonal. A unified physical theory with significant fluctuations accurately describes the anti p(p)-p data at both ..sqrt..s = 546 GeV and 53 GeV. The fluctuation parameter is remarkably well given by that directly observed in multiparticle production.

  16. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Kidalov, S. V.; Shakhov, F. M., E-mail: fedor.shakhov@mail.ioffe.ru [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation); Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S. [Russian Academy of Sciences, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-12-15

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200-1700 Degree-Sign C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  17. Charged particle production in high Q deep-inelastic scattering at HERA

    Science.gov (United States)

    H1 Collaboration; Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-10-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, x, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q in the Breit frame of reference. The analysis covers the range of photon virtuality 100

  18. Charged particle production in high Q2 deep-inelastic scattering at HERA

    Science.gov (United States)

    Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; H1 Collaboration

    2007-10-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, xp, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q2 in the Breit frame of reference. The analysis covers the range of photon virtuality 100

  19. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  20. High energy x-ray scattering studies of strongly correlated oxides

    International Nuclear Information System (INIS)

    Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T

    2003-01-01

    Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering

  1. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    Science.gov (United States)

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  2. A dedicated torsion balance to detect neutrinos by coherent scattering on high Debye temperature monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Cruceru, I; Nicolescu, G [National Institute of Research and Development for Physics and Nuclear Engineering ' Horia - Hulubei' , PO Box MG - 6, 077125 Magurele (Romania); Duliu, O G [University of Bucharest, Department of Atomic and Nuclear Physics, PO Box MG-II, 077125 Magurele (Romania)

    2008-11-01

    Coherent scattering of neutrinos on high Debye temperature monocrystals represent an alternative to detect solar as well as other high flux neutrino sources such as nuclear reactors or nuclear tests. Therefore, the possibility of detecting neutrinos by using sapphire monocrystals is presented and analyzed. Preliminary evaluations showed that 1 MeV neutrinos with a fluency density of 10{sup 12} cm{sup -1} s{sup -1} could interact with a 100 g sapphire monocrystal with a force of about 10{sup -6} dyne, value measurable with a high sensitivity torsion balance. For this reason a torsion balance provided with 1 m length molybdenum or tungsten wire and an optical autocollimator able to measure small rotation angles of about 0.1 seconds of arc was designed, constructed and now is under preliminary tests. Both theoretical and practical implications of such kind of detector are presented and discussed.

  3. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    International Nuclear Information System (INIS)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y.

    2001-01-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10 21 m -3 ) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed

  4. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  5. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

    Science.gov (United States)

    Liu, Yan; Shen, Yuecheng; Ruan, Haowen; Brodie, Frank L.; Wong, Terence T. W.; Yang, Changhuei; Wang, Lihong V.

    2018-01-01

    Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.

  6. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  7. Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metal

    DEFF Research Database (Denmark)

    Roberts, Alexander; Søndergaard, Thomas; Chirumamilla, Manohar

    2016-01-01

    for a two-dimensional scatterer. We construct a simple resonator model which predicts the wavelength-dependent extinction, scattering, and absorption cross section of the trench and compare the model findings with full numerical simulations. Both extinction and scattering cross sections are mainly...

  8. The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

    Science.gov (United States)

    Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.

    2018-03-01

    The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.

  9. One- and two-phonon mixed-symmetry states in 94Mo in high-resolution electron and proton scattering

    International Nuclear Information System (INIS)

    Fujita, H.; Botha, N.T.; Burda, O.; Carter, J.; Fearick, R.W.; Foertsch, S.V.; Fransen, C.; Kuhar, M.; Lenhardt, A.; Neumann-Cosel, P. von; Neveling, R.; Pietralla, N.; Ponomarev, V.Yu.; Richter, A.; Scholten, O.; Sideras-Haddad, E.; Smit, F.D.; Wambach, J.

    2007-01-01

    High-resolution inelastic electron scattering experiments at the S-DALINAC and proton scattering experiments at iThemba LABS permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2 + states of the nucleus 94 Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic calculations. The purity of two-phonon 2 + states is extracted

  10. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  11. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings

    Science.gov (United States)

    Heck, Maximilian; Bock, Victor; Krämer, Ria G.; Richter, Daniel; Goebel, Thorsten A.; Matzdorf, Christian; Liem, Andreas; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2018-02-01

    The average output power of fiber lasers have been scaled deep into the kW regime within the recent years. However a further scaling is limited due to nonlinear effects like stimulated Raman scattering (SRS). Using the special characteristics of femtosecond laser pulse written transmission fiber gratings, it is possible to realize a notch filter that mitigates efficiently this negative effect by coupling the Raman wavelength from the core into the cladding of the fiber. To the best of our knowledge, we realized for the first time highly efficient gratings in large mode area (LMA) fibers with cladding diameters up to 400 μm. The resonances show strong attenuation at design wavelength and simultaneously low out of band losses. A high power fiber amplifier with an implemented passive fiber grating is shown and its performance is carefully investigated.

  12. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Science.gov (United States)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  13. Photon detectors for epithermal neutron scattering at high-ω and low-q

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.; Tardocchi, M.; Andreani, C.; Gorini, G.

    2004-01-01

    Inelastic epithermal neutron scattering at high energy (ℎω≥1 eV) and low wave vector (q≤10 A -1 ) transfers is the unique technique for the investigation of high-energy excitations in a variety of systems, ranging from magnetic materials to semiconductors. The key issue in order to make these measurements feasible on inverse geometry spectrometers, is to develop suitable detection systems for neutrons in the energy range 1-100 eV. The Resonance Detector Spectrometer configuration has to be considered as the most promising approach for electron Volt neutron spectroscopy. This configuration will be employed in the new low angle detector bank, VLAD, planned for VESUVIO spectrometer operating at ISIS source

  14. Measurement of high-beta tokamak pressure profiles with multipoint Thomson scattering

    International Nuclear Information System (INIS)

    Levinton, F.M.

    1983-01-01

    A multipoint Thomson-scattering system has been developed to obtain pressure profiles along the major radius of Torus II, a high-beta tokamak. The profiles obtained during the 20 to 25 μs lifetime of the discharge indicates that the plasma has a peak temperature of 80 eV and density of 1.0 x 10 15 cm - 3 . The profiles remain fairly constant during this time until the equilibrium is lost, after which the temperature and density decays to 10 eV and 10 14 cm - 3 very quickly (approx. 1 μs). Experimental results show Torus II has a high-beta ( approx. 10%) equilibrium, with a strong shift of the peak of the pressure profile towards the outside. Numerical results from a 2-D free boundary MHD equilibrium code have obtained equilibria which closely approximate the experimentally measured profiles

  15. A model for soft high-energy scattering: Tensor pomeron and vector odderon

    Energy Technology Data Exchange (ETDEWEB)

    Ewerz, Carlo, E-mail: C.Ewerz@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Maniatis, Markos, E-mail: mmaniatis@ubiobio.cl [Departamento de Ciencias Básicas, Universidad del Bío-Bío, Avda. Andrés Bello s/n, Casilla 447, Chillán 3780000 (Chile); Nachtmann, Otto, E-mail: O.Nachtmann@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2014-03-15

    A model for soft high-energy scattering is developed. The model is formulated in terms of effective propagators and vertices for the exchange objects: the pomeron, the odderon, and the reggeons. The vertices are required to respect standard rules of QFT. The propagators are constructed taking into account the crossing properties of amplitudes in QFT and the power-law ansätze from the Regge model. We propose to describe the pomeron as an effective spin 2 exchange. This tensor pomeron gives, at high energies, the same results for the pp and pp{sup -bar} elastic amplitudes as the standard Donnachie–Landshoff pomeron. But with our tensor pomeron it is much more natural to write down effective vertices of all kinds which respect the rules of QFT. This is particularly clear for the coupling of the pomeron to particles carrying spin, for instance vector mesons. We describe the odderon as an effective vector exchange. We emphasise that with a tensor pomeron and a vector odderon the corresponding charge-conjugation relations are automatically fulfilled. We compare the model to some experimental data, in particular to data for the total cross sections, in order to determine the model parameters. The model should provide a starting point for a general framework for describing soft high-energy reactions. It should give to experimentalists an easily manageable tool for calculating amplitudes for such reactions and for obtaining predictions which can be compared in detail with data. -- Highlights: •A general model for soft high-energy hadron scattering is developed. •The pomeron is described as effective tensor exchange. •Explicit expressions for effective reggeon–particle vertices are given. •Reggeon–particle and particle–particle vertices are related. •All vertices respect the standard C parity and crossing rules of QFT.

  16. Resonant two-magnon Raman scattering in parent compounds of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Frenkel, D.M.

    1995-01-01

    We propose a theory of two-magnon Raman scattering from the insulating parent compounds of high-T c superconductors, which contains information not only on magnetism, but also on the electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model, and study diagrammatically the profile of the two-magnon scattering and its intensity dependence on the incoming photon frequency ω i both for ω i much-lt U and in the resonant regime, in which the energy of the incident photon is close to the gap between conduction and valence bands. In the nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury Hamiltonian. In the resonant regime, where most of the experiments have been done, we find that the dominant contribution to Raman intensity comes from a different diagram, one which allows for a simultaneous vanishing of all three of its dominators (i.e., a triple resonanc). We study this diagram in detail and show taht the triple resonance, combined with the spin-density-wave dispersion relation for the carriers, explains the unusual features found in the two-magnon profile and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular, our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the features in the optical data, which has been one of the key experimental puzzles

  17. Quasi-elastic scattering of electrons from 40Ca at high momentum transfer

    International Nuclear Information System (INIS)

    Yates, T.C.

    1992-01-01

    Previous quasi-elastic electron scattering experiments have yielded seemingly inconsistent results when the integrated longitudinal strength is compared to calculations using the relativistic fermi gas model. Measurements made at Saclay on 12 C, 40 Ca, 48 Ca, 56 Fe, and 208 Pb indicated a smaller integrated longitudinal strength than expected on the basis of the relativistic fermi gas model. However, 238 U data taken at Bates showed nearly the full expected longitudinal strength at a momentum transfer of 550 MeV/c. This is one of the outstanding discrepancies in nuclear physics. Earlier experiments were hampered in that high momentum transfer could not be obtained at forward angles where the longtudinal strength is a large fraction of the total strength. The present experiment was designed to take advantage of the higher energy capability (greater than 800 MeV) at Bates recirculated linac in order to obtain momentum transfers greater than 600 MeV/c at a scattering angle of 45.5 degrees. Under these conditions the longitudinal strength is 40-75% of the total quasi-elastic strength

  18. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  19. Unified model for small-t and high-t scattering at high energies: predictions at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, E. [National Academy of Sciences of Ukraine, N.N. Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Nicolescu, B. [CNRS and Universite Pierre et Marie Curie, Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), Paris (France)

    2008-07-15

    The urgency of predictions in the large-t region at LHC stimulated us to present a unified model of small- and high-t scattering at high energies. Our model is based on safe theoretical ground: analyticity, unitarity, Regge behavior, gluon exchange and saturation of bounds established in axiomatic quantum field theory. We make precise predictions for the behavior of the differential cross sections at high t, the evolution of the dip-shoulder structure localized in the region 0.5

  20. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    International Nuclear Information System (INIS)

    Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa

    2007-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  1. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  2. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Xu Jian; Ma Shi-Wei

    2015-01-01

    We present a theoretical investigation of the scattering of high frequency S0 Lamb mode from a circular blind hole defect in a plate based on the 3D theory. The S0 wave is incident at the frequency above the A1 mode cut-off frequency, in which the popular approximate plate theories are inapplicable. Due to the non-symmetric blind hole defect, the scattered fields will contain higher order converted modes in addition to the fundamental S0 and A0 modes. The far-field scattering amplitudes of various propagating Lamb modes for different hole sizes are inspected. The results are compared with those of lower frequencies and some different phenomena are found. Two-dimensional Fourier transform (2DFT) results of transient scattered Lamb and SH wave signals agree well with the analytical dispersion curves, which check the validity of the solutions from another point of view. (paper)

  3. A study of interference effects in Na(3S,3P)-Ne, Ar scattering experiments at high angular resolution

    International Nuclear Information System (INIS)

    Berg, F.T.M. van den.

    1984-01-01

    In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)

  4. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    Science.gov (United States)

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  5. Eosinophil count, allergies, and rejection in pediatric heart transplant recipients.

    Science.gov (United States)

    Arbon, Kate S; Albers, Erin; Kemna, Mariska; Law, Sabrina; Law, Yuk

    2015-08-01

    Allograft rejection and long-term immunosuppression remain significant challenges in pediatric heart transplantation. Pediatric recipients are known to have fewer rejection episodes and to develop more allergic conditions than adults. A T-helper 2 cell dominant phenotype, manifested clinically by allergies and an elevated eosinophil count, may be associated with immunologic quiescence in transplant recipients. This study assessed whether the longitudinal eosinophil count and an allergic phenotype were associated with freedom from rejection. This single-center, longitudinal, observational study included 86 heart transplant patients monitored from 1994 to 2011. Post-transplant biannual complete blood counts, allergic conditions, and clinical characteristics related to rejection risk were examined. At least 1 episode of acute cellular rejection (ACR) occurred in 38 patients (44%), antibody-mediated rejection (AMR) occurred in 11 (13%), and 49 patients (57%) were diagnosed with an allergic condition. Patients with ACR or AMR had a lower eosinophil count compared with non-rejectors (p = 0.011 and p = 0.022, respectively). In the multivariable regression analysis, the presence of panel reactive antibodies to human leukocyte antigen I (p = 0.014) and the median eosinophil count (p = 0.011) were the only independent covariates associated with AMR. Eosinophil count (p = 0.010) and female sex (p = 0.009) were independent risk factors for ACR. Allergic conditions or young age at transplant were not protective from rejection. This study demonstrates a novel association between a high eosinophil count and freedom from rejection. Identifying a biomarker for low rejection risk may allow a reduction in immunosuppression. Further investigation into the role of the T-helper 2 cell phenotype and eosinophils in rejection quiescence is warranted. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Rejection of micropollutants by clean and fouled forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2011-12-01

    As forward osmosis (FO) gains attention as an efficient technology to improve wastewater reclamation processes, it is fundamental to determine the influence of fouling in the rejection of emerging contaminants (micropollutants). This study focuses on the rejection of 13 selected micropollutants, spiked in a secondary wastewater effluent, by a FO membrane, using Red Sea water as draw solution (DS), differentiating the effects on the rejection caused by a clean and fouled membrane. The resulting effluent was then desalinated at low pressure with a reverse osmosis (RO) membrane, to produce a high quality permeate and determine the rejection with a coupled forward osmosis - low pressure reverse osmosis (FO-LPRO) system. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% and 95.2%, 48.7%-91.5% and 96.9%-98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the presence of a fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity of hydrophilic compounds and reduced mass transport capacity, membrane swelling, and the higher negative charge of the membrane surface, related to the foulants composition, mainly NOM acids (carboxylic radicals) and polysaccharides or polysaccharide-like substances. However, when coupled with RO, the rejections in both cases increased above 96%. The coupled FO-LPRO system was an effective double barrier against the selected micropollutants. © 2011 Elsevier Ltd.

