WorldWideScience

Sample records for high salt signal

  1. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  2. Na/K-ATPase Signaling and Salt Sensitivity: The Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jiang Liu

    2017-03-01

    Full Text Available Other than genetic regulation of salt sensitivity of blood pressure, many factors have been shown to regulate renal sodium handling which contributes to long-term blood pressure regulation and have been extensively reviewed. Here we present our progress on the Na/K-ATPase signaling mediated sodium reabsorption in renal proximal tubules, from cardiotonic steroids-mediated to reactive oxygen species (ROS-mediated Na/K-ATPase signaling that contributes to experimental salt sensitivity.

  3. ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions (number-sign 3053)

    International Nuclear Information System (INIS)

    Jones, V.D.

    1997-01-01

    High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency

  4. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  5. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  6. Adaptation to high salt concentrations in halotolerant/ halophilic fungi: a molecular perspective

    Directory of Open Access Journals (Sweden)

    Ana ePlemenitas

    2014-05-01

    Full Text Available Molecular studies of salt tolerance of eukaryotic microorganisms have until recently been limited to the baker’s yeast Saccharomyces cerevisiae and a few other moderately halotolerant yeast. Discovery of the extremely halotolerant and adaptable fungus Hortaea werneckii and the obligate halophile Wallemia ichthyophaga introduced two new model organisms into studies on the mechanisms of salt tolerance in eukaryotes. H. werneckii is unique in its adaptability to fluctuations in salt concentrations, as it can grow without NaCl as well as in the presence of up to 5 M NaCl. On the other hand, W. ichthyophaga requires at least 1.5 M NaCl for growth, but also grows in up to 5 M NaCl. Our studies have revealed the novel and intricate molecular mechanisms used by these fungi to combat high salt concentrations, which differ in many aspects between the extremely halotolerant H. werneckii and the halophilic W. ichthyophaga. Specifically, the high osmolarity glycerol signalling pathway that is important for sensing and responding to increased salt concentrations is here compared between H. werneckii and W. ichthyophaga. In both of these fungi, the key signalling components are conserved, but there are structural and regulation differences between these pathways in H. werneckii and W. ichthyophaga. We also address differences that have been revealed from analysis of their newly sequenced genomes. The most striking characteristics associated with H. werneckii are the large genetic redundancy, the expansion of genes encoding metal cation transporters, and a relatively recent whole genome duplication. In contrast, the genome of W. ichthyophaga is very compact, as only 4,884 protein-coding genes are predicted, which cover almost three quarters of the sequence. Importantly, there has been a significant increase in their hydrophobins, cell-wall proteins that have multiple cellular functions.

  7. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  8. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  9. High Salt Intake Attenuates Breast Cancer Metastasis to Lung.

    Science.gov (United States)

    Xu, Yijuan; Wang, Wenzhe; Wang, Minmin; Liu, Xuejiao; Lee, Mee-Hyun; Wang, Mingfu; Zhang, Hao; Li, Haitao; Chen, Wei

    2018-04-04

    Diet-related factors are thought to modify the risk of cancers, while the influence of high salt intake remains largely uncharacterized. Breast cancer is the most common cancer in women worldwide. In the present study, we examined the effect of salt intake on breast cancer by using a 4T1 mouse mammary tumor model. Unexpectedly, both the fitness and the survival rate of the tumor-bearing mice were improved by high salt intake. Similarly, high salt intake suppressed the primary tumor growth as well as metastasis to lung in mice. Mechanistically, high salt intake greatly reduced food intake and thus might exert antitumor effect through mimicking calorie restriction. Immunoblotting showed the lower proliferation marker Ki-67 and the higher expression of the tumor suppressor gene p53 in tumors of high salt intake mice. Importantly, high salt intake might induce hyperosmotic stress, which sensitized breast cancer cells to p53-dependent anoikis. Collectively, our findings raise the possibility that endogenous salt deposition might act as the first-line defense system against breast cancer progression as well as metastasis.

  10. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    Science.gov (United States)

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  11. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  12. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  13. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots.

    Science.gov (United States)

    Wu, Jianqiang; Shu, Sheng; Li, Chengcheng; Sun, Jin; Guo, Shirong

    2018-07-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H 2 O 2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H 2 O 2 levels, and peaked at 2 h after salt stress. Spd-induced H 2 O 2 accumulation was blocked under salt stress by pretreatment with a H 2 O 2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H 2 O 2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H 2 O 2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H 2 O 2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2015-05-01

    High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.

  15. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.

    Science.gov (United States)

    Kutomi, Osamu; Seki, Makoto; Nakamura, Shogo; Kamachi, Hiroyuki; Noguchi, Munenori

    2013-10-01

    Intracellular Ca(2+) induces ciliary reversal and backward swimming in Paramecium. However, it is not known how the Ca(2+) signal controls the motor machinery to induce ciliary reversal. We found that demembranated cilia on the ciliated cortical sheets from Paramecium caudatum lost the ability to undergo ciliary reversal after brief extraction with a solution containing 0.5 M KCl. KNO(3), which is similar to KCl with respect to chaotropic effect; it had the same effect as that of KCl on ciliary response. Cyclic AMP antagonizes Ca(2+)-induced ciliary reversal. Limited trypsin digestion prevents endogenous A-kinase and cAMP-dependent phosphorylation of an outer arm dynein light chain and induces ciliary reversal. However, the trypsin digestion prior to the high-salt extraction did not affect the inhibition of Ca(2+)-induced ciliary reversal caused by the high-salt extraction. Furthermore, during the course of the high-salt extraction, some axonemal proteins were extracted from ciliary axonemes, suggesting that they may be responsible for Ca(2+)-induced ciliary reversal.

  16. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  17. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  18. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  19. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    International Nuclear Information System (INIS)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-01-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt

  20. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Science.gov (United States)

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  1. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Directory of Open Access Journals (Sweden)

    Tommy Harding

    2017-05-01

    Full Text Available The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones, ion homeostasis (e.g., Na+/H+ transporter, metabolism and transport of lipids (e.g., sterol biosynthetic genes, carbohydrate metabolism (e.g., glycosidases, and signal transduction pathways (e.g., transcription factors. A significantly high proportion (43% of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs, as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like

  2. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  3. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein.

    Directory of Open Access Journals (Sweden)

    Davi R Ortega

    Full Text Available Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD, NMR spectroscopy, and circular dichroism (CD, we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold.

  4. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G.

    2013-01-01

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles

  5. Multilayer Porous Crucibles for the High Throughput Salt Separation from Uranium Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Kim, J. G.; Kim, I. T.; Seo, B. K.; Moon, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as a distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while nonvolatile uranium remains behind. It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in an electro-refiner. Therefore, a wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, it was attempted to enlarge a throughput of the salt distiller with a multilayer porous crucibles for the separation of adhered salt in the uranium deposits generated from the electrorefiner. The feasibility of the porous crucibles was tested by the salt distillation experiments. In this study, the salt distiller with multilayer porous crucibles was proposed and the feasibility of liquid salt separation was examined to increase a throughput. It was found that the effective separation of salt from uranium deposits was possible by the multilayer porous crucibles.

  6. The Salt Overly Sensitive (SOS) pathway: established and emerging roles.

    Science.gov (United States)

    Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia

    2013-03-01

    Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.

  7. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    Science.gov (United States)

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  8. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Science.gov (United States)

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  9. Americium separations from high salt solutions

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Schulte, Louis D.; Stark, Peter C.; Chamberlin, Rebecca M.; Abney, Kent D.; Ricketts, Thomas E.; Valdez, Yvette E.; Bartsch, Richard A.

    2000-01-01

    Americium (III) exhibits an unexpectedly high affinity for anion-exchange material from the high-salt evaporator bottoms solutions--an effect which has not been duplicated using simple salt solutions. Similar behavior is observed for its lanthanide homologue, Nd(III), in complex evaporator bottoms surrogate solutions. There appears to be no single controlling factor--acid concentration, total nitrate concentration or solution ionic strength--which accounts for the approximately 2-fold increase in retention of the trivalent ions from complex solutions relative to simple solutions. Calculation of species activities (i.e., water, proton and nitrate) in such concentrated mixed salt solutions is difficult and of questionable accuracy, but it is likely that the answer to forcing formation of anionic nitrate complexes of americium lies in the relative activities of water and nitrate. From a practical viewpoint, the modest americium removal needs (ca. 50--75%) from nitric acid evaporator bottoms allow sufficient latitude for the use of non-optimized conditions such as running existing columns filled with older, well-used Reillex HPQ. Newer materials, such as HPQ-100 and the experimental bifunctional resins, which exhibit higher distribution coefficients, would allow for either increased Am removal or the use of smaller columns. It is also of interest that one of the experimental neutral-donor solid-support extractants, DHDECMP, exhibits a similarly high level of americium (total alpha) removal from EV bottoms and is much less sensitive to total acid content than commercially-available material

  10. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  11. The impact of high-salt exposure on cardiovascular development in the early chick embryo.

    Science.gov (United States)

    Wang, Guang; Zhang, Nuan; Wei, Yi-Fan; Jin, Yi-Mei; Zhang, Shi-Yao; Cheng, Xin; Ma, Zheng-Lai; Zhao, Shu-Zhu; Chen, You-Peng; Chuai, Manli; Hocher, Berthold; Yang, Xuesong

    2015-11-01

    In this study, we show that high-salt exposure dramatically increases chick mortality during embryo development. As embryonic mortality at early stages mainly results from defects in cardiovascular development, we focused on heart formation and angiogenesis. We found that high-salt exposure enhanced the risk of abnormal heart tube looping and blood congestion in the heart chamber. In the presence of high salt, both ventricular cell proliferation and apoptosis increased. The high osmolarity induced by high salt in the ventricular cardiomyocytes resulted in incomplete differentiation, which might be due to reduced expression of Nkx2.5 and GATA4. Blood vessel density and diameter were suppressed by exposure to high salt in both the yolk sac membrane (YSM) and chorioallantoic membrane models. In addition, high-salt-induced suppression of angiogenesis occurred even at the vasculogenesis stage, as blood island formation was also inhibited by high-salt exposure. At the same time, cell proliferation was repressed and cell apoptosis was enhanced by high-salt exposure in YSM tissue. Moreover, the reduction in expression of HIF2 and FGF2 genes might cause high-salt-suppressed angiogenesis. Interestingly, we show that high-salt exposure causes excess generation of reactive oxygen species (ROS) in the heart and YSM tissues, which could be partially rescued through the addition of antioxidants. In total, our study suggests that excess generation of ROS might play an important role in high-salt-induced defects in heart and angiogenesis. © 2015. Published by The Company of Biologists Ltd.

  12. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  13. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  14. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Science.gov (United States)

    Guo, Tong-Shuai; Zhang, Jie; Mu, Jian-Jun; Liu, Fu-Qiang; Yuan, Zu-Yi; Ren, Ke-Yu; Wang, Dan

    2014-01-01

    Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS) rats and Sprague-Dawley (SD) rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW) and left ventricular mass index (LVMI) of the salt-sensitive high salt (SHS) group were obviously higher than those of the salt-sensitive low salt (SLS) group. However, the difference between the Sprague-Dawley high salt (DHS) group and the Sprague-Dawley low salt (DLS) group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF) in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension. PMID:24937684

  15. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Directory of Open Access Journals (Sweden)

    Tong-Shuai Guo

    2014-06-01

    Full Text Available Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS rats and Sprague-Dawley (SD rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW and left ventricular mass index (LVMI of the salt-sensitive high salt (SHS group were obviously higher than those of the salt-sensitive low salt (SLS group. However, the difference between the Sprague-Dawley high salt (DHS group and the Sprague-Dawley low salt (DLS group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension.

  16. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  17. Maternal Melatonin Therapy Attenuated Maternal High-Fructose Combined with Post-Weaning High-Salt Diets-Induced Hypertension in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Consumption of food high in fructose and salt is associated with the epidemic of hypertension. Hypertension can originate from early life. Melatonin, a pleiotropic hormone, regulates blood pressure. We examined whether maternal melatonin therapy can prevent maternal high-fructose combined with post-weaning high-salt diet-induced programmed hypertension in adult offspring. Pregnant Sprague-Dawley rats received either a normal diet (ND or a 60% fructose diet (HF during pregnancy and the lactation period. Male offspring were on either the ND or a high-salt diet (HS, 1% NaCl from weaning to 12 weeks of age and were assigned to five groups (n = 8/group: ND/ND, HF/ND, ND/HS, HF/HS, and HF/HS+melatonin. Melatonin (0.01% in drinking water was administered during pregnancy and lactation. We observed that maternal HF combined with post-weaning HS diets induced hypertension in male adult offspring, which was attenuated by maternal melatonin therapy. The beneficial effects of maternal melatonin therapy on HF/HS-induced hypertension related to regulating several nutrient-sensing signals, including Sirt1, Sirt4, Prkaa2, Prkab2, Pparg, and Ppargc1a. Additionally, melatonin increased protein levels of mammalian targets of rapamycin (mTOR, decreased plasma asymmetric dimethylarginine (ADMA and symmetric dimethylarginine levels, and increased the l-arginine-to-ADMA ratio. The reprogramming effects by which maternal melatonin therapy protects against hypertension of developmental origin awaits further elucidation.

  18. Facile preparation of highly pure KF-ZrF4 molten salt

    Science.gov (United States)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  19. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  20. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  1. Some metallic materials and fluoride salts for high temperature applications

    International Nuclear Information System (INIS)

    Hosnedl, P.; Hron, M.; Matal, O.

    2009-01-01

    There has been a special Ni base alloy MONICR for high temperature applications in fluoride salt environments developed in the framework of the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic. Selected results of MONICR alloy tests and results of semi products fabrication from this alloy are discussed in the paper. The results of the structural materials tests are applied on semi-products and for the design of the testing devices as the autoclave in loop arrangement for high temperature fluoride salts applications. Material properties other Ni base alloys are compared to those of MONICR. Corrosion test results of the alloy A686 in the LiF - NaF - ZrF 4 molten salt are provided and compared to the measured values of the polarizing resistance. (author)

  2. High-temperature vacuum distillation separation of plutonium waste salts

    International Nuclear Information System (INIS)

    Garcia, E.

    1996-01-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen

  3. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  4. High temperature salting of fish mince

    OpenAIRE

    Talabi, S.O.; Sorinmade, S.O.; Nwanekezie, R.U.; Aliu, A.

    1986-01-01

    Freshly caught miscellaneous fish were transported to the laboratory, gutted and washed before mechanical separation into bone and mince. Seven batches of the mince were then treated with seven different concentrations (Wt/Wt) of sodium chloride before cooking. The cooked mince was divided into two groups, pressed and unpressed. Percentage residual salt of the salted cooked mince, cooked water and salted pressed mince was determined. Also, the moisture content of the salted cooked mince and s...

  5. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible...... to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...... used urinary isoprostane as a marker for oxidative stress. RESULTS: Although high-salt diet per se did not affect plaque extension, high salt combined with Ang II increased plaque area significantly in both the aorta and the innominate artery as compared with Ang II or salt alone (P

  6. [Salt, renal function and high blood pressure--reflections on a current issue].

    Science.gov (United States)

    Aurell, Mattias

    2002-11-21

    The role of salt intake for blood pressure control has been discussed for a long time. A brief review is given of some pertinent physiological facts to explain this relationship and evolutionary aspects of renal function are emphasized. Salt intake is very high in the modern society, often as high as 15 g sodium chloride per 24 hours while 3-6 g may be more than enough to maintain an adequate salt balance. If the kidneys cannot cope with this severe sodium overload, blood pressure will rise. Therefore, the kidneys' ability to excrete sodium is a key factor and the salt excretion capacity is the kidneys' major barostatic function. As barostats, the kidneys control the blood pressure by ultimately determining the sodium excretion. Reducing sodium intake is, however, difficult as more than 50% of the intake is contained in the food we buy such as bread, sausages, canned food, chips and fast-food. Food products should therefore be "salt declared", but information on this aspect is generally lacking. If the population's salt intake could be reduced by 50%, the prevalence of hypertension will be much reduced, perhaps also by as much as 50%. The cost to society for treating hypertension would be reduced accordingly. Salt intake is also an important aspect of the overweight problem among today's youth. Salt and overweight impose great health risks later in life. Preventive measures in this area must be given high priority in future health care work.

  7. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  8. Plathelminth abundance in North Sea salt marshes: environmental instability causes high diversity

    Science.gov (United States)

    Armonies, Werner

    1986-09-01

    Although supralittoral salt marshes are habitats of high environmental instability, the meiofauna is rich in species and abundance is high. The community structure of free-living Plathelminthes (Turbellaria) in these salt marshes is described. On an average, 104 individuals are found below an area of 10 cm2. The average species density in ungrazed salt marshes is 11.3 below 10 cm2 and 45.2 below 100 cm2, indicating strong small-scale heterogenity. The faunal similarity between sediment and the corresponding above-ground vegetation is higher than between adjacent sample sites. Species prefer distinct ranges of salinity. In the lower part of the supralittoral salt marshes, the annual fluctuations of salinity are strongest and highly unpredictable. This region is richest in plathelminth species and abundance; diversity is highest, and the faunal composition of parallel samples is quite similar. In the upper part of the supralittoral salt marshes, the annual variability of salinity is lower, plathelminths are poor in species diversity and abundance. Parallel samples often have no species in common. Thus, those salt marsh regions with the most unstable environment are inhabited by the most diverse species assemblage. Compared to other littoral zones of the North Sea, however, plathelminth diversity in salt marshes is low. The observed plathelminth diversity pattern can apparently be explained by the “dynamic equilibrium model” (Huston, 1979).

  9. Vascular effects of a single high salt meal

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel Kader Abdel Wahab

    2016-09-01

    Conclusion: High salt intake may acutely impair vascular function in different vascular beds independent of the increase of blood pressure. Plasma sodium increase may be one of the underlying mechanisms.

  10. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  11. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    2009-01-01

    Pyrometallurgical reprocessing technology is currently being focused in many countries for closing actinide fuel cycle because of its favorable economic potential and an intrinsic proliferation-resistant feature due to the inherent difficulty of extracting weapons-usable plutonium. The feasibility of pyrometallurgical reprocessing has been demonstrated through many laboratory scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for industrial realization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been very few transport studies on high-temperature fluids. In this study, a salt transport test rig was installed in an argon glove box with the aim of developing technologies for transporting molten salt at approximately 773 K. The gravitation transport of the molten salt at approximately 773 K could be well controlled at a velocity from 0.1 to 1.2 m/s by adjusting the valve. Consequently, the flow in the molten salt can be controlled from laminar flow to turbulent flow. It was demonstrated that; using a centrifugal pump, molten salt at approximately 773 K could be transported at a controlled rate from 2.5 to 8 dm 3 /min against a 1 m head. (author)

  12. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  13. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  14. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    International Nuclear Information System (INIS)

    Robb, Kevin R.; Jain, Prashant K.; Hazelwood, Thomas J.

    2016-01-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  15. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  16. Solidification of high temperature molten salts for thermal energy storage systems

    Science.gov (United States)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  17. Radiolysis salt phenomenology: application to storage of high level radioactive waste

    International Nuclear Information System (INIS)

    Akram, Najib

    1993-01-01

    In France, rock salt is a candidate repository for highly radioactive waste. Rock salt contains water and adsorbed gases which can be released in boreholes after heating due to vitrified wastes. In addition, waste-induced irradiation in near-field conditions induce radiolytic reactions which also contribute to gas release. The aim of this work is to understand and evaluate the effects of heat and irradiation produced by waste containers in a deep disposal, primarily concerning gas production. This is justified by the impact of gases on long-term safety: toxicity, explosibility, chemical reactivity, pressure build-up. We have evidenced the influence of integrated dose, filling gases, temperature and grain size on an homogeneous medium (Asse Mine rock salt). We have then studied heterogeneous samples, which allowed to determine the influence of the chemical and mineralogical composition of rock salt (bedded rock salt from the Mine de Potasse d'Alsace). The role played by organic matter on gas production is important, leading for instance to high consumption rates of oxygen. Through this study, we have also considered the behaviour of clay-rich materials under irradiation. Our results constitute important bases for the future modelling of the phenomena which will take place in the near-field of a rock salt-type repository, especially concerning its long-term safety. (author) [fr

  18. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    OpenAIRE

    Bai, Yuanyuan; Chen, Baohong; Xiang, Feng; Zhou, Jinxiong; Wang, Hong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chlorid...

  19. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  1. Comparative miRomics of Salt-Tolerant and Salt-Sensitive Rice

    Directory of Open Access Journals (Sweden)

    Goswami Kavita

    2017-06-01

    Full Text Available Increase in soil salt causes osmotic and ionic stress to plants, which inhibits their growth and productivity. Rice production is also hampered by salinity and the effect of salt is most severe at the seedling and reproductive stages. Salainity tolerance is a quantitative property controlled by multiple genes coding for signaling molecules, ion transporters, metabolic enzymes and transcription regulators. MicroRNAs are key modulators of gene-expression that act at the post-transcriptional level by translation repression or transcript cleavage. They also play an important role in regulating plant’s response to salt-stress. In this work we adopted the approach of comparative and integrated data-mining to understand the miRNA-mediated regulation of salt-stress in rice. We profiled and compared the miRNA regulations using natural varieties and transgenic lines with contrasting behaviors in response to salt-stress. The information obtained from sRNAseq, RNAseq and degradome datasets was integrated to identify the salt-deregulated miRNAs, their targets and the associated metabolic pathways. The analysis revealed the modulation of many biological pathways, which are involved in salt-tolerance and play an important role in plant phenotype and physiology. The end modifications of the miRNAs were also studied in our analysis and isomiRs having a dynamic role in salt-tolerance mechanism were identified.

  2. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    Science.gov (United States)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  3. DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Jody A. Winter

    2012-01-01

    Full Text Available Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3. Under physiological salt conditions (3 M KCl, HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.

  4. High salt loading induces urinary storage dysfunction via upregulation of epithelial sodium channel alpha in the bladder epithelium in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Seiji Yamamoto

    2017-11-01

    Full Text Available We aimed to investigate whether high salt intake affects bladder function via epithelial sodium channel (ENaC by using Dahl salt-resistant (DR and salt-sensitive (DS rats. Bladder weight of DR + high-salt diet (HS, 8% NaCl and DS + HS groups were significantly higher than those of DR + normal-salt diet (NS, 0.3% NaCl and DS + NS groups after one week treatment. We thereafter used only DR + HS and DS + HS group. Systolic and diastolic blood pressures were significantly higher in DS + HS group than in DR + HS group after the treatment period. Cystometrogram showed the intercontraction intervals (ICI were significantly shorter in DS + HS group than in DR + HS group during infusion of saline. Subsequent infusion of amiloride significantly prolonged ICI in DS + HS group, while no intra-group difference in ICI was observed in DR + HS group. No intra- or inter-group differences in maximum intravesical pressure were observed. Protein expression levels of ENaCα in the bladder were significantly higher in DS + HS group than in DR + HS group. ENaCα protein was localized at bladder epithelium in both groups. In conclusion, high salt intake is considered to cause urinary storage dysfunction via upregulation of ENaC in the bladder epithelium with salt-sensitive hypertension, suggesting that ENaC might be a candidate for therapeutic target for urinary storage dysfunction.

  5. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation.

    Science.gov (United States)

    Gao, Lin-Rui; Wang, Guang; Zhang, Jing; Li, Shuai; Chuai, Manli; Bao, Yongping; Hocher, Berthold; Yang, Xuesong

    2018-09-01

    An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI + cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. © 2018 Wiley Periodicals, Inc.

  6. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  7. High salt meals in staff canteens of salt policy makers: observational study

    NARCIS (Netherlands)

    Brewster, L.M.; Berentzen, C.A.; van Montfrans, G.A.

    2011-01-01

    To assess the salt content of hot meals served at the institutions of salt policy makers in the Netherlands. Observational study. 18 canteens at the Department of Health, the Health Council, the Food and Consumer Product Safety Authority, university hospitals, and affiliated non-university

  8. An experimental test facility to support development of the fluoride-salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Yoder, Graydon L.; Aaron, Adam; Cunningham, Burns; Fugate, David; Holcomb, David; Kisner, Roger; Peretz, Fred; Robb, Kevin; Wilgen, John; Wilson, Dane

    2014-01-01

    Highlights: • • A forced convection test loop using FLiNaK salt was constructed to support development of the FHR. • The loop is built of alloy 600, and operating conditions are prototypic of expected FHR operation. • The initial test article is designed to study pebble bed heat transfer cooled by FLiNaK salt. • The test facility includes silicon carbide test components as salt boundaries. • Salt testing with silicon carbide and alloy 600 confirmed acceptable loop component lifetime. - Abstract: The need for high-temperature (greater than 600 °C) energy transport systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The fluoride-salt-cooled high-temperature reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the fluoride-salt-cooled high-temperature reactor concept. The facility is capable of operating at up to 700 °C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system, a trace heating system, and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride-salt heat transfer inside a heated pebble bed

  9. Omethoate treatment mitigates high salt stress inhibited maize seed germination.

    Science.gov (United States)

    Yang, Kejun; Zhang, Yifei; Zhu, Lianhua; Li, Zuotong; Deng, Benliang

    2018-01-01

    Omethoate (OM) is a highly toxic organophophate insecticide, which is resistant to biodegradation in the environment and is widely used for pest control in agriculture. The effect of OM on maize seed germination was evaluated under salt stress. Salt (800mM) greatly reduced germination of maize seed and this could be reversed by OM. Additionally, H 2 O 2 treatment further improved the effect of OM on seed germination. Higher H 2 O 2 content was measured in OM treated seed compared to those with salt stress alone. Dimethylthiourea (DTMU), a specific scavenger of reactive oxygen species (ROS), inhibited the effect of OM on seed germination, as did IMZ (imidazole), an inhibitor of NADPH oxidase. Abscisic acid (ABA) inhibited the effect of OM on seed germination, whereas fluridone, a specific inhibitor of ABA biosynthesis, enhanced the effect of OM. Taken together, these findings suggest a role of ROS and ABA in the promotion of maize seed germination by OM under salt stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Study of composite adsorbent synthesis and characterization for the removal of Cs in the high-salt and high-radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jimin; Lee, Keun Young; Kim, Kwang Wook; Lee, Eil Hee; Chung, Dong Yong; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hyun, Jae Hyuk [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with CoCl{sub 2} and K{sub 4}Fe (CN){sub 6} solutions. When CHA, with average particle size of more than 10 μm, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than 10{sup 4} mL·g{sup -1}) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

  11. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2018-03-01

    Full Text Available Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl, high-salt (SD; 10% kcal from fat, 4% NaCl, high-fat (HF; 45% kcal from fat, 1% NaCl or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r and renin–angiotensin system (Agtr1a, Agtr1b markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin–angiotensin regulation.

  12. Consumption of a high-salt diet by ewes during pregnancy alters nephrogenesis in 5-month-old offspring.

    Science.gov (United States)

    Tay, S H; Blache, D; Gregg, K; Revell, D K

    2012-11-01

    Maternal nutrition during pregnancy can affect kidney development in the foetus, which may lead to adverse consequences in the mature kidney. It was expected that high-salt intake by pregnant ewes would lead to a reduction in foetal glomerular number but that the ovine kidney would adapt to maintain homoeostasis, in part by increasing the size of each glomerulus. Merino ewes that were fed either a control (1.5% NaCl) or high-salt (10.5% NaCl) diet during pregnancy, as well as their 5-month-old offspring, were subjected to a dietary salt challenge, and glomerular number and size and sodium excretion were measured. The high-salt offspring had 20% fewer glomeruli compared with the control offspring (P sodium excretion between the two offspring groups (P > 0.05), although the high-salt offspring produced urine with a higher concentration of sodium. Our results demonstrated that maternal high-salt intake during pregnancy affected foetal nephrogenesis, altering glomerular number at birth. However, the ability to concentrate and excrete salt was not compromised, which indicates that the kidney was able to adapt to the reduction in the number of glomeruli.

  13. Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity?