  7. Rejection of micropollutants by clean and fouled forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo; Yangali-Quintanilla, Victor; Li, Zhenyu; Amy, Gary L.

    2011-01-01

    As forward osmosis (FO) gains attention as an efficient technology to improve wastewater reclamation processes, it is fundamental to determine the influence of fouling in the rejection of emerging contaminants (micropollutants). This study focuses on the rejection of 13 selected micropollutants, spiked in a secondary wastewater effluent, by a FO membrane, using Red Sea water as draw solution (DS), differentiating the effects on the rejection caused by a clean and fouled membrane. The resulting effluent was then desalinated at low pressure with a reverse osmosis (RO) membrane, to produce a high quality permeate and determine the rejection with a coupled forward osmosis - low pressure reverse osmosis (FO-LPRO) system. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% and 95.2%, 48.7%-91.5% and 96.9%-98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the presence of a fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity of hydrophilic compounds and reduced mass transport capacity, membrane swelling, and the higher negative charge of the membrane surface, related to the foulants composition, mainly NOM acids (carboxylic radicals) and polysaccharides or polysaccharide-like substances. However, when coupled with RO, the rejections in both cases increased above 96%. The coupled FO-LPRO system was an effective double barrier against the selected micropollutants. © 2011 Elsevier Ltd.

  8. Inelastic scattering in condensed matter with high intensity Mossbauer radiation: Progress report, March 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1987-10-01

    A facility for high intensity Moessbauer scattering has been commissioned at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue University using special isotopes produced at MURR. A number of scattering studies have been successfully carried out, including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 which indicates phason rather than phonon behavior. High precision, fundamental Moessbauer effect studies have also been carried out using scattering to filter unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape. This method allows complete correction for source resonance self-absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. This analysis is important to both the funadmental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct elastic fractions and lineshape parameters. These advances, coupled to our improvements in MIcrofoil Conversion Electron (MICE) spectroscopy, lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  9. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    KAUST Repository

    Mehra, Saahil

    2013-01-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.

  10. Neutron scattering studies of magnetism in the high-Tc materials

    International Nuclear Information System (INIS)

    Sinha, S.K.

    1990-01-01

    In this paper, I shall attempt to review what has been learned about magnetism in the high-T c family of compounds using neutron scattering techniques. Whether or not it is true that magnetic effects are involved in an essential way in the mechanism for superconductivity in these materials (a point which has not yet been firmly established), they offer fascinating examples for the study of magnetism for its own sake, being realizations of spin 1/2 2D quantum antiferromagnets. Further, the rare earth spins in these materials also order at low temperatures reminiscent of the coexistence of antiferromagnetism and superconductivity in the earlier well-studied families of magnetic superconductors such as ErRh 4 B 4 and the Chevrel-phase compounds, with the difference that the ordering here is primarily 2D in character

  11. Recent high-accuracy measurements of the 1S0 neutron-neutron scattering length

    International Nuclear Information System (INIS)

    Howell, C.R.; Chen, Q.; Gonzalez Trotter, D.E.; Salinas, F.; Crowell, A.S.; Roper, C.D.; Tornow, W.; Walter, R.L.; Carman, T.S.; Hussein, A.; Gibbs, W.R.; Gibson, B.F.; Morris, C.; Obst, A.; Sterbenz, S.; Whitton, M.; Mertens, G.; Moore, C.F.; Whiteley, C.R.; Pasyuk, E.; Slaus, I.; Tang, H.; Zhou, Z.; Gloeckle, W.; Witala, H.

    2000-01-01

    This paper reports two recent high-accuracy determinations of the 1 S 0 neutron-neutron scattering length, a nn . One was done at the Los Alamos National Laboratory using the π - d capture reaction to produce two neutrons with low relative momentum. The neutron-deuteron (nd) breakup reaction was used in other measurement, which was conducted at the Triangle Universities Nuclear Laboratory. The results from the two determinations were consistent with each other and with previous values obtained using the π - d capture reaction. The value obtained from the nd breakup measurements is a nn = -18.7 ± 0.1 (statistical) ± 0.6 (systematic) fm, and the value from the π - d capture experiment is a nn = -18.50 ± 0.05 ± 0.53 fm. The recommended value is a nn = -18.5 ± 0.3 fm. (author)

  12. High-Pressure Raman Scattering in the Layered Antiferromagnet NiPS_3

    Science.gov (United States)

    Rosenblum, S.; Merlin, R.; Francis, A. H.

    1996-03-01

    We report on two-magnon and vibrational Raman scattering from NiPS3 for pressures up to 30 GPa and temperatures between 110 and 300 K. NiPS3 is an S=1, two-dimensional antiferromagnet with TN = 150 K. It is the only known S=1 compound with a relative two-magnon linewidth comparable in magnitude to that of the parent compounds of the high temperature superconductors.(Rosenblum et al., Phys. Rev. B 49), 4352 (1994) In the cuprates, this anomalous linewidth is well described by phonon-magnon coupling.(Knoll et al.), Phys. Rev.B 42, 4842 (1990).^,(Nori et al., Phys. Rev. Lett. 75), 553 (1995). Here, we will look at the measured Grüneisen parameters of the vibrational and magnetic excitations and relate them to the magnetostrictive model.

  13. Synthesis of gold nanoflowers using deep eutectic solvent with high surface enhanced Raman scattering properties

    Science.gov (United States)

    Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh

    2016-09-01

    A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.

  14. N=4 supersymmetric Yang Mills scattering amplitudes at high energies. The Regge cut contribution

    International Nuclear Information System (INIS)

    Bartels, J.; Sabio Vera, A.

    2008-07-01

    We further investigate, in N=4 supersymmetric Yang Mills theories, the high energy Regge behavior of six-point scattering amplitudes. In particular, for the new Regge cut contribution found in our previous paper, we compute in the leading logarithmic approximation (LLA) the energy spectrum of the BFKL equation in the color octet channel, and we calculate explicitly the two loop corrections to the discontinuities of the amplitudes for the transitions 2→4 and 3→3. We find an explicit solution of the BFKL equation for the octet channel for arbitrary momentum transfers and investigate the intercepts of the Regge singularities in this channel. As an important result we find that the universal collinear and infrared singularities of the BDS formula are not affected by this Regge-cut contribution. (orig.)

  15. Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions

    International Nuclear Information System (INIS)

    Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki

    2010-01-01

    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.

  16. High-energy x-ray scattering studies of battery materials

    International Nuclear Information System (INIS)

    Glazer, Matthew P. B.; Okasinski, John S.; Almer, Jonathan D.; Ren, Yang

    2016-01-01

    High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses to highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. Here, by deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.

  17. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  18. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  19. Semihard interactions in nuclear collisions based on a unified approach to high energy scattering

    International Nuclear Information System (INIS)

    Drescher, H.J.; Hladik, M.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1998-01-01

    Our ultimate goal is the construction of a model for interactions of two nuclei in the energy range between several tens of GeV up to several TeV per nucleon in the centre-of-mass system. Such nuclear collisions are very complex, being composed of many components, and therefore some strategy is needed to construct a reliable model. The central point of our approach is the hypothesis, that the behavior of high energy interactions is universal (universality hypothesis). A model for nuclear interactions in a modular fashion is proposed. The individual modules, based on the universality hypothesis, are identified as building blocks for more elementary interactions (like e + e - , lepton-proton), and can therefore be studied in a much simpler context. With these building blocks under control, a quite reliable model is developed for nucleus-nucleus scattering, providing in particular very useful tests for the complicated numerical procedures using Monte Carlo techniques. (author)

  20. In-medium scaling law and electron scattering from high-spin states in 208Pb

    International Nuclear Information System (INIS)

    Arias de Saavedra, F.; Lallena, A.M.

    1994-01-01

    The effects of the environment modifications in the structure of the low-lying high-spin states of 208 Pb are studied by analyzing how the in-medium scaling law works on the excitation energies, wave functions, and electron scattering form factors corresponding to these states. It is shown that the consideration of f π * in addition to the effective ρ-meson mass does not affect too much most of the states analyzed. However, some of them appear to be extremely sensitive to its inclusion in the residual nucleon-nucleon interaction. As a result, a value of m ρ * /m ρ ∼f π * /f π ∼0.91 gives a good description of the (e,e') form factors of these particular states without any quenching factor. This value is in agreement with the one found for 48 Ca in a similar analysis performed in a previous work

  1. Next-to-soft corrections to high energy scattering in QCD and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Luna, A.; Melville, S. [SUPA, School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Naculich, S.G. [Department of Physics, Bowdoin College,Brunswick, ME 04011 (United States); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-01-12

    We examine the Regge (high energy) limit of 4-point scattering in both QCD and gravity, using recently developed techniques to systematically compute all corrections up to next-to-leading power in the exchanged momentum i.e. beyond the eikonal approximation. We consider the situation of two scalar particles of arbitrary mass, thus generalising previous calculations in the literature. In QCD, our calculation describes power-suppressed corrections to the Reggeisation of the gluon. In gravity, we confirm a previous conjecture that next-to-soft corrections correspond to two independent deflection angles for the incoming particles. Our calculations in QCD and gravity are consistent with the well-known double copy relating amplitudes in the two theories.

  2. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  3. A technetium rejection flowsheet

    International Nuclear Information System (INIS)

    Baker, R.; Miles, J.H.; Roberts, P.T.

    1990-01-01

    A single contactor unit has been designed which enables Tc to be removed from a TBP/diluent stream bearing U and Pu, by means of a 5M HNO 3 wash. A Tc waste stream is produced which is virtually free from U and Pu. The flowsheet has been tested firstly with U and Tc, then with U, Pu and Tc, and finally in a highly active facility with real PWR fuel solution. About 97% of the Tc was removed from the organic phase and U and Pu levels in the Tc waste have usually been below 0.04% of those in the product stream. (author)

  4. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    Science.gov (United States)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  5. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.

    Science.gov (United States)

    Mitri, F G

    2010-03-01

    Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications. 2009 Elsevier B.V. All rights reserved.

  6. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  7. Analysis of pp and pp-bar elastic scattering amplitudes at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, E.; Kodama, T.; Kohara, A.K. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2012-07-01

    Full text: A careful analysis of high energies elastic scattering data at 7 TeV for pp, 1800 - 1950 GeV for pp-bar and 540 -541 GeV for pp-bar in terms of its amplitudes has been performed as natural extension of previous analysis for lower energies. The disentanglement of the real and imaginary parts is written consistently with constraints from dispersion relations for amplitudes and for slopes, and also satisfying the universal asymptotic behavior for large |t| values due to the three gluon Exchange process. Values for the imaginary and real slopes and for the total cross section at 7 TeV, 1800-1950 GeV and 540-541 GeV are presented, and the shape of the differential cross section at 14 TeV, with a dip/bump structure more marked and at a smaller values of |t| is predicted. It is predicted that future measurements at large |t| will be connected smoothly with the perturbative tail observed in the interval 5.5 to 14.2 GeV{sup 2} at lower energies and that a marked dip would be observed in pp-bar scattering near this tail range. It is stressed for the consistent description of elastic pp and pp-bar data and pointed out the importance of the future measurements in the Coulomb interference range and in the transition range to the perturbative tail where the perturbative and non-perturbative effects appears together. (author)

  8. Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

    KAUST Repository

    Abdellah, Marwan

    2017-02-15

    Background We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community. It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain. These models result from computer simulations of physical experiments that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model that is composed of approximately 31000 neurons. Results Our pipeline is used to visualize a virtual fluorescent tissue block of 50 μm3 that is reconstructed from the somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against experimental emission spectra of different fluorescent dyes from the Alexa Fluor family. Conclusion We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to analyze and validate simulation data generated from neuroscientific in silico experiments.

  9. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  10. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  11. Magnetic neutron scattering resonance of high-¤Tc¤ superconductors in external magnetic fields: An SO(5) study

    DEFF Research Database (Denmark)

    Mortensen, Asger; Rønnow, Henrik Moodysson; Bruus, Henrik

    2000-01-01

    The magnetic resonance at 41 meV observed in neutron scattering studies of YBa2Cu3O7 holds a key position in the understanding of high-T-c, superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field on the neu......The magnetic resonance at 41 meV observed in neutron scattering studies of YBa2Cu3O7 holds a key position in the understanding of high-T-c, superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field...

  12. Multiple Scattering Approach to Polarization Dependence of F K-Edge XANES Spectra for Highly Oriented Polytetrafluoroethylene (PTFE) Thin Film

    International Nuclear Information System (INIS)

    Nagamatsu, S.; Ono, M.; Kera, S.; Okudaira, K. K.; Fujikawa, T.; Ueno, N.

    2007-01-01

    The polarization dependence of F K-edge X-ray absorption near edge structure (XANES) spectra of highly-oriented thin-film of polytetrafluoroethylene (PTFE) has been analyzed by using multiple scattering theory. The spectra show clear polarization dependence due to the highly-oriented structure. The multiple scattering calculations reflects a local structure around an absorbing atom. The calculated results obtained by considering intermolecular-interactions are in good agreement with the observed polarization-dependence. We have also analyzed structural models of the radiation damaged PTFE films

  13. Nuclear and partonic dynamics in high energy elastic nucleus-nucleus scattering

    International Nuclear Information System (INIS)

    Malecki, A.

    1991-01-01

    A hybrid description of diffraction which combines a geometrical modelling of multiple scattering with many-channel effects resulting from intrinsic dynamics on nuclear and sub-nuclear level is presented. The application to the 4 He- 4 He elastic scattering is very satisfactory. Our analysis suggests that at large momentum transfers the parton constituents of nucleons immersed in nuclei are deconfined. (author)

  14. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    International Nuclear Information System (INIS)

    Vries, N de; Zhu, X; Kieft, E R; Mullen, J van der

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine n e and T e from the measured spectrum. The maximum electron density and electron temperature obtained in the centre of the discharge varied in a time period of 5 ms between 1 x 10 21 m -3 e 21 m -3 and 6500 K e < 7100 K. In order to test the non-intrusive character of TS, we have derived a general expression for the heating of the electrons. By applying this to our mercury lamp and laser settings, we have confirmed the non-intrusiveness of our method. This is supported by the experimental findings. Furthermore, because the TS results were obtained directly, thus, without the local thermodynamic equilibrium (LTE) assumptions, they enabled us to follow the deviations from LTE as a function of time. Contrary to the generally made assumption that HID lamps are in LTE, we have found deviations from both the thermal and chemical equilibrium inside the high pressure mercury lamp at different phases of the applied current

  15. Line-up member similarity influences the effectiveness of a salient rejection option for eyewitnesses

    OpenAIRE

    Bruer, Kaila C.; Fitzgerald, Ryan J.; Therrien, Natalie M.; Price, Heather L.

    2015-01-01

    Visually salient line-up rejection options have not been systematically studied with adult eyewitnesses. We explored the impact of using a non-verbal, salient rejection option on adults' identification accuracy for line-ups containing low- or high-similarity fillers. The non-verbal, salient rejection option had minimal impact on accuracy in low-similarity line-ups, but in high-similarity line-ups its inclusion increased correct rejections for target-absent line-ups as well as incorrect reject...

  16. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.

  17. Adaptive sidelobe control for clutter rejection of atmospheric radars

    Directory of Open Access Journals (Sweden)

    K. Kamio

    2004-11-01

    Full Text Available Clutter rejection is among the most important issues in radar signal processing, for which the adaptive antenna technique can be a powerful means. Compared to other applications of the adaptive antenna, however, atmospheric radars require strict conditions, which have prevented application of this technique; the main antenna beam pattern should not be altered since the target region is defined by its shape. In particular, the loss of the antenna gain should be kept to no more than about 0.5dB, in order to maintain the high sensitivity of the system. Also, clutter from surrounding mountains is often stronger than the desired weak scattering from atmospheric turbulence. We introduce a new algorithm which satisfies the above conditions, and confirms its capability by applying it to actual data taken by the MU radar. This paper presents the first report that demonstrates the effectiveness of the adaptive antenna technique in atmospheric radar applications. Despite the fact that no information is given on the spectral features of the desired and undesired signals, only the clutter echoes from surrounding mountains were effectively cancelled without affecting the desired echoes from atmospheric turbulence.

  18. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    Science.gov (United States)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  19. Cryogen free high magnetic field and low temperature sample environments for neutron scattering - latest developments

    International Nuclear Information System (INIS)

    Burgoyne, John

    2016-01-01

    Continuous progress has been made over many years now in the provision of low- and ultra-low temperature sample environments, together with new high-field superconducting magnets and increased convenience for both the user and the neutron research facility via new cooling technologies. Within Oxford Instrument's experience, this has been achieved in many cases through close collaboration with neutron scientists, and with the neutron facilities' sample environment leaders in particular. Superconducting magnet designs ranging from compact Small Angle (SANS) systems up to custom-engineered wide-angle scattering systems have been continuously developed. Recondensing, or 'zero boil-off' (ZBO), systems are well established for situations in which a high field magnet is not conducive to totally cryogen free cooling solutions, and offer a reliable route with the best trade-offs of maximum system capability versus running costs and user convenience. Fully cryogen free solutions for cryostats, dilution refrigerators, and medium-field magnets are readily available. Here we will present the latest technology developments in these options, describing the state-of-the art, the relative advantages of each, and the opportunities they offer to the neutron science community. (author)

  20. The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source

    Science.gov (United States)

    Gomez, A.; Dina, G.; Kycia, S.

    2018-06-01

    The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.

  1. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  2. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    Directory of Open Access Journals (Sweden)

    Atiyeh Zarifi

    2018-03-01

    Full Text Available The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  3. Mechanism of high-T{sub c} superconductivity studied by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazuyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science

    1998-03-01

    La{sub 2-x}Sr{sub x}CuO{sub 4} is one of the typical high-T{sub c} cuprates where Sr-doping creates many phases from the Mott insulator at x=0 nonsuperconducting metal for x>0.26; the high-T{sub c} superconductivity appears for 0.06{<=}x{<=}0.26. We have grown large single crystals of La{sub 2-x}Sr{sub x}CuO{sub 4} over a wide the doping rate up to x=0.3 and performed systematic neutron scattering experiments for the first time. We obtained several results indicating an intimate relation between the dynamical spin correlations and the superconductivity. Incommensurate spatial modulation appears in the antiferromagnetic spin correlations beyond x=0.05 close to the lower boundary of the superconducting phase. We found that the degree of the spatial modulation or the incommensurability {delta} increases with doping and T{sub c} is linearly scaled with {delta} for x{<=}0.15. A well-defined spin excitation gap was observed only for x=0.15 where the T{sub c} reaches the maximum value. And the dynamical spin coherence degrades upon doping with x>>0.15. There results strongly suggest the essential role of the magnetically correlated region and the spatial spin modulation in the CuO{sub 2} planes to sustain or create the superconductivity. (author)

  4. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  5. Verification of High Temperature Free Atom Thermal Scattering in MERCURY Compared to TART

    International Nuclear Information System (INIS)

    Cullen, D E; McKinley, S; Hagmann, C

    2006-01-01

    This is part of a series of reports verifying the accuracy of the relatively new MERCURY [1] Monte Carlo particle transport code by comparing its results to those of the older TART [2] Monte Carlo particle transport code. In the future we hope to extend these comparisons to include deterministic (Sn) codes [3]. Here we verify the accuracy of the free atom thermal scattering model [4] by using it over a very large temperature range. We would like to be able to use these Monte Carlo codes for astrophysical applications, where the temperature of the medium can be extremely high compared to the temperatures we normally encounter in our terrestrial applications [5]. The temperature is so high that is it often defined in eV rather than Kelvin. For a correspondence between the two scale 293.6 Kelvin (room temperature) corresponds to 0.0253 eV ∼ 1/40 eV. So that 1 eV temperature is about 12,000 Kelvin, and 1 keV temperature is about 12 million Kelvin. Here we use a relatively small system measured in cm, but by using ρR scaling [6] our results are equally applicable to systems measured in Km or thousands of Km or any size that we need for astrophysical applications. The emphasis here is not on modeling any given real system, but rather in verifying the accuracy of the free atom model to represent theoretical results over a large temperature range. There are two primary objectives of this report: (1) Verify agreement between MERCURY and TART results, both using continuous energy cross sections. In particular we want to verify the free atom scattering treatment in MERCURY as used over an extended temperature range; by comparison to many other codes for TART this has already been verified over many years [4, 7]. (2) Demonstrate that this agreement depends on using continuous energy cross sections. To demonstrate this we also present TART using the Multi-Band method [8, 9], which accounts for resonance self-shielding, and Multi-Group method, without self-shielding [9

  6. Analytical properties and behaviour of scattering amplitude at high energies in the localizable quantum field theory

    International Nuclear Information System (INIS)

    Lazur, V.Yu.; Khimich, I.V.

    1977-01-01

    Analytical properties of the elastic πN-scattering amplitude in in the cos THETA are proved in the Lehmann ellipse. The instrument for establishing analytical properties of the scattering amplitude in the cos THETA is the Jost-Lehmann-Dyson integral representation proved in terms of the localizable quantum field theory containing the strictly localizable theory and theory of moderate growth as particular cases. On this basis the Greenberg-Low restriction is obtained in frames of this class theories for the πN-scattering amplitude. This result gives a possibility to prove the ordinary dispersion relations with a finite number of subtraction in frames of the localizable quantum field theory

  7. Impurity scattering effect on charge transport in high-Tc cuprate junctions

    International Nuclear Information System (INIS)

    Tanaka, Y.; Asano, Y.; Kashiwaya, S.

    2004-01-01

    It is known that the zero-bias conductance peak (ZBCP) is expected in tunneling spectra of normal-metal/high-Tc cuprate junctions because of the formation of the midgap Andreev resonant states (MARS) at junction interfaces. In the present review, we report the recent theoretical study of impurity scattering effects on the tunneling spectroscopy. In the former part of the present paper, we discuss impurity effects in normal metal. We calculate tunneling conductance for diffusive normal metal (DN)/high Tc cuprate junctions based on the Keldysh Green's function technique. Besides the ZBCP due to the MARS, we can expect ZBCP caused by the different origin, i.e., the coherent Andreev reflection (CAR) assisted by the proximity effect in DN. Their relative importance depends on the angle a between the interface normal and the crystal axis of high-Tc superconductors. At α = 0, we find the ZBCP by the CAR for low transparent junctions with small Thouless energies in DN; this is similar to the case of diffusive normal metal/insulator/s-wave superconductor junctions. Under increase of α from zero to π/4, the contribution of MARS to ZBCP becomes more prominent and the effect of the CAR is gradually suppressed. Such complex spectral features would be observable in conductance spectra of high-Tc junctions at very low temperatures. In the latter part of our paper, we study impurity effects in superconductors. We consider impurities near the junction interface on the superconductor side. The conductance is calculated from the Andreev and the normal reflection coefficients which are estimated by using the single-site approximation in an analytic calculation and by the recursive Green function method in a numerical simulation. We find splitting of the ZBCP in the presence of the time reversal symmetry. Thus the zero-field splitting of ZBCP in the experiment does not perfectly prove an existence of broken time reversal symmetry state

  8. Complement and hyper acute rejection

    Directory of Open Access Journals (Sweden)

    Al-Rabia Mohammed

    2009-01-01

    Full Text Available Organ transplantation has been a major development in clinical medicine but its success has been marred by the immune system′s capacity to respond to "non-self" cells and tissues. A full molecular understanding of this mechanism and the myriad triggers for immune rejection is yet to be elucidated. Consequently, immunosuppressive drugs remain the mainstay of post-transplant ma-nagement; however, these interventions have side effects such as increased incidence of cancer, post-transplant lymphoproliferative disorders, susceptibility to infection if not managed appro-priately and the inconvenience to the patient of lifelong treatment. Novel therapeutic approaches based on molecular understanding of immunological processes are thus needed in this field. The notion that factors influencing successful transplants might be of use as therapeutic approaches is both scientifically and medically appealing. Recent developments in the understanding of successful transplants are expected to provide new opportunities for safer transplantation. This article reviews the present understanding of the molecular basis of rejection and the role of complement in this process as well as the possibility of generating "intelligent" therapy that better target crucial components of hyper-acute rejections.

  9. Prediction of acute cardiac rejection using radionuclide techniques

    International Nuclear Information System (INIS)

    Novitzky, D.; Bonioszczuk, J.; Cooper, D.K.C.; Isaacs, S.; Rose, A.G.; Smith, J.A.; Uys, C.J.; Barnard, C.N.; Fraser, R.

    1984-01-01

    Radionuclide scanning of the donor left ventricle using technetium-99m-labelled red cells was used to monitor acute rejection after heterotopic heart transplantation and compared with histopathological evidence of rejection obtained at examination of an endomyocardial biopsy specimen. The ejection fraction and end-diastolic, end-systolic and stroke volumes were calculated at each examination; an equation was derived from these data to predict the degree of acute rejection, using histopathological examination of endomyocardial biopsy specimens as criteria of the presence and severity of rejection. A highly significant multiple correlation between radionuclide scanning parameters and endomyocardial biopsy was found. The advantages of non-invasive radionuclide scanning over the invasive procedure of endomyocardial biopsy are discussed

  10. Rapid Analysis of Apolar Low Molecular Weight Constituents in Wood Using High Pressure Liquid Chromatography with Evaporative Light Scattering Detection

    NARCIS (Netherlands)

    Claassen, F.W.; Haar, van de C.; Beek, van T.A.; Dorado, J.; Martinez-Inigo, M.; Sierra-Alvarez, R.

    2000-01-01

    A new high pressure liquid chromatographic method with evaporative light scattering detection was developed for the qualitative and quantitative analysis of apolar, low molecular weight constituents in wood. The wood extractives were obtained by means of a 6 h Soxhlet extraction with acetone. The

  11. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L [Department of Mathematics, Aveiro University, Aveiro 3810 (Portugal)], E-mail: lakshtanov@rambler.ru

    2008-06-27

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus.

  12. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using

  13. Standardization of heparins by means of high performance liquid chromatography equipped with a low angle laser light scattering detector

    NARCIS (Netherlands)

    Hennink, W.E.; van den Berg, J.W.A.; Feijen, Jan

    1987-01-01

    This study shows that HPLC-LALLS (high performance liquid chromatography with a light-scattering detector) is a convenient and reliable method for the characterization of standard heparin samples, provided that polyelectrolyte artefacts are suppressed by a suitable dialysis procedure. The method has

  14. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    International Nuclear Information System (INIS)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L

    2008-01-01

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus

  15. In situ identification of high-performance thin-layer chromatography spots by fourier transform surface-enhanced Raman scattering

    Science.gov (United States)

    Koglin, Eckhardt; Kramer, Hella; Sawatski, Juergen; Lehner, Carolin; Hellman, Janice L.

    1994-01-01

    FT-SERS has been used to identify samples supported on high-performance thin-layer chromatography plates. The TLC plates were sprayed with colloidal silver solutions which resulted in enhancement of the FT-Raman scattering of these biologically and environmentally important compounds.

  16. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. Y. [National Fusion Research Institute, Gunsan (Korea, Republic of)

    2014-10-15

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  17. Enhanced analogue front-end for the measurement of the high state of wide-band voltage pulses with 87 dB common-mode rejection ratio and ±0.65 ppm 1-day offset stability

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Martino, Michele

    2015-01-01

    An improved analogue front-end for measuring the high state of trapezoidal voltage pulses with transition duration of 3 μs is presented. A new measurement system, composed by a front-end and the state-of-the-art acquisition board NI PXI-5922, has been realized with improved Common Mode Rejection Ratio (CMRR) of more than 87 dB at DC and 3-sigma stability of }0.65 ppm over 1 day. After highlighting the main design enhancements with respect to state-of-the-art solutions, the CMRR measurement is reported. The output drift due to temperature and humidity is assessed to be negligible. Finally, the worst-case repeatability is measured both with shorted-to-ground inputs and with an applied common-mode voltage of 10 V, which represents the nominal working condition.

  18. Towards weighing individual atoms by high-angle scattering of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Argentero, G.; Mangler, C.; Kotakoski, J.; Eder, F.R.; Meyer, J.C., E-mail: Jannik.Meyer@univie.ac.at

    2015-04-15

    We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate that the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number. - Highlights: • We explore how energy loss spectroscopy could be used to obtain information about the mass, rather than the charge, of atoms. • The dose and precision that would be needed to distinguish between the two isotopes of carbon, C12 and C13, is estimated. • Signal broadening due to phonons is included in the calculation. • Initial experiments show the separation between gold and carbon based on their mass rather than charge.

  19. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    Science.gov (United States)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  20. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  1. Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmitt, L.; Schopferer, S.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    Roč. 70, 1-2 (2010), s. 39-49 ISSN 1434-6044 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : deep-inelastic-scattering * dependent structure-function * single-spin asymmetries * semiinclusive electroproduction * proton-scattering * distributions * leptoproduction * target * dis * nucleons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.248, year: 2010

  2. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-01-01

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal

  3. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  4. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  5. Social Causes and Consequences of Rejection Sensitivity

    Science.gov (United States)

    London, Bonita; Downey, Geraldine; Bonica, Cheryl; Paltin, Iris

    2007-01-01

    Predictions from the Rejection Sensitivity (RS) model concerning the social causes and consequences of RS were examined in a longitudinal study of 150 middle school students. Peer nominations of rejection, self-report measures of anxious and angry rejection expectations, and social anxiety, social withdrawal, and loneliness were assessed at two…

  6. 7 CFR 58.136 - Rejected milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rejected milk. 58.136 Section 58.136 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Milk § 58.136 Rejected milk. A plant shall reject specific milk from a producer if the milk fails to...