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-05-01

    Full Text Available Overweight/obesity is a chronic disease that carries an increased risk of hypertension, diabetes mellitus, and premature death. Several epidemiological studies have demonstrated a clear relationship between salt intake and obesity, but the pathophysiologic mechanisms remain unknown. We hypothesized that ghrelin, which regulates appetite, food intake, and fat deposition, becomes elevated when one consumes a high-salt diet, contributing to the progression of obesity. We, therefore, investigated fasting ghrelin concentrations during a high-salt diet. Thirty-eight non-obese and normotensive subjects (aged 25 to 50 years were selected from a rural community in Northern China. They were sequentially maintained on a normal diet for three days at baseline, a low-salt diet for seven days (3 g/day, NaCl, then a high-salt diet for seven days (18 g/day. The concentration of plasma ghrelin was measured using an immunoenzyme method (ELISA. High-salt intake significantly increased fasting ghrelin levels, which were higher during the high-salt diet (320.7 ± 30.6 pg/mL than during the low-salt diet (172.9 ± 8.9 pg/mL. The comparison of ghrelin levels between the different salt diets was statistically-significantly different (p < 0.01. A positive correlation between 24-h urinary sodium excretion and fasting ghrelin levels was demonstrated. Our data indicate that a high-salt diet elevates fasting ghrelin in healthy human subjects, which may be a novel underlying mechanism of obesity.

  14. High Spatial resolution remote sensing for salt marsh change detection on Fire Island National Seashore

    Science.gov (United States)

    Campbell, A.; Wang, Y.

    2017-12-01

    Salt marshes are under increasing pressure due to anthropogenic stressors including sea level rise, nutrient enrichment, herbivory and disturbances. Salt marsh losses risk the important ecosystem services they provide including biodiversity, water filtration, wave attenuation, and carbon sequestration. This study determines salt marsh change on Fire Island National Seashore, a barrier island along the south shore of Long Island, New York. Object-based image analysis was used to classifying Worldview-2, high resolution satellite, and topobathymetric LiDAR. The site was impacted by Hurricane Sandy in October of 2012 causing a breach in the Barrier Island and extensive overwash. In situ training data from vegetation plots were used to train the Random Forest classifier. The object-based Worldview-2 classification achieved an overall classification accuracy of 92.75. Salt marsh change for the study site was determined by comparing the 2015 classification with a 1997 classification. The study found a shift from high marsh to low marsh and a reduction in Phragmites on Fire Island. Vegetation losses were observed along the edge of the marsh and in the marsh interior. The analysis agreed with many of the trends found throughout the region including the reduction of high marsh and decline of salt marsh. The reduction in Phragmites could be due to the species shrinking niche between rising seas and dune vegetation on barrier islands. The complex management issues facing salt marsh across the United States including sea level rise and eutrophication necessitate very high resolution classification and change detection of salt marsh to inform management decisions such as restoration, salt marsh migration, and nutrient inputs.

  15. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  16. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    International Nuclear Information System (INIS)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  17. Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity?

    Science.gov (United States)

    Zhang, Yong; Li, Fenxia; Liu, Fu-Qiang; Chu, Chao; Wang, Yang; Wang, Dan; Guo, Tong-Shuai; Wang, Jun-Kui; Guan, Gong-Chang; Ren, Ke-Yu; Mu, Jian-Jun

    2016-05-26

    Overweight/obesity is a chronic disease that carries an increased risk of hypertension, diabetes mellitus, and premature death. Several epidemiological studies have demonstrated a clear relationship between salt intake and obesity, but the pathophysiologic mechanisms remain unknown. We hypothesized that ghrelin, which regulates appetite, food intake, and fat deposition, becomes elevated when one consumes a high-salt diet, contributing to the progression of obesity. We, therefore, investigated fasting ghrelin concentrations during a high-salt diet. Thirty-eight non-obese and normotensive subjects (aged 25 to 50 years) were selected from a rural community in Northern China. They were sequentially maintained on a normal diet for three days at baseline, a low-salt diet for seven days (3 g/day, NaCl), then a high-salt diet for seven days (18 g/day). The concentration of plasma ghrelin was measured using an immunoenzyme method (ELISA). High-salt intake significantly increased fasting ghrelin levels, which were higher during the high-salt diet (320.7 ± 30.6 pg/mL) than during the low-salt diet (172.9 ± 8.9 pg/mL). The comparison of ghrelin levels between the different salt diets was statistically-significantly different (p diet elevates fasting ghrelin in healthy human subjects, which may be a novel underlying mechanism of obesity.

  18. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    Science.gov (United States)

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  19. High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study.

    Science.gov (United States)

    Wang, Chao; Huang, Zixin; Yu, Kequan; Ding, Ruiling; Ye, Keping; Dai, Chen; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-01-01

    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus ( P proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion.

  20. “Use salt and foods high in salt sparingly”: A food-based dietary ...

    African Journals Online (AJOL)

    Legislating the levels of salt in processed food is only one part of this national strategy. All health professionals and educators should also provide appropriate nutritional recommendations that will educate, motivate and enable consumers to change their nutritional behaviour to reduce salt intake to less than 5 g per day, ...

  1. Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study

    Science.gov (United States)

    Lecocq, Mathieu; Bernard, Cécile; Felix, Marie Solenne; Chaves-Jacob, Julien; Decherchi, Patrick; Dousset, Erick

    2017-01-01

    Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not) with two weeks of the neuro-myoelectrostimulation (NMES) rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al2O3) and two metallic (Ti6Al4V and CrCo) compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD) and Tibialis Anterior (TA), were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al2O3 and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al2O3, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD) compared to the indirectly stimulated one (TA). This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES. PMID:28696371

  2. Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    2017-07-01

    Full Text Available Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not with two weeks of the neuro-myoelectrostimulation (NMES rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al2O3 and two metallic (Ti6Al4V and CrCo compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD and Tibialis Anterior (TA, were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al2O3 and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al2O3, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD compared to the indirectly stimulated one (TA. This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES.

  3. The United States fluoride-salt-cooled high-temperature reactor program

    International Nuclear Information System (INIS)

    Holcomb, David E.

    2013-01-01

    The United States is pursuing the development of fluoride-salt-cooled high-temperature reactors (FHRs) through the Department of Energy's Office of Nuclear Energy (DOE-NE). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. FHRs, in principle, have the potential to economically generate large amounts of electricity while maintaining full passive safety. FHRs, however, remain a longer-term power production option. A principal development focus is, thus, on shortening, to the extent possible, the overall development time by focusing initial efforts on the longest lead-time issues. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid-metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High-temperature gas-cooled reactors provide experience with coated-particle fuel and graphite components. Light-water reactors show the potential of transparent, high-heat-capacity coolants with low chemical reactivity. The FHR development efforts include both reactor concept and technology developments and are being broadly pursued. Oak Ridge National Laboratory (ORNL) provides technical leadership to the effort and is performing concept development on both a large base-load-type FHR as well as a small modular reactor (SMR) in addition to performing a broad scope of technology developments. Idaho National Laboratory (INL) is providing coated-particle fuel irradiation testing as well as developing high-temperature steam generator technology. The Massachusetts Institute of Technology (MIT

  4. Utilisation of OSL from table salt in retrospective dosimetry

    International Nuclear Information System (INIS)

    Fujita, Hiroki; Jain, Mayank; Murray, Andrew S.

    2011-01-01

    Common salt (NaCl) has previously been suggested for use in dose estimation in accident dosimetry. In this study, we investigated the optically stimulated luminescence (OSL) and violet thermoluminescence (VTL) characteristics of 'Aji-Shio' (Ajinomoto), a Japanese commercial salt. A comparison of OSL and TL signals allowed identification of common source traps. The initial OSL signal contained a dominant thermally unstable component, which necessitated prior heat treatment. Based on these luminescence characteristics, a single-aliquot regenerative-dose (SAR) OSL protocol was modified and tested. The protocol worked very well for six types of salt, but not for four other types of salt. A minimum detection limit of ∼15 mGy was estimated using the OSL protocol; this is lower than the value obtained from other forms of OSL retrospective dosimetry and lower than that obtained using electron spin resonance (ESR) dosimetry. It was concluded that the OSL from Japanese commercial salt could be used successfully to derive precise estimates of accident dose. (author)

  5. ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.

    Science.gov (United States)

    Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M

    2015-03-01

    This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  7. Effects of angiotensin (1-7 on nephrosis of the mice with metabolic syndrome induced by high-salt and high-fat diet

    Directory of Open Access Journals (Sweden)

    Nan ZHU

    2013-11-01

    Full Text Available Objective  To establish a metabolic syndrome model of C57BL/6 mice by high-salt and high-fat diet, and investigate the effects of angiotensin converting enzyme 2 (ACE 2 and angiotensin (1-7 on renal damage in mice. Methods Fifty-six male C57BL/6 mice were randomly divided into 7 groups (8 each, and fed with normal diet (0.3% NaCl, 10% fat, high-salt diet (8% NaCl, 10% fat, high-fat diet (0.3% NaCl, 60% fat, high-salt and high-fat diet (8% NaCl, 60% fat, high-salt and high-fat diet with enalapril 20mg/(kg•d, with valsartan 50mg/(kg•d, and with valsartan 50mg/(kg•d plus Mas receptor antagonist (A-779 150ng/(kg•d, respectively for 16 weeks. Basal metabolic index including blood pressure, body weight, blood glucose and urinary albumin excretion rate (UAER were tested. After intraperitoneal anesthesia with chloral hydrate, the blood was collected from the carotid artery. Serum angiotensin Ⅱ and angiotensin (1-7 levels were detected by ELISA; Western blotting was performed to evaluate the expression of ACE 2 protein and collagen Ⅲ in renal tissue; renal pathological changes were observed by HE and Masson staining. Results The blood pressure, ratio of visceral fat weight/body weight, blood lipid, blood glucose and UAER increased significantly in the C57BL/6 mice fed with high-salt and high-fat diet for 16 weeks, and the renal fibrosis change was obvious, serum angiotensin Ⅱ level increased, expressions of ACE 2 and angiotensin (1-7 decreased significantly in the renal tissue. In different intervention groups, valsartan obviously alleviated the abnormal metabolism, ameliorated renal injury, promoted the expression of ACE2 and angiotensin (1-7 in the kidney and serum. However, no significant change was observed in the groups with intervention of enalapril or valsartan+A-779 compared with non-intervention group. Conclusions High-salt and high-fat diet can be used to successfully establish the model of metabolic syndrome in C57BL/6

  8. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    Science.gov (United States)

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  fructose + high salt group (2139 ± 178  μ mol /24 hrs P  fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Comparison of a rational vs. high throughput approach for rapid salt screening and selection.

    Science.gov (United States)

    Collman, Benjamin M; Miller, Jonathan M; Seadeek, Christopher; Stambek, Julie A; Blackburn, Anthony C

    2013-01-01

    In recent years, high throughput (HT) screening has become the most widely used approach for early phase salt screening and selection in a drug discovery/development setting. The purpose of this study was to compare a rational approach for salt screening and selection to those results previously generated using a HT approach. The rational approach involved a much smaller number of initial trials (one salt synthesis attempt per counterion) that were selected based on a few strategic solubility determinations of the free form combined with a theoretical analysis of the ideal solvent solubility conditions for salt formation. Salt screening results for sertraline, tamoxifen, and trazodone using the rational approach were compared to those previously generated by HT screening. The rational approach produced similar results to HT screening, including identification of the commercially chosen salt forms, but with a fraction of the crystallization attempts. Moreover, the rational approach provided enough solid from the very initial crystallization of a salt for more thorough and reliable solid-state characterization and thus rapid decision-making. The crystallization techniques used in the rational approach mimic larger-scale process crystallization, allowing smoother technical transfer of the selected salt to the process chemist.

  10. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim Davies; Shelly X Li

    2007-09-01

    Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire

  11. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    International Nuclear Information System (INIS)

    Kim Davies; Shelly X Li

    2007-01-01

    Pyrochemical processing plays an important role in development of proliferation-resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ∼2 grams of LiCl/KCl salt electrolyte with a low concentration (∼1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver

  12. High-temperature molten salt thermal energy storage systems for solar applications

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  13. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  14. High-Level Waste Salt Disposition Systems Engineering Team Final Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Piccolo, S.F.

    1999-01-01

    This report describes the process used and results obtained by the High Level Waste Salt Disposition Systems Engineering Team to select a primary and backup alternative salt disposition method for the Savannah River Site

  15. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  16. Time course transcriptome changes in Shewanella algae in response to salt stress.

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    Full Text Available Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.

  17. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  18. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  19. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  20. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  1. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.

    Science.gov (United States)

    Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice

    2013-07-01

    Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

  2. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats

    DEFF Research Database (Denmark)

    Carlström, Mattias; Sällström, Johan; Skøtt, Ole

    2007-01-01

    animals raised with normal-salt diet (UNX) or high-salt diet (UNX+HS). In the adult animals, renal and cardiovascular functions were evaluated and blood pressure recorded telemetrically under different sodium conditions (normal, high, and low). Hypertension was present in UNX+HS (122+/-9 mm Hg), UNX (101......+/-3 mm Hg), and HS (96+/-1 mm Hg) groups on normal-salt diets compared with the controls (84+/-2 mm Hg), and the blood pressure was salt sensitive (high- versus normal-salt diet; 23+/-3, 9+/-2, 7+/-2, and 1+/-1 mm Hg, respectively). The hypertensive groups (UNX+HS, UNX, and HS) had increased diuresis......The importance of nephron endowment and salt intake for the development of hypertension is under debate. The present study was designed to investigate whether reduced nephron number, after completion of nephrogenesis, or chronic salt loading causes renal injury and salt-sensitive hypertension...

  3. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.

    1990-04-01

    The HAW-project plants the testwise emplacement of 30 vitrified highly radioactive canisters containing Cs-137 and Sr-90 at the 800 m level of the Asse salt mine for a testing period of approximately five years. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste (HAW) in geological salt formations. During the years 1985 to 1989 the underground test field was excavated, the measuring equipment installed, and two preceedings inactive electrical tests taken into operation. Furthermore, the components of a system for transportation and emplacement of highly radioactive canisters was fabricated, installed, and preliminarily tested. After some delays in the licensing procedure the emplacement of the 30 radioactive canisters is now envisaged for early 1991. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed and will be tested. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  4. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  5. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.

    Science.gov (United States)

    da Silva, Fábio Sérgio Paulino; Pylro, Victor Satler; Fernandes, Pericles Leonardo; Barcelos, Gisele Souza; Kalks, Karlos Henrique Martins; Schaefer, Carlos Ernesto Gonçalves Reynaud; Tótola, Marcos Rogério

    2015-05-01

    We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

  6. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  7. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  8. Protective role of AgRP neuron's PDK1 against salt-induced hypertension.

    Science.gov (United States)

    Zhang, Boyang; Nakata, Masanori; Lu, Ming; Nakae, Jun; Okada, Takashi; Ogawa, Wataru; Yada, Toshihiko

    2018-06-12

    In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) in AgRP neurons serves as a major signaling molecule for leptin and insulin, the hormones regulating feeding behavior, energy homeostasis and circulation. However, it is unclear whether PDK1 in AGRP neurons is also involved in regulation of blood pressure. This study explored it by generating and analyzing AgRP neuron-specific PDK1 knockout (Agrp-Pdk1 flox/flox ) mice and effect of high salt diet on blood pressure in KO and WT mice was analyzed. Under high salt diet feeding, systolic blood pressure (SBP) of Agrp-Pdk1 flox/flox mice was significantly elevated compared to Agrp-Cre mice. When the high salt diet was switched to control low salt diet, SBP of Agrp-Pdk1 flox/flox mice returned to the basal level observed in Agrp-Cre mice within 1 week. In Agrp-Pdk1 flox/flox mice, urinary noradrenalin excretion and NUCB2 mRNA expression in hypothalamic paraventricular nucleus (PVN) were markedly upregulated. Moreover, silencing of NUCB2 in the PVN counteracted the rises in urinary noradrenalin excretions and SBP. These results demonstrate a novel role of PDK1 in AgRP neurons to counteract the high salt diet-induced hypertension by preventing hyperactivation of PVN nesfatin-1 neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants

    Science.gov (United States)

    Sanga, Ramesh; Agarwal, Sourabh; Sivaramakrishna, M.; Rao, G. Prabhakara

    2018-04-01

    Development of a liquid molten salt level sensor device that can detect the level of liquid molten salt in the process vessels of pyrochemical reprocessing of spent metallic fuels is detailed. It is proposed to apply a resistive-type pulsating sensor-based level measurement approach. There are no commercially available sensors due to limitations of high temperature, radiation, and physical dimensions. A compact, simple, rugged, low power, and high precise pulsating sensor-based level probe and simple instrumentation for the molten salt liquid level sensor to work in the extreme conditions has been indigenously developed, with high precision and accuracy. The working principle, design concept, and results have been discussed. This level probe is mainly composed of the variable resistor made up of ceramic rods. This resistor constitutes the part of resistance-capacitance-type Logic Gate Oscillator (LGO). A change in the molten salt level inside the tank causes a small change in the resistance which in turn changes the pulse frequency of the LGO. Thus the frequency, the output of the instrument that is displayed on the LCD of an embedded system, is a function of molten salt level. In the present design, the range of level measurement is about 10 mm. The sensitivity in position measurement up to 10 mm is ˜2.5 kHz/mm.

  10. The HAW Project. Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Mueller-Lyda, I.; Raynal, M.; Major, J.C.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt a five years test disposal of thirty highly radioactive canisters is planned in the Asse salt mine in the Federal Republic of Germany. The thirty canisters containing the radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwith of heat generation and gamma radiation of real HAW will be emplaced in six boreholes located in two galleries at the 800-m-level. Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and successfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionization chambers as well as solid state dosemeters were developed and tested. 70 refs

  11. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  12. The HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.

    1988-04-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  13. On optically stimulated luminescence properties of household salt as a retrospective dosemeter

    International Nuclear Information System (INIS)

    Timar-Gabor, A.; Trandafir, O.

    2013-01-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) in the UV (270-370 nm) spectral region have been investigated for five types of table salt (NaCl) available in Romanian supermarkets with a view to applying them in retrospective dosimetry. The salt samples gave bright TL signals with two main peaks at ∼ 100 deg. C and at 300 or 260 deg. C, depending on the origin of the salt and bright OSL signals under continuous stimulation with blue light. The OSL signal (stimulated at 100 deg. C after a pre-heat of 10 s at 150 deg. C) was used for investigations in a standard multiple aliquot procedure. The dose- response was found to be linear in the dose range investigated (up to ∼ 100 mGy) and the lower limit of detection for the samples varied from ∼ 0.01 to 14 mGy. These characteristics, along with the widespread abundance and low cost of household salt, confirm its potential as a retrospective dosemeter. (authors)

  14. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.

    Science.gov (United States)

    Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun

    2014-12-17

    Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

  15. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  16. High temperature salting of mince of small sized fish

    OpenAIRE

    Sorinmade, S.O.; Talabi, S.O.; Aliu, A.

    1982-01-01

    Freshly caught small sized fish species were transported to the laboratory gutted and washed before mechanical separation into bone and mince. Duplicate batches of the mince were then treated with seven different concentrations (wt/wt) of sodium chloride before cooking. The cooked mince was divided into two groups, pressed and unpressed. Percentage residual salt in the salted cooked mince, free and press water and salted cooked pressed mince were determined. Also, the moisture contents of...

  17. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension

    Science.gov (United States)

    Leenen, Frans H. H.; Chen, Ling; Golovina, Vera A.; Hamlyn, John M.; Pallone, Thomas L.; Van Huysse, James W.; Zhang, Jin; Wier, W. Gil

    2012-01-01

    Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na+ and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na+]. This leads, via the Na+-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na+ pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na+]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na+ channels, EO, ouabain-sensitive α2 Na+ pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na+ channel-EO-α2 Na+ pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α2 Na+ pump-Na+/Ca2+ exchanger-Ca2+ signaling pathway. Circulating EO also activates an EO-α2 Na+ pump-Src kinase signaling cascade. This increases the expression of the Na+/Ca2+ exchanger-transient receptor potential cation channel Ca2+ signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several

  18. Screening of purslane (Portulaca oleracea L.) accessions for high salt tolerance.

    Science.gov (United States)

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  19. Screening of Purslane (Portulaca oleracea L. Accessions for High Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05 and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9, 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12, 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13, and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  20. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.; Mueller-Lyda, I.

    1990-04-01

    To satisfy the test objectives thirty highly radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./DG)

  1. Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations: Molecular dynamics simulations and experiments

    International Nuclear Information System (INIS)

    Jiang Yang-Wei; Zhang Lin-Xi; Ran Shi-Yong; He Lin-Li; Wang Xiang-Hong

    2015-01-01

    Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transitions of DNA are also experimentally observed in mixing spermidine with λ-phage DNA at different concentrations of NaCl/MgCl 2 solutions. (paper)

  2. Corrosion of carbon steel in saturated high-level waste salt solutions

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    High level waste stored as crystallized salts is to be removed from carbon steel tanks by water dissolution. Dissolution of the saltcake must be performed in a manner which will not impact the integrity of the tank. Corrosion testing was performed to determine the amount of corrosion inhibitor that must be added to the dissolution water in order to ensure that the salt solution formed would not induce corrosion degradation of the tank materials. The corrosion testing performed included controlled potential slow strain rate, coupon immersion, and potentiodynamic polarization tests. These tests were utilized to investigate the susceptibility of the cooling coil material to stress corrosion cracking in the anticipated environments. No evidence of SCC was observed in any of the tests. Based on these results, the recommended corrosion requirements were that the temperature of the salt solution be less than 50 degrees C and that the minimum hydroxide concentration be 0.4 molar. It was also recommended that the hydroxide concentration not stay below 0.4 molar for longer than 45 days

  3. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Gonzalo H Villarino

    Full Text Available Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  4. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Science.gov (United States)

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  5. New graphite/salt materials for high temperature energy storage. Phase change properties study

    International Nuclear Information System (INIS)

    Lopez, J.

    2007-07-01

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage (≥200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed (∼ 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect (∼ 1 C, related to the size of the clusters crystals). (author)

  6. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    Science.gov (United States)

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  7. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples.

    Science.gov (United States)

    Niu, Zongliang; Yu, Chunwei; He, Xiaowen; Zhang, Jun; Wen, Yingying

    2017-09-05

    A salting-out assisted liquid-liquid extraction (SALLE) combined with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of four pyrethroid insecticides (PYRs) in high salinity and biological samples. Several parameters including sample pH, salting-out solution volume and salting-out solution pH influencing the extraction efficiency were systematically investigated with the aid of orthogonal design. The optimal extraction conditions of SALLE were: 4mL of salting-out solution with pH=4 and the sample pH=3. Under the optimum extraction and determination conditions, good responses for four PYRs were obtained in a range of 5-5000ng/mL, with linear coefficients greater than 0.998. The recoveries of the four PYRs ranged from 74% to 110%, with standard deviations ranging from 1.8% to 9.8%. The limits of detection based on a signal-to-noise ratio of 3 were between 1.5-60.6ng/mL. The method was applied to the determination of PYRs in urine, seawater and wastewater samples with a satisfactory result. The results demonstrated that this SALLE-GC-MS method was successfully applied to determine PYRs in high salinity and biological samples. SALLE avoided the need for the elimination of salinity and protein in the sample matrix, as well as clean-up of the extractant. Most of all, no centrifugation or any special apparatus are required, make this a promising method for rapid sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Retrospective dosimetry using salted snacks and nuts: a feasibility study

    International Nuclear Information System (INIS)

    Christiansson, M.; Geber-Bergstrand, T.; Bernhardsson, C.; Mattsson, S.; Raeaef, C.L.

    2017-01-01

    The possibility of using ordinary household table salt for dosimetry is suggested by its high sensitivity to ionising radiation, which generates a readout of optically stimulated luminescence (OSL). However, to exploit this finding for retrospective human dosimetry, it would be needed to find salt in close proximity to the exposed individual. Finding salty snacks frequently tucked into handbags, backpacks or pockets seemed to be a possibility; these items therefore became the test materials of the present study. The aluminium or cardboard packages used to exclude the moisture that makes crisps and nuts go soft and stale also helps to retain the induced OSL signal. Therefore, different snacks, either their salt component alone or mixed with the snack, are exposed to ionising radiation and then were assessed for their dosimetric properties. The results indicate the feasibility of using some salty snacks for dosimetry, with a minimum detectable dose as low as 0.2 mGy (authors)

  9. Human Impact and Vegetation History on Salt Spring Exploitation (Halabutoaia - Tolici, Petricani, Neamt, Romania

    Directory of Open Access Journals (Sweden)

    Mihaela DANU

    2010-09-01

    Full Text Available Salt exploitation from the mineral spring of Halabutoaia - Tolici (Neamt, Romania is one of the earliest in Europe. Salt production is documented from the Early Neolithic to the end of Chalcolithic period (6000-3500 BC with an important stratigraphy of 8 m high. In 2008, a core drilling with a Russian auger in the salty swamp of the spring closed to archaeological site, was realized. Pollen analysis, study of non-pollen palynomorphs and sedimentary signal (geophysical measurements of magnetic susceptibility, suggest a very anthropic environment since the Early Neolithic. Salt exploitation, agriculture and pastoralism (presence of spores of coprophilous fungi are directly in connection with these variations. After this intense exploitation, the forest environment closes but the human impact is always perceptible.

  10. Seismic measurements of explosions in the Tatum Salt Dome, Mississippi

    Science.gov (United States)

    Borcherdt, Roger D.; Healy, J.H.; Jackson, W.H.; Warren, D.R.

    1967-01-01

    Project Sterling provided for the detonation of a nuclear device in the cavity resulting from the Salmon nuclear explosion in the Tatum salt dome in southern Mississippi. It also provided for a high explosive (HE) comparison shot in a nearby drill hole. The purpose of the experiment was to gather information on the seismic decoupling of a nuclear explosion in a cavity by comparing seismic signals from a nuclear shot in the Salmon cavity with seismic signals recorded from Salmon and with seismic signals recorded from a muall (about 2 tons) HE shot in the salt dome. Surface seismic measurements were made by the U.S. Geological Survey, the U.S. Coast and Geodetic Survey, and the Air Force Technical Applications Center with coordination and overall direction by the Lawrence Radiation Laboratory. This report covers only the seismic measurements made by the U. S. Geological Survey. The first objective of this report is to describe the field recording procedures and the data obtained by the U. S. Geological Survey from these events. The second objective is to describe the spectral analyses which have been made on the data and the relative seismic amplitudes which have been determined from these analyses.

  11. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  12. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Sacit M [ORNL

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  13. Temperature distributions in a salt formation used for the ultimate disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Ploumen, P.

    1980-01-01

    In the Federal Republic of Germany the works on waste disposal is focussed on the utilization of a salt formation for ultimate disposal of radioactive wastes. Heat released from the high-level waste will be dissipated in the salt and the surrounding geologic formations. The occuring temperature distributions will be calculated with computer codes. A survey of the developed computer codes will be shown; the results for a selected example, taking into account the loading sequence of the waste, the mine ventilation as well as an air gap between the waste and the salt, will be discussed. Furthermore it will be shown that by varying the disposal parameters, the maximum salt temperature can be below any described value. (Auth.)

  14. High salt intake does not exacerbate murine autoimmune thyroiditis

    Science.gov (United States)

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  15. Corrosion aspects of high-level waste disposal in salt domes

    International Nuclear Information System (INIS)

    Roerbo, K.

    1979-12-01

    In the ELSAM/ELKRAT waste management project it is planned that the high-level waste is glassified, encapsuled in canisters and finally deposited in a deep hole drilled in a salt dome. In the present report corrosion aspects of the canisters after deposition are discussed. The chemical environment will probably be a limited amount of brine coming from brine inclusions in the surrounding salt and moving up against the temperature gradient, the temperature at the canister surface being in the range of 100-150degC. The possible types of corrosion and the expected corrosion rates for a number of potential canister materials (mild steel, austenitic and ferritic stainless steels, Ni-base alloys, copper, titanium and a few combinations of materials) are discussed. Mild steel (possibly combined with an inner layer of copper or titanium) might possibly be an appropriate choice of material for the canister. (author)

  16. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China); Yang, Z. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Department of Pathology, Xi' an, China, Department of Pathology, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Yuan, Z.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China)

    2014-03-03

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13{sup BN} rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  17. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    International Nuclear Information System (INIS)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y.; Yang, Z.; Yuan, Z.Y.