  7. Peer Group Rejection and Children's Outgroup Prejudice

    Science.gov (United States)

    Nesdale, Drew; Durkin, Kevin; Maass, Anne; Kiesner, Jeff; Griffiths, Judith; Daly, Josh; McKenzie, David

    2010-01-01

    Two simulation studies examined the effect of peer group rejection on 7 and 9 year old children's outgroup prejudice. In Study 1, children (n = 88) pretended that they were accepted or rejected by their assigned group, prior to competing with a lower status outgroup. Results indicated that rejected versus accepted children showed increased…

  8. Analysis of X-Band Very High Resolution Persistent Scatterer Interferometry Data Over Urban Areas

    Science.gov (United States)

    Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B.

    2013-04-01

    Persistent Scatterer Interferometry (PSI) is a satellite-based Synthetic Aperture Radar (SAR) remote sensing technique used to measure and monitor land deformation from a stack of interferometric SAR images. This work concerns X-band PSI and, in particular, PSI based on very high resolution (VHR) StripMap CosmoSkyMed and TerraSAR-X SAR imagery. In fact, it mainly focuses on the technical aspects of deformation measurement and monitoring over urban areas. A key technical aspect analysed in this paper is the thermal expansion component of PSI observations, which is a result of temperature differences in the imaged area between SAR acquisitions. This component of PSI observations is particularly important in the urban environment. This is an interesting feature of PSI, which can be surely used to illustrate the high sensitivity of X-band PSI to very subtle displacements. Thermal expansion can have a strong impact on the PSI products, especially on the deformation velocity maps and deformation time series, if not properly handled during the PSI data processing and analysis, and a comprehensive discussion of this aspect will be provided in this paper. The importance of thermal expansion is related to the fact that the PSI analyses are often performed using limited stacks of images, which may cover a limited time period, e.g. several months only. These two factors (limited number of images and short period) make the impact of a non-modelled thermal expansion particularly critical. This issue will be illustrated considering different case studies based on TerraSAR-X and CosmoSkyMed PSI data. Besides, an extended PSI model which alleviates this problem will be described and case studies from the Barcelona metropolitan area will demonstrate the effectiveness of the proposed strategy.

  9. ANALYSIS OF X-BAND VERY HIGH RESOLUTION PERSISTENT SCATTERER INTERFEROMETRY DATA OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2013-04-01

    Full Text Available Persistent Scatterer Interferometry (PSI is a satellite-based Synthetic Aperture Radar (SAR remote sensing technique used to measure and monitor land deformation from a stack of interferometric SAR images. This work concerns X-band PSI and, in particular, PSI based on very high resolution (VHR StripMap CosmoSkyMed and TerraSAR-X SAR imagery. In fact, it mainly focuses on the technical aspects of deformation measurement and monitoring over urban areas. A key technical aspect analysed in this paper is the thermal expansion component of PSI observations, which is a result of temperature differences in the imaged area between SAR acquisitions. This component of PSI observations is particularly important in the urban environment. This is an interesting feature of PSI, which can be surely used to illustrate the high sensitivity of X-band PSI to very subtle displacements. Thermal expansion can have a strong impact on the PSI products, especially on the deformation velocity maps and deformation time series, if not properly handled during the PSI data processing and analysis, and a comprehensive discussion of this aspect will be provided in this paper. The importance of thermal expansion is related to the fact that the PSI analyses are often performed using limited stacks of images, which may cover a limited time period, e.g. several months only. These two factors (limited number of images and short period make the impact of a non-modelled thermal expansion particularly critical. This issue will be illustrated considering different case studies based on TerraSAR-X and CosmoSkyMed PSI data. Besides, an extended PSI model which alleviates this problem will be described and case studies from the Barcelona metropolitan area will demonstrate the effectiveness of the proposed strategy.

  10. Multi-component fits to high energy pp and anti pp scattering

    International Nuclear Information System (INIS)

    Haim, D.; Maor, U.

    1992-01-01

    A method for the analysis and description of high energy elastic scattering amplitudes in the forward direction is proposed. In this method each component of the hadronic amplitude acquires its own nuclear slope. We fit the data for the differential cross section, which was obtained at the ISR and the CERN Spanti pS colliders, using the multi-component amplitude. As a result, two asymptotically (s→∞) different modes emerge. One is compatible with a black disk, which yields a ratio for the elastic to the total cross section σ el /σ tot =0.5 as s→∞, and the other is a white-grey disk model which yields σ el /σ tot =0.07 as s→∞. Both models have the same results for σ tot and ρ for all √s which are experimentally accessible. Our results show that all the data can be fitted under the same amplitude to a better degree, point by point, than the low momentum transfer amplitude, which was used by the experiments. In addition, our ratio of real to imaginary part of the hadronic amplitude at the CERN Spanti pS, ρ=0.14, resolves the ambiguity about the high value which was measured by the UA4 Collaboration. Our predicted total cross section at the Tevatron, σ tot =73.9 mb, is in good agreement with the recent measurement of the E-710 Collaboration. As a final step, we make predictions for the LHC and the SSC colliders. (orig.)

  11. Light scattering studies at UNICAMP

    International Nuclear Information System (INIS)

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  12. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Sarp, Sarper; Park, Y. G.; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  13. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  14. Rejection index for pressure tubes

    International Nuclear Information System (INIS)

    Mitchell, A.B.; Meneley, D.

    1989-10-01

    The objective of the present study was to establish a set of criteria (or Rejection Index) which could be used to decide whether a zirconium-2 1/2 w/o niobium pressure tube in a CANDU reactor should be removed from service due to in-service degradation. A critique of key issues associated with establishing a realistic rejection index was prepared. Areas of uncertainty in available information were identified and recommendations for further analysis and laboratory testing made. A Rejection Index based on the following limits has been recommended: 1) Limits related to design intent and normal operation: any garter spring must remain within the tolerance band specified for its design location; the annulus gas system must normally be operated in a circulating mode with a procedure in place for purging to prevent accumulation of deuterium. It must remain sensitive to leaks into any part of the systems; and pressure tube dimensions and distortions must be limited to maintain the fuel channels within the original design intent; 2) Limits related to defect tolerance: adequate time margins between occurrence of a leaking crack and unstable failure must be demonstrated for all fuel channels; long lap-type flaws are unacceptable; crack-like defects of any size are unacceptable; and score marks, frat marks and other defects with contoured profiles must fall below certain depth, length and stress intensity limits; and 3) Limits related to property degradation: at operating temperature each pressure tube must be demonstrated to have a critical length in excess of a stipulated value; the maximum equivalent hydrogen level in any pressure tube should not exceed a limit which should be defined taking into account the known history of that tube; the maximum equivalent hydrogen level in any rolled joint should not exceed a limit which is presently recommended as 200 ppm equivalent hydrogen; and the maximum diametral creep strain should be limited to less than 5%

  15. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Göröcs, Zoltán

    2016-09-13

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  16. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Gö rö cs, Zoltá n; Rivenson, Yair; Ceylan Koydemir, Hatice; Tseng, Derek; Troy, Tamara L.; Demas, Vasiliki; Ozcan, Aydogan

    2016-01-01

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  17. Inelastic scattering and endohedral complex formation in high-energy collisions of fullerenes with He

    International Nuclear Information System (INIS)

    Callahan, J.H.; Mowrey, R.C.; Ross, M.M.

    1992-01-01

    Since the original postulation of its icosahedral structure by Smalley and Kroto in 1985, C 60 (also known as buckminsterfullerene) has fascinated investigators in a variety of fields. With the publication of a synthetic method for the bulk production of C 60 , there has been an explosion of research interest in this molecule. A number of intriguing experimental results have been published, including work in the area of mass spectrometry. For example, at a workshop at the 1991 ASMS meeting, Schwartz and coworkers reported a remarkable result. They showed that high energy collisions of C 60 + with He resulted not only in the expected formation of collision-induced dissociation (CID) products such as C 56 + and C 58 + (C 2 loss is the main fragmentation pathway for C 60 ), but also in the formation of products such as C 56 + + 4 and C 58 + + 4. Careful experiments with He showed that the products were C 56 He + and C 58 He + , most likely formed by the uptake of He by C 60 + during the collision. Subsequent experiments in this laboratory were able to directly observe the C 60 He + product, the product ion shifts in kinetic energy by an amount equal to the center-of-mass collision energy, consistent with kinematic arguments. C 60 He + was also observed by the Gross group and the Schwarz group. Gross and coworkers also showed that inelastic scattering processes can be observed in the collision spectrum. More recently, the Anderson group has studied reverse processes, in which ions such as He + , Li + , and C + undergo collisions with C 60 and are taken up in the collision

  18. Electron Scattering Studies of Gas Phase Molecular Structure at High Temperature

    Science.gov (United States)

    Mawhorter, Richard J., Jr.

    A high precision counting electron diffraction study of the structure of gaseous sulfur dioxide as a function of temperature from 300(DEGREES) to 1000(DEGREES)K is presented. The results agree well with current theory, and yield insight into the effects of anharmonicity on molecular structure. Another aspect of molecular structure is the molecular charge density distribution. The difference (DELTA)(sigma) is between the electron scattering cross sections for the actual molecule and independent atom model (IAM) are a sensitive measure of the change in this distribution due to bond formation. These difference cross sections have been calculated using ab initio methods, and the results for a wide range of simple polyatomic molecules are presented. Such calculations are routinely done for a single, fixed molecular geometry, an approach which neglects the effects of the vibrational motion of real molecules. The effect of vibrational averaging is studied in detail for the three normal vibrational modes of H(,2)O in the ground state. The effects are small, lending credence to the practice of comparing cross sections calculated at a fixed geometry with inherently averaged experimental data. The efficacy of the standard formula used to account for vibrational averaging in the IAM is also examined. Finally, the nature of the ionic bond is probed with an experimental study of the structure of alkali chlorides, NaCl, KCl, RbCl, and CsCl, in the gas phase. Temperatures from 840-960(DEGREES)K were required to achieve the necessary vapor pressures of approximately 0.01 torr. A planar rhombic structure for the dimer molecule is confirmed, with a fairly uniform decrease of the chlorine-alkali-chlorine angle as the alkalis increase in size. The experiment also yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  19. High-energy scattering of particles with anomalous magnetic moments in the quantum field theory. πN scattering and Coulomb interference

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1975-01-01

    An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered

  20. A simple and convenient set-up for high-temperature Brillouin light scattering

    International Nuclear Information System (INIS)

    Guerette, Michael; Huang Liping

    2012-01-01

    An emulated platelet geometry (or reflection-induced platelet geometry) is employed to collect photons scattered from both longitudinal and transverse acoustic waves travelling within a bulk transparent sample sitting on a reflective Pt plate. Temperature of the sample was controlled with a Linkam TS1500 optical furnace (maximum temperature of 1500 °C). This simple and convenient set-up allows a full determination of elastic constants of transparent materials in situ as a function of temperature from Brillouin light scattering. Structural information can be gained at the same time by guiding the scattered light into a Raman spectrometer using a flipping mirror or a beam splitter. We will demonstrate the applications of this set-up in transparent inorganic glasses, but it can be easily extended to any other transparent materials, either crystalline or amorphous in nature. (paper)

  1. Three particle scattering at high energies in a model with eikonal Hamiltonian

    International Nuclear Information System (INIS)

    Kharchenko, V.F.; Kuzmichev, V.E.

    1980-04-01

    The three particle collision process 3 → 3 with relative motion of each pair of particles described by a model with eikonal Hamiltonian is investigated. No additional restrictions on the motion of the particles (such as the fixed scattering centre approximation) are imposed. A unique, exact analytical solution of the three-particle problem is then shown to exist. An explicit expression for the 3 → 3 amplitude in the general case off the energy shell is obtained as the result of the exact summation of the multiple scattering series. It is shown that this series terminates on the energy shell. A new formula for the mutual cancellation of terms in the multiple scattering series in a model with eikonal Hamiltonian is found. (orig.)

  2. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sen; Luo, Sheng-Nian

    2018-02-16

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  3. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    Science.gov (United States)

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  4. 111-Indium-labelled platelets for diagnosis of acute kidney transplant rejection and monitoring of prostacyclin anti-rejection treatment

    International Nuclear Information System (INIS)

    Leithner, C.; Pohanka, E.; Schwarz, M.; Sinzinger, H.; Syre, G.

    1984-01-01

    33 patients were examined daily under a gamma camera after weekly injections of 111-In-labelled autologous platelets over a period of at least 4 weeks after transplantation. A group of 33 patients with long-term stable and well-functioning grafts served as controls. By means of a computerized recording technique, platelet trapping in the graft was measured and expressed as platelet-uptake index (PUI). The method worked well for the early diagnosis of acute rejection signified by an increase in PUI, accompanied by a shortening of platelet half life (t/2). 6 patients suffering from acute rejection received infusions of prostacyclin in addition to conventional high-dose methylprednisolone therapy. In 4 cases the PUI decreased again and an improvement in graft function was observed. Prostacyclin infusion treatment was applied also in 12 patients with histologically-proven chronic transplant rejection. Decreased platelet consumption by the graft and a temporary improvement in transplant function were achieved. We suggest that prostacyclin could enrich the possibilities of anti-rejection treatment by providing a tool for the suppression of platelet trapping in the graft. The platelet scan served as a useful method for the early detection of acute rejection, as well as the monitoring of prostacyclin anti-rejection treatment. (Autor)

  5. High-energy pp and p-barp scattering and the model of geometric scaling

    International Nuclear Information System (INIS)

    Fischer, J.; Jakes, P.; Novak, M.

    1982-10-01

    The model of geometric scaling is used to predict the evolution of the diffractive dip-peak structure of pp and p-barp differential cross-sections with increasing energy. Previous calculation for pp scattering made by Dias de Deus and Kroll is carried out with new data and their predictions confirmed. Recent data on p-barp scattering are used to make an analogous analysis for this process as well. It turns out that the p-barp differential cross-section behaves analogously, the main difference being that, in the p-barp case, the dip-peak structure should not completely disappear with increasing energy. (author)

  6. Comparison of approximate methods for multiple scattering in high-energy collisions. II

    International Nuclear Information System (INIS)

    Nolan, A.M.; Tobocman, W.; Werby, M.F.

    1976-01-01

    The scattering in one dimension of a particle by a target of N like particles in a bound state has been studied. The exact result for the transmission probability has been compared with the predictions of the Glauber theory, the Watson optical potential model, and the adiabatic (or fixed scatterer) approximation. The approximate methods optical potential model is second best. The Watson method is found to work better when the kinematics suggested by Foldy and Walecka are used rather than that suggested by Watson, that is to say, when the two-body of the nucleon-nucleon reduced mass

  7. High energy resolution inelastic x-ray scattering at the SRI-CAT

    International Nuclear Information System (INIS)

    Macrander, A.T.

    1996-08-01

    This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals

  8. High-energy scattering of particles with anomalous magnetic moments in quantum field theory

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1976-01-01

    Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered

  9. The generalized PN synthetic acceleration method for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1998-01-01

    The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotopic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) methods is proposed. This method converges (Clock time) faster than the MDSA method. It is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented. (author). 9 refs., 2 tabs., 5 figs

  10. The generalized PN synthetic acceleration method for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.

    1997-01-01

    The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotropic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) method is proposed that converges (clock time) faster than the MDSA method. This method is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented

  11. Charge density of 58Ni, by scattering of electrons at high moment transfer

    International Nuclear Information System (INIS)

    Turck, Sylvaine

    1976-01-01

    Due to the unique electromagnetic interaction involved, electron elastic scattering allows a nuclear structure to be tested through nucleus magnetisation and charge distribution. In a first part, this research thesis reports experiments performed on the Saclay Linear Accelerator (ALS) with the 58 Ni nucleus, a well closed magic nucleus which allows a qualitative comparison between experiments and Hartree-Fock calculations to be performed. The author presents the experimental set-up, describes data acquisition, data reduction and corrections. The second part proposes a theoretical introduction to electron scattering, discusses the analysis without model, and theoretical predictions of charge density

  12. Hadron production in high energy muon scattering. [Quark-parton model, 225 GeV, structure functions, particle ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.

  13. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D.; Murokh, A.; Piot, P.; Ruan, J.

    2017-07-01

    A high-brilliance (~1022 photon s-1 mm-2 mrad-2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (Eγ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  14. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    Science.gov (United States)

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Scattering by a plane-parallel layer with high concentration of optically soft particles

    International Nuclear Information System (INIS)

    Loiko, Valery A.; Berdnik, Vladimir V.

    2009-01-01

    A method describing light propagation in a plane-parallel light-scattering layer with large concentration of homogeneous particles is developed. It is based on the radiative transfer equation and the doubling method. The interference approximation is used to take into account collective scattering effects. Spectral dependence of transmitted light for a layer of nonabsorbing optically soft particles with subwavelength-sized particles is investigated. At small volume concentration of the particles the weak spectral dependences of wave exponents for coherently transmitted and diffuse light are observed. It is shown that in a layer with large volume concentration of the subwavelength-sized particles the wave exponent can exceed considerably the value of four, which takes place for the Rayleigh particles. The dependence of wave exponents for coherently transmitted and diffuse light on the refractive index and concentration of particles is investigated in detail. Multiple scattering of light results in the reduction of the exponent. The quantitative results are presented and discussed. It is shown that there is a range of wavelengths where the negative values of the wave exponent at the regime of multiple scattering are implemented.

  16. Remarks on the high-energy behavior of string scattering amplitudes in warped spacetimes. II

    International Nuclear Information System (INIS)

    Andreev, Oleg

    2005-01-01

    We study the Regge limit of string amplitudes within the model of Polchinski-Strassler for string scattering in warped spacetimes. We also present some numerical estimations of the Regge slopes and intercepts. It is quite remarkable that the real values of those are inside a range of ours

  17. Problem in quasi-free scattering at high missing energy $sup 40$Ca as an example

    Energy Technology Data Exchange (ETDEWEB)

    Frullani, S

    1972-12-29

    From symposium on prescnt status and novel developments in the nuclear many-body problem; Rome, Italy (19 Sep 1972). Experimental data on the knocking- out of deep-bound protons in /sup 40/Ca in quasi-free scattering experiments and some open problems in the interpretation of this type of reactions are reviewed. (auth)

  18. The neutron spin-echo spectrometer: a new high resolution technique in neutron scattering

    International Nuclear Information System (INIS)

    Nicholson, L.K.

    1981-01-01

    The neutron spin-echo (NSE) spectrometer provides the highest energy resolution available in neutron scattering experiments. The article describes the principles behind the first NSE spectrometer (at the Institute Laue-Langevin, Grenoble, France) and, as an example of one of its applications, some recent results on polymer chain dynamics are presented. (author)

  19. A closed analytic form for p-d elastic scattering at high energy

    International Nuclear Information System (INIS)

    Li, Y.; Lo, S.

    1983-01-01

    Using a simple harmonic oscillator wave function for deuteron it is possible to give an analytic solution in closed form for p-d elastic scattering. It has the advantage of displaying clearly all the contributions separately (D-wave, spin flip etc.). It can also fit experimental data

  20. Inelastic electron scattering from 3He and 4He in the threshold region at high momentum transfer

    International Nuclear Information System (INIS)

    Rock, S.; Arnold, R.G.; Chertok, B.T.; Szalata, Z.M.; Day, D.; McCarthy, J.S.; Martin, F.; Mecking, B.A.; Sick, I.; Tamas, G.

    1981-01-01

    The cross section for inclusive inelastic electron scattering from the helium isotopes has been measured at momentum transfers squared of 0.8 less than or equal to Q 2 less than or equal to 5.0 (GeV/c) 2 for 3 He and 0.8 less than or equal to Q 2 less than or equal to 2.4 (GeV/c) 2 for 4 He. The data were taken at 10 0 and cover the range 1.0 2 /2M/sub He/ν, which includes the elastic peak, nuclear breakup threshold, the high momentum tail of the quasi elastic scattering, and pion production. The structure function, νW 2 , derived from the data is approaching a scaling limit at high Q 2 . It can be factored into a product of functions of Q 2 and of x as predicted by some models

  1. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  2. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  3. Mammographic image reject rate analysis and cause – A National Maltese Study

    International Nuclear Information System (INIS)

    Mercieca, N.; Portelli, J.L.; Jadva-Patel, H.

    2017-01-01

    Mammography is used as a first-line investigation in the detection of breast cancer and imaging is required to be of optimal quality and achieved without adverse effects on the health of individuals. Repeated images come at a cost in terms of radiation dose, discomfort to clients and unnecessary financial burdens. No studies investigating mammography quality in Malta had been previously undertaken. Hence, this research aimed to investigate whether mammography is being performed at an acceptable level, through the investigation of reject rates. Quantitative methodology was used to collect data from eight participating mammography units, which were utilising screen film (SFM), computed radiography (CR) and direct digital mammography (DDM). Data relating to the total number of images performed, rejects and causes was prospectively collected over two weeks, resulting in a sample of 2291 images. All units were also asked to answer a questionnaire which provided other data that could be used for analysis. The national mammography reject rate was found to be 2.62%; within the 3% acceptable range. Individual rates' analysis revealed unacceptably high or low reject rates in some units. Positioning was the main reject cause. No significant difference in rejection was found between different types of mammography units or radiographers' experience. Alternatively, radiographers' qualifications, employment conditions and use of rejection criteria were proven to affect reject rates. Whilst on a national level, images are being rejected at an acceptable rate, individual units revealed suboptimal rates; at the cost of extra radiation, added discomfort and financial burden. - Highlights: • The national reject rate complied with the European Guidelines. • Reject rates in different units were found to vary. • Positioning was the commonest cause for repeats. • The equipment used and radiographers' experience did not affect reject rates. • Qualifications

  4. FIR laser scattering and heterodyne receiver measurements on Alcator C

    International Nuclear Information System (INIS)

    Woskoboinikow, P.; Praddaude, H.C.; Mulligan, W.J.; Cohn, D.R.; Lax, B.

    1982-01-01

    The MIT program to develop high power collective Thomson scattering diagnostics is presented. The D 2 O laser Thomson scattering system is operational on Alcator C tokamak. The major components include a 0.5 MW, 150 ns D 2 O laser, a heterodyne receiver mixer, a 25 MW, 381 μ DCOOD laser local oscillator and X-band I.F. electronics including a 32 channel multiplexer filter centered at 9.4 GHz with 80 MHz wide channels. Initial scattering measurement showed high level of stray D 2 O laser power. The spectrum was obtained by operating the Thomson scattering diagnostics with no plasma in the tokamak. An X-band notch filter was placed after the Schottky diode mixer to reject a 240 MHz band centered at 9.4 GHz. The stray light level was reduced by 16 to 20 db. Other sources of background noise such as strong non-thermal scattering and ECE did not appear to be a problem. A gas filled cell was placed on the Alcator C scattering system to reduce the level of stray light. Work is underway to improve the transverse mode quality of the laser and receiver to improve matching to the beam and viewing dumps. (Kato, T.)

  5. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshinuma, M.; Ohdachi, S.; Ida, K.; Itoh, K.; Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.; Inagaki, S.

    2016-01-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  6. Optimum measurement and analysis of small polarization asymmetry in high-energy inelastic scattering using a polarized target

    International Nuclear Information System (INIS)

    Niinikoski, T.O.

    1976-01-01

    Optimum linear filter theory is employed for maximizing the signal-to-noise ratio in measurements of small polarization asymmetry in the presence of severe counting efficiency fluctuation, most likely to occur in high-energy inclusive and inelastic scattering experiments, using a polarized target. The r.m.s. error of the polarization asymmetry is obtained in closed form, allowing numeric optimization of the operation of the target. Guidelines are given for processing the record of data. (Auth.)

  7. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I. [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  8. High-energy scattering in strongly coupled N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Sprenger, Martin

    2014-11-01

    This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS 5 x S 5 -geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS 5 . This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the multi

  9. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    Science.gov (United States)

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  10. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    Directory of Open Access Journals (Sweden)

    Ying-Pei Liu

    Full Text Available In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC system, we propose an improved auto-disturbance rejection control (ADRC method based on least squares support vector machines (LSSVM in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD and adaptive optimal kernel (AOK time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  11. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    Science.gov (United States)

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-12-01

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Review: The transcripts associated with organ allograft rejection.

    Science.gov (United States)

    Halloran, Philip F; Venner, Jeffery M; Madill-Thomsen, Katelynn S; Einecke, Gunilla; Parkes, Michael D; Hidalgo, Luis G; Famulski, Konrad S

    2018-04-01

    The molecular mechanisms operating in human organ transplant rejection are best inferred from the mRNAs expressed in biopsies because the corresponding proteins often have low expression and short half-lives, while small non-coding RNAs lack specificity. Associations should be characterized in a population that rigorously identifies T cell-mediated (TCMR) and antibody-mediated rejection (ABMR). This is best achieved in kidney transplant biopsies, but the results are generalizable to heart, lung, or liver transplants. Associations can be universal (all rejection), TCMR-selective, or ABMR-selective, with universal being strongest and ABMR-selective weakest. Top universal transcripts are IFNG-inducible (eg, CXCL11 IDO1, WARS) or shared by effector T cells (ETCs) and NK cells (eg, KLRD1, CCL4). TCMR-selective transcripts are expressed in activated ETCs (eg, CTLA4, IFNG), activated (eg, ADAMDEC1), or IFNG-induced macrophages (eg, ANKRD22). ABMR-selective transcripts are expressed in NK cells (eg, FGFBP2, GNLY) and endothelial cells (eg, ROBO4, DARC). Transcript associations are highly reproducible between biopsy sets when the same rejection definitions, case mix, algorithm, and technology are applied, but exact ranks will vary. Previously published rejection-associated transcripts resemble universal and TCMR-selective transcripts due to incomplete representation of ABMR. Rejection-associated transcripts are never completely rejection-specific because they are shared with the stereotyped response-to-injury and innate immunity. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  14. A high precision n-p scattering measurement at 14.9 MeV

    Directory of Open Access Journals (Sweden)

    Kornilov N.V.

    2017-01-01

    Full Text Available The n-p scattering angular distribution was measured with 14.9 MeV incident neutrons using the traditional time-of-flight technique with neutron-gamma discrimination. The scattering angle varied from 20o to 65o (laboratory system in 5o incremental steps. The efficiency of the neutron detectors was measured in the energy range 2–9 MeV relative to the 252Cf-standard, and was calculated using Monte Carlo methods in the 2–14 MeV energy range. Two methods of analysis were applied for experimental and simulated data: a traditional approach with a fixed threshold, and a dynamic threshold approach. The present data agree with the ENDF/B-VII evaluation for the shape of n-p angular distribution within about 1.5%.

  15. Spatial observations by the CUTLASS coherent scatter radar of ionospheric modification by high power radio waves

    Directory of Open Access Journals (Sweden)

    G. E. Bond

    1997-11-01

    Full Text Available Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System coherent scatter radar was employed to observe artificial field aligned irregularities (FAI generated by the EISCAT (European Incoherent SCATter heating facility at Tromsø, Norway. The distribution of backscatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170±50km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and 0.01V/m. Differences between field-aligned and vertical propagation heating are also presented.

  16. Core polarisation and configuration mixing in 58Ni studied by high resolution electron scattering

    International Nuclear Information System (INIS)

    Blok, H.

    1986-01-01

    The nucleus 58 Ni is studied by inelastic electron-scattering. This nucleus has two valence neutrons outside a closed 58 Ni core which implies that no valence protons contribute to the transitions and thus, besides configuration mixing of the valence neutrons, proton-core polarization can be studied in detail. From inelastic electron-scattering data one obtains the charge- and current-transition densities by determining the Fourier-Bessel transform of the cross sections measured over a wide range of linear momenta transferred to the nucleus. The results of an analysis of the excitation of two 0 ++ states at low-momentum transfer are presented. These transitions are particularly interesting for studying core-polarization contributions. (Auth.)

  17. Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.

    Science.gov (United States)

    Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  18. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  19. LATE RENAL GRAFT REJECTION: PATHOLOGY AND PROGNOSIS

    Directory of Open Access Journals (Sweden)

    E.S. Stolyarevich

    2014-01-01

    Full Text Available Rejection has always been one of the most important cause of late renal graft dysfunction. Aim of the study was to analyze the prevalence of different clinico-pathological variants of rejection that cause late graft dysfunction, and evaluate their impact on long-term outcome. Materials and methods. This is a retrospective study that analyzed 294 needle core biopsy specimens from 265 renal transplant recipients with late (48,8 ± 46,1 months after transplantation allograft dysfunction caused by late acute rejection (LAR, n = 193 or chronic rejection (CR, n = 78 or both (n = 23. C4d staining was performed by immunofl uorescence (IF on frozen sections using a standard protocol. Results. Peritubular capillary C4d deposition was identifi ed in 36% samples with acute rejection and in 62% cases of chronic rejection (including 67% cases of transplant glomerulopathy, and 50% – of isolated chronic vasculopathy. 5-year graft survival for LAR vs CR vs their combination was 47, 13 and 25%, respectively. The outcome of C4d– LAR was (p < 0,01 better than of C4d+ acute rejection: at 60 months graft survival for diffuse C4d+ vs C4d− was 33% vs 53%, respectively. In cases of chronic rejection C4d+ vs C4d– it was not statistically signifi cant (34% vs 36%. Conclusion. In long-term allograft biopsy C4d positivity is more haracteristic for chronic rejection than for acute rejection. Only diffuse C4d staining affects the outcome. C4d– positivity is associated with worse allograft survival in cases of late acute rejection, but not in cases of chronic rejection

  20. Assessment of capacity support and scattering in experimental high speed vehicle to vehicle MIMO links

    DEFF Research Database (Denmark)

    Eggers, Patrick Claus F.; Brown, Tim; Olesen, Kim

    2007-01-01

    Preliminary results on the use of the vehicle to vehicle MIMO channel in a rural highway environment are presented. This is looked at both in terms of the available spatial multiplexing through singular value decomposition and also angular distribution within the channel. Results indicate a strong...... predominant line of sight link in general while instances of scattering from other vehicles will cause changes in the Doppler spectrum as well as beamforming jitter....