    2014-01-01

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13 BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure

  18. Worth its salt?

    Science.gov (United States)

    The idea that all underground salt deposits can serve as storage sites for toxic and nuclear waste does not always hold water—literally. According to Daniel Ronen and Brian Berkowitz of Israel's Weizmann Institute of Science and Yoseph Yechieli of the Geological Survey of Israel, some buried salt layers are in fact highly conductive of liquids, suggesting that wastes buried in their confines could easily leech into groundwater and nearby soil.When drilling three wells into a 10,000-year-old salt layer near the Dead Sea, the researchers found that groundwater had seeped into the layer and had absorbed some of its salt.

  19. High Frequency Components Recovery in Music Signals

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    1999-04-01

    Full Text Available A new technique is presented which improves the subjective quality of band-limited music by recovery of high frequency components. Sequences of harmonics are found in the band-limited signal and these sequences are expanded to the high frequency band to estimate the lost part of spectrum. High frequency signal is generated to match this estimation and is added to the band-limited signal.

  20. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  1. Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos

    International Nuclear Information System (INIS)

    Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant, located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors

  2. Burner rig alkali salt corrosion of several high temperature alloys

    Science.gov (United States)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  3. Signal transduction pathways involved in intestinal salt and water secretion

    NARCIS (Netherlands)

    W. van den Berghe (Nina)

    1992-01-01

    textabstractThis thesis describes some novel aspects of the regulation of salt and water secretion in the intestinal epithelium. This process is not unique for the intestine, but a common and necessary function of many other organs, including the stomach (gastric juice), kidney (urine), sweatglands

  4. Preliminary investigation results as applied to utilization of Ukrainian salt formations for disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Shekhunova, S.B.; Khrushchov, D.P.; Petrichenko, O.I.

    1994-01-01

    The salt-bearing formations have been investigated in five regions of Ukraine. Upper Devonian and Lower Permian evaporite formations in Dnieper-Donets Depression and in the NW part of Donets basin are considered to be promising for disposal of high-level radioactive waste (HLRW). Rock salt occurs there either as bedded salts or as salt pillows and salt diapirs. Preliminary studies have resulted in selection of several candidate sites that show promise for construction of a subsurface pilot lab. Ten salt domes and two sites in bedded salts have been proposed for further exploration. Based on microstructural studies it is possible to separate the body of a salt structure and to locate within its limits the rock salt structure and to locate within its limits the rock salt blocks of different genesis, i.e.: (a) blocks characteristic of initial undisturbed sedimentary structure; (b) flow zones; (c) sliding planes; (d) bodies of loose or uncompacted rock salt. Ultramicrochemical examination of inclusions in halite have shown that they are composed of more than 40 minerals. It is emphasized that to assess suitability of a structure for construction of subsurface lab, and also the potential construction depth intervals, account should be taken of the results of ultra microchemical and microstructural data

  5. Migrational polarization in high-current density molten salt electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Vallet, C.E.

    1977-01-01

    Electrochemical flux equations based on the thermodynamics of irreversible processes have been derived in terms of experimental transport coefficients for binary molten salt mixtures analogous to those proposed for high temperature batteries and fuel cells. The equations and some numerical solutions indicate steady state composition gradients of significant magnitude. The effects of migrational separation must be considered along with other melt properties in the characterization of electrode behavior, melt composition, operating temperatures and differences of phase stability, wettability and other physicochemical properties at positive and negative electrodes of high current density devices with mixed electrolytes.

  6. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats.

    Science.gov (United States)

    Bielinska, Klaudia; Radkowski, Marek; Grochowska, Marta; Perlejewski, Karol; Huc, Tomasz; Jaworska, Kinga; Motooka, Daisuke; Nakamura, Shota; Ufnal, Marcin

    2018-03-22

    A high-salt diet is considered a cardiovascular risk factor; however, the mechanisms are not clear. Research suggests that gut bacteria-derived metabolites such as trimethylamine N-oxide (TMAO) are markers of cardiovascular diseases. We evaluated the effect of high salt intake on gut bacteria and their metabolites plasma level. Sprague Dawley rats ages 12-14 wk were maintained on either water (controls) or 0.9% or 2% sodium chloride (NaCl) water solution (isotonic and hypertonic groups, respectively) for 2 wk. Blood plasma, urine, and stool samples were analyzed for concentrations of trimethylamine (TMA; a TMAO precursor), TMAO, and indoxyl sulfate (indole metabolite). The gut-blood barrier permeability to TMA and TMA liver clearance were assessed at baseline and after TMA intracolonic challenge test. Gut bacterial flora was analyzed with a 16S ribosomal ribonucleic acid (rRNA) gene sequence analysis. The isotonic and hypertonic groups showed a significantly higher plasma TMAO and significantly lower 24-hr TMAO urine excretion than the controls. However, the TMA stool level was similar between the groups. There was no significant difference between the groups in gut-blood barrier permeability and TMA liver clearance. Plasma indoxyl concentration and 24-hr urine indoxyl excretion were similar between the groups. There was a significant difference between the groups in gut bacteria composition. High salt intake increases plasma TMAO concentration, which is associated with decreased TMAO urine excretion. Furthermore, high salt intake alters gut bacteria composition. These findings suggest that salt intake affects an interplay between gut bacteria and their host homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency.

    Directory of Open Access Journals (Sweden)

    Rie Nishiyama

    Full Text Available Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which

  8. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  9. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  10. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. Y. [National Fusion Research Institute, Gunsan (Korea, Republic of)

    2014-10-15

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  11. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  12. Phase-selective staining of metal salt for scanning electron microscopy imaging of block copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing Ze, E-mail: Lijinge@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronic and Solid-state Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610054 (China); Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumuqi 830011 (China); Wang, Ying; Hong Wang, Zhi; Mei, Di; Zou, Wei [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronic and Solid-state Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Min Chang, Ai [State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610054 (China); Wang, Qi [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumuqi 830011 (China); Komura, Motonori; Ito, Kaori [Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Iyoda, Tomokazu, E-mail: Iyoda.t.aa@m.titech.ac.jp [Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2010-09-15

    Three metal salts, i.e., AgNO{sub 3}, HAuCl{sub 4}, and KCl, were proposed as novel staining reagents instead of traditional RuO{sub 4} and OsO{sub 4} labeled with expensive price and extreme toxicity for scanning electron microscopy (SEM) imaging of microphase separated block copolymer film. A simple and costless aqueous solution immersion procedure could ensure selective staining of the metal slat in specific phase of the nanostructured copolymer film, leading to a clear phase contrasted SEM image. The heavy metal salt has better staining effect, demonstrating stable and high signal-to-noise SEM image even at an acceleration voltage as high as 30 kV and magnification up to 250,000 times.

  13. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  14. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  15. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  16. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  17. Evaluation of salt content in school meals

    Directory of Open Access Journals (Sweden)

    Cláudia Alexandra Colaço Lourenço Viegas

    2015-04-01

    Full Text Available OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12. Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05 and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05. The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

  18. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  19. LCZ696, Angiotensin II Receptor-Neprilysin Inhibitor, Ameliorates High-Salt-Induced Hypertension and Cardiovascular Injury More Than Valsartan Alone.

    Science.gov (United States)

    Kusaka, Hiroaki; Sueta, Daisuke; Koibuchi, Nobutaka; Hasegawa, Yu; Nakagawa, Takashi; Lin, BoWen; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2015-12-01

    LCZ696, an angiotensin receptor-neprilysin inhibitor, has recently been demonstrated to exert more beneficial effects on hypertensive or heart failure patients than conventional renin-angiotensin system blockers. However, the mechanism underlying the benefit of LCZ696 remains to be understood. The present study was undertaken to examine the effect of LCZ696 compared with valsartan on hypertension and cardiovascular injury. (i) Using telemetry, we compared the hypotensive effect of LCZ696 and valsartan in spontaneously hypertensive rats (SHR) that were fed a high-salt diet followed by a low-salt diet. (ii) We also examined the comparative effect of LCZ696 and valsartan on salt loaded SHRcp, a model of metabolic syndrome. (i) LCZ696 exerted a greater blood pressure (BP) lowering effect than valsartan in SHR regardless of high-salt or low-salt intake. Additive BP reduction by LCZ696 was associated with a significant increase in urinary sodium excretion and sympathetic activity suppression. (ii) LCZ696 significantly ameliorated cardiac hypertrophy and inflammation, coronary arterial remodeling, and vascular endothelial dysfunction in high-salt loaded SHRcp compared with valsartan. LCZ696 caused greater BP reduction than valsartan in SHR regardless of the degree of salt intake, which was associated with a significant enhancement in urinary sodium excretion and sympathetic activity suppression. Furthermore, an additive BP lowering effect of LCZ696 led to greater cardiovascular protection in hypertensive rats. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. High salt intake enhances swim stress-induced PVN vasopressin cell activation and active stress coping.

    Science.gov (United States)

    Mitchell, N C; Gilman, T L; Daws, L C; Toney, G M

    2018-07-01

    Stress contributes to many psychiatric disorders; however, responsivity to stressors can vary depending on previous or current stress exposure. Relatively innocuous heterotypic (differing in type) stressors can summate to result in exaggerated neuronal and behavioral responses. Here we investigated the ability of prior high dietary sodium chloride (salt) intake, a dehydrating osmotic stressor, to enhance neuronal and behavioral responses of mice to an acute psychogenic swim stress (SS). Further, we evaluated the contribution of the osmo-regulatory stress-related neuropeptide arginine vasopressin (VP) in the hypothalamic paraventricular nucleus (PVN), one of only a few brain regions that synthesize VP. The purpose of this study was to determine the impact of high dietary salt intake on responsivity to heterotypic stress and the potential contribution of VPergic-mediated neuronal activity on high salt-induced stress modulation, thereby providing insight into how dietary (homeostatic) and environmental (psychogenic) stressors might interact to facilitate psychiatric disorder vulnerability. Salt loading (SL) with 4% saline for 7 days was used to dehydrate and osmotically stress mice prior to exposure to an acute SS. Fluid intake and hematological measurements were taken to quantify osmotic dehydration, and serum corticosterone levels were measured to index stress axis activation. Immunohistochemistry (IHC) was used to stain for the immediate early gene product c-Fos to quantify effects of SL on SS-induced activation of neurons in the PVN and extended amygdala - brain regions that are synaptically connected and implicated in responding to osmotic stress and in modulation of SS behavior, respectively. Lastly, the role of VPergic PVN neurons and VP type 1 receptor (V1R) activity in the amygdala in mediating effects of SL on SS behavior was evaluated by quantifying c-Fos activation of VPergic PVN neurons and, in functional experiments, by nano-injecting the V1R selective

  1. High Salt Intake Increases Blood Pressure via BDNF-Mediated Downregulation of KCC2 and Impaired Baroreflex Inhibition of Vasopressin Neurons

    OpenAIRE

    Choe, Katrina Y.; Han, Su Y.; Gaub, Perrine; Shell, Brent; Voisin, Daniel L.; Knapp, Blayne A.; Barker, Philip A.; Brown, Colin H.; Cunningham, J. Thomas; Bourque, Charles W.

    2015-01-01

    The mechanisms by which dietary salt promotes hypertension are unknown. Previous work established that plasma [Na+] and osmolality rise in proportion with salt intake and thus promote release of vasopressin (VP) from the neurohypophysis. Although high levels of circulating VP can increase blood pressure, this effect is normally prevented by a potent GABAergic inhibition of VP neurons by aortic baroreceptors. Here we show that chronic high salt intake impairs baroreceptor inhibition of rat VP ...

  2. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of heme oxygenase.

    Science.gov (United States)

    Amooaghaie, Rayhaneh; Tabatabaie, Fatemeh

    2017-07-01

    The present study showed that osmopriming or pretreatment with low H 2 O 2 doses (2 mM) for 6 h alleviated salt-reduced seed germination. The NADPH oxidase activity was the main source, and superoxide dismutase (SOD) activity might be a secondary source of H 2 O 2 generation during osmopriming or H 2 O 2 pretreatment. Hematin pretreatment similar to osmopriming improved salt-reduced seed germination that was coincident with the enhancement of heme oxygenase (HO) activity. The semi-quantitative RT-PCR confirmed that osmopriming or H 2 O 2 pretreatment was able to upregulate heme oxygenase HO-1 transcription, while the application of N,N-dimethyl thiourea (DMTU as trap of endogenous H 2 O 2 ) and diphenyleneiodonium (DPI as inhibitor of NADPHox) not only blocked the upregulation of HO but also reversed the osmopriming-induced salt attenuation. The addition of CO-saturated aqueous rescued the inhibitory effect of DMTU and DPI on seed germination and α-amylase activity during osmopriming or H 2 O 2 pretreatment, but H 2 O 2 could not reverse the inhibitory effect of ZnPPIX (as HO inhibitor) or Hb (as CO scavenger) that indicates that the CO acts downstream of H 2 O 2 in priming-driven salt acclimation. The antioxidant enzymes and proline synthesis were upregulated in roots of seedlings grown from primed seeds, and these responses were reversed by adding DMTU, ZnPPIX, and Hb during osmopriming. These findings for the first time suggest that H 2 O 2 signaling and upregulation of heme oxygenase play a crucial role in priming-driven salt tolerance.

  3. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    Science.gov (United States)

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Trial storage of high-level waste in the Asse II salt mine

    International Nuclear Information System (INIS)

    1984-01-01

    This report covers a second phase of the work performed by GSF and KfK in the Asse II salt mine, with a view to disposal of radioactive waste in salt formations. New items of the research were geophysical investigations of the behaviour of heated salt and preparation of a trial storage in the Asse II salt mine

  5. On the time-dependent behavior of a cylindrical salt dome with a high-level waste repository

    International Nuclear Information System (INIS)

    Prij, J.

    1988-01-01

    In a salt dome with a repository for high-level radioactive and heat-generating waste, thermal stresses develop. These stresses can influence the isolation capability of the salt dome if these stresses can initiate cracks or introduce movements along existing closed flaws. The influence of the thermomechanical properties of the rock salt and the surrounding rocks on the thermal stresses and the surface rise is discussed. This discussion is based on a number of finite element creep analyses of a homogeneous cylindrical salt dome. The parameters, varied in the analyses, are constants in the thermomechanical constitutive behavior of salt and rocks, and furthermore the thermal loading has been varied. It is shown that variations in the creep properties, which result in differences in creep strain rate of a factor of 100, have only a very limited influence on the thermal stresses and the surface rise. Of more importance is the elastic stiffness of the materials. In all creep analyses the thermal stresses in the salt are compressive and the shear stresses remain below 2 MPa. The results are evaluated using an analytical treatment. Based on this evaluation, it is shown that the observed trends in the numerical results have a more general character and are not strictly limited to the geometry chosen. It is concluded that the thermal stresses in the salt formation are not strongly dependent on the creep properties of the rock salt

  6. Salt Separation from Uranium Deposits in Integrated Crucible

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Chang, J. H.; Kim, J. G.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processsing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non-volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation.

  7. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    NARCIS (Netherlands)

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-01-01

    High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011-2016) and

  8. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    Science.gov (United States)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  9. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  10. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  11. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2016-04-01

    Full Text Available Jasmonate (JA, as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

  12. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  13. Resolution Mechanism and Characterization of an Ammonium Chloride-Tolerant, High-Thermostable, and Salt-Tolerant Phenylalanine Dehydrogenase from Bacillus halodurans.

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan

    2018-05-09

    As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.

  14. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  15. Tuning plant signaling and growth to survive salt

    NARCIS (Netherlands)

    Julkowska, M.M.; Testerink, C.

    2015-01-01

    Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen

  16. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes.

    Science.gov (United States)

    Singh, Jogendra; Singh, Vijayata; Sharma, P C

    2018-05-01

    The growth of chickpea ( Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.

  18. Differential response of nucleus pulposus intervertebral disc cells to high salt, sorbitol, and urea.

    Science.gov (United States)

    Mavrogonatou, Eleni; Kletsas, Dimitris

    2012-03-01

    Nucleus pulposus intervertebral disc cells are routinely confronted with high osmolality in their microenvironment and respond to this stress in vitro by regulating cell cycle progression and by activating a DNA repair machinery in order to counteract its genotoxic effect. In the present study, we attempted to identify the origin of this osmo-regulatory response, by using an ionic NaCl/KCl solution, the compatible osmolyte sorbitol, and the readily permeant urea. High salt and sorbitol were found to activate similar molecular pathways, including the p38 MAPK and the p53-p21(WAF1)-pRb axis, that were not stimulated by high urea. On the other hand, only high urea led to the phosphorylation of ERKs and JNKs. Furthermore, salt- and sorbitol-treated cells were able to phosphorylate histone H2A.X on Ser139, in contrast to cells exposed to urea, indicating a common mechanism for DNA repair, which was achieved by a p53-dependent activation of the G1 checkpoint by both solutes. DNA repair, as directly measured by a host cell reactivation assay, occurred under conditions of hyperosmolar salt and sorbitol, although to a lesser extent in sorbitol-treated cells than in cells exposed to high salinity. Taken as a whole, our findings suggest that the hyperosmolality-provoked DNA damage and the responses of nucleus pulposus cells induced by this genotoxic stress most probably originate from cell volume alterations mediated by hypertonicity and not from increased intracellular ionic concentration. Copyright © 2011 Wiley Periodicals, Inc.

  19. Just add a pinch of salt!--current directions for the use of salt in recipes in Australian magazines.

    Science.gov (United States)

    Webster, Jacqui; Dunford, Elizabeth; Barzi, Federica; Neal, Bruce

    2010-02-01

    Australians currently consume too much salt causing adverse consequences for health. The media play an important role in the provision of nutrition advice to consumers. Previous research shows that many foods advertized in consumer magazines are high in salt, but little research has examined magazine recipes in this context. The aim of this project was to summarize directions for salt use in recipes in leading Australian magazines. In August 2007 and 2008, the top 10 magazines by circulation that included at least five recipes, were examined. Standardized information was collected about directions for salt use in recipes. Three hundred and thirty recipes were identified in 2007 and 417 in 2008. About 68% of recipes included high-salt ingredients, 37% instructed to season with salt, 10% instructed to add a specific quantity of salt and 15% recommended selection of low-salt ingredients. There was substantial variability in directions for salt use in recipes between magazines, but no clear differences between 2007 and 2008. Many recipes advised to add salt in direct contradiction to national dietary guidelines. There is clear potential for editorial guidelines on salt use in recipes to play a role in advancing public health efforts in Australia and other such nations.

  20. High-Throughput Screening Using Mass Spectrometry within Drug Discovery.

    Science.gov (United States)

    Rohman, Mattias; Wingfield, Jonathan

    2016-01-01

    In order to detect a biochemical analyte with a mass spectrometer (MS) it is necessary to ionize the analyte of interest. The analyte can be ionized by a number of different mechanisms, however, one common method is electrospray ionization (ESI). Droplets of analyte are sprayed through a highly charged field, the droplets pick up charge, and this is transferred to the analyte. High levels of salt in the assay buffer will potentially steal charge from the analyte and suppress the MS signal. In order to avoid this suppression of signal, salt is often removed from the sample prior to injection into the MS. Traditional ESI MS relies on liquid chromatography (LC) to remove the salt and reduce matrix effects, however, this is a lengthy process. Here we describe the use of RapidFire™ coupled to a triple-quadrupole MS for high-throughput screening. This system uses solid-phase extraction to de-salt samples prior to injection, reducing processing time such that a sample is injected into the MS ~every 10 s.

  1. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  2. Proteomic studies on the effects of Lipo-chitooligosaccharide and Thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi Subramanian

    2016-08-01

    Full Text Available Plants, being sessile organisms, are exposed to widely varying environmental conditions throughout their life cycle. Compatible plant-microbe interactions favor plant growth and development, and help plants deal with these environmental challenges. Microorganisms produce a diverse range of elicitor molecules to establish symbiotic relationships with the plants they associate with, in a given ecological niche. Lipo-chitooligosaccharide (LCO and thuricin 17 (Th17 are two such compounds shown to positively influence plant growth of both legumes and non-legumes. Arabidopsis thaliana responded positively to treatment with the bacterial signal compounds LCO and Th17 in the presence of salt stress (up to 250 mM NaCl. Shotgun proteomics of unstressed and 250 mM NaCl stressed A. thaliana rosettes (7 days post stress in combination with the LCO and Th17 revealed many known, putative, hypothetical and unknown proteins. Overall, carbon and energy metabolic pathways were affected under both unstressed and salt stressed conditions when treated with these signals. PEP carboxylase, Rubisco-oxygenase large subunit, pyruvate kinase, and proteins of photosystem I and II were some of the noteworthy proteins enhanced by the signals, along with other stress related proteins. These findings suggest that the proteome of A. thaliana rosettes is altered by the bacterial signals tested, and more so under salt stress, thereby imparting a positive effect on plant growth under high salt stress. The roles of the identified proteins are discussed here in relation to salt stress adaptation, which, when translated to field grown crops can be a crucial component and of significant importance in agriculture and global food production. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD004742.

  3. High temperature salt corrosion cracking of intermediate products of titanium alloys

    International Nuclear Information System (INIS)

    Sinyavskij, V.S.; Usova, V.V.; Lunina, S.I.; Kushakevich, S.A.; Makhmutova, E.A.; Khanina, Z.K.

    1982-01-01

    The high temperature salt corrosion cracking (HTSCC) of intermediate products from titanium base alloys in the form of hot rolled plates and rods has been studied. The investigated materials are as follows: VT20 pseudo-α-alloy, VT6 and VT14 α+β alloys; the comparison has been carried out with commercial titanium and low-alloyed OT4-1 α-alloy. The experiments have been held at 400 and 500 deg C, defining different stress levels: 0.4; 0.5; 0.75 and 0.9 tausub(0.2). The test basis - not less than 100 h. Standard tensile samples of circular cross section with NaCl (approximately 0.2-0.3 mg/cm 2 ) salt coatings, cut off from hot-rolled rods along the direction of rolling and hot-rolled plates along and across the direction of rolling have been tested. It has been extablished before hand that the notch doesn't affect the resistance of titanium alloys to HTSCC. The sensitivity of titanium alloy subproducts to HTSCC is estimated as to the time until the failure of the sample with salt coatings and without them. It is shown that salt coating practically doesn't affect the behaviour of titanium, that allows to consider it to be resistant to HTSCC. Titanium alloys alloying with β-isomorphous stabilizing additions increases it's HTSCC resistance. Vanadium alloying of the alloy (VT6 alloy of Ti-Al-V system) produces a favourable effect; intermediate products of VT14 (α+β) alloy (Ti-Al-V-Mo system), containing two β-stabilizing additions-vanadium and molybdenum, have satisfactory HTSCC resistance. It is shown that by changes is mechanical properties of alloys during HTSCC one can indirectly judge about their HTSCC sensitivity

  4. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions.

    Science.gov (United States)

    Zheng, Jian; Ma, Xiaohua; Zhang, Xule; Hu, Qingdi; Qian, Renjuan

    2018-03-01

    Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus , which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.

  5. Experimental results on salt concrete for barrier elements made of salt concrete in a repository for radioactive waste in a salt mine

    International Nuclear Information System (INIS)

    Gutsch, Alex-W.; Preuss, Juergen; Mauke, Ralf

    2012-01-01

    The Bartensleben rock salt mine in Germany was used as a repository for low and intermediate level radioactive waste from 1971 to 1991 and from 1994 to 1998. The repository with an overall volume of about 6 million m 3 has to be closed. Salt concrete is used for the refill of the voids of the repository. The concrete mixtures contain crushed salt instead of natural aggregates as the void filling material should be as similar to the salt rock as possible. Very high requirements regarding low heat development and little or even no cracking during concrete hardening had to be fulfilled even for the barrier elements made from salt concrete which separate the radioactive waste from the environment. Requirements for the salt concrete were set up with regard to the fluidity of the fresh concrete during the hardening process and its durability. In the view of a comprehensive numerical calculations of the temperature development and thermal stresses in the massive salt concrete elements of the backfill of the voids, experimental results for material properties of the salt concrete are presented: mixture of the salt concrete, thermodynamic properties (adiabatic heat release, thermal dilatation, thermal conductivity and heat capacity), mechanical short term properties, creep (under tension, under compression), autogenous shrinkage

  6. Simultaneous determination of penicillin G salts by infrared spectroscopy: Evaluation of combining orthogonal signal correction with radial basis function-partial least squares regression

    Science.gov (United States)

    Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem

    2010-09-01

    In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.

  7. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.5

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with safety evaluation as part of the investigations regarding a repository for high-level waste in a salt dome. It is volume 5 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. Two characteristics of the waste are of special importance for the safety evaluation: the encasing of the waste in steel casks with 15 cm thick walls affording protection against corrosion, protecting the surroundings against radiation, and protecting the glass cylinders from mechanical damage resulting from the pressure at the bottom of the disposal hole, and the modest generation of heat in the waste at the time of disposal resulting in a maximum temperature increase in the salt close to the waste of approx. 40 deg. C. These characteristics proved to considerably improve the safety margin with respect to unforeseen circumstances. The character of the salt dome and of the salt in the proposed disposal area offers in itself good protection against contact with the ground water outside the dome. The relatively large depth of 1200 and 2500 m of the salt surface also means that neither dome nor disposal facility will be appreciably influenced by glaciations or earthquakes. The chalk above the proposed disposal area is very tight and to retain radioactive matter effectively even in the precence of high concentrations of NaCL. The safety investigations included a number of natural processes and probable events such as the segregation of crystal water from overlooked salt minerals, faulty sealings of disposal holes, permeable fault zones in the chalk overlying the dome, the risk in connection with human penetration into the dome. These conditions will neither lead to the destruction of the waste casks or to the release of waste from the dome. Leaching of a cavern is the only situation which proved to result in a release of radioactive material to the biosphere, but the resulting doses was found to be small

  8. A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis.

    Science.gov (United States)

    Li, Changjiang; Lu, Hanmei; Li, Wei; Yuan, Ming; Fu, Ying

    2017-07-01

    The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively active ROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance. © 2017 John Wiley & Sons Ltd.

  9. Salicornia Extract Ameliorates Salt-Induced Aggravation of Nonalcoholic Fatty Liver Disease in Obese Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Kim, Jae Hwan; Suk, Sujin; Jang, Woo Jung; Lee, Chang Hyung; Kim, Jong-Eun; Park, Jin-Kyu; Kweon, Mee-Hyang; Kim, Jong Hun; Lee, Ki Won

    2017-07-01

    High-fat and high-salt intakes are among the major risks of chronic diseases including obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Salicornia is a halophytic plant known to exert antioxidant, antidiabetic, and hypolipidemic effects, and Salicornia-extracted salt (SS) has been used as a salt substitute. In this study, the effects of SS and purified salt (PS) on the aggravation of NAFLD/NASH were compared. C57BL/6J male mice (8-wk-old) were fed a high-fat diet (HFD) for 6 mo and divided into 3 dietary groups, which were additionally fed HFD, HFD + SS, and HFD + PS for 13 wk. PS induced aggravation of NAFLD/NASH in HFD-fed mice. Although the actual salt intake was same between the PS and SS groups as 1% of the diet (extrapolated from the World Health Organization [WHO] guideline), SS induced less liver injury and hepatic steatosis compared to PS. The hepatic mRNA expressions of inflammatory cytokines and fibrosis marker were significantly lower in the SS group than the PS group. Oxidative stress is one of the major causes of inflammation in NAFLD/NASH. Results of the component analysis showed that the major polyphenols that exhibited antioxidant activity in the Salicornia water extract were ferulic acid, caffeic acid, and isorhamnetin. These results suggest that even the level of salt intake recommended by WHO can accelerate the progression of liver disease in obese individuals consuming HFD. It is proposed that SS can be a salt substitute for obese individuals who consume HFD. © 2017 Institute of Food Technologists®.