  1. High count problems in elemental analysis using pulsed neutron inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.

    1983-03-01

    Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.

  2. High resolution electron scattering facility at the Darmstadt Linear Accelerator (DALINAC). Pt. 4

    International Nuclear Information System (INIS)

    Foh, J.; Frey, R.; Schneider, R.; Schuell, D.; Schwierczinski, A.; Theissen, H.; Titze, O.

    1977-11-01

    The computer system installed for the electron scattering facility and its usage is described. For on-line control a dedicated system of two tightly coupled computers (PDP 11/20, H116) is used wheras a PDP 11/45 is provided for all other data processing work resulting from the experiments. Special interfaces, graphic terminals, system software and a complete set of application programs have been developed. (orig.) [de

  3. Effect of two-pion exchange in nucleon-nucleon scattering in high partial waves

    International Nuclear Information System (INIS)

    Harun ar Rashid, A.M.; Chaudhury, T.K.

    1983-01-01

    The work of Brown and Durso (Phys. Lett. 35B, 120 (1971)) on the soft-pion determination of the intermediate range nucleon-nucleon interaction is extended by using the most general form of the ΔNπ interaction which involves an arbitrary parameter Z. It is shown that both the annihilation channel helicity amplitude fsub(+)sup((O))(t) as well as peripheral proton-proton scattering phase shifts seem to favour Z=1/2. (author)

  4. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  5. Spin dependence in high $p^{2}_{T}$ elastic pp and np scattering

    CERN Document Server

    Crabb, D G; Hansen, P.H.; Hauser, J.; Krisch, A.D.; Sandler, B.; Shima, T.; Terwilliger, K.M.; Crosbie, E.A.; Ratner, L.G.; Schultz, P.F.; Thomas, G.H.; O'Fallon, J.R.; Lin, A.D.; Salthouse, A.J.; Linn, S.L.; Perlmutter, A.; Karmakar, N.L.; Kyberd, P.

    1979-01-01

    Using the polarized proton capability of the Argonne ZGS the authors recently made 90 degrees /sub cm/ measurements of elastic pp scattering from 6 to 11.75 GeV/c, determining the parallel and anti- parallel pure initial spin state cross sections and the associated spin-spin parameter A/sub nn/ with the spins normal to the scattering plane. They find that the parallel to anti-parallel cross section ratio rises dramatically from 1.2+or-.06 at p/sub t//sup 2/=3.3 (GeV /c)/sup 2/ to 3.2+or-.4 at 4.8 (GeV/c)/sup 2/, similar to the p/sub T //sup 2/ dependence previously observed at the fixed laboratory momentum of 11.75 GeV/c. They have also extended the measurements at 6 GeV/c and find that A/sub nn/ has a small but sharp rise at 90 degrees /sub cm/. In addition a month of 12 GeV/c polarized deuteron acceleration in the ZGS enabled them to measure two A/sub nn/ at two points at 6 GeV/c for np elastic scattering: A/sub nn/=-.17+or-.04 at p/sub T//sup 2/=.8, A/sub nn/=-.19+or-.05 at P/sub T//sup 2/=1.0. These value...

  6. High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile Euglena gracilis

    Science.gov (United States)

    Suzuki, Y.; Wakisaka, Y.; Iwata, O.; Nakashima, A.; Ito, T.; Hirose, M.; Domon, R.; Sugawara, M.; Tsumura, N.; Watarai, H.; Shimobaba, T.; Suzuki, K.; Goda, K.; Ozeki, Y.

    2017-02-01

    Microalgae have been receiving great attention for their ability to produce biomaterials that are applicable for food supplements, drugs, biodegradable plastics, and biofuels. Among such microalgae, Euglena gracilis has become a popular species by virtue of its capability of accumulating useful metabolites including paramylon and lipids. In order to maximize the production of desired metabolites, it is essential to find ideal culturing conditions and to develop efficient methods for genetic transformation. To achieve this, understanding and controlling cell-to-cell variations in response to external stress is essential, with chemically specific analysis of microalgal cells including E. gracilis. However, conventional analytical tools such as fluorescence microscopy and spontaneous Raman scattering are not suitable for evaluation of diverse populations of motile microalgae, being restricted either by the requirement for fluorescent labels or a limited imaging speed, respectively. Here we demonstrate video-rate label-free metabolite imaging of live E. gracilis using stimulated Raman scattering (SRS) - an optical spectroscopic method for probing the vibrational signatures of molecules with orders of magnitude higher sensitivity than spontaneous Raman scattering. Our SRS's highspeed image acquisition (27 metabolite images per second) allows for population analysis of live E. gracilis cells cultured under nitrogen-deficiency - a technique for promoting the accumulation of paramylon and lipids within the cell body. Thus, our SRS system's fast imaging capability enables quantification and analysis of previously unresolvable cell-to-cell variations in the metabolite accumulation of large motile E. gracilis cell populations.

  7. High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue

    International Nuclear Information System (INIS)

    Canpolat, M.; Mourant, J.R.

    2000-01-01

    Measurement of light transport in tissue has the potential to be an inexpensive and practical tool for non-invasive tissue diagnosis in medical applications because it can provide information on both morphological and biochemical properties. To capitalize on the potential of light transport as a diagnostic tool, an understanding of what information can be gleaned from light transport measurements is needed. We present data concerning the sensitivity of light transport measurements, made in clinically relevant geometries, to scattering properties. The intensity of the backscattered light at small source-detector separations is shown to be sensitive to the phase function, and furthermore the collected light intensity is found to be correlated with the amount of high-angle scattering in the medium. (author)

  8. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  9. A High-gain and Low-scattering Waveguide Slot Antenna of Artificial Magnetic Conductor Octagonal Ring Arrangement

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-04-01

    Full Text Available A novel design of high-gain and low-scattering waveguide slot antenna is proposed in this paper. Firstly the scattering pattern of artificial magnetic conductor (AMC composite surface is estimated by array factor analysis method. The comparison between octagonal ring arrangement and chessboard arrangement proves that the former arrangement has the characteristic of diffuseness-like and expands the bandwidth of radar cross section (RCS reduction. Secondly, the metal surface of waveguide slot antenna (WSA is replaced by the octagonal ring arrangement composite surface (ORACS. The gain is improved because of spurious radiation units which are around the slot. At the same time using the phase cancellation principle, a backscatter null achieves RCS reduction in the vertical direction. Experimental results show that the novel antenna after loading with the ORACS, the gain is improved by 5dB; the bandwidth of RCS reduction (reduction greater than 10dB is 5.24-5.92 GHz.

  10. A high-accuracy extraction of the isoscalar πN scattering length from pionic deuterium data

    International Nuclear Information System (INIS)

    Phillips, Daniel R.; Baru, Vadim; Hanhart, Christoph; Nogga, Andreas; Hoferichter, Martin; Kubis, Bastian

    2010-01-01

    We present a high-accuracy calculation of the π(bar sign)d scattering length using chiral perturbation theory up to order (M π /m p ) 7/2 . For the first time isospin-violating corrections are included consistently. The resulting value of a π -bar d has a theoretical uncertainty of a few percent. We use it, together with data on pionic deuterium and pionic hydrogen atoms, to extract the isoscalar and isovector pion-nucleon scattering lengths from a combined analysis, and obtain a + (7.9±3.2)·10 -3 M π -1 and a-bar (86.3±1.0)·10 -3 M π -1 .

  11. Identifying low and high density amorphous phases during zeolite amorphisation using small and wide angle X-ray scattering

    International Nuclear Information System (INIS)

    Meneau, F.; Greaves, G.N.

    2005-01-01

    In situ experiments following the thermal amorphisation of zeolites reveal massive increases in small angle X-ray scattering (SAXS), persisting well beyond the stage where wide angle X-ray scattering (WAXS) can detect that any crystalline phase is present. This heterogeneity in the amorphised phase is attributed to the transition from a low density amorphous phase (LDA) to a high density amorphous phase (HDA) at the glass transition. The fractions of zeolite, LDA and HDA phases obtained from SAXS analysis are discussed in the context of non-linear changes detected in 29 Si solid state NMR during zeolite amorphisation. Whilst the HDA phase is chemically disordered, the LDA phase exhibits much of the Al-Si ordering present in the starting zeolite. These findings are considered in the context of perfect glasses predicted to occur when super strong liquids are supercooled

  12. Pulse amplifier with high 'common mode rejection'

    International Nuclear Information System (INIS)

    Ijlst, P.

    1987-01-01

    The input signal of a pulse amplifier contains large 'common-mode' signals which have to be suppressed. A transformer, especially constructed for this purpose, is described. It has been tried to optimize the signal to noise ratio of the pulse amplifier by means of noise analysis. (Auth.)

  13. EEG asymmetry in borderline personality disorder and depression following rejection.

    Science.gov (United States)

    Beeney, Joseph E; Levy, Kenneth N; Gatzke-Kopp, Lisa M; Hallquist, Michael N

    2014-04-01

    Borderline personality disorder (BPD) and major depressive disorder (MDD) share numerous features, including dysphoric affect, irritability, suicidality, and a heightened sensitivity to perceived interpersonal rejection. However, these disorders are associated with divergent profiles of reactivity to rejection: Individuals with MDD are more likely to respond with withdrawal and isolation, and those with BPD appear to respond with increased approach behaviors and greater hostility. Potential mechanisms underlying these divergent patterns of response have not been elaborated. The goal of the present study was to assess whether prefrontal cortical asymmetry is associated with these behavioral profiles. EEG alpha activity was recorded at baseline and after individuals with BPD, MDD and healthy controls (HCs) participated in a rejection task. Although no differences were found at baseline, results demonstrated that following rejection, individuals with BPD showed greater left cortical activation, consistent with approach motivation, whereas those with MDD showed greater right cortical activation, consistent with withdrawal motivation. HCs evidenced a more balanced cortical profile, as hypothesized. Although BPD and MDD are highly comorbid, are easily confused, and are phenomenologically similar in a number of ways, individuals with these two disorders respond in very different ways to perceived rejection. PsycINFO Database Record (c) 2014 APA, all rights reserved

  14. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  15. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    Shevchenko, A.

    2005-02-01

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E 58 Ni, 89 Y, 90 Zr, 120 Sn, 142 Nd, 166 Er, 208 Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are

  16. Study of Background Rejection Systems for the IXO Mission.

    Science.gov (United States)

    Laurent, Philippe; Limousin, O.; Tatischeff, V.

    2009-01-01

    The scientific performances of the IXO mission will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. In APC, Paris, and CEA, Saclay, we got experience on these activities by conceiving and optimising in parallel the high energy detector and the active and passive background rejection system of the Simbol-X mission. Considering that this work may be naturally extended to other X-ray missions, we have initiated with CNES a R&D project on the study of background rejection systems mainly in view the IXO project. We will detail this activity in the poster.

  17. Synthesis of unsymmetrical dimethylhydrazine oxalate from rejected liquid rocket propellant

    Science.gov (United States)

    Mu, Xiaogang; Yang, Jingjing; Zhang, Youzhi

    2018-02-01

    The rejected liquid propellant unsymmetrical dimethylhydrazine (UDMH) was converted to UDMH oxalate, which has commercial value. The UDMH oxalate structure and stability were investigated by the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectrophotometric analysis. The results indicate that UDMH oxalate has good thermal and aqueous solution stability, a melting point of 144 °C, an initial decomposition temperature of 180 °C, and a peak wavelength of UV in aqueous solution at λ = 204 nm. This disposal method of rejected UDMH is highly efficient and environmentally safe.

  18. Scope and limitations of high energy electron scattering in obtaining relevant structural information about atoms and molecules

    International Nuclear Information System (INIS)

    Ketkar, S.N.

    1984-01-01

    During the course of this work experiments were undertaken to measure the scattering cross-sections for high energy electrons scattering from various target systems. The experiments can be broadly classified into two categories, one dealing with rather small systems and the other dealing with large systems (at least in the view of physicists). Although the experimental aspects, in so much as the experimental measurement of the intensities of the scattered electron is concerned, is the same for both the cases the motivation for performing the experiment is totally different. In the first case, simple atomic and molecular target systems, namely He, H 2 and D 2 , are used. For such systems, good theoretical framework is available and critical comparisons of experimental cross sections are made with theoretical predictions. Attention is focussed mainly at small momentum transfer (up to 10A -1 ), and correlation and binding effects are studied. In the second case, somewhat larger molecular systems, namely naphthalene, anthraquinone, anthracene and dichromium tetraacetate are used. For such systems attention is focused at large momentum transfer (from 10 to 25 A -1 ) to obtain structural information about the molecules

  19. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Al Amin [Kent State Univ., Kent, OH (United States)

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  20. High-energy behavior of fermion-meson and meson-meson scattering in a supersymmetric field theory

    International Nuclear Information System (INIS)

    Opoien, J.W.

    1978-01-01

    The high-energy behavior of fermion-boson and boson-boson scattering amplitudes of a supersymmetric field theory containing a spin-1/2 fermion field, a scalar field, and a pseudoscalar field is investigated. The results can be easily modified to apply to the Yukawa model and the neutral version of the linear sigma model. The results are also compared to those of fermion-fermion scattering in the same model. In the leading-logarithm approximation, ladders with fermions running along the sides in the t channel and mesons as rungs dominate in each order of two classes of diagrams. The sum of the dominant series give rise to fixed Regge cuts for all amplitudes in each of the three theories. All amplitudes in the supersymmetric theory possess a definite signature factor, while the amplitudes for fermion-fermion and fermion-antifermion scattering in the Y model and the sigma model lack it. The results of the supersymmetric theory are also compared to the results of the spontaneously broken non-Abelian gauge theory

  1. The leading eikonal operator in string-brane scattering at high energy

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2013-01-01

    In this paper we present two (a priori independent) derivations of the eikonal operator in string-brane scattering. The first one is obtained by summing surfaces with any number of boundaries, while in the second one the eikonal operator is derived from the three-string vertex in a suitable light-cone gauge. This second derivation shows that the bosonic oscillators present in the leading eikonal operator are to be identified with the string bosonic oscillators in a suitable light-cone gauge, while the first one shows that it exponentiates recovering unitarity. This paper is a review of results obtained in two previous publications of the same authors.

  2. The leading eikonal operator in string-brane scattering at high energy

    DEFF Research Database (Denmark)

    Giuseppe, D'Appollonio; di Vecchia, Paolo; Russo, Rodolfo

    2015-01-01

    In this paper we present two (a priori independent) derivations of the eikonal operator in string-brane scattering. The rst one is obtained by summing surfaces with any number of boundaries, while in the second one the eikonal operator is derived from the three-string vertex in a suitable light......-cone gauge. This second derivation shows that the bosonic oscillators present in the leading eikonal operator are to be identied with the string bosonic oscillators in a suitable light-cone gauge, while the rst one shows that it exponentiates recovering unitarity. This paper is a review of results obtained...

  3. Photoabsorption and Compton scattering in ionization of helium at high photon energies

    International Nuclear Information System (INIS)

    Andersson, L.R.; Burgdoerfer, J.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Production of singly and doubly charged helium ions by impact of keV photons is studied. The ratio R ph = σ ph ++ /σ ph + for photoabsorption is calculated in the photon-energy range 2--18 keV using correlated initial- and final- state wave functions. Extrapolation towards asymptotic photon energies yields R ph (ω → ∞) = 1.66% in agreement with previous predictions. Ionization due to Compton scattering, which becomes comparable to photoabsorption above ω ∼ 3 keV, is discussed

  4. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    International Nuclear Information System (INIS)

    A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu

    2007-01-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark

  5. High throughput in situ scattering of roll-to-roll coated functional polymer films

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel

    2017-01-01

    The development of conjugated polymers for organic electronics and photovoltaics has relied heavily on advanced X-ray scattering techniques almost since the earliest studies in the field. Almost from the beginning, structural studies focused on how the polymers self-organize in thin films......, and the relation between chemical configuration of the polymer, structure and performance. This chapter presents the latest developments where structural analysis is applied as in situ characterization of structure formation during roll-to-roll coating of photoactive layers for solar cells....

  6. "I'm worth more than that": trait positivity predicts increased rejection of unfair financial offers.

    Directory of Open Access Journals (Sweden)

    Barnaby D Dunn

    2010-12-01

    Full Text Available Humans react strongly to unfairness, sometimes rejecting inequitable proposals even if this sacrifices personal financial gain. Here we explored whether emotional dispositions--trait tendencies to experience positive or negative feelings--shape the rejection of unfair financial offers. Participants played an Ultimatum Game, where the division of a sum of money is proposed and the player can accept or reject this offer. Individuals high in trait positivity and low in trait negativity rejected more unfair offers. These relationships could not be explained by existing accounts which argue that rejection behaviour results from a failure to regulate negative emotions, or serves to arbitrate social relationships and identity. Instead, the relationship between dispositional affect and rejection behaviour may be underpinned by perceived self worth, with those of a positive disposition believing that they are "worth more than that" and those of a negative disposition resigning themselves to "taking the crumbs from under the table".

  7. Band rejection filter for measurement of electron cyclotron emission during electron cyclotron heating

    International Nuclear Information System (INIS)

    Iwase, Makoto; Ohkubo, Kunizo; Kubo, Shin; Idei, Hiroshi.

    1996-05-01

    For the measurement of electron cyclotron emission from the high temperature plasma, a band rejection filter in the range of 40-60 GHz is designed to reject the 53.2 GHz signal with large amplitude from the gyrotron for the purpose of plasma electron heating. The filter developed with ten sets of three quarters-wavelength coupled by TE 111 mode of tunable resonant cavity has rejection of 50 dB and 3 dB bandwidth of 500 MHz. The modified model of Tschebysheff type for the prediction of rejection is proposed. It is confirmed that the measured rejection as a function of frequency agrees well with the experimental results for small coupling hole, and also clarified that the rejection ratio increases for the large coupling hole. (author)

  8. "I'm worth more than that": trait positivity predicts increased rejection of unfair financial offers.

    Science.gov (United States)

    Dunn, Barnaby D; Makarova, Dasha; Evans, David; Clark, Luke

    2010-12-08

    Humans react strongly to unfairness, sometimes rejecting inequitable proposals even if this sacrifices personal financial gain. Here we explored whether emotional dispositions--trait tendencies to experience positive or negative feelings--shape the rejection of unfair financial offers. Participants played an Ultimatum Game, where the division of a sum of money is proposed and the player can accept or reject this offer. Individuals high in trait positivity and low in trait negativity rejected more unfair offers. These relationships could not be explained by existing accounts which argue that rejection behaviour results from a failure to regulate negative emotions, or serves to arbitrate social relationships and identity. Instead, the relationship between dispositional affect and rejection behaviour may be underpinned by perceived self worth, with those of a positive disposition believing that they are "worth more than that" and those of a negative disposition resigning themselves to "taking the crumbs from under the table".

  9. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    International Nuclear Information System (INIS)

    Detwiler, R.S.; Pfund, D.M.; Myjak, M.J.; Kulisek, J.A.; Seifert, C.E.

    2015-01-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land–water interfaces

  10. 21 CFR 1230.47 - Rejected containers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rejected containers. 1230.47 Section 1230.47 Food... FEDERAL CAUSTIC POISON ACT Imports § 1230.47 Rejected containers. (a) In all cases where the containers... notification to the importer that the containers must be exported under customs supervision within 3 months...

  11. Highly sensitive determination of poly(hexamethylene guanidine) by Rayleigh scattering using aggregation of silver nanoparticles

    International Nuclear Information System (INIS)

    Artemyeva, Anastasia A.; Sharov, Andrei V.; Beklemishev, Mikhail K.; Samarina, Tatyana O.; Abramchuk, Sergei S.; Ovcharenko, Elena O.; Dityuk, Alexander I.; Efimov, Konstantin M.

    2015-01-01

    We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2·10 −8 , 4·10 −7 , and 6·10 −6 M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple. (author)

  12. Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons

    International Nuclear Information System (INIS)

    Alekseev, M.G.; Colantoni, M.; Maggiora, A.; Alexakhin, V.Yu.; Alexeev, G.D.; Efremov, A.; Finger, M.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanov, O.; Ivanshin, Yu.; Kroumchtein, Z.V.; Nagaytsev, A.; Olshevsky, A.G.; Perevalova, E.; Peshekhonov, D.V.; Pontecorvo, G.; Rapatsky, V.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Tkatchev, L.G.; Vlassov, N.V.; Zemlyanichkina, E.; Zhuravlev, N.; Alexandrov, Yu.; Zavertyaev, M.; Amoroso, A.; Balestra, F.; Bertini, R.; Bussa, M.P.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Maggiora, M.; Parsamyan, B.; Piragino, G.; Rocco, E.; Sosio, S.; Austregesilo, A.; Badelek, B.; Gazda, R.; Klimaszewski, K.; Kurek, K.; Nassalski, J.; Pawlukiewicz-Kaminska, B.; Rondio, E.; Sandacz, A.; Wislicki, W.; Barth, J.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R.; Baum, G.; Bedfer, Y.; Burtin, E.; El Alaoui, A.; Ferrero, A.; Hose, N. d'; Jegou, G.; Kunne, F.; Le Goff, J.M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Robinet, F.; Bernhard, J.; Chaberny, D.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Koblitz, S.; Korzenev, A.; Ostrick, M.; Pochodzalla, J.; Siebert, H.W.; Bettinelli, M.; Duennweber, W.; Faessler, M.; Geyer, R.; Rajotte, J.F.; Schlueter, T.; Uman, I.; Zvyagin, A.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Gobbo, B.; Tessaro, S.; Tessarotto, F.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Massmann, F.; Negrini, T.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quintans, C.; Ramos, S.; Santos, H.; Silva, L.; Bradamante, F.; Bressan, A.; Duic, V.; Giorgi, M.; Levorato, S.; Martin, A.; Pesaro, G.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Takekawa, S.; Brona, G.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Ketzer, B.; Konopka, R.; Kraemer, M.; Kuhn, R.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S.; Weitzel, Q.; Cicuttin, A.; Crespo, M.L.; Diaz, V.; Das, S.; Dasgupta, S.S.; Dhara, L.; Sarkar, S.; Sinha, L.; Denisov, O.Yu.; Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Kondo, K.; Eyrich, W.; Lehmann, A.; Richter, A.; Schroeder, W.; Teufel, A.; Finger, M.; Fischer, H.; Heinsius, F.H.; Herrmann, F.; Kang, D.; Koenigsmann, K.; Lauser, L.; Nerling, F.; Schill, C.; Schopferer, S.; Vossen, A.; Wollny, H.; Gautheron, F.; Hess, C.; Kisselev, Yu.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Gerassimov, S.; Konorov, I.; Goertz, S.; Hasegawa, T.; Matsuda, T.; Horikawa, N.; Ishimoto, S.; Ilgner, C.; Iwata, T.; Michigami, T.; Kouznetsov, O.; CEA IRFU/SPhN Saclay, Gif-sur-Yvette; Soltan Institute for Nuclear Studies and University of Warsaw, Warsaw; Lichtenstadt, J.; Moinester, M.A.; Mallot, G.K.; Stolarski, M.; Marzec, J.; Padee, A.; Sulej, R.; Zaremba, K.; Ziembicki, M.; Mutter, A.; Panzieri, D.; Polak, J.; Srnka, A.; Sulc, M.; Zhao, J.

    2010-01-01

    Azimuthal asymmetries in semi-inclusive production of positive (h + ) and negative hadrons (h - ) have been measured by scattering 160 GeV muons off longitudinally polarised deuterons at CERN. The asymmetries were decomposed in several terms according to their expected modulation in the azimuthal angle φ of the outgoing hadron. Each term receives contributions from one or several spin and transverse-momentum-dependent parton distribution and fragmentation functions. The amplitudes of all φ-modulation terms of the hadron asymmetries integrated over the kinematic variables are found to be consistent with zero within statistical errors, while the constant terms are nonzero and equal for h + and h - within the statistical errors. The dependencies of the φ-modulated terms versus the Bjorken momentum fraction x, the hadron fractional momentum z, and the hadron transverse momentum p h T were studied. The x dependence of the constant terms for both positive and negative hadrons is in agreement with the longitudinal double-spin hadron asymmetries, measured in semi-inclusive deep-inelastic scattering. The x dependence of the sin φ-modulation term is less pronounced than that in the corresponding HERMES data. All other dependencies of the φ-modulation amplitudes are consistent with zero within the statistical errors. (orig.)

  13. MR imaging of renal transplant rejection

    International Nuclear Information System (INIS)

    Hanna, S.; Helenon, O.; Legendre, C.; Chichie, J.F.; Di Stefano, D.; Kreis, H.; Moreau, J.F.; Hopital Necker, 75 - Paris

    1991-01-01

    The results of 62 consecutive MR examinations were correlated with the subsequent clinical course and histologic results. Twenty-six cases of rejection showed a marked diminution of cortico-medullary differentiation (CMD). The renal parenchymal vascular pattern and visibility of renal sinus fat were not markedly altered in rejection and there was no difference between normal and rejected allograft shape. The ability of MR imaging to diagnose renal transplant rejection is only based on CMD, which, however, is non-specific. In 2 cases of severe rejection, T2 weighted images showed an abnormal signal intensity of the cortex due to renal infarction. Our preliminary results in 8 patients with Gd-DOTA injection showed 2 cases with necrosis seen as areas with absent contrast enhancement. This technique seems to be promising in the detection of perfusion defects. (orig.)

  14. Risk of renal allograft rejection following angiography

    International Nuclear Information System (INIS)

    Heideman, M.; Claes, G.; Nilson, A.E.

    1976-01-01

    In a retrospective study of 173 immediately functioning primary kidney transplants, correlation between angiography and renal allograft rejection was studied during the first 14 days. It was found that rejection was more frequent in kidneys undergoing angiography than in those not undergoing angiography. It was also found that in kidneys undergoing angiography an overwhelming number of the rejections started the day after angiography. These differences in rejection frequency could not be explained by differences in HLA matching or the origin of the kidneys. These findings suggest a possible connection indicating that the angiography might elicit an acute rejection episode. A possible mechanism for starting this reaction might be activation of the complement system which was found in 50 percent of the patients undergoing angiography in peripheral blood and in 100 percent when studied in vitro

  15. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  16. Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis

    Directory of Open Access Journals (Sweden)

    G. Amy

    2008-07-01

    Full Text Available Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide by NF (Filmtec, Saehan and RO (Filmtec, Saehan, Toray, Koch membranes were studied. Chloroform presented the lowest rejection due to small molar volume, equivalent width and length. Diclofenac and Primidone showed high rejections related to high molar volume and length. Dichloroacetic acid and Trichloroacetic acid presented good rejections caused by charge exclusion instead of steric hindrance mechanism influencing rejection. Bromoform and Trichloroethene showed low rejections due to small length and equivalent width. Carbontetrabromide, Perchloroethene and Carbontetrachloride with higher equivalent width than BF and TCE presented better rejections. A qualitative analysis of variables using Principal Component Analysis was successfully implemented for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and organic compounds. Properties such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent width were found to be important descriptors for simulation of membrane rejection. For membranes used in the experiments, we may conclude that charge repulsion was an important mechanism of rejection for ionic compounds. After analysis with Multiple Linear Regression, we also may conclude that membrane rejection of neutral compounds was well predicted by molar volume, length, equivalent width, hydrophobicity/hydrophilicity and dipole moment. Molecular weight was a poor descriptor variable for rejection modelling. We were able to provide acceptable statistical significance for important results.

  17. Remembering rejection: specificity and linguistic styles of autobiographical memories in borderline personality disorder and depression.

    Science.gov (United States)

    Rosenbach, Charlotte; Renneberg, Babette

    2015-03-01

    High levels of rejection sensitivity are assumed to be the result of early and prolonged experiences of rejection. Aim of this study was to investigate autobiographical memories of rejection in clinical samples high in rejection sensitivity (Borderline Personality Disorder, BPD, and Major Depressive Disorder, MDD) and to identify group differences in the quality of the memories. Memories of rejection were retrieved using an adapted version of the Autobiographical Memory Test (AMT; five positive cue words, five cue words referring to rejection). Specificity of memories and linguistic word usage was analyzed in 30 patients with BPD, 27 patients with MDD and 30 healthy controls. Patients with BPD retrieved less specific memories compared to the healthy control group, whereas patients with MDD did not differ from controls in this regard. The group difference was no longer significant when controlling for rejection sensitivity. Linguistic analysis indicated that compared to both other groups, patients with BPD showed a higher self-focus, used more anger-related words, referred more frequently to social environments, and rated memories of rejection as more relevant for today's life. Clinical symptoms were not assessed in the control group. Moreover, the written form of the AMT might reduce the total number of specific memories. The level of rejection sensitivity influenced the specificity of the retrieved memories. Analysis of linguistic styles revealed specific linguistic patterns in BPD compared to non-clinical as well as depressed participants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Image rejects/retakes--radiographic challenges.