  10. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  11. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  12. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  13. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  14. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This publication is the interim report 1988-89 of the international HAW project performed in the 800 m level of the Asse salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radiactivos S.A. (ENRESA) and the Netherlands Energy Research Foundation (ECN). After some delays in the licensing procedure the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 20 refs.; 92 figs.; 14 tabs

  15. High-Performance Lithium-Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt.

    Science.gov (United States)

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kang, Yongku; Kim, Hwan Kyu; Kim, Dong Wook

    2017-10-01

    To fabricate a sustainable lithium-oxygen (Li-O 2 ) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO 3 ) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO 3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO 3 electrolyte efficiently produces NO 2 - , which initiates a redox shuttle reaction. Interestingly, this NO 2 - /NO 2 redox reaction derived from the LiNO 3 salt is not very effective in solvents other than TMS. Compared with other common Li-O 2 solvents, TMS seems optimum solvent for the efficient use of LiNO 3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO 2 - /NO 2 redox reaction, which results in a high-performance Li-O 2 battery.

  16. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  17. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  18. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  19. Thorium-based Molten Salt Reactor (TMSR) project in China

    International Nuclear Information System (INIS)

    Dai, Zhimin; Liu, Wei

    2013-01-01

    Making great efforts in development of nuclear energy is one of the long-term-plan in China's energy strategies. The advantages of Thorium-based nuclear energy are: rich resource in nature, less nuclear waste, low toxicity, nuclear non-proliferation and so on. Furthermore, China is a country with abundant thorium, thus it is necessary to develop the Thorium-based Molten Salt Reactor (TMSR) in China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP) had designed and constructed the first China's light-water reactor and developed a zero-power thorium-based molten salt reactor successfully in the early 1970s. The applied research project 'thorium molten salt reactor nuclear power system' by SINAP together with several other institutes had been accepted and granted by China government in 2011. The whole project has been divided into three stages: Firstly, built a 2 MW-zero-power high temperature solid molten salt reactor in 2015 and a 2 MW-zero-power high temperature liquid molten salt reactor in 2017. Secondly, in 2020 built a 10 MW high temperature liquid molten salt reactor. Thirdly, on the base of previous work, a 100 MW high temperature molten salt reactor should be achieving in 2030. After more than one years of efforts, a high quality scientific research team has been formed, which is able to design the molten salt reactor, the molten salt loop and related key equipment, the systems of molten salt preparation, purification and the radioactive gas removal. In the past one year, the initial physical design of high temperature molten salt reactor has been completed; the nuclear chemistry and radiation chemical laboratory has been built, a high temperature salt (HTS) loop and radioactive gas removal experiment device system have been successfully developed and constructed. Further, the preliminary study on reactor used carbon-carbon composite material has been investigated. (author)

  20. Salt Selection for the LS-VHTR

    International Nuclear Information System (INIS)

    Williams, D.F.; Clarno, K.T.

    2006-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  1. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    shallow magma-chamber causes a sufficiently high heat-flow to drive a convection cell of seawater. The model shows that salt precipitates along the flow lines within the supercritical region (Hovland et al., 2006). During the various stages of planet Mars’ development, it must be inferred that zones with very high heat-flow also existed there. This meant that water (brine) confined in the crust of Mars was mobilized in a convective manner and would pass into the supercritical water zone during the down-going leg (the recharge leg) of the convective cell. The zones with supercritical out-salting would require accommodation space for large masses of solid salt, as modeled in the Red Sea analogy. However, as the accommodation space for the solid salt fills up, it will pile up and force its way upwards to form large, perhaps layered anticlines, as seen in the Hebes Mensa area of Mars and at numerous locations on Earth, including the Red Sea. Thus, we offer a universal ‘hydrothermal salt model’, which would be viable on all planets with free water in their interiors or on their surfaces, including Mars and Earth. Hovland, et al., 2006. Salt formation by supercritical seawater and submerged boiling. Marine and Petrol. Geol. 23, 855-69

  2. Identification of Organic Iodine Compounds and Their Transformation Products in Edible Iodized Salt Using Liquid Chromatography-High Resolution Mass Spectrometry.

    Science.gov (United States)

    Yun, Lifen; Peng, Yue'e; Chang, Qing; Zhu, Qingxin; Guo, Wei; Wang, Yanxin

    2017-07-05

    The consumption of edible iodized salt is a key strategy to control and eliminate iodine deficiency disorders worldwide. We herein report the identification of the organic iodine compounds present in different edible iodized salt products using liquid chromatography combined with high resolution mass spectrometry. A total of 38 organic iodine compounds and their transformation products (TPs) were identified in seaweed iodine salt from China. Our experiments confirmed that the TPs were generated by the replacement of I atoms from organic iodine compounds with Cl atoms. Furthermore, the organic iodine compound contents in 4 seaweed iodine salt samples obtained from different manufacturers were measured, with significant differences in content being observed. We expect that the identification of organic iodine compounds in salt will be important for estimating the validity and safety of edible iodized salt products.

  3. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  4. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James

    2013-08-08

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  5. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  6. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  7. Reported high salt intake is associated with increased prevalence of abdominal aortic aneurysm and larger aortic diameter in older men.

    Directory of Open Access Journals (Sweden)

    Jonathan Golledge

    Full Text Available Salt intake has been implicated in the pathogenesis of abdominal aortic aneurysm (AAA through studies in rodent models but not previously studied in humans. The aim of this study was to examine the association between reported addition of salt to food and the prevalence of AAA.A risk factor questionnaire which contained a question about salt intake was included as part of a population screening study for AAA in 11742 older men. AAA presence was assessed by abdominal ultrasound imaging using a reproducible protocol.The prevalence of AAA was 6.9, 8.5 and 8.6% in men who reported adding salt to food never, sometimes and always, respectively, p = 0.005. Addition of salt to food sometimes (odds ratio [OR]: 1.22, 95% confidence interval [CI]: 1.03-1.44 or always (OR: 1.23, 95% CI 1.04-1.47 was independently associated with AAA after adjustment for other risk factors including age, waist-hip ratio, blood pressure, history of hypertension, high cholesterol, angina, diabetes, myocardial infarction and stroke. Salt intake was also independently associated with aortic diameter (beta 0.023, p = 0.012. In men with no prior history of hypertension, high cholesterol, angina, myocardial infarction or stroke (n = 4185, the association between addition of salt to food sometimes (OR: 1.41, 95% CI 0.96-2.08 or always (OR: 1.52, 95% CI 1.04-2.22 and AAA remained evident.Reported salt intake is associated with AAA in older men. Additional studies are needed to determine whether reducing salt intake would protect against AAA.

  8. Salt intake and eating habits of school-aged children.

    Science.gov (United States)

    Ohta, Yuko; Iwayama, Keiko; Suzuki, Hirotoshi; Sakata, Satoko; Hayashi, Shinichiro; Iwashima, Yoshio; Takata, Akira; Kawano, Yuhei

    2016-11-01

    Salt restriction is important for the prevention and treatment of hypertension; however, salt consumption is still high in Japan. Improvements in dietary habits, including salt reduction in childhood, may contribute to the prevention of hypertension. The aim of the present study was to investigate the salt intake of school-aged children and the relationship between their diet diary and actual salt intake. The subjects comprised 580 schoolchildren (471 elementary school pupils and 109 junior high school pupils) who wanted to evaluate their salt intake in Kuji, a northeast coastal area in Japan. We estimated salt intake using spot urine samples and a formula. Lifestyle was assessed using a questionnaire. We also evaluated the salt intake and the lifestyles of 440 parents. The estimated salt intakes of elementary school pupils, junior high school pupils and their parents were 7.1±1.5, 7.6±1.5 and 8.0±1.7 g per day, respectively. The proportion of lower-grade children who achieved the recommended salt intake was low. In the multivariate analysis, the estimated salt intake of school-aged children correlated with their age, estimated salt intake of their parents and the menu priorities of the household. The estimated salt intake of the parents was associated with female gender, obesity, age and the habitual consumption of bread and noodles. In conclusion, the estimated salt intake of school-aged children positively correlated with the estimated salt intake of their parents, and the proportion of lower-grade children who achieved the recommended salt intake was low. Guidance on salt restriction for children and their parents may reduce the salt intake of school-aged children.

  9. Free radical scavenging reverses fructose-induced salt-sensitive hypertension

    Directory of Open Access Journals (Sweden)

    Zenner ZP

    2017-12-01

    Full Text Available Zachary P Zenner, Kevin L Gordish, William H Beierwaltes Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA Abstract: We have previously reported that a moderate dietary supplementation of 20% fructose but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–hydrogen exchanger activity and increased renal sodium retention. We also found that while high salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive hypertension could be due to fructose-induced formation of reactive oxygen species and inappropriate stimulation of renin secretion, all of which would contribute to an increase in blood pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane excretion. The superoxide dismutase (SOD mimetic tempol significantly reduced this elevated excretion. Next, we placed rats on a high-salt diet (4% for 1 week in combination with normal rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-salt diet induced a rapid increase (15 mmHg in systolic blood pressure and reversed high salt suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is driven by increased renal reactive oxygen species formation associated with salt retention and an enhanced renin–angiotensin system. Keywords: reactive oxygen species, tempol, sodium, renin, oxidative stress

  10. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  11. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane.

    Directory of Open Access Journals (Sweden)

    Mariana Carnavale Bottino

    Full Text Available Salt stress is a primary cause of crop losses worldwide, and it has been the subject of intense investigation to unravel the complex mechanisms responsible for salinity tolerance. MicroRNA is implicated in many developmental processes and in responses to various abiotic stresses, playing pivotal roles in plant adaptation. Deep sequencing technology was chosen to determine the small RNA transcriptome of Saccharum sp cultivars grown on saline conditions. We constructed four small RNAs libraries prepared from plants grown on hydroponic culture submitted to 170 mM NaCl and harvested after 1 h, 6 hs and 24 hs. Each library was sequenced individually and together generated more than 50 million short reads. Ninety-eight conserved miRNAs and 33 miRNAs* were identified by bioinformatics. Several of the microRNA showed considerable differences of expression in the four libraries. To confirm the results of the bioinformatics-based analysis, we studied the expression of the 10 most abundant miRNAs and 1 miRNA* in plants treated with 170 mM NaCl and in plants with a severe treatment of 340 mM NaCl. The results showed that 11 selected miRNAs had higher expression in samples treated with severe salt treatment compared to the mild one. We also investigated the regulation of the same miRNAs in shoots of four cultivars grown on soil treated with 170 mM NaCl. Cultivars could be grouped according to miRNAs expression in response to salt stress. Furthermore, the majority of the predicted target genes had an inverse regulation with their correspondent microRNAs. The targets encode a wide range of proteins, including transcription factors, metabolic enzymes and genes involved in hormone signaling, probably assisting the plants to develop tolerance to salinity. Our work provides insights into the regulatory functions of miRNAs, thereby expanding our knowledge on potential salt-stressed regulated genes.

  12. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  13. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.2

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with the geological investigations performed for determing the feasibility of a repository for high-level waste in a salt dome. It is volume 2 of five volumes that together constitute the final report of the Danish utilities' salt dome investigations. The purpose of the work was to procure a more detailed knowledge of the geology of salt domes in North Jutland on example of Mors. The Mors dome is oval with the two axes of approx. 12.5 km and 8 km respectively. Two deep wells have been drilled into the salt. These wells reach 3400-3500 m below surface. Until a depth of about 3200 m Erslev 2 passes through rock salt of Zechstein 1 which is the oldest evaporite series. However, it could also be interlayed with the slightly younger Zechstein 2. At about 3200 m a marker layer was met with Zechstein 2 salt below. Interpretation of cores and results of downhole electromagnetic and borehole gravimetric measurements show that there is a large area around Erslev 2 which consists of very pure sodium chloride with traces of anhydrite (calcium, sulphate) 1-3%. This area is used for the repository design and safety evaluation. The hydrological conditions existing in the strata above the salt dome (caprock) have been investigated with the help of four hydrogeological wells, placed two each, on two different sites. The cores themselves were taken at various depths in all four holes. With these laboratory methods it has been possible to measure data relevant to hydrology - such as porosity and permeability - as well as geochemistry. (BP)

  14. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.

    Directory of Open Access Journals (Sweden)

    Zhengxiu Su

    Full Text Available Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model or sham operation were treated for 2 weeks with a normal-(0.4% NaCl, or high-salt (4% NaCl diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54% phosphopeptides upregulated and 76 (46% phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49% phosphopeptides and downregulation of 88 (51% phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.

  15. Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot

    Directory of Open Access Journals (Sweden)

    Matthew F. Pye

    2018-04-01

    Full Text Available Salt stress predisposes plants to Phytophthora root and crown rot in an abscisic acid (ABA-dependent manner. We used the tomato–Phytophthora capsici interaction to examine zoospore chemoattraction and assessed expression of pathogenesis-related (PR genes regulated by salicylic acid (SA and jasmonic acid (JA following a salt-stress episode. Although salt treatment enhances chemoattraction of tomato roots to zoospores, exudates from salt-stressed roots of ABA-deficient mutants, which do not display the predisposition phenotype, have a similar chemoattraction as exudates from salt-stressed, wild-type roots. This suggests that ABA action during predisposing stress enhances disease through effects on plant responses occurring after initial contact and during ingress by the pathogen. The expression of NCED1 (ABA synthesis and TAS14 (ABA response in roots generally corresponded to previously reported changes in root ABA levels during salt stress onset and recovery in a pattern that was not altered by infection by P. capsici. The PR genes, P4 and PI-2, hallmarks in tomato for SA and JA action, respectively, were induced in non-stressed roots during infection and strongly suppressed in infected roots exposed to salt-stress prior to inoculation. However, there was a similar proportional increase in pathogen colonization observed in salt-stressed plants relative to non-stressed plants in both wild-type and a SA-deficient nahG line. Unlike the other tomato cultivars used in this study that showed a strong predisposition phenotype, the processing tomato cv. ‘Castlemart’ and its JA mutants were not predisposed by salt. Salt stress predisposition to crown and root rot caused by P. capsici appears to be strongly conditioned by ABA-driven mechanisms in tomato, with the stress compromising SA-and JA-mediated defense-related gene expression during P. capsici infection.

  16. Microbiology of solar salt ponds

    Science.gov (United States)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  17. Recovery from episodic acidification delayed by drought and high sea salt deposition

    Directory of Open Access Journals (Sweden)

    H. Laudon

    2008-03-01

    Full Text Available For the prediction of episodic acidification large uncertainties are connected to climatic variability and its effect on drought conditions and sea-salt episodes. In this study data on 342 hydrological episodes in 25 Swedish streams, sampled over 10 years, have been analyzed using a recently developed episode model. The results demonstrate that drought is the most important factor modulating the magnitude of the anthropogenic influence on pH and ANC during episodes. These modulating effects are especially pronounced in southern and central Sweden, where the historically high acid deposition has resulted in significant S pools in catchment soils. The results also suggest that the effects of episodic acidification are becoming less severe in many streams, but this amelioration is less clear in coastal streams subject to high levels of sea-salt deposition. Concurrently with the amelioration of the effects of episodic acidification, regional climate models predict that temperatures will increase in Sweden during the coming decades, accompanied by reductions in summer precipitation and more frequent storms during fall and winter in large areas of the country. If these predictions are realized delays in streams' recovery from episodic acidification events can be expected.

  18. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  1. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This report is the so-called Synthesis report 1985-1989 of the international HAW project performed in the 800 m level of the ASSE salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt-deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radioactivos S.A (ENRESA) and the Netherlands Energy Research Foundation (ECN). During the years 1985 to 1989 the underground test field was excavated and after some delays in the licensing procedure, the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 32 refs; 76 figs., 11 tabs

  2. Relationship Between Salt Intake, Salt-Taste Threshold and Blood ...

    African Journals Online (AJOL)

    Conclusion: Sodium intake measured as 24-hour urinary sodium is increased in subjects with hypertension attesting to sodium intake as a risk factor for the development of high blood pressure. Subjects with high salt taste threshold also have increased urinary sodium excretion which may predispose them to deveploment ...

  3. Bile salts as semiochemicals in fish

    Science.gov (United States)

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  4. Context-driven Salt Seeking Test (Rats)

    Science.gov (United States)

    Chang, Stephen E.; Smith, Kyle S.

    2018-01-01

    Changes in reward seeking behavior often occur through incremental learning based on the difference between what is expected and what actually happens. Behavioral flexibility of this sort requires experience with rewards as better or worse than expected. However, there are some instances in which behavior can change through non-incremental learning, which requires no further experience with an outcome. Such an example of non-incremental learning is the salt appetite phenomenon. In this case, animals such as rats will immediately seek out a highly-concentrated salt solution that was previously undesired when they are put in a novel state of sodium deprivation. Importantly, this adaptive salt-seeking behavior occurs despite the fact that the rats never tasted salt in the depleted state, and therefore never tasted it as a highly desirable reward. The following protocol is a method to investigate the neural circuitry mediating adaptive salt seeking using a conditioned place preference (CPP) procedure. The procedure is designed to provide an opportunity to discover possible dissociations between the neural circuitry mediating salt seeking and salt consumption to replenish the bodily deficit after sodium depletion. Additionally, this procedure is amenable to incorporating a number of neurobiological techniques for studying the brain basis of this behavior.

  5. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress.

    Science.gov (United States)

    Al-Quraan, Nisreen A; Sartawe, Fatima Al-Batool; Qaryouti, Muien M

    2013-07-15

    The molecular response of plants to abiotic stresses has been considered a process mainly involved in the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings have suggested new layers of regulation and complexity. Upstream molecular mechanisms are involved in the plant response to abiotic stress. Plants gain resistance to abiotic stress by reprogramming metabolism and gene expression. GABA is proposed to be a signaling molecule involved in nitrogen metabolism, regulating the cytosolic pH, and protection against oxidative damage in response to various abiotic stresses. The aim of our study was to examine the role of the GABA shunt pathway-specific response in five wheat (Triticum aestivum L.) cultivars (Hurani 75, Sham I, Acsad 65, Um Qayes and Nodsieh) to salt and osmotic stress in terms of seed germination, seedling growth, oxidative damage (malondialdehyde (MDA) accumulation), and characterization of the glutamate decarboxylse gene (GAD) m-RNA level were determined using RT-PCR techniques. Our data showed a marked increase in GABA, MDA and GAD m-RNA levels under salt and osmotic stress in the five wheat cultivars. Um Qayes cultivar showed the highest germination percentage, GABA accumulation, and MDA level under salt and osmotic stresses. The marked increase in GAD gene expression explains the high accumulation of the GABA level under both stresses. Our results indicated that the GABA shunt is a key signaling and metabolic pathway that allows wheat to adapt to salt and osmotic stress. Based on our data, the Um Qayes wheat cultivar is the cultivar most recommended to be grown in soil with high salt and osmotic contents. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  7. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    International Nuclear Information System (INIS)

    Case, J. T.; Renfro, M. L.

    1998-01-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team down-selected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their down-selection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives

  8. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling.

    Science.gov (United States)

    Feng, Wei; Kita, Daniel; Peaucelle, Alexis; Cartwright, Heather N; Doan, Vinh; Duan, Qiaohong; Liu, Ming-Che; Maman, Jacob; Steinhorst, Leonie; Schmitz-Thom, Ina; Yvon, Robert; Kudla, Jörg; Wu, Hen-Ming; Cheung, Alice Y; Dinneny, José R

    2018-03-05

    Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  10. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

    Science.gov (United States)

    Lenton, Samuel; Walsh, Danielle L; Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2016-07-21

    Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.

  11. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    Science.gov (United States)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  12. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    Science.gov (United States)

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  13. Destruction of high explosives and wastes containing high explosives using the molten salt destruction process

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.

    1992-01-01

    This paper reports the Molten Salt Destruction (MSD) Process which has been demonstrated for the destruction of HE and HE-containing wastes. MSD has been used by Rockwell International and by Anti-Pollution Systems to destroy hazardous wastes. MSD converts the organic constituents (including the HE) of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. In the case of HE-containing mixed wastes, any actinides in the waste are retained in the molten salt, thus converting the mixed wastes into low-level wastes. (Even though the MSD process is applicable to mixed wastes, this paper will emphasize HE-treatment.) The destruction of HE is accomplished by introducing it, together with oxidant gases, into a crucible containing a molten salt, such as sodium carbonate, or a suitable mixture of the carbonates of sodium, potassium, lithium and calcium. The temperature of the molten salt can be between 400 to 900 degrees C. The combustible organic components of the waste react with oxygen to produce carbon dioxide, nitrogen and steam

  14. Symbiotic molten-salt systems coupled with accelerator molten-salt breeder (AMSB) or inertial-confined fusion hybrid molten-salt breeder (IHMSB) and their comparison

    International Nuclear Information System (INIS)

    Furukawa, K.

    1984-01-01

    Two types of breeder systems are proposed. One is the combined system of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), and the other is the combined system of Inertial-confined Fusion Hybrid Molten-Salt Breeder (IHMSB) and modified MSCR. Both apply the molten-fluorides and have technically deep relations. AMSB would be much simpler and have already high technical feasibility. This will become economical the Th breeder system having a doubling time shorter than ten years and distributing any size of power stations MSCR. (orig.) [de

  15. Experimental and modelling study of pulsed optically stimulated luminescence in quartz, marble and beta irradiated salt

    International Nuclear Information System (INIS)

    Pagonis, V; Mian, S M; Barnold, C; Chithambo, M L; Christensen, E

    2009-01-01

    Optical stimulation luminescence (OSL) signals can be obtained using continuous-wave optical stimulation (CW-OSL), the linear modulation optical stimulation method (LM-OSL) and the time-resolved optical stimulation (TR-OSL) method. During TR-OSL measurements, the stimulation and emission of luminescence are experimentally separated in time by using short light pulses. This paper presents new TR-OSL data for annealed high purity synthetic quartz, for marble and for commercially available iodized salt. A new type of behaviour for TR-OSL signals for quartz and iodized salt is presented, in which the OSL signal exhibits a nonmonotonic behaviour during optical stimulation; this type of behaviour has not been reported previously in the literature for quartz. Furthermore, a luminescence component with very long luminescence lifetime is reported for some quartz aliquots, which may be due to the presence of a delayed-OSL (DOSL) mechanism in quartz. A new kinetic model for TR-OSL in quartz is presented, which is based on a main electron trap and on several luminescence centres. The model is used to quantitatively fit several sets of experimental data of pulsed optically stimulated luminescence from quartz.

  16. Data Capture Technique for High Speed Signaling

    Science.gov (United States)

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  17. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  18. A new thermal conductivity probe for high temperature tests for the characterization of molten salts

    Science.gov (United States)

    Bovesecchi, G.; Coppa, P.; Pistacchio, S.

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  19. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress.

  20. One-azabicyclic compounds. 22. Stereochemistry and /sup 13/C NMR spectra of salts of pyrrolizidine and its homologs with protonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, O.A.; Skvortsov, I.M.

    1986-06-01

    /sup 13/C NMR spectra were obtained for pyrrolizidinium salts and their homologs and their signals were assigned. With the exception of highly strained cis-3,8-H-cis-5,8-H-3,5-dimethylpyrrolizidine (VI), all the bases studied upon their direct mixing with CF/sub 3/CO/sub 2/H form salts only with cis-fused rings in the cation. Mixtures of salts with cis- and trans-fused pyrrolizidinium fragments are formed upon the reaction of cis-3,8-H-methyl- (III) and cis-3,8-H-cis-5,8-H-3,5-dimethylpyrrolizidine (VI) under conditions close to those for kinetically-controlled amine protonation. The /sup 13/C NMR spectra of the isomeric pyrrolizidinium salts obtained as a result of the absorption of base VI by sulfuric acid were used to evaluate the conformational equilibrium in the starting compound VI. The /sup 13/C NMR chemical shifts of unsubstituted trans-fused pyrrolizidinium salts were predicted.

  1. Salt Removal from the Uranium Deposits of Electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  2. Salt Removal from the Uranium Deposits of Electrorefiner

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G.

    2010-01-01

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  3. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  4. Development of an integrated crucible for the salt separation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Pyroprocessing has been developed for the recovery of actinide elements from spent fuel due to its advantages. Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode process sing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the integrated salt separation system was developed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits

  5. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  6. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  7. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    Science.gov (United States)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  8. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Field experiments in salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.

    1986-01-01

    Field experiments in salt formations started as early as 1965 with Project Salt Vault in the Lyons Mine, Kansas, U.S.A., and with the purchase of the Asse salt mine by the German Federal Government. Underground tests concentrated on the heat dissipation around buried high-level radioactive wastes and the geomechanical consequences of their disposal. Near-field investigations cover the properties of water and gas release, radiolysis and corrosion. Further objectives of field experiments are the development and underground testing of a handling system for high-level wastes. The performance of an underground test disposal for such wastes is not only considered to be necessary for technical and scientific reasons but also for improving public acceptance of the concept of radioactive waste disposal. (author)

  10. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  11. Reconsolidated Salt as a Geotechnical Barrier

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Gadbury, Casey

    2015-01-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  12. Reconsolidated Salt as a Geotechnical Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gadbury, Casey [USDOE Carlsbad Field Office, NM (United States)

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  13. High-sensitivity detection of polysaccharide using phosphodiesters quaternary ammonium salt as probe by decreased resonance light scattering.

    Science.gov (United States)

    Chen, Zhanguang; Liu, Guoliang; Chen, Maohuai; Wu, Mingyao

    2009-07-15

    Phosphodiesters quaternary ammonium salt (PQAS) displayed quite intense light scattering in aqueous solution under the optimum condition. In addition, the resonance light scattering (RLS) signal of PQAS was remarkably decreased after adding trace amount polysaccharide with the maximum peak located at 391 nm. It was found that the decreased RLS intensity of the PQAS-PPGL system (DeltaI(RLS)) was in proportion to PPGL concentration in the range of 0.1-30 ng mL(-1), with a lower detection limit of 0.05 ng mL(-1). Based on this rare decreased RLS phenomenon, the novel method of the determination of purified polysaccharide of Gracilaria Lemaneiformis (PPGL) at nanogram level was proposed in this contribution. The proposed approach was used to determine purified polysaccharide extracted from Gracilaria Lemaneiformis with satisfactory results. Compared with the reported polysaccharide assays, this proposed method has good selectivity, high sensitivity and is especially simple and convenient. Moreover, the mechanism of the reaction between PQAS and polysaccharide was investigated by RLS, fluorescence, and fluorescence lifetime spectra.

  14. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    International Nuclear Information System (INIS)

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  15. Sources of household salt in South Africa.

    Science.gov (United States)

    Jooste, Pieter L

    2005-01-01

    Marketing of non-iodized salt through unconventional distribution channels is one of the factors weakening the national salt iodization program in South Africa. The aim of this study was therefore to quantify the various sources of household salt, and to relate this information to socio-economic status. Questionnaire information was collected by personal interview during home visits from a multistage, cluster, probability sample of 2164 adults representative of the adult population. Nationally 77.7% of households obtained their table salt from the typical food shops distributing iodized salt. However, in the nine different provinces between 8 and 37.3% of households used unconventional sources, distributing mainly non-iodized salt, to obtain their household salt. These alternative sources include distributors of agricultural salt, small general dealer shops called spaza shops, in peri-urban and rural townships, street vendors and salt saches placed in the packaging of maize meal bags. Country-wide around 30% of low socio-economic households obtained their salt from unconventional sources compared to less than 5% in high socio-economic households, emphasizing the vulnerability of low socio-economic groups to the use of non-iodized salt. Intervention strategies should mobilize all role players involved in unconventional marketing channels of household salt to provide only iodized salt to consumers, as required by law.

  16. Identification and characterization of microRNAs related to salt stress in broccoli, using high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai

    2014-09-03

    MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive

  17. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  18. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts

    Directory of Open Access Journals (Sweden)

    Verónica Urdaneta

    2017-10-01

    Full Text Available Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome–bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.

  19. Evaluation of barley (hordeum vulgare l.) germplasm for high forage production under salt stress

    International Nuclear Information System (INIS)

    Saleem, A.; Qurainy, F.A.; Akram, N.A.

    2014-01-01

    To explore high biomass producing salt tolerant cultivars of a potential forage crop barley (Hordeum vulgare L.), 30-day old plants of 105 different accessions from different origin were subjected to saline and non-saline (control) conditions for 45 days. Salinity stress (150 mM NaCl) markedly suppressed plant growth (shoot and/or root fresh and dry weights), chlorophyll pigments (a and b), internal CO/sub 2/ concentration, stomatal conductance, rate of transpiration and photosynthesis, while a considerable salt-induced increase was observed in all fluorescence related attributes including efficiency of photosystem-II (Fv/Fm), co-efficient of non-photochemical quenching (QN), photochemical quenching (QP), and non-photochemical quenching (NPQ) in all 105 accessions of barley. The response of all 105 barley accessions to salt stress varied significantly for all the morpho-physiological attributes determined in the present study. Overall, on the basis of shoot and root dry weights, accessions, 4050, 4053, 4056, 4163, 4228, 4229, 4244, 4245, 4290, 4414, 4415, 4427, 4452, Mahali, Jesto, 4165, 4229, 4249, 4405, 4409, 4426, 4456, and Giza 123 were found superior while accessions, 4245, 4158, 4166, 4246, 4406, 4423, 4441, 4442 4447, 4453 and 4458 inferior under saline conditions. (author)

  20. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    García-Pérez, J V; De Prados, M; Pérez-Muelas, N; Cárcel, J A; Benedito, J

    2012-01-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p 2 = 0.975) and moisture (R 2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  1. SALT, HISTORY AND CULTURE IN THE WESTERN GRASSLANDS ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    commodity in the past and explains the high value that was attached to it by all and ... traditional rulers stored salt in locally made containers and made it available when this .... agricultural life was linked to the availability of salt. Salt therefore.

  2. Development of strong-sense validation benchmarks for the fluoride salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Blandford, E. D.

    2012-01-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) is a class of reactor concepts currently under development for the U. S. Dept. of Energy. The FHR is defined as a Generation IV reactor that features low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. Recent experimental work using simulant fluids have been performed to demonstrate key 'proof of principle' FHR concepts and have helped inform the reactor design process. An important element of developing FHR technology is to sufficiently validate the predictive accuracy of the computer codes used to model system response. This paper presents a set of thermal-hydraulics experiments, defined as Strong-Sense Benchmarks (SSB's), which will help establish the FHR validation domain for simulant fluid suitability. These SSB's are more specifically designed to investigate single-phase natural circulation which is the dominant mode of FHR decay heat removal during off-normal conditions. SSB s should be viewed as engineering reference standards and differ from traditional confirmatory experiments in the sense that they are more focused on fundamental physics as opposed to reproducing high levels of physical similarity with the prototypical design. (authors)

  3. Bath Salts

    Science.gov (United States)

    ... deaths and been blamed for a handful of suicides and murders. Two of the chemicals in bath salts (mephedrone and MDPV) are Schedule I class drugs. That means they have a high potential for abuse and no accepted medical use . People who are ...

  4. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  5. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Elkassabgi, Yousri M.; De Leon, Gerardo I.; Fetterly, Caitlin N.; Ramos, Jorge A.; Cunningham, Richard Burns

    2012-01-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  6. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt-Fed Adult Wistar Rats.

    Science.gov (United States)

    Olushola, Ayoola I; Aderibigbe, Komolafe O; Stephen, Saka O; Ayodeji, Odukoya S

    2017-10-01

    The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt-fed adult Wistar rats in this study. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results revealed that concentration of potassium ion and nitric oxide was significantly lower ( P < .05) in high salt-fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt-fed group while P americana prevented biochemical perturbations in other experimental groups. In conclusion, high salt-diet induced biochemical alterations which were significantly protected by oral administration of P americana extract.

  7. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus.

    Science.gov (United States)

    Rivera-Cancel, Giomar; Orth, Kim

    2017-07-04

    Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins.

  8. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bile salts act as a stressor to bacteria that transit the intestinal tract. Enteric pathogens have hijacked bile as an intestinal signal to regulate virulence factors. We recently demonstrated that Vibrio parahemolyticus senses bile salts via a heterodimeric receptor formed by the periplasmic domains of inner-membrane proteins VtrA and VtrC. Crystal structures of the periplasmic complex reveal that VtrA and VtrC form a β-barrel that binds bile salts in its hydrophobic interior to activate the VtrA cytoplasmic DNA-binding domain. Proteins with the same domain arrangement as VtrA and VtrC are widespread in Vibrio and related bacteria, where they are involved in regulating virulence and other unknown functions. Here we discuss our findings and review current knowledge on VtrA and VtrC homologs. We propose that signaling by these membrane-bound transcription factors can be advantageous for the regulation of membrane and secretory proteins. PMID:28129014

  9. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  10. Dietary salt reduction for control of hypertension

    Directory of Open Access Journals (Sweden)

    Richard Tjan

    2016-02-01

    Full Text Available In developed as well as developing countries, the four main factors affecting blood pressure are high salt intake, low potassium intake, overweight, and low physical activity level. This is also true for the increase in blood pressure with advancing age, occurring in all societies. It is now accepted that excess dietary salt raises blood pressure levels, whereas dietary salt reduction reduces blood pressure and prevents vascular complications.(1 The effect of salt on blood pressure is presumably due to the inability of the kidneys to excrete large amounts of salt, as humans are evolutionary adapted to ingest and excrete less than 1 gram of salt per day.(2 In this connection it should be noted that the more important element in common salt (sodium chloride is the sodium ion, and any restrictions applying to common salt also apply to all food items that contain sodium ions, such as sodium glutamate and baking soda.

  11. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    Science.gov (United States)

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-07-22

    High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011-2016) and differences in estimated salt intake over a 10-year period (2006-2015). To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. In the Netherlands, the salt content of bread, certain sauces, soups

  12. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake

    Directory of Open Access Journals (Sweden)

    Elisabeth H. M. Temme

    2017-07-01

    Full Text Available Background and objectives. High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011–2016 and differences in estimated salt intake over a 10-year period (2006–2015. Methods. To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011, and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. Results. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council

  13. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  14. Comparison of temperature calculations for an arbitrary high-level waste disposal configuration in salt formations

    International Nuclear Information System (INIS)

    Kevenaar, J.W.A.M.; Janssen, L.G.J.; Ploumen, P.; Winske, P.

    1979-05-01

    The objective of this report is the comparison of the results of temperature analyses for an arbitrary high-level radioactive waste disposal configuration in salt formations. The analyses were carried out at the RWTH and ECN. The computer programs used are based on finite difference and finite element techniques. From the local temperature analyses that were intended to check the solution techniques, it could be concluded that both finite difference and finite elements are capable to analyse this type of problems. From the global temperature analyses it could be concluded that both analysis approaches: temperature dependent and iteratively determined temperature independent material properties, are suited to analyse the global temperature distribution in the salt formation

  15. Does salt have a permissive role in the induction of puberty?

    Science.gov (United States)

    Pitynski, Dori; Flynn, Francis W; Skinner, Donal C

    2015-10-01

    Puberty is starting earlier than ever before and there are serious physiological and sociological implications as a result of this development. Current research has focused on the potential role of high caloric, and commensurate high adiposity, contributions to early puberty. However, girls with normal BMI also appear to be initiating puberty earlier. Westernized diets, in addition to being high in fat and sugar, are also high in salt. To date, no research has investigated a link between elevated salt and the reproductive axis. We hypothesize that a high salt diet can result in an earlier onset of puberty through three mechanisms that are not mutually exclusive. (1) High salt activates neurokinin B, a hormone that is involved in both the reproductive axis and salt regulation, and this induces kisspeptin release and ultimate activation of the reproductive axis. (2) Vasopressin released in response to high salt acts on vasopressin receptors expressed on kisspeptin neurons in the anteroventral periventricular nucleus, thereby stimulating gonadotropin releasing hormone and subsequently luteinizing hormone secretion. (3) Salt induces metabolic changes that affect the reproductive axis. Specifically, salt acts indirectly to modulate adiposity, ties in with the obesity epidemic, and further compounds the pathologic effects of obesity. Our overall hypothesis offers an additional cause behind the induction of puberty and provides testable postulates to determine the mechanism of potential salt-mediated affects on puberty. Copyright © 2015. Published by Elsevier Ltd.

  16. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    International Nuclear Information System (INIS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-01-01

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH − ligand generates and adsorbs in a certain scale because of abundant OH − on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  17. Temperature calculations on different configurations for disposal of high-level reprocessing waste in a salt dome model

    International Nuclear Information System (INIS)

    Hamstra, J.; Kevenaar, J.W.A.M.

    1978-06-01

    A medium size salt dome is considered as a structure in which a repository can be located for all radioactive wastes to be produced within the scope of a postulated nuclear power program. A dominating design factor for the lay-out of such a waste repository is the temperature distribution in the salt dome resulting from decay heat released from the buried solidified high-level reprocessing waste. Two numerical models are presented for the calculation of both global and local rock salt temperatures. The results of calculations performed with these models are demonstrated to be compatible. Rock salt temperatures related to several types of burial configurations, ranging from two layer configurations with various vertical distances between the layers via a three and a four layer repository to deep bore hole concepts varying from 100 to 600 m bore hole depth, can therefore be calculated with one rather simple unit cell model. The results of these calculations indicate that rock salt temperatures can be kept within acceptable limits to realize a repository using standard mining techniques. The temperatures at mine galery level prove to be a dominating factor in the selection of a repository configuration. More detailed calculations of these temperatures taking into account the loading sequence and the cooling capacity of the mine ventilation are recommended. Finally the apparent advantages of a deep bore hole concept emphasize the need for R and D work with respect to advanced drilling techniques in order to achieve deep dry disposal bore holes that can be realized from a burial mine in the salt dome. (Auth.)

  18. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  19. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H

    2006-10-01

    We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.

  20. Testing of Air Pulse Agitators to Support Design of Savannah River Site Highly Radioactive Processing at the Salt Waste Processing Facility

    International Nuclear Information System (INIS)

    Gallego, R.M.; Stephens, A.B.; Wilkinson, R.H.; Dev, H.; Suggs, P.C.

    2006-01-01

    The Salt Waste Processing Facility (SWPF) is intended to concentrate the highly radioactive constituents from waste salt solutions at the Savannah River Site (SRS). Air Pulse Agitators (APAs) were selected for process mixing in high-radiation locations at the SWPF. This technology has the advantage of no moving parts within the hot cell, eliminating potential failure modes and the need for maintenance within the high-radiation environment. This paper describes the results of APA tests performed to gain operational and performance data for the SWPF design. (authors)

  1. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  2. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+ /K+ and antioxidant competence.

    Science.gov (United States)

    Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei

    2017-02-01

    High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na + but higher K + accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na + /K + homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance. © 2016 Scandinavian Plant Physiology Society.

  3. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, H.

    2016-01-01

    Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PBFHR) is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF_2) salt Temperature Reactivity Coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern) and two kinds of reflector materials (SiC and graphite). This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong "9Be(n,2n) reaction and low neutron absorption of "6Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows a good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel. (A.C)

  4. Cathodic processes in high-temperature molten salts for the development of new materials processing methods

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2017-01-01

    Molten salts play an important role in the processing of a range of commodity materials. This includes the large-scale production of iron, aluminium, magnesium and alkali metals as well as the refining of nuclear fuel materials. This presentation focuses on two more recent concepts in which the cathodic reactions in molten salt electrolytic cells are used to prepare high-value-added materials. Both were developed and advanced at the Department of Materials Science and Metallurgy at the University of Cambridge and are still actively being pursued. One concept is now generally known as the FFC-Cambridge process. The presentation will highlight the optimisation of the process towards high selectivities for tubes or particles depict a modification of the method to synthesize tin-filled carbon nanomaterial, and illustrate the implementation of a novel type of process control to enable the preparation of gramme quantities of material within a few hours with simple laboratory equipment. Also discussed will be the testing of these materials in lithium ion batteries

  5. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  6. The microRNA390/TRANS ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway.

    Science.gov (United States)

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-05-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-acting small interference RNAs (tasiRNAs) and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was significantly inhibited by the presence of salt, and transcript abundance was dramatically decreased in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interference ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNAi lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  7. Long-distance flights and high-risk breeding by nomadic waterbirds on desert salt lakes.

    Science.gov (United States)

    Pedler, Reece D; Ribot, Raoul F H; Bennett, Andrew T D

    2018-02-01

    Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling

  8. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  9. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  10. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  11. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    Science.gov (United States)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    , displacement rate or lithological parameters of the cover, our models suggest that the reversal of material flow usually requires vertical displacements between 700 and 2000 m. The transition from downward to upward flow occurs at smaller fault displacements, if the initial overburden thickness and the overburden density are high and if sedimentation rate keeps pace with the displacement rate of the sub-salt normal fault.

  12. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  13. Hydroacoustic monitoring of a salt cavity: an analysis of precursory events of the collapse

    Science.gov (United States)

    Lebert, F.; Bernardie, S.; Mainsant, G.

    2011-09-01

    One of the main features of "post mining" research relates to available methods for monitoring mine-degradation processes that could directly threaten surface infrastructures. In this respect, GISOS, a French scientific interest group, is investigating techniques for monitoring the eventual collapse of underground cavities. One of the methods under investigation was monitoring the stability of a salt cavity through recording microseismic-precursor signals that may indicate the onset of rock failure. The data were recorded in a salt mine in Lorraine (France) when monitoring the controlled collapse of 2 000 000 m3 of rocks surrounding a cavity at 130 m depth. The monitoring in the 30 Hz to 3 kHz frequency range highlights the occurrence of events with high energy during periods of macroscopic movement, once the layers had ruptured; they appear to be the consequence of the post-rupture rock movements related to the intense deformation of the cavity roof. Moreover the analysis shows the presence of some interesting precursory signals before the cavity collapsed. They occurred a few hours before the failure phases, when the rocks were being weakened and damaged. They originated from the damaging and breaking process, when micro-cracks appear and then coalesce. From these results we expect that deeper signal analysis and statistical analysis on the complete event time distribution (several millions of files) will allow us to finalize a complete typology of each signal families and their relations with the evolution steps of the cavity over the five years monitoring.

  14. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  15. High-speed railway signal trackside equipment patrol inspection system

    Science.gov (United States)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  16. Neutronics of a liquid salt cooled - very high temperature reactor

    International Nuclear Information System (INIS)

    Zakova, J.

    2007-01-01

    During last few years, the interest in the innovative, Liquid Salt cooled - Very High Temperature Reactor (LS-VHTR), has been growing. The preconceptual design of the LS-VHTR was suggested in Oak Ridge National Laboratory (ORNL) [1] and nowadays, several research institutions contribute to the development of this concept. The LS-VHTR design utilises a prismatic, High Temperature Reactor (HTR) fuel [2] in combination with liquid salt as a coolant. This connection of high-performance fuel and a coolant with enhanced heat transfer abilities enables efficient and economical operation. Main objective of the LS-VHTR operation may be either an efficient electricity production or a heat supply for a production of hydrogen or, combination of both. The LS-VHTR is moderated by graphite. The graphite matrix of the fuel blocks, as well as the inner and outer core reflectors serve as a thermal buffer in case of an accident, and they provide a strong thermal feedback during normal reactor operation. The high inherent safety of the LS-VHTR meets the strict requirements on future reactor systems, as defined by the Gen IV project. This work, purpose, scope, contribution to the state-of-art: The design, used in the present work is based on the first ORNL suggestion [1]. Recent study is focused on comparison of the neutronic performance of two types of fuel in the LS-VHTR core, whereas, in all previous works, only uranium fuel has been investigated. The first type of fuel, which has been employed in the present analysis, is based on the spent Light Water Reactor (LWR) fuel, whereas the second one consists of enriched uranium oxide. The results of such a comparison bring a valuable knowledge about limits and possibilities of the LS-VHTR concept, when employed as a spent fuel burner. Method:It is used a 3-D drawing of the LS-VHTR core, which contains 324x10 hexagonal fuel blocks. Each fuel block contains 216x10 fuel pins, which consists of TRISO particles incorporated into a graphite

  17. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  18. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  19. Modeling High-Dimensional Multichannel Brain Signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert J.; Ombao, Hernando

    2017-01-01

    aspects: first, there are major statistical and computational challenges for modeling and analyzing high-dimensional multichannel brain signals; second, there is no set of universally agreed measures for characterizing connectivity. To model multichannel

  20. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  1. Performance assessment instrument to assess the senior high students' psychomotor for the salt hydrolysis material

    Science.gov (United States)

    Nahadi, Firman, Harry; Yulina, Erlis

    2016-02-01

    The purposes of this study were to develop a performance assessment instrument for assessing the competence of psychomotor high school students on salt hydrolysis concepts. The design used in this study was the Research & Development which consists of three phases: development, testing and application of instruments. Subjects in this study were high school students in class XI science, which amounts to 93 students. In the development phase, seven validators validated 17 tasks instrument. In the test phase, we divided 19 students into three-part different times to conduct performance test in salt hydrolysis lab work and observed by six raters. The first, the second, and the third groups recpectively consist of five, six, and eight students. In the application phase, two raters observed the performance of 74 students in the salt hydrolysis lab work in several times. The results showed that 16 of 17 tasks of performance assessment instrument developed can be stated to be valid with CVR value of 1,00 and 0,714. While, the rest was not valid with CVR value was 0.429, below the critical value (0.622). In the test phase, reliability value of instrument obtained were 0,951 for the five-student group, 0,806 for the six-student group and 0,743 for the eight-student group. From the interviews, teachers strongly agree with the performance instrument developed. They stated that the instrument was feasible to use for maximum number of students were six in a single observation.

  2. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  3. Thermal conductivity of crushed salt

    International Nuclear Information System (INIS)

    Kuehn, K.

    Heat transfer through an annular space filled with crushed salt depends primarily on the thermal conductivity, lambda, of the material. This report gives a formula with which lambda can be computed. The formula includes two quantities that can be influenced through screening of the salt smalls: the porosity, psi, and the fraction, alpha, of the more highly resistive heat-flow paths. The report computes and presents graphically the thermal conductivities for various values of psi and alpha. Heat-transfer properties are computed and compared for an annular space filled with crushed salt and for an air gap. The comparison shows that the properties of the annular space are larger only up to a certain temperature, because the properties of the air gap increase exponentially while those f the annular space increase only in an approximately linear way. Experimental results from Project Salt Vault in the U.S. are in good agreement with the calculations performed. Trials in Temperature Experimental Field 2 at the Asse II salt mine will provide an additional check on the calculations. 3 figures, 3 tables

  4. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  5. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    International Nuclear Information System (INIS)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs

  6. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  7. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  8. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  9. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    Science.gov (United States)

    Villarino, Gonzalo H.; Hu, Qiwen; Scanlon, Michael J.; Mueller, Lukas; Mattson, Neil S.

    2017-01-01

    One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq) has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1), a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species. PMID:28771200

  10. Dissecting Tissue-Specific Transcriptomic Responses from Leaf and Roots under Salt Stress in Petunia hybrida Mitchell

    Directory of Open Access Journals (Sweden)

    Gonzalo H. Villarino

    2017-08-01

    Full Text Available One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1, a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species.

  11. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied

  12. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  13. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    International Nuclear Information System (INIS)

    Peterson, Per; Greenspan, Ehud

    2015-01-01

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3 . This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel

  14. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  15. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  16. Possible Correlation Between Bile Salt Hydrolysis and AHL Deamidation: Staphylococcus epidermidis RM1, a Potent Quorum Quencher and Bile Salt Hydrolase Producer.

    Science.gov (United States)

    Mukherji, Ruchira; Prabhune, Asmita

    2015-05-01

    The aim of the present work was to isolate a bile salt hydrolase (BSH) producer from fermented soy curd and explore the ability of the BSH produced to cleave bacterial quorum sensing signals. Bacterial isolates with possible ability to deconjugate bile salts were enriched and isolated on De Man, Rogosa and Sharpe (MRS) medium containing 0.2% bile salts. BSH-producing positive isolate with orange-pink-pigmented colonies was isolated and was identified as a strain of Staphylococcus epidermidis using biochemical and phylogenetic tools. S. epidermidis RM1 was shown to possess both potent BSH and N-acyl homoserine lactone (AHL) cleavage activity. Genetic basis of this dual-enzyme activity was explored by means of specific primers designed using S. epidermidis ATCC 12228 genome as template. It was observed that a single enzyme was not responsible for both the activity. Two different genetic elements corresponding to each of the enzymatic activity were successfully amplified from the genomic DNA of the isolate.

  17. Clinical significance of pontine high signals identified on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masaki; Takahashi, Akira (Nagoya Univ. (Japan). Faculty of Medicine); Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro

    1993-07-01

    Spin-echo magnetic resonance imaging (MRI) was evaluated to 530 cases in order to investigate the clinical significance of pontine high signals. The subjects comprised 109 cases of pontine infarction with high signal on T[sub 2]-weighted image and low signal on T[sub 1]-weighted image (PI group), 145 of pontine high signal with high signal on T[sub 2]-weighted image but normal signal on T[sub 1]-weighted image (PH group) and 276 of age-matched control without abnormality either on T[sub 1] or T[sub 2]-weighted images (AC group). Subjective complaints such as vertigo-dizziness were more frequent in the PH group than in the PI group. In both PI and groups, periventricular hyperintensity as well as subcortical high signals in the supratentorium were more severe than in the AC group. These degrees were higher in the PI group than in the PH group. In conclusion, PH as well as PI may result from diffuse arteriosclerosis and PH is considered to be an early finding of pontine ischemia. (author).

  18. Clinical significance of pontine high signals identified on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Takahashi, Akira; Arahata, Yutaka; Motegi, Yoshimasa; Furuse, Masahiro.

    1993-01-01

    Spin-echo magnetic resonance imaging (MRI) was evaluated to 530 cases in order to investigate the clinical significance of pontine high signals. The subjects comprised 109 cases of pontine infarction with high signal on T 2 -weighted image and low signal on T 1 -weighted image (PI group), 145 of pontine high signal with high signal on T 2 -weighted image but normal signal on T 1 -weighted image (PH group) and 276 of age-matched control without abnormality either on T 1 or T 2 -weighted images (AC group). Subjective complaints such as vertigo-dizziness were more frequent in the PH group than in the PI group. In both PI and groups, periventricular hyperintensity as well as subcortical high signals in the supratentorium were more severe than in the AC group. These degrees were higher in the PI group than in the PH group. In conclusion, PH as well as PI may result from diffuse arteriosclerosis and PH is considered to be an early finding of pontine ischemia. (author)

  19. LHCb - SALT, a dedicated readout chip for strip detectors in the LHCb Upgrade experiment

    CERN Multimedia

    Swientek, Krzysztof Piotr

    2015-01-01

    Silicon strip detectors in the upgraded Tracker of LHCb experiment will require a new readout 128-channel ASIC called SALT. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of analogue front-end and ultra-low power ($<$0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. A prototype of first 8-channel version of SALT chip, comprising all important functionalities, was submitted. Its design and possibly first tests results will be presented.

  20. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  1. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.4

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with construction, operation and sealing of disposal facilities for high-level waste in a salt dome. It is volume 4 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. The safety investigations were carried out for a deep-hole disposal facility located in the salt dome on Mors. In principle the results of the investigations also apply to a shaft/mine disposal facility. The facility is designed for the disposal of vitrified high-level waste in the shape of glass canisters. There is a low concentration of waste in each canister, approx. 10%. Furthermore, it was selected to place the waste in an intermediate storage for about 40 years prior to its final disposal. Consequently, heat generation in the waste at the time of final disposal will be modest, resulting in low temperature increase in the salt. As an example, the highest temperature increase will be approx. 40 deg. C. and it will occur at the edge of the hole five years after disposal has taken place. Prior to disposal, the glass canisters are encased in steel casks with 15 cm thick walls. Three canisters are placed in each cask, and 215 casks are stacked on top on one another in each deep-hole from a depth of 1200 m to 2500 m underground. The additional encasing is designed to protect the glass from dissolution should any brine reach the disposal facility. Furthermore, the steel cask protects the glass canisters against pressure from the wall of the hole. The technical design of the disposal facility gives it a considerable safety margin against unexpected events. The investigations proved Cretaceous strata to constitute an effective secondary barrier that would prevent radioactive matter from travelling from the underlying disposal facility to the biosphere. (BP)

  2. Salt processed food and gastric cancer in a Chinese population.

    Science.gov (United States)

    Lin, Si-Hao; Li, Yuan-Hang; Leung, Kayee; Huang, Cheng-Yu; Wang, Xiao-Rong

    2014-01-01

    To investigate the association between salt processed food and gastric cancer, a hospital based case-control study was conducted in a high risk area of China. One hundred and seven newly diagnosed cases with histological confirmation of gastric cancer and 209 controls were recruited. Information on dietary intake was collected with a validated food frequency questionnaire. Unconditional logistic regression was applied to estimate the odds ratios with adjustment for other potential confounders. Comparing the high intake group with never consumption of salt processed foods, salted meat, pickled vegetables and preserved vegetables were significantly associated with increased risk of gastric cancer. Meanwhile, salt taste preference in diet showed a dose-response relationship with gastric cancer. Our results suggest that consumption of salted meat, pickled and preserved vegetables, are positively associated with gastric cancer. Reduction of salt and salt processed food in diets might be one practical measure to preventing gastric cancer.

  3. Salt craving: the psychobiology of pathogenic sodium intake.

    Science.gov (United States)

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2008-08-06

    Ionic sodium, obtained from dietary sources usually in the form of sodium chloride (NaCl, common table salt) is essential to physiological function, and in humans salt is generally regarded as highly palatable. This marriage of pleasant taste and physiological utility might appear fortunate--an appealing taste helps to ensure that such a vital substance is ingested. However, the powerful mechanisms governing sodium retention and sodium balance are unfortunately best adapted for an environment in which few humans still exist. Our physiological and behavioral means for maintaining body sodium and fluid homeostasis evolved in hot climates where sources of dietary sodium were scarce. For many reasons, contemporary diets are high in salt and daily sodium intakes are excessive. High sodium consumption can have pathological consequences. Although there are a number of obstacles to limiting salt ingestion, high sodium intake, like smoking, is a modifiable behavioral risk factor for many cardiovascular diseases. This review discusses the psychobiological mechanisms that promote and maintain excessive dietary sodium intake. Of particular importance are experience-dependent processes including the sensitization of the neural systems underlying sodium appetite and the effects of sodium balance on hedonic state and mood. Accumulating evidence suggests that plasticity within the central nervous system as a result of experience with high salt intake, sodium depletion, or a chronic unresolved sodium appetite fosters enduring changes in sodium related appetitive and consummatory behaviors.

  4. Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report

    International Nuclear Information System (INIS)

    Miller, C.M.; Loomis, G.G.; Prewett, S.W.

    1997-01-01

    A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given

  5. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  6. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  7. Fourier transform near-infrared spectroscopy application for sea salt quality evaluation.

    Science.gov (United States)

    Galvis-Sánchez, Andrea C; Lopes, João Almeida; Delgadillo, Ivonne; Rangel, António O S S

    2011-10-26

    Near-infrared (NIR) spectroscopy in diffuse reflectance mode was explored with the objective of discriminating sea salts according to their quality type (traditional salt vs "flower of salt") and geographical origin (Atlantic vs Mediterranean). Sea salts were also analyzed in terms of Ca(2+), Mg(2+), K(+), alkalinity, and sulfate concentrations to support spectroscopic results. High concentrations of Mg(2+) and K(+) characterized Atlantic samples, while a high Ca(2+) content was observed in traditional sea salts. A partial least-squares discriminant analysis model considering the 8500-7500 cm(-1) region permitted the discrimination of salts by quality types. The regions 4650-4350 and 5900-5500 cm(-1) allowed salts classification according to their geographical origin. It was possible to classify correctly 85.3 and 94.8% of the analyzed samples according to the salt type and to the geographical origin, respectively. These results demonstrated that NIR spectroscopy is a suitable and very efficient tool for sea salt quality evaluation.