    Science.gov (United States)

    Waaler, D; Hofmann, B

    2010-01-01

    A general held position among radiological personnel prior to digitalisation was that the problem of image rejects/retakes should more or less vanish. However, rejects/retakes still impose several challenges within radiographic imaging; they occupy unnecessary resources, expose patients to unnecessary ionizing radiation and may also indicate suboptimal quality management. The latter is the main objective of this paper, which is based on a survey of international papers published both for screen/film and digital technology. The digital revolution in imaging seems to have reduced the percentage of image rejects/retakes from 10-15 to 3-5 %. The major contribution to the decrease appears to be the dramatic reduction of incorrect exposures. At the same time, rejects/retakes due to lack of operator competence (positioning, etc.) are almost unchanged, or perhaps slightly increased (due to lack of proper technical competence, incorrect organ coding, etc.). However, the causes of rejects/retakes are in many cases defined and reported with reference to radiographers' subjective evaluations. Thus, unless radiographers share common views on image quality and acceptance criteria, objective measurements and assessments of reject/retake rates are challenging tasks. Interestingly, none of the investigated papers employs image quality parameters such as 'too much noise' as categories for rejects/retakes. Surprisingly, no reject/retake analysis seems yet to have been conducted for direct digital radiography departments. An increased percentage of rejects/retakes is related to 'digital skills' of radiographers and therefore points to areas for extended education and training. Furthermore, there is a need to investigate the inter-subjectivity of radiographers' perception of, and attitude towards, both technical and clinical image quality criteria. Finally, there may be a need to validate whether reject/retake rate analysis is such an effective quality indicator as has been asserted.

  19. Image rejects/retakes-radiographic challenges

    International Nuclear Information System (INIS)

    Waaler, D.; Hofmann, B.

    2010-01-01

    A general held position among radiological personnel prior to digitalisation was that the problem of image rejects/retakes should more or less vanish. However, rejects/retakes still impose several challenges within radiographic imaging; they occupy unnecessary resources, expose patients to unnecessary ionizing radiation and may also indicate suboptimal quality management. The latter is the main objective of this paper, which is based on a survey of international papers published both for screen/film and digital technology. The digital revolution in imaging seems to have reduced the percentage of image rejects/retakes from 10-15 to 3-5%. The major contribution to the decrease appears to be the dramatic reduction of incorrect exposures. At the same time, rejects/retakes due to lack of operator competence (positioning, etc.) are almost unchanged, or perhaps slightly increased (due to lack of proper technical competence, incorrect organ coding, etc.). However, the causes of rejects/retakes are in many cases defined and reported with reference to radiographers' subjective evaluations. Thus, unless radiographers share common views on image quality and acceptance criteria, objective measurements and assessments of reject/retake rates are challenging tasks. Interestingly, none of the investigated papers employs image quality parameters such as 'too much noise' as categories for rejects/retakes. Surprisingly, no reject/retake analysis seems yet to have been conducted for direct digital radiography departments. An increased percentage of rejects/retakes is related to 'digital skills' of radiographers and therefore points to areas for extended education and training. Furthermore, there is a need to investigate the inter subjectivity of radiographers' perception of, and attitude towards, both technical and clinical image quality criteria. Finally, there may be a need to validate whether reject/retake rate analysis is such an effective quality indicator as has been asserted

  20. The AKM theorem and oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P.; Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Selyugin, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    1996-10-01

    It is shown that the high precision UA4/2 data for differential cross sections p-barp scattering are compatible with the presence of Auberson -Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (K.A.). 19 refs.

  1. Intramolecular diffusive motion in alkane monolayers studied by high-resolution quasielastic neutron scattering and molecular dynamics simulations

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Criswell, L.; Fuhrmann, D

    2004-01-01

    Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of similar to0.1-4 ns. We present evidence...... that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers....

  2. High resolution X-ray scattering techniques for studying the sliding CDWS distortions, in NbSe sub 3

    CERN Document Server

    Rideau, D; Currat, R; Requardt, H; Nad, F Y; Lorenzo, J E; Brazovskii, S; Detlefs, C; Grübel, G

    2001-01-01

    The phase gradient in a sliding-charge density wave (CDW), which is observable as a longitudinal shift, q propor to partial deriv phi/partial deriv x, of the CDW satellite peak position, is due to the conversion free-electrons CDW-condensate, at the current electrodes. Using high resolution X-ray scattering techniques and time-resolved techniques, we monitor, on thin NbSe sub 3 whiskers, the shift, q(x), and its relaxation, q(t), upon switching off the current.

  3. Development of high-efficiency laser Thomson scattering measurement system for the investigation of EEDF in surface wave plasma

    International Nuclear Information System (INIS)

    Aramaki, M.; Kobayashi, J.; Kono, A.; Stamate, E.; Sugai, H.

    2006-01-01

    A high-efficiency multichannel Thomson scattering measurement system was developed as a tool for studying the electron heating mechanisms in a surface wave plasma. By improving the output power and repetition rate of the Nd:YAG laser, an F-number of spectrograph, and a quantum efficiency of ICCD camera, the overall Thomson signal collection efficiency per unit measurement time has been improved by a factor larger than 40 in comparison with the previous measurement system developed by the authors. The one-dimensional electron velocity distribution functions were measured in the vicinity of the dielectric window of a surface wave plasma

  4. T-regulatory cells in chronic rejection versus stable grafts.

    Science.gov (United States)

    Al-Wedaie, Fatima; Farid, Eman; Tabbara, Khaled; El-Agroudy, Amgad E; Al-Ghareeb, Sumaya M

    2015-04-01

    Studying regulatory T cells in kidney allograft acceptance versus chronic rejection may help in the understanding of more mechanisms of immune tolerance and, in the future, may enable clinicians to induce immune tolerance and decrease the use of immunosuppressive drugs. The aim of the current study was to evaluate regulatory T cells in kidney transplant patients with stable graft versus transplant with biopsy-proven chronic rejection. The 3 groups that were studied included: kidney transplanted patients with no rejection episodes (n = 43); transplanted patients with biopsy-proven renal rejection (n = 27); and healthy age-matched nontransplanted individuals as controls (n = 42).The percentage of regulatory T cells (CD4+CD25+Foxp3+) in blood was determined by flow cytometry. The regulatory T cell percentage was significantly lower in chronic rejection patients than control or stable graft groups. No significant difference was observed in regulatory T cell percentage between the stable graft and control groups. In the stable graft group, patients on rapamycin had a significantly higher regulatory T cell percentage than patients on cyclosporine. No effect of donor type, infection, or duration after transplant was observed on regulatory T cell percentage. The results of the current study are consistent with previous studies addressing the function of regulatory T cells in inducing immunotolerance after kidney transplant. Considering the established role of regulatory T cells in graft maintenance and our observation of high regulatory T cell percentage in patients receiving rapamycin than cyclosporine, we recommend including rapamycin when possible in immunosuppressive protocols. The findings from the current study on the chronic rejection group support ongoing research of having treatment with regulatory T cells, which may constitute a novel, efficient antirejection therapy in the future.

  5. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    Science.gov (United States)

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  7. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    International Nuclear Information System (INIS)

    Hawari, Ayman

    2014-01-01

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.

  8. Right-handed currents and heavy neutrinos in high energy ep and e+e- scattering

    International Nuclear Information System (INIS)

    Buchmueller, W.; Greub, C.

    1992-03-01

    Heavy Dirac or Majorana neutrinos can be produced via right-handed charged currents which occur in extensions of the standard model with SU(2) L x SU(2) R x U(1) B-L gauge symmetry. Low energy processes, Z precision experiments and direct search experiments in pp collisions are consistent with W R bosons heavier than 300 GeV, if the right-handed neutrinos are heavy. We study the production of heavy neutrinos via right-handed currents in e + e - annihilation and ep scattering which appears particularly promising. At HERA heavy neutrinos and W R bosons can be discovered with masses up to 170 GeV and 700 GeV, respectively. (orig.)

  9. Which potentials have to be surface peaked to reproduce large angle proton scattering at high energy?

    International Nuclear Information System (INIS)

    Raynal, J.

    1990-01-01

    Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements

  10. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    Science.gov (United States)

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  11. Review of high energy diffraction in real and virtual photon proton scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.

    2009-07-15

    The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at center-of-mass energies W up to 250 GeV and for large negative mass squared -Q{sup 2} of the virtual photon up to Q{sup 2}=1600 GeV{sup 2}. At W = 220 GeV and Q{sup 2}=4 GeV{sup 2}, diffraction accounts for about 15% of the total virtual photon proton cross section decreasing to {approx}5% at Q{sup 2}=200 GeV{sup 2}. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented. (orig.)

  12. Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons

    CERN Document Server

    Alekseev, M G; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Heß, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d’Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuß, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Krämer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2010-01-01

    Azimuthal asymmetries in semi-inclusive production of positive (h^+) and negative hadrons (h^-) have been measured by scattering 160 GeV muons off longitudinally polarised deuterons at CERN. The asymmetries were decomposed in several terms according to their expected modulation in the azimuthal angle phi of the outgoing hadron. Each term receives contributions from one or several spin and transverse-momentum-dependent parton distribution and fragmentation functions. The amplitudes of all phi-modulation terms of the hadron asymmetries integrated over the kinematic variables are found to be consistent with zero within statistical errors, while the constant terms are nonzero and equal for h^+ and h^- within the statistical errors. The dependencies of the phi-modulated terms versus the Bjorken momentum fraction x, the hadron fractional momentum z, and the hadron transverse momentum p_h^T were studied. The x dependence of the constant terms for both positive and negative hadrons is in agreement with the longitudin...

  13. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  14. Trajectories of Italian Children's Peer Rejection: Associations with Aggression, Prosocial Behavior, Physical Attractiveness, and Adolescent Adjustment.

    Science.gov (United States)

    Di Giunta, Laura; Pastorelli, Concetta; Thartori, Eriona; Bombi, Anna Silvia; Baumgartner, Emma; Fabes, Richard A; Martin, Carol Lynn; Enders, Craig K

    2017-12-08

    In the present study, the predictors and outcomes associated with the trajectories of peer rejection were examined in a longitudinal sample of Italian children (338 boys, 269 girls) ages 10 to 14 years. Follow-up assessments included 60% of the original sample at age 16-17. Low, medium, and high rejection trajectory groups were identified using growth mixture models. Consistent with previous studies, we found that (a) being less prosocial and more physically aggressive at age 10 was characteristic of those children with the high rejection trajectory; (b) being less attractive was related to higher peer rejection from age 10 to 14; and (c) boys with a high rejection trajectory showed high levels of delinquency and anxiety-depression and low levels of academic aspiration at age 16-17, whereas girls with a high rejection trajectory showed low levels of academic aspiration and social competence at age 16-17. Our findings indicate the detrimental consequences of peer rejection on children's development and adjustment and shed light on the mechanisms that contribute to maintaining or worsening (e.g., being attractive, prosocial, and aggressive) a child's negative status (e.g., being rejected) within his or her peer group over time.

  15. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  16. Prosthesis rejection in acquired major upper-limb amputees: a population-based survey.

    Science.gov (United States)

    Østlie, Kristin; Lesjø, Ingrid Marie; Franklin, Rosemary Joy; Garfelt, Beate; Skjeldal, Ola Hunsbeth; Magnus, Per

    2012-07-01

    To estimate the rates of primary and secondary prosthesis rejection in acquired major upper-limb amputees (ULAs), to describe the most frequently reported reasons for rejection and to estimate the influence of background factors on the risk of rejection. Cross-sectional study analysing population-based questionnaire data (n = 224). Effects were analysed by logistic regression analyses and Cox regression analyses. Primary prosthesis rejection was found in 4.5% whereas 13.4% had discontinued prosthesis use. The main reasons reported for primary non-wear were a perceived lack of need and discrepancies between perceived need and the prostheses available. The main reasons reported for secondary prosthesis rejection were dissatisfaction with prosthetic comfort, function and control. Primary prosthesis rejection was more likely in ULAs amputated at high age and in ULAs with proximal amputations. Secondary prosthesis rejection was more likely in proximal ULAs and in women. Clinicians should be aware of the increased risk of rejection in proximal ULAs, elderly ULAs and in women. Emphasising individual needs will probably facilitate successful prosthetic fitting. Improved prosthesis quality and individualised prosthetic training may increase long-term prosthesis use. Further studies of the effect of prosthetic training and of the reasons for rejection of different prosthetic types are suggested.

  17. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  18. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  19. The clinical utility of indium-111 labelled platelet scintigraphy in the diagnoses of renal transplant rejection

    International Nuclear Information System (INIS)

    Desir, G.V.; Bia, M.; Lange, R.C.; Smith, E.O.; Flye, W.; Kashgarian, M.; Schiff, M.; Ezekowitz, M.D.

    1990-01-01

    It is demonstrated that indium-111 labelled platelet scintigraphy is a highly accurate test for detecting acute untreated renal allograft rejection and it is shown that changes in platelet uptake can precede signs and symptoms of rejection by at least 48 hours. (author). 34 refs.; 2 figs.; 1 tab

  20. PHOSPHATES REMOVAL FROM REJECT WATER FROM DIGESTION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    Elżbieta Sperczyńska

    2016-06-01

    Full Text Available The aim of the research work was to evaluate if coagulants used on technical scale are useful in phosphates removal from reject water. Effectiveness of phosphorus compounds removal from reject water from digestion of sewage sludge was examined. Selected prehydrolysed alkaline aluminium polychlorides were used. The results were compared to the ones obtained with aluminium sulphate. Reject water from digestion of sewage sludge form WWTP of 100 000 PE were examined. Commercial agents – prehydrolysed PAX 18, PAX XL10, PAX-XL1905 as well as aluminium sulphate were used. Various doses of coagulants: 0.7; 1.0; 1.5 – time higher than stoichiometric dose were applied. Stoichiometric dose was calculated based on chemical reaction of insoluble aluminium phosphate formation. Concentrations of Kiejdahl nitrogen (891 mgNKj/dm3, phosphates (125 mgPO43-/dm3 and organic compounds - COD (592 mgO2/dm3 in reject water were very high. The effectiveness of coagulation process increased as the doses of chemical agents increased. The most effective doses were the highest ones used during the experiment. The most effective agent was PAX 18 (96% removal efficiency. As the phosphates concentration decreased COD content declined simultaneously. Maximum COD removal (47% was obtained when highly alkaline PAX XL 1905 was used. Use of the lowest dose of Al2(SO43 allowed for 50% phosphates removal, whereas the lowest dose of PAX 18 decreased phosphates concentration by 83%.