  8. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan

    2017-03-27

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  9. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert; Ombao, Hernando

    2017-01-01

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  10. Feasibility and antihypertensive effect of replacing regular salt with mineral salt -rich in magnesium and potassium- in subjects with mildly elevated blood pressure

    Directory of Open Access Journals (Sweden)

    Sarkkinen Essi S

    2011-09-01

    Full Text Available Abstract Background High salt intake is linked to hypertension whereas a restriction of dietary salt lowers blood pressure (BP. Substituting potassium and/or magnesium salts for sodium chloride (NaCl may enhance the feasibility of salt restriction and lower blood pressure beyond the sodium reduction alone. The aim of this study was to determine the feasibility and effect on blood pressure of replacing NaCl (Regular salt with a novel mineral salt [50% sodium chloride and rich in potassium chloride (25%, magnesium ammonium potassium chloride, hydrate (25%] (Smart Salt. Methods A randomized, double-blind, placebo-controlled study was conducted with an intervention period of 8-weeks in subjects (n = 45 with systolic (SBP 130-159 mmHg and/or diastolic (DBP 85-99 mmHg. During the intervention period, subjects consumed processed foods salted with either NaCl or Smart Salt. The primary endpoint was the change in SBP. Secondary endpoints were changes in DBP, daily urine excretion of sodium (24-h dU-Na, potassium (dU-K and magnesium (dU-Mg. Results 24-h dU-Na decreased significantly in the Smart Salt group (-29.8 mmol; p = 0.012 and remained unchanged in the control group: resulting in a 3.3 g difference in NaCl intake between the groups. Replacement of NaCl with Smart Salt resulted in a significant reduction in SBP over 8 weeks (-7.5 mmHg; p = 0.016. SBP increased (+3.8 mmHg, p = 0.072 slightly in the Regular salt group. The difference in the change of SBP between study groups was significant (p Conclusions The substitution of Smart Salt for Regular salt in subjects with high normal or mildly elevated BP resulted in a significant reduction in their daily sodium intake as well as a reduction in SBP. Trial Registration ISRCTN: ISRCTN01739816

  11. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  12. Salt tolerance in red clover (Trifolium pratense L.) seedlings

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... This study was conducted to investigate the effect of salt stress on germination of 28 red clover. (Trifolium pratense ... tolerance with the aim of improving crop plants (Zhu,. 2001) or soil .... The interaction of salinity and population in terms of PI ... in shoot growth is probably due to hormonal signals generated ...

  13. Perovskite nickelates as electric-field sensors in salt water

    Science.gov (United States)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  14. A radioactive tracer dilution method to determine the mass of molten salt

    International Nuclear Information System (INIS)

    Lei Cao; Jarrell, Josh; Hardtmayer, D.E.; White, Susan; Herminghuysen, Kevin; Kauffman, Andrew; Sanders, Jeff; Li, Shelly

    2017-01-01

    A new technique for molten salt mass determination, termed radioactive tracer dilution, that uses 22 Na as a tracer was validated at bench scale. It has been a challenging problem to determine the mass of molten salt in irregularly shaped containers, where a highly radioactive, high-temperature molten salt was used to process nuclear spent/used fuel during electrochemical recycling (pyro-processing) or for coolant/fuel salt from molten salt reactors. A radioactive source with known activity is dissolved into the salt. After a complete mixture, a small amount of the salt is sampled and measured in terms of its mass and radioactivity. By finding the ratio of the mass to radioactivity, the unknown salt mass in the original container can be precisely determined. (author)

  15. Comments on a letter by George D. DeBuchananne (US Geological Survey) regarding the use of salt domes for high-level waste disposal

    International Nuclear Information System (INIS)

    1984-08-01

    The US Geological Survey (USGS) concluded in a letter to the US Department of Energy, dated March 7, 1981, that subsurface geologic conditions in bedded salt are more predictable and less complex than those in domal salt. This predictability is equated with the relative suitability of bedded and domal salt as repository host media. This report comments on the USGS letter. The key points made are as follows: Complexities which may exist in the geologic setting of a salt dome (or other potential host medium) should not a priori preclude the dome from being an acceptable host medium for a high-level waste (HLW) repository. Predictability, as used by the USGS, focused on the spatial extrapolation of information on geologic conditions and should not be confused with predicting the performance of a repository. Notwithstanding the general characteristics of bedded and domal salt, there are salt domes whose individual characteristics should make them as acceptable as potential bedded salt areas for HLW repository sites. Complexities which may occur in the geologic setting of a salt dome can be explored and characterized with sufficient accuracy by available techniques

  16. Salt Sensitivity: Challenging and Controversial Phenotype of Primary Hypertension.

    Science.gov (United States)

    Iatrino, Rossella; Manunta, Paolo; Zagato, Laura

    2016-09-01

    Increases in life expectancy and cardiovascular adverse events in patients with hypertension highlight the need for new risk-reduction strategies to reduce the burden of degenerative diseases. Among the environmental factors, high salt consumption is currently considered the most important risk factor of hypertension. However, while high salt intake significantly raises blood pressure in some individuals, others do not show variation or even decrease their blood pressure. This heterogeneity is respectively classified as salt sensitivity and salt resistance. In this review, we propose salt sensitivity as a useful phenotype to unravel the mechanistic complexity of primary hypertension. The individual variability in blood pressure modification in response to salt intake changes derives from the combination of genetic and environmental determinants. This combination of random and non random determinants leads to the development of a personal index of sensitivity to salt. However, those genes involved in susceptibility to salt are still not completely identified, and the triggering mechanisms underlying the following development of hypertension still remain uncovered. One reason might be represented by the absence of a specific protocol, universally followed, for a standard definition of salt sensitivity. Another reason may be linked to the absence of common criteria for patient recruitment during clinical studies. Thus, the generation of a reliable approach for a proper recognition of this personal index of sensitivity to salt, and through it the identification of novel therapeutic targets for primary hypertension, should be one of the aspirations for the scientific community.

  17. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3–LiF salt mixture

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2017-05-01

    Full Text Available Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3–LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6 and eutectic binary (DyF3–LiF salt (25 mol% DyF3 – 75 mol% LiF was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%, electrical resistivity of the die-upset magnet was enhanced to over 400 μΩ.cm compared to 190 μΩ.cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3–LiF salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3–LiF salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3–LiF salt mixture was as good as those of the DyF3-doped magnet.

  18. Skin-associated lymphoid tissues (SALT): origins and functions

    International Nuclear Information System (INIS)

    Streilein, J.W.

    1983-01-01

    The skin has an unusual set of immunologic requirements. It is confronted by a specialized set of pathogenic organisms and environmental chemicals that represent a distinctive spectrum of antigenic specificities. Skin is subjected to physicochemical stresses such as irradiation with ultraviolet light that alter dramatically its immunologic properties. It is proposed that nature has provided skin with a unique collection of lymphoid cells, reticular cells, and organized lymphoid organs to deal with these special demands. Evidence in favor of the existence of skin-associated lymphoid tissues (SALT) includes (1) the cutaneous microenvironment is capable on its own of accepting, processing, and presenting nominal antigen; (2) strategically located peripheral lymph nodes are able to accept immunogenic signals derived from skin; (3) subsets of T lymphocytes display differential affinity for skin and its associated peripheral nodes; and (4) acquisition of this affinity by T cells is determined at least in part by differentiation signals received in situ from resident cutaneous cells. Responsibility for the establishment and integration of SALT rests with keratinocytes, Langerhans cells, and immunocompetent lymphocytes, each of which contributes uniquely to the synthesis. Together they provide skin with immune surveillance that effectively prejudices against the development of cutaneous neoplasms and persistent infection with intracellular pathogens. In patients who have been under long-term immunosuppressive therapy, the large majority of nonlymphoid malignancies arise within the skin, rather than other types of tissues. These data suggest that immune surveillance, once thought to be an immune defense operative in all somatic tissues, is a specialized immune function dedicated to the skin and mediated by SALT

  19. Effect of metal salts in the optical properties of polydiacetylenes

    International Nuclear Information System (INIS)

    Diaz-Ponce, J.A.; Morales-Saavedra, O.G.; Beristain-Manterola, M.F.; Hernandez-Alcantara, J.M.; Ogawa, T.

    2008-01-01

    Films of polydiacetylene (PDA)-containing polyesters with metal salts of Zn, Eu and Gd were prepared. Ultraviolet-visible (UV-VIS) absorption and photoluminescent (PL) spectra indicated that the presence of the metal salts induced a small shift of their maxima to higher and lower energies, respectively. PDAs films with an ester group in allylic position to the conjugated system presented two emission bands. The higher energy emission band was assigned to carbonyl emission and the lower energy emission band to self-trapped excitons (STE). Indeed, the inclusion of metal salts incremented the intensity relation between the higher and lower emission energy bands. On the other hand, Raman spectroscopy measurements performed in PDAs films derived of pentyn-1-ol indicated that the metal salts induced a slight statistical shift in the triple and double bond signals to higher energies. In this way, the intensity variations and band shifts detected by Raman, UV-VIS and PL spectroscopies showed that the presence of metal salts could have a remarkable influence on the energy levels of these PDAs. Nonlinear optical (NLO) third harmonic generation (THG) measurements were performed in order to verify this affirmation as well as the cubic NLO performance of these materials

  20. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  1. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  2. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  3. Genetic engineering to develop salt tolerance in potato: a need of the present time scenario(abstract)

    International Nuclear Information System (INIS)

    Ikram ul Haq; Dahot, M.U.

    2005-01-01

    Of environmental stresses, salinity has negative impacts on agricultural yield throughout the world; affected production is 1% as compared to 3%. Soil salinity affects plant growth and development by way of osmotic stress, injurious effects of toxic Na/sup +/ and Cl/sup -/ ions and to some extent Cl/sup -/ and SO/sub 4//sup 2-/ of Mg//sup 2+/. The plant response to salinity consists of numerous processes that must function in coordination to alleviate both cellular hyper osmolarity and ion disequilibrium. However, cell biology and molecular genetics research is providing new insight into the plant response to salinity and is identifying genetic determinants involved in the salt tolerance. Recent confirmation (Arabidopsis thaliana) to salt tolerance determinants is that mediate cellular ion homeostasis. The transport systems facilitate cellular capacity to utilize Na/sup +/ for osmotic adjustment and growth and the role of the Salt-Overly-Sensitive (SOS) signal transduction pathway in the regulation of ion homeostasis and salt tolerance. The SOS signaling pathway regulates Na/sup +/ and K/sup +/ homeostasis, after Ca/sup 2+/ activation. Furthermore, overexpression of AtNHX1 enhances plant salt tolerance, presumably by increasing vacuolar Na/sup +//H/sup +/ compartmentalization that minimizes the toxic I. accumulation of the ion in the cytosol. The activation of SOS1 (Na/sup +/ efflux) and/or AtNHX1 (Na/sup +/ efflux) so by expression of such transporters enhances salt tolerance in plants. (author)

  4. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...

  5. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  6. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled High Temperature Reactor - 15171

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, Hongjie

    2015-01-01

    Sustainability of thorium fuel in a pebble-bed fluoride salt-cooled high temperature reactor (PB-FHR) is investigated to find the feasible region of high discharge burnup and negative FLiBe (2LiF-BeF 2 ) salt temperature reactivity coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing heavy metal loading and decreasing excessive moderation. In order to analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared 2 refueling schemes (mixing flow pattern and directional flow pattern) and 2 kinds of reflector materials (SiC and graphite). This method has found that the feasible regions of breeding and negative FLiBe TRC is between 20 vol% and 62 vol% heavy metal loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, FLiBe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9 Be(n,2n) reaction and low neutron absorption of 6 Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margins. The greatest challenge of this reactor may be the very long irradiation time of the pebble fuel. (authors)

  7. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  8. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  9. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  10. High Iodine and Salt Intakes and Obesity do not Modify the Thyroid Function in Mexican Schoolchildren.

    Science.gov (United States)

    Méndez-Villa, Lorena; García-Solís, Pablo; Solís-S, Juan Carlos; García-Gutiérrez, David Gustavo; Pérez-Mora, Valeria Alejandra; Robles-Osorio, Ludivina; Sampson-Zaldívar, Eduardo

    2016-08-01

    Mexico is considered as a nutritional transition country with a high prevalence of overweight and obesity, and recent studies have reported a high iodine intake in children. Both high iodine intake and obesity have been associated with thyroid dysfunction. Our aim was to assess iodine and salt intake and thyroid function in Mexican schoolchildren with normal weight and obesity. A cross-sectional study was performed during 2012-2013 in schoolchildren from Queretaro, Mexico. Six hundred seventy-eight schoolchildren were evaluated to obtain nutrition status, urinary iodine concentration (UIC) and thyroid volume (TVol). The prevalence of overweight and obesity was 47.3 %, the median UIC was 428 μg/L and TVol was normal in all schoolchildren; however, obese girls had a higher TVol than normal weight at the age of 8, 10 and 12 years. A subsample of schoolchildren was divided in 6-8 and 9-12-year-old groups, in order to compare thyroid function (thyrotropin, free T4, and anti-thyroid antibodies); iodine and salt intake were estimated with 24-h urinary samples. No differences in thyroid function were observed in both age groups. In the 6-8-year-old group, obese schoolchildren had higher iodine intake than normal-weight children (415.5 vs. 269.1 μg/day, p obese schoolchildren had higher salt intake than normal-weight children (6.2 vs. 3.8 g/day, p < 0.05), but no differences in iodine intake. Dietary patterns could explain the differences between both age groups. Further studies are needed to identify the main sources of iodine intake in Mexican populations.

  11. Long-term sealing of openings in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Stockmann, N.; Yaramanci, U.; Laurens, J.F.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in those potential pathways to prevent radioactive release to the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made of compressed salt-powder are understood to be the first choice long-term sealing material. Seals built from salt bricks will be ductile. The permeability of the salt bricks is assumed to be in the order of 2*10 -15 m 2 . Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. The permeability of the mortar decreases with its salt content to approx. 2*10 -14 m 2 . Moistened saliferous clay may show temporary swelling. Sealing experiments will be carried out in the Asse salt mine. Long-term seals will be built into holes of 1 m diameter. The contact and merging of the brick-wall with the surrounding rock salt will be investigated in long-term tests. Within the in situ sealing program a number of geophysical methods are applied. Acoustic emission measurements are used to study the effects of high pressure gas injection and a geoelectrical observation program is aiming to estimate the permeability in and around the long-term seal. High frequency electromagnetic methods contribute to the knowledge of the petrophysical rock properties. 11 refs., 12 figs

  12. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  13. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  14. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  15. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    Science.gov (United States)

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  16. Accumulated energy determination in salts rocks irradiated by means of thermoluminescence techniques: application to the high level radioactive wastes repositories analysis

    International Nuclear Information System (INIS)

    Dies, J.; Ortega. J.; Tarrasa. F.; Cuevas, C.

    1995-01-01

    The report summarizes the study carried out to develop the radiation effects on salt rocks in order to repository the high level radioactive wastes. The study is structured into 3 main aspects: 1.- Analysis of irradiation experiences in Haw project of Pet ten reactor. 2.- Irradiation of salt sample of CESAR industrial irradiator. 3.- Correlation study between the accumulated energy, termoluminescence answer and the defect concentration

  17. Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum).

    Science.gov (United States)

    Lu, Qi-Huan; Wang, Ya-Qi; Song, Jin-Nan; Yang, Hong-Bing

    2018-06-01

    Common buckwheat (F. esculentum), annually herbaceous crop, is prevalent in people's daily life with the increasing development of economics. Compared with wheat, it is highly praised with high content of rutin and flavonoid. Common buckwheat is recognized as healthy food with good taste, and the product price of which such as noodles, flour, bread and so on are higher than wheat, and the seeds of which are bigger than that of tartary buckwheat, so if common buckwheat are planted more widely, people will spend less money on this healthy and delicious food. However, soil salinity has been a giant problem for agriculture production. The cultivation of salt tolerant crop varieties is an effective way to make full use of saline alkali land, and the highest salinity that the common buckwheat can sow is at 6.0%, so we chose 100 mM as the concentration of NaCl for treatment. Then we conducted transcriptome comparison between control and treatment groups. Potential regulatory genes related salt stress in common buckwheat were identified. A total of 29.36 million clean reads were produced via an illumina sequencing approach. We de novo assembled these reads into a transcriptome dataset containing 43,772 unigenes with N50 length of 1778 bp. A total of 26,672 unigenes could be found matches in public databases. GO, KEGG and Swiss-Prot classification suggested the enrichment of these unigenes in 47 sub-categories, 25 KOG and 129 pathways, respectively. We got 385 differentially expressed genes (DEGs) after comparing the transcriptome data between salt treatment and control groups. There are some genes encoded for responsing to stimulus, cell killing, metabolic process, signaling, multi-organism process, growth and cellular process might be relevant to salt stress in common buckwheat, which will provide a valuable references for the study on mechanism of salt tolerance and will be used as a genetic information for cultivating strong salt tolerant common buckwheat varieties in

  18. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  19. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  20. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  1. Rural Latino caregivers' beliefs and behaviors around their children's salt consumption.

    Science.gov (United States)

    Hoeft, Kristin S; Guerra, Claudia; Gonzalez-Vargas, M Judy; Barker, Judith C

    2015-04-01

    Prevalence of high blood pressure has been increasing in U.S. children, with implications for long term health consequences. Sodium consumption, a modifiable risk factor for high blood pressure, is above recommended limits and increasing. Very little is known about Latino caregiver beliefs and behaviors around their children's salt consumption. In California's Central Valley, qualitative interviews in Spanish investigated low-income caregivers' views and understandings of their children's dietary salt consumption. Thirty individual interviews and 5 focus groups were conducted (N=61). Interview transcripts were translated and transcribed, coded and thematically analyzed. Seven primary topic areas around children's salt intake and its impact on health were identified: children's favorite foods, children's dietary salt sources, superiority of home-cooked foods, salty and sweet foods, managing salt for health, developing children's tastes, and adding salt added at the table. Parents recognize common sources of sodium such as "junk food" and processed food and made efforts to limit their children's consumption of these foods, but may overlook other significant sodium sources, particularly bread, cheese, prepared soups and sports drinks. Caregivers recognize excess salt as unhealthy for children, but don't believe health problems (like high blood pressure) can occur in young children. Nevertheless, they made efforts to limit how much salt their children consumed through a variety of strategies; school meals were a source of high sodium that they felt were outside of their control. Latino caregivers are concerned about their children's salt intake and attempt to limit consumption, but some common sources of sodium are under-recognized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Salt content in canteen and fast food meals in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Lassen, Anne Dahl; Hansen, Kirsten

    2010-01-01

    Background: A high salt (NaCl) intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design...... fast food samples were collected from 52 retail places representing both city (Aarhus) and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results: The salt content...... in lunch meals in worksite canteens were 3.891.8 g per meal and 14.795.1 g per 10 MJ for men (n 109), and 2.891.2 g per meal and 14.496.2 g per 10 MJ for women (n 71). Salt content in fast food ranged from 11.892.5 g per 10 MJ (burgers) to 16.394.4 g per 10 MJ (sausages) with a mean content of 13.893.8 g...

  3. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  4. Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary

    Science.gov (United States)

    Thorne, Karen M.; Takekawa, John Y.; Elliott-Fisk, Deborah L.

    2012-01-01

    Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss current ideas, challenges, and concerns regarding the maintenance of salt marshes and their resident wildlife in light of future climate conditions. We suggest that many salt marsh habitats are already impaired and are located where upslope transgression is restricted, resulting in reduction and loss of these habitats in the future. In addition, we conclude that increased inundation frequency and water depth will have negative impacts on the demography of small or isolated wildlife meta-populations as well as their community interactions. We illustrate our points with a case study on the Pacific Coast of North America at San Pablo Bay National Wildlife Refuge in California, an area that supports endangered wildlife species reliant on salt marshes for all aspects of their life histories.

  5. [Influence of removing iodized salt on children's goiter status in areas with high iodine in drinking water].

    Science.gov (United States)

    Lu, Shengmin; Xu, Dong; Wang, Yuchun; Du, Yonggui; Jia, Lihui; Liang, Suoli

    2015-05-01

    To explore the changes of goiter prevalence of children living in areas with high iodine in drinking water after removing iodized salt from their diet. Three towns with median water iodine of 150 - 300 μg/L were selected randomly in Hengshui city of Hebei province of China. A total of 452 and 459 children in the 3 towns were randomly selected to measure thyroid volume by ultrasound before and after removing iodized salt, respectively. Their goiter status was judged using the criteria of age-specific thyroid volume recommended by the WHO. After removing iodized salt, the overall goiter prevalence in the three towns significantly decreased from 24.56% (111/452) to 5.88% (27/459) (P < 0.01). The goiter prevalence in 8, 9 and 10 year-old children decreased respectively from 33.70% (31/92), 23.32% (45/193) and 20.96% (35/167) to 6.10% (10/164), 5.52% (9/163) and 6.06% (8/132). The goiter prevalence in boys and girls decreased from 27.05% (66/244) and 21.63% (45/208 ) to 6.66% (15/226 ) and 5.15% (12/233), respectively. The decreases in children's goiter prevalence across gender and age group were all significant. Children's goiter prevalence decreased significantly after removing iodized salt from their diet for about one and half years in the HIA in Hebei province.

  6. Emergent nanoscale fluctuations in high rock-salt PbTe

    Science.gov (United States)

    Billinge, Simon

    2013-03-01

    Lead Telluride is one of the most promising thermoelectric materials in the temperature range just above room temperature. It is a narrow band gap semiconductor with a high Seebeck coefficient and a low thermal conductivity. It is structurally much simpler than many other leading candidates for high performance thermoelectrics being a binary rock-salt, isostructural to NaCl. The thermoelectric figure of merit, ZT, can be markedly improved by alloying with various other elements by forming quenched nanostructures. The undoped endmember, PbTe, does not have any such quenched nanostructure, yet has a rather low intrinsic thermal conductivity. There are also a number of interesting and non-canonical behaviors that it exhibits, such as an increasing measured band-gap with increasing temperature, exactly opposite to what is normally seen due to Fermi smearing of the band edge, and an unexpected non-monotonicity of the band gap in the series PbTe - PbSe - PbS. The material is on the surface simple, but hides some interesting complexity. We have investigated in detail the PbTe endmember using x-ray and neutron diffraction and neutron inelastic scattering. To our surprise, using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data we found that an interesting and non-trivial local structure that appears on warming. with the Pb atoms moving off the high-symmetry rock-salt positions towards neighboring Te ions. No evidence for the off-centering of the Pb atoms is seen at low temperature. The crossover from the locally undistorted to the locally distorted state occurs on warming between 100 K and 250 K. This unexpected emergence of local symmetry broken distortions from an undistorted ground-state we have called emphanisis, from the Greek for appearing from nothing. We have also investigated the lattice dynamics of the system to search for a dynamical signature of this behavior and extended the studies to doped systems and I will also

  7. Bile salt receptor complex activates a pathogenic type III secretion system

    Science.gov (United States)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N; Salomon, Dor; Tomchick, Diana R; Grishin, Nick V; Orth, Kim

    2016-01-01

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment. DOI: http://dx.doi.org/10.7554/eLife.15718.001 PMID:27377244

  8. Bile salt receptor complex activates a pathogenic type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; Salomon, Dor; Tomchick, Diana R.; Grishin, Nick V.; Orth, Kim

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered thatVibrio parahaemolyticusVtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.

  9. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  10. Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking

    Science.gov (United States)

    Hayes, John E.; Sullivan, Bridget S.; Duffy, Valerie B.

    2010-01-01

    Our sodium-rich food supply compels investigation of how variation in salt sensation influences liking and intake of high-sodium foods. While supertasters (those with heightened propylthiouracil (PROP) bitterness or taste papillae number) report greater saltiness from concentrated salt solutions, the non-taster/supertaster effect on sodium intake is unclear. We assessed taster effects on salt sensation, liking and intake among 87 healthy adults (45 men). PROP bitterness showed stronger associations with perceived saltiness in foods than did papillae number. Supertasters reported: greater saltiness in chips/pretzels and broth at levels comparable to regular-sodium products; greater sensory and/or liking changes to growing sodium concentration in cheeses (where sodium ions mask bitterness) and broths; and less frequently salting foods. PROP effects were attenuated in women. Compared with men, women reported more saltiness from high-sodium foods and greater liking for broth at salt levels comparable to regular-sodium products. Across men and women, Structural Equation Models showed PROP and papillae number independently explained variability in consuming high-sodium foods by impacting salt sensation and/or liking. PROP supertasters reported greater changes in sensation when more salt was added to broth, which then associated with greater changes in broth liking, and finally with more frequent high-sodium food intake. Greater papillae number was associated with less frequent high-sodium food intake via reduced liking for high-fat/high-sodium foods. In summary, variation in sensations from salt was associated with differences in hedonic responses to high-sodium foods and thus sodium intake. Despite adding less salt, PROP supertasters consumed more sodium through food, as salt was more important to preference, both for its salty taste and masking of bitterness. PMID:20380843

  11. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress

    Directory of Open Access Journals (Sweden)

    Hongyu Ma

    2014-09-01

    Full Text Available Salinity stress is one of the major abiotic stresses that limit agricultural yield. To understand salt-responsive protein networks in soybean seedling, the extracted proteins from seedling roots of two different genotypes (Lee 68 and Jackson were analyzed under salt stress by two-dimensional polyacrylamide gel electrophoresis. Sixty-eight differentially expressed proteins were detected and identified. The identified proteins were involved in 13 metabolic pathways and cellular processes. Proteins correlated to brassinosteroid and gilbberellin signalings were significantly increased only in the genotype Lee 68 under salt stress; abscisic acid content was positively correlated with this genotype; proteins that can be correlated to Ca2+ signaling were more strongly enhanced by salt stress in the seedling roots of genotype Lee 68 than in those of genotype Jackson; moreover, genotype Lee 68 had stronger capability of reactive oxygen species scavenging and cell K+/Na+ homeostasis maintaining in seedling roots than genotype Jackson under salt stress. Since the genotype Lee 68 has been described in literature as being tolerant and Jackson as sensitive, we hypothesize that these major differences in the genotype Lee 68 might contribute to salt tolerance. Combined with our previous comparative proteomics analysis on seedling leaves, the similarities and differences between the salt-responsive protein networks found in the seedling leaves and roots of both the genotypes were discussed. Such a result will be helpful in breeding of salt-tolerant soybean cultivars.

  12. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  13. Mass transfer and transport in salt repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-02-01

    Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs

  14. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  15. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Pantoja, Omar

    2014-12-05

    Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity

  16. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Xiaochuan Sun

    2017-07-01

    Full Text Available To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.

  17. An improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds

    International Nuclear Information System (INIS)

    Eun, H.C.; Cho, Y.Z.; Lee, T.K.; Kim, I.T.; Park, G.I.; Lee, H.S.

    2013-01-01

    In this paper, an improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds was performed to determine optimum operating conditions. It was very important to maintain the pressure in the distillation chamber below 10 Torr for a high efficiency (salt recovery >99 %) of the salt distillation. This required increasing the salt vaporization and condensation rates in the distillation system. It was confirmed that vaporization and condensation rates could be improved controlling the given temperature of top of the condensation chamber. In the distillation tests of the salt wastes containing rare earth compounds, the operation time at a given temperature was greatly reduced changing the given temperature of top of the condensation chamber from 780 to 700 deg C. (author)

  18. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Jinhui; Fan, Pengxiang; Jia, Weitao; Nie, Lingling; Jiang, Ping; Chen, Xianyang; Lv, Sulian; Wan, Lichuan; Chang, Sandra; Li, Shizhong; Li, Yinxin

    2015-02-26

    microRNAs (miRNAs) are implicated in plant development processes and play pivotal roles in plant adaptation to environmental stresses. Salicornia europaea, a salt mash euhalophyte, is a suitable model plant to study salt adaptation mechanisms. S. europaea is also a vegetable, forage, and oilseed that can be used for saline land reclamation and biofuel precursor production on marginal lands. Despite its importance, no miRNA has been identified from S. europaea thus far. Deep sequencing was performed to investigate small RNA transcriptome of S. europaea. Two hundred and ten conserved miRNAs comprising 51 families and 31 novel miRNAs (including seven miRNA star sequences) belonging to 30 families were identified. About half (13 out of 31) of the novel miRNAs were only detected in salt-treated samples. The expression of 43 conserved and 13 novel miRNAs significantly changed in response to salinity. In addition, 53 conserved and 13 novel miRNAs were differentially expressed between the shoots and roots. Furthermore, 306 and 195 S. europaea unigenes were predicted to be targets of 41 conserved and 29 novel miRNA families, respectively. These targets encoded a wide range of proteins, and genes involved in transcription regulation constituted the largest category. Four of these genes encoding laccase, F-box family protein, SAC3/GANP family protein, and NADPH cytochrome P-450 reductase were validated using 5'-RACE. Our results indicate that specific miRNAs are tightly regulated by salinity in the shoots and/or roots of S. europaea, which may play important roles in salt tolerance of this euhalophyte. The S. europaea salt-responsive miRNAs and miRNAs that target transcription factors, nucleotide binding site-leucine-rich repeat proteins and enzymes involved in lignin biosynthesis as well as carbon and nitrogen metabolism may be applied in genetic engineering of crops with high stress tolerance, and genetic modification of biofuel crops with high biomass and regulatable

  19. Normotensive blood pressure in pregnancy: the role of salt and aldosterone.

    Science.gov (United States)

    Gennari-Moser, Carine; Escher, Geneviève; Kramer, Simea; Dick, Bernhard; Eisele, Nicole; Baumann, Marc; Raio, Luigi; Frey, Felix J; Surbek, Daniel; Mohaupt, Markus G

    2014-02-01

    A successful pregnancy requires an accommodating environment. Salt and water availability are critical for plasma volume expansion. Any changes in sodium intake would alter aldosterone, a hormone previously described beneficial in pregnancy. To date, it remains ambiguous whether high aldosterone or high salt intake is preferable. We hypothesized that increased aldosterone is a rescue mechanism and appropriate salt availability is equally effective in maintaining a normotensive blood pressure (BP) phenotype in pregnancy. We compared normotensive pregnant women (n=31) throughout pregnancy with young healthy female individuals (n=31-62) and performed salt sensitivity testing within the first trimester. Suppression of urinary tetrahydro-aldosterone levels by salt intake as measured by gas chromatography-mass spectrometry and urinary sodium excretion corrected for creatinine, respectively, was shifted toward a higher salt intake in pregnancy (Ppregnancy, neither high urinary tetrahydro-aldosterone nor sodium excretion was correlated with higher BP. In contrast, in nonpregnant women, systolic BP rose with aldosterone (Ppregnancy without causing aldosterone-induced hypertension. Second, salt seems to aid in BP lowering in pregnancy for reasons incompletely elucidated, yet involving renin suppression and potentially placental sensing mechanisms. Further research should identify susceptible individuals and clarify effector mechanisms.

  20. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  1. Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats.

    Science.gov (United States)

    Bopda, Orelien Sylvain Mtopi; Longo, Frida; Bella, Thierry Ndzana; Edzah, Protais Marcellin Ohandja; Taïwe, Germain Sotoing; Bilanda, Danielle Claude; Tom, Esther Ngo Lemba; Kamtchouing, Pierre; Dimo, Theophile

    2014-04-28

    The leaves of Kalanchoe pinnata (Crassulaceae) are used in Cameroon folk medicine to manage many diseases such as cardiovascular dysfunctions. In this work, we aimed to evaluate the activities of aqueous leaf extract of Kalanchoe pinnata on the blood pressure of normotensive rat (NTR) and salt hypertensive rats (SHR), as well as its antioxidant properties. Hypertension was induced in rats by oral administration of 18% NaCl for 4 weeks. For the preventive study, three groups of rats received 18% NaCl solution and the plant extract at 25 mg/kg/day, 50 mg/kg/day or 100 mg/kg/day by gavage. Two positive control groups received 18% NaCl solution and either spironolactone (0.71 mg/kg/day) or eupressyl (0.86 mg/kg/day) by gavage for 4 weeks. At the end of this experimental period, systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and heart rate (HR) were measured by the invasive method. Some oxidative stress biomarkers (reduced glutathione (GSH), superoxide dismutase (SOD), nitric monoxide (NO) were evaluated in heart, aorta, liver and kidney. NO level was indirectly evaluated by measuring nitrite concentration. Kalanchoe pinnata extract prevented significantly the increase of systolic and diastolic arterial pressures in high salt-loaded rats (SHR). In SHR, concomitant administration of Kalanchoe pinnata at 25, 50 and 100 mg/kg/day significantly prevented the increase in blood pressure by 32%, 24% and 47% (for SAP); 35%, 33% and 56% (for DAP), respectively. No significant change was recorded in heart rate of those rats. The plant extract improved antioxidant status in various organs, but more potently in aorta. Thus, antioxidant and modulatory effects of Kalanchoe pinnata at the vasculature might be of preponderant contribution to its overall antihypertensive activity. The work demonstrated that the concomitant administration of high-salt and the aqueous extract of Kalanchoe pinnata elicits prevention of salt-induced hypertension in rat. This

  2. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    International Nuclear Information System (INIS)

    Scheele, Randall D.; Casella, Andrew M.

    2010-01-01

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor. The Pacific Northwest National Laboratory, in support of the Oak Ridge National Laboratory's program to investigate an advanced molten salt cooled reactor concept for the U.S. Department of Energy, evaluated potential nitrogen trifluoride (NF 3 ) use as an agent for removing oxide and hydroxide contaminants from candidate coolants. These contaminants must be eliminated because they increase the corrosivity of the molten salt to the detriment of the materials of containment that are currently being considered. The baseline purification agent for fluoride coolant salts is hydrogen fluoride (HF) combined with hydrogen (H 2 ). Using HF/H 2 as the reference treatment, we compare HF and NF 3 industrial use, chemical and physical properties, industrial production levels, chemical, toxicity, and reactivity hazards, environmental impacts, effluent management strategies, and reaction thermodynamic values. Because NF 3 is only mildly toxic, non-corrosive, and non-reactive at room temperature, it will be easy to manage the chemical and reactivity hazards during transportation, storage, and normal operations. Industrial experience with NF 3 is also extensive because NF 3 is commonly used as an etchant and chamber cleaner in the electronics industry. In contrast HF is a highly toxic and corrosive gas at room temperature but because of its significance as the most important fluorine-containing chemical there is significant industrial experience managing HF hazards. NF 3 has been identified as having the potential to be a significant contributor to global warming and thus its release must be evaluated and/or managed depending on the amounts that would be released. Because of its importance to the electronics industry, commercial technologies using incineration or plasmas have been

  3. Separation of adhered salt from uranium deposits generated in electro-refiner

    International Nuclear Information System (INIS)

    Kwon, S.W.; Park, K.M.; Lee, H.S.; Kim, J.G.; Ahn, H.G.

    2011-01-01

    It is important to increase a throughput of the salt removal process from uranium deposits which is generated on the solid cathode of electro-refiner in pyroprocess. In this study, it was proposed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits. The feasibility of liquid salt separation was examined by salt separation experiments on a stainless steel sieve. It was found that the amount of salt to be distilled could be reduced by the liquid salt separation prior to the salt distillation. The residual salt remained in the deposits after the liquid salt separation was successfully removed further by the vacuum distillation. It was concluded that the combination of a liquid salt separation and a vacuum distillation is an effective route for the achievement of a high throughput performance in the salt separation process. (author)

  4. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice1[OPEN

    Science.gov (United States)

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326

  5. Improvement of performance of vibration pump for molten salt at high temperature

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Hashimoto, Hiroyuki; Katagiri, Kazunari; Tang Bomin.

    1996-01-01

    An experimental study was conducted to improve the performance of a vibration pump using a vibrating pipe for conveying the molten salt at 784 K. A new system to measure the pump performance safely at such a high temperature was developed, which was characterized by simplicity in construction and ease of operation. All parts of the system, including a pump, valves and a volume tank to measure the volumetric flow rate, were placed in a cylindrical tank. The pump was driven by an air actuator. Experimental results indicated that the measuring system fulfilled the intended function: the pump worked effectively and its performance was safely evaluated at a high temperature. A few possible improvements related to the construction of the pump were suggested based on the results. (author)

  6. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    Science.gov (United States)

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  7. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    Directory of Open Access Journals (Sweden)

    Nobuhiro Suzuki

    Full Text Available Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  8. An evaluation of possible next-generation high temperature molten-salt power towers.

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Gregory J.

    2011-12-01

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  9. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  10. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  11. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cooking without salt

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000760.htm Cooking without salt To use the sharing features on ... other dishes to add zest. Try Salt-free Cooking Explore cooking with salt substitutes. Add a splash ...

  13. The health impacts of dietary sodium and a low-salt diet.

    Science.gov (United States)

    Suckling, Rebecca J; Swift, Pauline A

    2015-12-01

    High salt intake is now endemic worldwide. It contributes to the generation and maintenance of high blood pressure, which is now the biggest risk factor for global disease. There is now compelling evidence to support salt reduction in hypertensives and a substantial body of evidence to support salt reduction in the general population to reduce risk of death from cardiovascular disease. In specific diseases such as heart failure and chronic kidney disease, guidelines support the World Health Organization target for reduced salt intake at 5 g daily. Achieving a diet that is lower in salt has challenges, but is more likely to be achieved through salt reduction strategies particularly focused on processed food and through educational programs. To be effective, these interventions require collaboration between industry, health agencies and governments. © Royal College of Physicians 2015. All rights reserved.

  14. Tamarix microRNA Profiling Reveals New Insight into Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    2018-04-01

    Full Text Available The halophyte tamarisk (Tamarix is extremely salt tolerant, making it an ideal material for salt tolerance-related studies. Although many salt-responsive genes of Tamarix were identified in previous studies, there are no reports on the role of post-transcriptional regulation in its salt tolerance. We constructed six small RNA libraries of Tamarix chinensis roots with NaCl treatments. High-throughput sequencing of the six libraries was performed and microRNA expression profiles were constructed. We investigated salt-responsive microRNAs to uncover the microRNA-mediated genes regulation. From these analyses, 251 conserved and 18 novel microRNA were identified from all small RNAs. From 191 differentially expressed microRNAs, 74 co-expressed microRNAs were identified as salt-responsive candidate microRNAs. The most enriched GO (gene ontology terms for the 157 genes targeted by differentially expressed microRNAs suggested that transcriptions factors were highly active. Two hub microRNAs (miR414, miR5658, which connected by several target genes into an organic microRNA regulatory network, appeared to be the key regulators of post-transcriptional salt-stress responses. As the first survey on the tamarisk small RNAome, this study improves the understanding of tamarisk salt-tolerance mechanisms and will contribute to the molecular-assisted resistance breeding.

  15. Perovskite nickelates as electric-field sensors in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2017-12-18

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures

  16. Tolerance to drought and salt stress in plants: Unraveling the signaling networks

    Directory of Open Access Journals (Sweden)

    Dortje eGolldack

    2014-04-01

    Full Text Available Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose nonfermenting 1-related protein kinase 2 (SnRK2 and MAPK pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species cause severe cellular damage by peroxidation and de-esterification of membrane lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid (ABA pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid derived signals and the specific role of stomatal signaling.

  17. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy.

    Directory of Open Access Journals (Sweden)

    Chen-Hsueh Pai

    Full Text Available Preeclampsia (PE is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2 and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl to wild-type mice resulted in elevated placental TXA2 synthase (TXAS and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg, and decreased pup weight (~50% and size (~24%, but these adverse effects were ameliorated in TXAS knockout (KO mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.

  18. Heat transfer investigation of molten salts under laminar and turbulent flow regimes

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    High temperature reactor and solar thermal power plants use Molten Salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt (eutectic mixture of LiF-NaF-KF) and molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratios by weight) are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000℃ to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt as a primary coolant and storage medium. In order to design this, it is necessary to study the heat transfer characteristics of various molten salts. Most of the previous studies related to molten salts are based on the experimental works. These experiments essentially measured the physical properties of molten salts and their heat transfer characteristics. Ferri et al. introduced the property definitions for molten salts in the RELAP5 code to perform transient simulations at the ProvaCollettoriSolari (PCS) test facility. In this paper, a CFD analysis has been performed to study the heat transfer characteristics of molten fluoride salt and molten nitrate salt flowing in a circular pipe for various regimes of flow. Simulation is performed with the help of in-house developed CFD code, NAFA, acronym for Numerical Analysis of Flows in Axi-symmetric geometries. Uniform velocity and temperature distribution are set as the inlet boundary condition and pressure is employed at the outlet boundary condition. The inlet temperature for all simulation is set as 300℃ for nitrate salt and 500℃ for fluoride salt and the operating pressure is 1 atm in both the cases

  19. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  20. Effect of salt intensity on ad libitum intake of tomato soup similar in palatability and on salt preference after consumption.

    Science.gov (United States)

    Bolhuis, Dieuwerke P; Lakemond, Catriona M M; de Wijk, Rene A; Luning, Pieternel A; de Graaf, Cees

    2010-11-01

    Sensory properties of food play an important role in satiation. Studies on the effect of taste intensity on satiation show conflicting results. This may be due to the notion that in these studies taste intensity and palatability were confounded. The objective of this study was to investigate the effect of salt intensity of tomato soup on ad libitum intake (satiation), while controlling for palatability on an individual basis. Forty-eight subjects consumed both a low-salt (LS) and high-salt (HS) soup ad libitum from a self-refilling bowl. The results showed no difference between LS and HS soup in ad libitum intake, eating rate, changes in appetite ratings, and changes in hedonic ratings after intake. After intake of HS soup, LS soup was perceived as more bland than before intake of HS soup. After intake of LS soup, HS soup was perceived as more salt intense than before intake of LS soup. In conclusion, this study found no effect of salt intensity on satiation of tomato soups that were similar in palatability. During consumption, subjects adapted quickly to the exposed salt intensity as contrasting salt intensities were rated further from the ideal salt intensity and therefore perceived as less pleasant after consumption.

  1. Geology and salt deposits of the Michigan Basin

    International Nuclear Information System (INIS)

    Johnson, K.S.; Gonzales, S.

    1976-07-01

    The Silurian-age Salina salt, one of the greatest deposits of bedded rock salt in the world, underlies most of the Michigan basin and parts of the Appalachian basin in Ohio. Pennsylvania, New York, and West Virginia. Interest in this salt deposit has increased in recent years because there may be one or more areas where it could be used safely as a repository for the underground storage of high-level radioactive wastes. The general geology of the Michigan basin is summarized and the major salt deposits are described in the hope that these data will be useful in determining whether there are any areas in the basin that are sufficiently promising to warrant further detailed study. Distribution of the important salt deposits in the basin is limited to the Southern Peninsula of Michigan

  2. Method for the production of uranium chloride salt

    Science.gov (United States)

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  3. Modeling High-Dimensional Multichannel Brain Signals

    KAUST Repository

    Hu, Lechuan

    2017-12-12

    Our goal is to model and measure functional and effective (directional) connectivity in multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The difficulties from analyzing these data mainly come from two aspects: first, there are major statistical and computational challenges for modeling and analyzing high-dimensional multichannel brain signals; second, there is no set of universally agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with potentially high lag order so that complex lead-lag temporal dynamics between the channels can be captured. Estimates of the VAR model will be obtained by our proposed hybrid LASSLE (LASSO + LSE) method which combines regularization (to control for sparsity) and least squares estimation (to improve bias and mean-squared error). Then we employ some measures of connectivity but put an emphasis on partial directed coherence (PDC) which can capture the directional connectivity between channels. PDC is a frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative to all possible receivers in the network. The proposed modeling approach provided key insights into potential functional relationships among simultaneously recorded sites during performance of a complex memory task. Specifically, this novel method was successful in quantifying patterns of effective connectivity across electrode locations, and in capturing how these patterns varied across trial epochs and trial types.

  4. Signal enhancement by spectral equalization of high frequency broadband signals transmitted through optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Ogle, J.W.; Holzman, M.A.

    1980-01-01

    A new technique is discussed for enhancing the bandwidth and intensity of high frequency (> 1 GHz) analog, spectrally broad (40 nm) signals transmitted through one kilometer of optical fiber. The existing method for bandwidth enhancement of such a signal uses a very narrow (approx. 1 nm) filter between the fiber and detector to limit bandwidth degradation due to material dispersion. Using this method, most of the available optical intensity is rejected and lost. This new technique replaces the narrow-band filter with a spectral equalizer device which uses a reflection grating to disperse the input signal spectrum and direct it onto a linear array of fibers

  5. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    Science.gov (United States)

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  6. Wavelet-OFDM Signal Transmission Characteristics with High-Speed PLC Modem

    Science.gov (United States)

    Nakagawa, Kenichi; Tokuda, Masamitsu; Igata, Yuji

    In this paper, we measured the interference immunity characteristics of high-speed PLC system using Wavelet-OFDM when the narrowband conducted interference wave signal was injected. As the results, it was clear that (1) measured PHY rate at the all frequency band hardly decreased in C/I (Carrier to Interference ratio) of above 20dB, but began to decrease rapidly in C/I of below 0dB when the interference signal was injected in the frequency band of high-speed PLC signal, (2) when C/I became from 0dB to -20dB, the measured PHY rate at the frequency existing the notch band were improved around 10Mbps than that at the frequency not existing the notch band, (3) when the narrowband interference wave was injected outside of frequency band of high-speed PLC signal, the measured PHY rate did not decrease than that in each notch band. Therefore, it was revealed that high-speed PLC system using Wavelet-OFDM had good interference immunity characteristics.

  7. Americium Separations from High-Salt Solutions Using Anion Exchange

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Stark, Peter C.; Chamberlin, Rebecca M.; Bartsch, Richard A.; Zhang, Z.Y.; Zhao, W.

    2001-01-01

    The aging of the US nuclear stockpile presents a number of challenges, including the increasing radioactivity of plutonium residues due to the ingrowth of 241 Am from the β-decay of 241 Pu. We investigated parameters that affect the sorption of Am onto anion-exchange resins from concentrated effluents derived from nitric acid processing of plutonium residues. These postevaporator wastes are nearly saturated solutions of acidic nitrate salts, and americium removal is complicated by physical factors, such as solution viscosity and particulates, as well as by the presence of large quantities of competing metals and acid. Single- and double-contact batch distribution coefficients for americium and neodymium from simple and complex surrogate solutions are presented. Varied parameters include the nitrate salt concentration and composition and the nitric acid concentration. We find that under these extremely concentrated conditions, Am(III) removal efficiencies can surpass 50% per contact. Distribution coefficients for both neodymium and americium are insensitive to solution acidity and appear to be driven primarily by low water activities of the solutions

  8. Salt repository project closeout status report

    International Nuclear Information System (INIS)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE's) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs

  9. Mechanism study of freeze-valve for molten salt reactor (MSR)

    International Nuclear Information System (INIS)

    Qinhua, Zhang

    2014-01-01

    Molten salt reactor (MSR) is one of the fourth generation nuclear reactor, ordinary nuclear grade valve is unsuitable for MSR due to its special coolant and extraordinary working temperature. Freeze-valve is proposed as the most appropriate valve for MSR, but the technology issue about freeze-valve has not been report in recent decades. Its significance to test the comprehensive property of freeze-valve for the application in MSR. A high temperature molten salt test loop was built which the physics property of salt is similar to the coolant of MSR. The results indicate that freeze-valve has a good performance use in the molten salt circumstances of high temperature (max 700 deg. C) and strong corrosion (authors)

  10. Sea salt

    OpenAIRE

    Galvis-Sánchez, Andrea C.; Lopes, João Almeida; Delgadillo, Ivone; Rangel, António O. S. S.

    2013-01-01

    The geographical indication (GI) status links a product with the territory and with the biodiversity involved. Besides, the specific knowledge and cultural practices of a human group that permit transforming a resource into a useful good is protected under a GI designation. Traditional sea salt is a hand-harvested product originating exclusively from salt marshes from specific geographical regions. Once salt is harvested, no washing, artificial drying or addition of anti-caking agents are all...

  11. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  12. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  13. Process for improving the energy density of feedstocks using formate salts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  14. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) with Silicon-Carbide-Matrix Coated-Particle Fuel

    International Nuclear Information System (INIS)

    Forsberg, C. W.; Snead, Lance Lewis; Katoh, Yutai

    2012-01-01

    The FHR is a new reactor concept that uses coated-particle fuel and a low-pressure liquid-salt coolant. Its neutronics are similar to a high-temperature gas-cooled reactor (HTGR). The power density is 5 to 10 times higher because of the superior cooling properties of liquids versus gases. The leading candidate coolant salt is a mixture of 7 LiF and BeF 2 (FLiBe) possessing a boiling point above 1300 C and the figure of merit ρC p (volumetric heat capacity) for the salt slightly superior to water. Studies are underway to define a near-term base-line concept while understanding longer-term options. Near-term options use graphite-matrix coated-particle fuel where the graphite is both a structural component and the primary neutron moderator. It is the same basic fuel used in HTGRs. The fuel can take several geometric forms with a pebble bed being the leading contender. Recent work on silicon-carbide-matrix (SiCm) coated-particle fuel may create a second longer-term fuel option. SiCm coated-particle fuels are currently being investigated for use in light-water reactors. The replacement of the graphite matrix with a SiCm creates a new family of fuels. The first motivation behind the effort is to take advantage of the superior radiation resistance of SiC compared to graphite in order to provide a stable matrix for hosting coated fuel particles. The second motivation is a much more rugged fuel under accident, repository, and other conditions.

  15. High-frequency signal and noise estimates of CSR GRACE RL04

    Science.gov (United States)

    Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.

    2012-12-01

    A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.

  16. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  17. Investigation of an Alternative Fuel Form for the Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    Much of the recent studies investigating the use of liquid salts as reactor coolants have utilized a core configuration of graphite prismatic fuel block assemblies with TRISO particles embedded into cylindrical fuel compacts arranged in a triangular pitch lattice. Although many calculations have been performed for this fuel form in gas cooled reactors, it would be instructive to investigate whether an alternative fuel form may yield improved performance for the liquid salt-cooled Very High Temperature Reactor (LS-VHTR). This study investigates how variations in the fuel form will impact the performance of the LS-VHTR during normal and accident conditions and compares the results with a similar analysis that was recently completed for a LS-VHTR core made up of prismatic block fuel. (author)

  18. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  19. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  20. Analysis of petunia hybrida in response to salt stress using high throughput RNA sequencing

    Science.gov (United States)

    Salt and drought are among the greatest challenges to crop and native plants in meeting their yield and reproductive potentials. DNA sequencing-enabled transcriptome profiling provides a means of assessing what genes are responding to salt or drought stress so as to better understand the molecular ...

  1. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  2. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  3. Salt consumption and the effect of salt on mineral metabolism in horses.

    Science.gov (United States)

    Schryver, H F; Parker, M T; Daniluk, P D; Pagan, K I; Williams, J; Soderholm, L V; Hintz, H F

    1987-04-01

    The voluntary salt consumption of mature unexercised horses was measured weekly for up to 45 weeks. Voluntary intake among horses was quite variable ranging from 19 to 143 g of salt per day and was inversely related to total salt intake (salt in feeds plus voluntary intake). Mean daily voluntary salt consumption was 53 g. Season of the year did not influence voluntary intake. In preference tests which evaluated every two choice combination of 0.2% and 4% NaCl in test diets fed daily for four days, ponies generally preferred diets containing the lower amount of salt. In similar preference studies which used NaHCO3 as a sodium source, ponies always preferred the diet containing the lower level of NaHCO3. Metabolism studies employing diets containing 1, 3 or 5% NaCl showed that urinary excretion was the major excretory pathway for sodium and chloride. Fecal excretion, intestinal absorption and retention of sodium were not affected by level of salt intake. Urinary calcium excretion was unaffected by salt intake but calcium and phosphorus absorption and retention were enhanced when ponies were fed diets containing 3 or 5% sodium chloride. Magnesium and copper metabolism were unaffected by salt intake. Horses voluntarily consume relatively large amounts of sodium chloride but it is likely that not all voluntary consumption is related to the salt requirement of the horse. Habit and taste preference could also be involved. Salt consumption at the levels used in these studies does not appear to be detrimental to the metabolism of other minerals in the horse.

  4. Salt (sodium chloride) content of retail samples of Nigerian white bread: implications for the daily salt intake of normotensive and hypertensive adults.

    Science.gov (United States)

    Nwanguma, B C; Okorie, C H

    2013-10-01

    Bread has been identified as a major contributor to the excessive salt (sodium chloride) intake of consumers in many countries, some of which have very high incidences of hypertension and related cardiovascular complications, such as stroke. This has prompted a global rise in interest in the salt content of breads produced and consumed in many other countries. The sodium contents of retail samples of 100 brands of Nigerian white bread were determined by photometry with a view to estimating the relative contribution of bread to the recommended daily sodium intake of both normotensive and hypertensive adults in the country. The salt content of the bread samples varied extensively, ranging from 0.51 g per 100 g (0.51%) to 1.8 g per 100 g (1.8%). The average salt content was 1.36 g per 100 g. Based on an estimated consumption of six slices of bread (about 180 g) per meal of bread, this equates to a daily intake of between 0.99 g and 3.33 g of salt from bread alone. This represents between 19.8% and 66.6% of the recommended daily allowance of 5 g for normotensive adults, and between 24.75% and 83.25% of the recommended daily allowance of 4 g for hypertensive adults. The consumption of some brands of bread by normotensive and hypertensive adults puts them at great risk of exceeding their recommended daily allowance for salt. Thus, there is an urgent need to regulate the amount of salt added to bread. In the interim, compelling bakers to declare the salt content of their products on the packaging could help consumers, especially hypertensive adults, avoid brands with a high salt content. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  5. Quantitative Analysis of KF-LiF-ZrF4 Molten Salt by Probe Assisted in-situ LIBS Systems

    International Nuclear Information System (INIS)

    Kim, S.H.; Moon, J.H.; Kim, D.H.; Hwang, I.S.; Lee, J.H.

    2015-01-01

    Full text of publication follows: Pyro-processing draws attention as a recycling process of spent nuclear fuel for future nuclear reactor. In the aspect of process control and safeguards of the pyro-processing, it requires a technology to measure the concentration of molten salt in real-time. The existing technologies measure the concentration by chemical analysis of sampled molten salt in the hot cell but it is disadvantageous in the aspects of cost, safety and time. The LIBS (Laser-Induced Breakdown Spectroscopy) is a form of atomic emission spectroscopy in which a pulsed laser is used as the excitation source. LIBS technology is appropriate to measure sensitive nuclear materials in hot cell because it is capable of measuring specimen quantitatively and qualitatively by exited atom by laser. Spectrum obtained from plasma is largely influenced by laser operation conditions and physical properties of specimens. Also, plasma induction is limited on the surface of specimen, so analysis of composition inside of the molten salt is extremely difficult. Thus, several restrictions should be overcome in order to apply LIBS for the measurement of molten salt (KF-LiF-ZrF 4 ) composition in real-time. In this study probe assisted LIBS system will be introduced with KF-LiF-ZrF 4 to quantitatively measure molten salt composition. Echelle spectrometer was used and the measurable wavelength area was 250-400 nm, the range of UV ray. NIST atomic spectra database measured the wavelength for molten salt composition, and each element was selected high signal intensity and wavelength range that is not overlapped by other elements. (authors)

  6. Electrochemical treatment of organic wastewater with high salt content. Ko enbun yuki haisui no denkai shori

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hideo; Kitamura, Takao; Kato, Shunsaku; Oyashiki, Satoru (Goverment Industrial Research Inst. Shikoku, Takamatsu, (Japan) Toyo Engineering Work Ltd., Tokyo, (Japan))

    1990-01-31

    Wastewater containing organic pollutants is generally treated by the biological methods like the activated sludge process, etc. But these biological methods are not necessarily applied to the wastewater with high salt content generated at pickles making plants, etc.. In this report, with the objective of application of the electrolytic oxidation treatment to the organic wastewater with high salt content of pickles making plants, the effects of such conditions as pH, temperature and current, etc. on the treatment rate and treatment efficiency were examined, furthermore, the treatment process was simulated on the basis of a simple reaction model, and its simulation results were compared for study with the experimental results. The results are shown below: No effect of pH was observed, hence no pH control is required; The higher temperature of the wastewater accelerates the treatment rate; It was considered that in high temperature, a loss due to autolysis of hypochlorous acid increases, but the current efficiency of generating hypochlorous acid increases too and since the latter effect is bigger, the above phenomenon occurs. The current has a small effect on the treatment efficiency. With the simple reaction model, the change of residual chlorine concentration, etc. with time can be reproduced semiquantitatively. 7 refs., 6 figs.

  7. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  8. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  9. Salt in bread - succesful?) Reduction of content in danish bread

    DEFF Research Database (Denmark)

    Knuthsen, Pia; Saxholt, Erling; Trolle, Ellen

    High intakes of sodium are associated with high blood pressure, elevated risk of cardiovascular diseases and early death. In the Nordic countries reduction of average sodium intake to about 2-2.7 g/d, or 5-7 g salt/d, is recommended. Main sources of salt in the diet are processed foods e.g. bread...... of view a gradual reduction would do in order to adapt to lower salt preference. To demonstrate a possible reduction, current salt levels must be assessed, and in the present study salt content of bread, covering Danish consumption in 2014, was investigated. When monitoring a possible trend samples...... studied must represent the current consumption. Thus getting an overview of market shares is important, and quite a challenge as selection of bread is changing continuously. A strategic sampling plan was made representing all relevant types of bread, based on information from manufacturers...

  10. Modeling internal deformation of salt structures targeted for radioactive waste disposal

    International Nuclear Information System (INIS)

    Chemia, Zurab

    2008-01-01

    This thesis uses results of systematic numerical models to argue that externally inactive salt structures, which are potential targets for radioactive waste disposal, might be internally active due to the presence of dense layers or blocks within a salt layer. The three papers that support this thesis use the Gorleben salt diapir (NW Germany), which was targeted as a future final repository for high-grade radioactive waste, as a general guideline. The first two papers present systematic studies of the parameters that control the development of a salt diapir and how it entrains a dense anhydrite layer. Results from these numerical models show that the entrainment of a dense anhydrite layer within a salt diapir depends on four parameters: sedimentation rate, viscosity of salt, perturbation width and the stratigraphic location of the dense layer. The combined effect of these four parameters, which has a direct impact on the rate of salt supply (volume/area of the salt that is supplied to the diapir with time), shape a diapir and the mode of entrainment. Salt diapirs down-built with sedimentary units of high viscosity can potentially grow with an embedded anhydrite layer and deplete their source layer (salt supply ceases). However, when salt supply decreases dramatically or ceases entirely, the entrained anhydrite layer/segments start to sink within the diapir. In inactive diapirs, sinking of the entrained anhydrite layer is inevitable and strongly depends on the rheology of the salt, which is in direct contact with the anhydrite layer. During the post-depositional stage, if the effective viscosity of salt falls below the threshold value of around 10 18 -10 19 Pa s, the mobility of anhydrite blocks might influence any repository within the diapir. However, the internal deformation of the salt diapir by the descending blocks decreases with increase in effective viscosity of salt. The results presented in this thesis suggest that it is highly likely that salt structures

  11. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  12. Signal intensity enhancement of laser ablated volume holograms

    Science.gov (United States)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  13. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  14. A history of salt.

    Science.gov (United States)

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  15. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  16. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    Science.gov (United States)

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  17. Comparison of the rift and post-rift architecture of conjugated salt and salt-free basins offshore Brazil and Angola/Namibia, South Atlantic

    Science.gov (United States)

    Strozyk, Frank; Back, Stefan; Kukla, Peter A.

    2017-10-01

    This study presents a regional comparison between selected 2D seismic transects from large, conjugated salt and salt-free basins offshore southern Brazil (Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Kwanza Basin, northern and southern Namibe Basin, Walvis Basin). Tectonic-stratigraphic interpretation of the main rift and post-rift units, free-air gravity data and flexural isostatic backstripping were used for a comprehensive basin-to-basin documentation of key mechanisms controlling the present-day differences in conjugated and neighbouring South Atlantic basins. A significant variation in the tectonic-sedimentary architecture along-strike at each margin and between the conjugated basins across the South Atlantic reflects major differences in (1) the structural configuration of each margin segment at transitional phase between rifting and breakup, as emphasized in the highly asymmetric settings of the large Santos salt basin and the conjugated, salt-free southern Namibe Basin, (2) the post-breakup subsidence and uplift history of the respective margin segment, which caused major differences for example between the Campos and Espirito Santo basins and the conjugated northern Namibe and Kwanza basins, (3) variations in the quantity and distribution of post-breakup margin sediments, which led to major differences in the subsidence history and the related present-day basin architecture, for example in the initially rather symmetric, siliciclastic Pelotas and Walvis basins, and (4) the deposition of Aptian evaporites in the large rift and sag basin provinces north of the Rio Grande Rise and Walvis Ridge, highly contrasting the siliciclastic basins along the margin segments south of the ridges. The resulting present-day architecture of the basins can be generally classified as (i) moderately symmetric, salt-free, and magma-rich in the northern part of the southern segment, (i) highly asymmetric, salt-bearing and magma-poor vs. salt-free and magma

  18. Salt content in canteen and fast food meals in Denmark

    Directory of Open Access Journals (Sweden)

    Sisse Fagt

    2010-03-01

    Full Text Available Background: A high salt (=NaCl intake is associated with high blood pressure, and knowledge of salt content in food and meals is important, if the salt intake has to be decreased in the general population. Objective: To determine the salt content in worksite canteen meals and fast food. Design: For the first part of this study, 180 canteen meals were collected from a total of 15 worksites with in-house catering facilities. Duplicate portions of a lunch meal were collected from 12 randomly selected employees at each canteen on two non-consecutive days. For the second part of the study, a total of 250 fast food samples were collected from 52 retail places representing both city (Aarhus and provincial towns. The canteen meals and fast food samples were analyzed for chloride by potentiometric titration with silver nitrate solution, and the salt content was estimated. Results: The salt content in lunch meals in worksite canteens were 3.8±1.8 g per meal and 14.7±5.1 g per 10 MJ for men (n=109, and 2.8±1.2 g per meal and 14.4±6.2 g per 10 MJ for women (n=71. Salt content in fast food ranged from 11.8±2.5 g per 10 MJ (burgers to 16.3±4.4 g per 10 MJ (sausages with a mean content of 13.8±3.8 g per 10 MJ. Conclusion: Salt content in both fast food and in worksite canteen meals is high and should be decreased.

  19. Salt Rejection of Non-Ionic Polymeric Membranes

    DEFF Research Database (Denmark)

    Bo, P.; Stannett, V.

    1976-01-01

    A modified solution-diffusion model for the description of salt and water transport through homogeneous membranes is introduced. It is compared with the current solution-diffusion model and the combined flow-diffusion model for the description of transport under reverse osmosis conditions....... The advantage of the modified description over the current solution-diffusion model is the inclusion of a salt-water coupling transport coefficient which allows the description to be extended to membranes of high water permeability (high water content). The advantage of the modified solution-diffusion model...

  20. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  1. Multi-channel logical circuit module used for high-speed, low amplitude signals processing and QDC gate signals generation

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Zhu Haidong; Ma Xiaoli; Yin Weiwei; Li Zhuyu; Jin Genming; Wu Heyu

    2001-01-01

    A new kind of logical circuit will be introduced in brief. There are 16 independent channels in the module. The module receives low amplitude signals(≥40 mV), and processes them to amplify, shape, delay, sum and etc. After the processing each channel produces 2 pairs of ECL logical signal to feed the gate of QDC as the gate signal of QDC. The module consists of high-speed preamplifier unit, high-speed discriminate unit, delaying and shaping unit, summing unit and trigger display unit. The module is developed for 64 CH. 12 BIT Multi-event QDC. The impedance of QDC is 110 Ω. Each gate signal of QDC requires a pair of differential ECL level, Min. Gate width 30 ns and Max. Gate width 1 μs. It has showed that the outputs of logical circuit module satisfy the QDC requirements in experiment. The module can be used on data acquisition system to acquire thousands of data at high-speed ,high-density and multi-parameter, in heavy particle nuclear physics experiment. It also can be used to discriminate multi-coincidence events

  2. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Eve Mullen

    2017-12-01

    Full Text Available Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500°C. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

  3. Dissecting the salt dependence of the Tus-Ter protein-DNA complexes by high-throughput differential scanning fluorimetry of a GFP-tagged Tus.

    Science.gov (United States)

    Moreau, Morgane J J; Schaeffer, Patrick M

    2013-12-01

    The analysis of the salt dependence of protein-DNA complexes provides useful information about the non-specific electrostatic and sequence-specific parameters driving complex formation and stability. The differential scanning fluorimetry of GFP-tagged protein (DSF-GTP) assay has been geared with an automatic Tm peak recognition system and was applied for the high-throughput (HT) determination of salt-induced effects on the GFP-tagged DNA replication protein Tus in complex with various Ter and Ter-lock sequences. The system was designed to generate two-dimensional heat map profiles of Tus-GFP protein stability allowing for a comparative study of the effect of eight increasing salt concentrations on ten different Ter DNA species at once. The data obtained with the new HT DSF-GTP allowed precise dissection of the non-specific electrostatic and sequence-specific parameters driving Tus-Ter and Tus-Ter-lock complex formation and stability. The major factor increasing the thermal resistance of Tus-Ter-lock complexes in high-salt is the formation of the TT-lock, e.g. a 10-fold higher Kspe was obtained for Tus-GFP:Ter-lockB than for Tus-GFP:TerB. It is anticipated that the system can be easily adapted for the study of other protein-DNA complexes.

  4. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  5. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    Science.gov (United States)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  6. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions.

    Directory of Open Access Journals (Sweden)

    Louis Goffe

    Full Text Available To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving.Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes, amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty, time spent shaking (3s, 5s or 10s, and individual serving.Controlled, laboratory, conditions.A quota-based convenience sample of 10 participants (five women aged 18-59 years.Amount of salt delivered by salt shakers.Across all trials, the 17 holed shaker delivered a mean (SD of 7.86g (4.54 per trial, whilst the five holed shaker delivered 2.65g (1.22. The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001. This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers' salt intake with takeaway food and on total dietary salt intake.

  7. Cum grano salis - NAA of selected salts

    International Nuclear Information System (INIS)

    Steinhauser, G.; Sterba, J.H.; Poljanc, K.; Bichler, M.; Buchtela, K.

    2006-01-01

    The aim of this study was to investigate the trace element concentrations of salt samples from different regions, in particular Austria, Germany, Pakistan, Poland, Switzerland, and Ukraine. Investigated types of salt were Rock-, Sea-, Lake-, and Evaporated Salt. The main objective was to find out whether the consumption of salt can contribute significantly to the daily human requirements of trace elements. Therefore, trace element concentrations in the untreated samples were compared to those of specially treated samples, simulating digestive uptake using a simple model. Salt is a non-trivial matrix for Neutron Activation Analysis (NAA) because of very high background activities from 38 Cl and 24 Na, as well as the bremsstrahlung of 32 P (originating from 35 Cl(n,α) 32 P). Because of this fact, detection limits in salt are higher compared to other matrices. Nevertheless, several elements could be detected, namely Al, Ba, Br, (Ca), Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, La, Mn, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, and Zn, some of them only in single samples. In most samples the concentrations of trace elements in salt were too low to show biological effects. Salt can therefore only significantly contribute the essential elements sodium, chlorine, and, if added on purpose, fluorine and iodine to human nutrition. The contribution of all other traces in salt to the average daily human requirements can be neglected. Thus, from an analytical point of view, there is no health reason to use unpurified salt. There are, however, a few drawbacks to the use of unpurified salt, as hygroscopic compounds like MgCl 2 , and even toxic heavy metals like chromium or thorium. Especially rare earth element (REE) concentrations can often be used to obtain a chemical fingerprint, which can be used to identify the origin of an unknown sample. In the case of this study, the sample number from each region was too small to collect significant data. Therefore more analytical information is needed

  8. Effect of indomethacin and salt depletion on renal proton MR imaging

    International Nuclear Information System (INIS)

    Heyman, S.N.; Mammen, M.

    1991-01-01

    Blockade of the synthesis of vasodilating prostaglandins with non-steroidal anti-inflammatory drugs (NSAID) renders the renal medulla susceptible to hypoxic injury with reduced renal function, especially in clinical conditions characterized by volume depletion. Alterations in renal hemodynamics and urine production may effect renal MR imaging under these circumstances. We injected salt-depleted and control rats undergoing proton MR imaging with indomethacin 10 mg/kg. Indomethacin abolished the cortico-medullary T2-gradient and markedly diminished the overall renal signal in salt-depleted rats only. These changes, which progressed over a period of 40 min after indomethacin was injected, probably result from renal oligemia and decreased urine production, with an associated decrease in T2-values. We suggest that a history of consumption of non-steroidal anti-inflammatory drugs should be obtained and taken into account in the evaluation of renal proton MR imaging, especially in the presence of salt and volume depletion. (orig.)

  9. Development of electrowinner and salt regenerator for PRIDE

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S. W.; Lee, H. S.; Hur, J. M. [KAERI, Daejeon (Korea, Republic of); and others

    2011-11-15

    A scope of this study includes an manufacturing an electrowinning equipment of LCC(Liquid Cadmium Cathode) to recover actinides such as uranium and TRU(Np, Pu, Am, Cm) remained in the molten salt(LiCl-KCl) transferred after an electrorefining process which collects uranium of high purity and an salt regeneration equipment to remove RE(Rare Earth) from the remaining salt after electrowinning process by oxidation and precipitation. The design capacity to recover actinide metals for PRIDE electrowinner was determined to 1 kg/batch and the amount of cadmium and LiCl-KCl eutectic salt were 10 kg and 50 kg, respectively. The equipment was designed based on the operation experiences of lab-scale LCC apparatus but the concepts of remote operation were introduced. PRIDE scale oxidative precipitation precipitation apparatus whose maximum batch size is 20kg-salt/batch was designed and installed. It consists of four parts: oxidation reactor, oxygen sparing unit, flange moving device and crucible unit. To avoid a severe corrosion problem due to a high temperature, oxygen and chloride salt atmosphere, the oxidation reaction is conducted in an 100% Ta crucible. A 3D test was conducted to review the possibility of the remote operation for the equipment and the test results were applied to the design improvement. The mock-up equipment were prepared on the basis of 3D test results and after the test of remote operation, the final equipment for PRIDE were manufactured.

  10. Association between Salt Intake and Albuminuria in Normotensive and Hypertensive Individuals

    Directory of Open Access Journals (Sweden)

    Arsalan Khaledifar

    2013-01-01

    Full Text Available Background. There is a little published data regarding the association between salt intake and albuminuria as an important alarm for progression of cardiovascular and renal dysfunction. We aimed to assess this relationship to emphasize the major role of restricting salt intake to minimize albuminuria and prevent these life-threatening events. Methods. The study population comprised 820 individuals. Participants were assigned to groups as follows: normal albuminuria, slight albuminuria, and clinical albuminuria. Daily salt intake was assessed on the basis of 24-hour urinary sodium excretion, since urinary sodium excretion largely equals sodium intake. Results. In normotensive participants, the mean level of urine albumin was higher in those who had higher amounts of salt intake with a significantly upward trend (the mean urinary albumin level in low-salt-diet group, in medium-salt-intake group, and in high-salt-intake group was 42.70±36.42, 46.89±38.91, and 53.38±48.23, resp., (P=0.017. There was a significant positive correlation between 24-hour urinary sodium secretion and the level of urine albumin (beta = 0.130, P<0.001. The amount of salt intake was significantly associated with urine albumin concentration (beta = 3.969, SE = 1.671, P=0.018. Conclusion. High salt intake was shown to be associated with higher level of microalbuminuria even adjusted for potential underlying risk factors.

  11. Structural testing of salt loaded HEPA filters for WIPP

    International Nuclear Information System (INIS)

    Smith, P.R.; Leslie, I.H.; Hensel, E.C.; Shultheis, T.M.; Walls, J.R.

    1993-01-01

    The ventilation studies of the Waste Isolation Pilot Plant described in this paper were performed by personnel from New Mexico State Univ. in collaboration with Sandia National Laboratories, Los Alamos National Laboratory and Westinghouse Corporation. High efficiency particulate air filters (0.61m by 0.61m by 0.3m) of the type in use at the Waste Isolation Pilot Plant were loaded with salt aerosol provided from that site. The structural strength of salt-loaded, high-efficiency filters was investigated at two humidity levels, high (75%RH) and low (13-14% RH), by subjecting the filters to pressure transients of the types expected from tornadoes. Filters loaded under the high humidity condition proved to have a greater structural strength than did the filters loaded under the low humidity conditions, when both types were subjected to tornado-like pressure pulses. This unexpected results was apparently due to the crystallization of salt upon the wire face guard of the HEPA filter loaded under the high humidity condition which kept salt from penetrating the filter medium while still providing a substantial pressure drop at the standard flow rate. Results are also presented for HEPA filters pre-conditioned at 100% RH before structural testing and for HEPA filters in series with pre-filters

  12. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.

    Science.gov (United States)

    Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise

    2011-08-01

    In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.

  13. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    Science.gov (United States)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  14. Detectors and signal processing for high-energy physics

    International Nuclear Information System (INIS)

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed

  15. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  16. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  17. A non-multimacrocyclic heteroditopic receptor that cooperatively binds and effectively extracts KAcO salt.

    Science.gov (United States)

    Zakrzewski, Maciej; Kwietniewska, Natalia; Walczak, Wojciech; Piątek, Piotr

    2018-06-06

    Prepared in only three synthetic steps, a non-multimacrocyclic heteroditopic receptor binds potassium salts of halides and carboxylates with unusually high cooperativity, suggesting salt binding as associated ion-pairs. Unprecedented extraction of highly hydrophilic KAcO salt from water to organic solution is also demonstrated.

  18. Free energy landscape of a minimalist salt bridge model.

    Science.gov (United States)

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  19. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-09-01

    Full Text Available High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT. Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2− than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.

  20. Salt og forbrugervalg

    DEFF Research Database (Denmark)

    Mørk, Trine; Grunert, Klaus G

    af saltreducerede fødevarer og deres købsintention af disse. Dette blev undersøgt ved at måle forbrugerens viden om salt, anvendelse af salt, ønske om reduktion af salt og købsintention af saltreducerede fødevarer i en web-baseret undersøgelse. Efter den web-baserede undersøgelse, blev de samme mål...... undersøgt, men i et supermarked, hvor deltagerne blev inddelt i fire grupper for at undersøge effekten af priming og saltmærkning. Desuden blev der foretaget 15 kvalitative interviews, for at studere hvem og hvad der karakteriserer de deltagere i eksperimentet, som enten ender med ingen salt......-reducerede produkter at købe eller som ender med at købe alle de salt-reducerede produkter....

  1. Biosensor Architectures for High-Fidelity Reporting of Cellular Signaling

    Science.gov (United States)

    Dushek, Omer; Lellouch, Annemarie C.; Vaux, David J.; Shahrezaei, Vahid

    2014-01-01

    Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling. PMID:25099816

  2. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    Science.gov (United States)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  3. Experimental and theoretical studies in Molten Salt Natural Circulation Loop (MSNCL)

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Jana, S.S.; Bagul, R.K.; Singh, R.R.; Maheshwari, N.K.; Belokar, D.G.; Vijayan, P.K.

    2014-12-01

    High Temperature Reactors (HTR) and solar thermal power plants use molten salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt and molten nitrate salt are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000°C to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt. With these requirements, a Molten Salt Natural Circulation Loop (MSNCL) has been designed, fabricated, installed and commissioned in Hall-7, BARC for thermal hydraulic, instrumentation development and material compatibility related studies. Steady state natural circulation experiments with molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratio) have been carried out in the loop at different power level. Various transients viz. startup of natural circulation, step power change, loss of heat sink and heater trip has also been studied in the loop. A well known steady state correlation given by Vijayan et. al. has been compared with experimental data. In-house developed code LeBENC has also been validated against all steady state and transient experimental results. The detailed description of MSNCL, steady state and transient experimental results and validation of in-house developed code LeBENC have been described in this report. (author)

  4. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    Science.gov (United States)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  5. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying

    2018-02-05

    The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. [Historical roles of salt].

    Science.gov (United States)

    Ritz, E; Ritz, C

    2004-12-17

    Recently increasing evidence has been provided pointing to a close relation of salt consumption to hypertension as well as to target organ damage. It is interesting to note that the discussion concerning salt is unusually emotional. This may be explained, at least in part, by the fact that since ancient times salt had deep symbolic significance, as exemplified, mostly subconsciously, by many customs and expressions still in current use. In the past salt was essential to preserve food. The past importance of salt as a commodity can well be compared with that of oil today. These and further historical aspects of the role of salt are briefly dealt with in this article.

  7. Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2016-11-01

    Full Text Available Elucidating the mechanisms of abiotic stress tolerance in different species will help to develop more resistant plant varieties, contributing to improve agricultural production in a climate change scenario. Basic responses to salt stress, dependent on osmolyte accumulation and activation of antioxidant systems, have been studied in Nerium oleander, a xerophytic species widely used as ornamental. Salt strongly inhibited growth, but the plants survived one-month treatments with quite high NaCl concentrations, up to 800 mM, indicating the the species is relatively resistant to salt stress, in addition to drought. Levels of proline, glycine betaine and soluble sugars increased only slightly in the presence of salt; however, soluble sugar absolute contents were much higher than those of the other osmolytes, suggesting a functional role of these compounds in osmotic adjustment, and the presence of constitutive mechanisms of response to salt stress. High salinity generated oxidative stress in the plants, as shown by the increase of malondialdehyde levels. Antioxidant systems, enzymatic and non-enzymatic, are generally activated in response to salt stress; in oleander, they do not seem to include total phenolics or flavonoids, antioxidant compounds which did not accumulate significantly in salt-trated plants

  8. Depressor effect of the young leaves of Polygonum hydropiper Linn. in high-salt induced hypertensive mice.

    Science.gov (United States)

    Devarajan, Sankar; Yahiro, Eiji; Uehara, Yoshinari; Kuroda, Rieko; Hirano, Yoshio; Nagata, Kaori; Miura, Shinichiro; Saku, Keijiro; Urata, Hidenori

    2018-06-01

    A novel chymase inhibitor has been reported to have depressor effect in salt-induced hypertension. Therefore, we examined the hypothesis that chymase inhibitory dried young leaves of Polygonum hydropiper (PPH) or young leaves extract of Polygonum hydropiper (PHE) could reduce salt-induced hypertension. In this study, 8-wk old wild-type mice were allocated into three experiments and experiment I included groups, I- normal water drinking, II- high salt (2% NaCl) water (HSW) drinking, and III- HSW plus PPH (500 mg kg -1 , orally) for 12-wk. Blood pressure (BP) and heart rate (HR) were measured at baseline and weekly up to wk-12. In experiment II, mice were given HSW for 12-wk followed by 8-wk treatment with PPH plus HSW (62.5, 125, 250 and 500 mg kg -1 for groups I, II, III and IV, respectively). BP and HR were measured at baseline and monthly until wk-12, following weekly for 8-wk. Experiment III comprised of four groups of mice for 12-wk HSW and 8-wk treatment with PHE plus HSW (2.5, 5, 10 and 20 mg kg -1 for groups I-IV, respectively). BP and HR were measured at baseline and monthly up to wk-12, following weekly for 8-wk. Significant reduction in BP and HR were observed in mice treated with PPH (500 mg kg -1 ) compared to HSW control. PPH reduced BP and HR dose dependently in hypertensive mice and the higher dose showed maximum reduction. PHE at its maximum dose (20 mg kg -1 ) significantly suppressed BP and HR. Over all, we found that the young leaves of Polygonum hydropiper suppressed salt-induced hypertension. Copyright © 2018. Published by Elsevier Masson SAS.

  9. Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Shelly X. Li; Steven D. Herrmann; Michael F. Simpson

    2009-09-01

    Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations Shelly X. Li, Steven D. Herrmann, and Michael F. Simpson Pyroprocessing Technology Department Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID 83415 USA Abstract - A series of six bench-scale liquid cadmium cathode (LCC) tests was performed to obtain basic separation data with focus on the behavior of rare earth elements. The electrolyte used for the tests was a mixed salt from the Mk-IV and Mk-V electrorefiners, in which spent metal fuels from Experimental Breeder Reactor-II (EBR-II) had been processed. Rare earth (RE) chlorides, such as NdCl3, CeCl3, LaCl3, PrCl3, SmCl3, and YCl3, were spiked into the salt prior to the first test to create an extreme case for investigating rare earth contamination of the actinides collected by a LCC. For the first two LCC tests, an alloy with the nominal composition of 41U-30Pu-5Am-3Np-20Zr-1RE was loaded into the anode baskets as the feed material. The anode feed material for Runs 3 to 6 was spent ternary fuel (U-19Pu-10Zr). The Pu/U ratio in the salt varied from 0.6 to 1.3. Chemical and radiochemical analytical results confirmed that U and transuranics can be collected into the LCC as a group under the given run conditions. The RE contamination level in the LCC product was up to 6.7 wt% of the total metal collected. The detailed data for partitioning of actinides and REs in the salt and Cd phases are reported in the paper.

  10. Characterization of the molten salt reactor experiment fuel and flush salts

    International Nuclear Information System (INIS)

    Williams, D.F.; Peretz, F.J.

    1996-01-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These open-quotes staticclose quotes properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions

  11. Sequestration of CO2 in salt caverns

    International Nuclear Information System (INIS)

    Dusseault, M.B.; Rothenburg, L.; Bachu, S.

    2002-01-01

    The greenhouse effect is thought to be greatly affected by anthropogenic and naturally generated gases, such as carbon dioxide. The reduction of greenhouse gas emissions in the atmosphere could be effected through the permanent storage of carbon dioxide in dissolved salt caverns. A large number of suitable salt deposits are located in Alberta, especially the Lotsberg Salt of east-central Alberta. A major advantage of this deposit is its proximity to present and future point sources of carbon dioxide associated with fossil fuel development projects. Using the perspective of the long term fate of the stored carbon dioxide, the authors presented the characteristics of the Lotsberg Salt and the overlying strata. A high level of security against leakage and migration of the gas back to the biosphere is ensured by several features discussed in the paper. The authors propose a procedure that would be applicable for the creation, testing, and filling of a salt cavern. Achieving a long term prediction of the behavior of the cavern during slow closure, coupled to the pressure and volume behavior of the gas within the cavern represents the critical factor. The authors came up with an acceptable prediction by using a semi-analytical model. The use of salt caverns for the permanent sequestration of carbon dioxide has not yet faced technical obstacles that would prevent it. The authors argue that sequestration of carbon dioxide in salt caverns represents an environmentally acceptable option in Alberta. 11 refs., 3 figs

  12. Site characterization plan: Gulf Coast salt domes

    International Nuclear Information System (INIS)

    1983-12-01

    The National Waste Terminal Storage (NWTS) program of the US Department of Energy (DOE) is responsible for developing technology and providing facilities for safe, environmentally acceptable, permanent disposal of high-level nuclear waste. The Office of Nuclear Waste Isolation has been intensively investigating Gulf Coast Salt Dome Basin salt domes and bedded salt in Texas and Utah since 1978. In the Gulf Coast, the application of screening criteria in the region phase led to selection of eight domes for further study in the location phase. Further screening in the area phase identified four domes for more intensive study in the location phase: Oakwood Dome, Texas; Vacherie Dome, Louisiana; and Richton Dome and Cypress Creek Dome, Mississippi. For each dome, this Site Characterization Plan identifies specific hydrologic, geologic, tectonic, geochemical, and environmental key issues that are related to the DOE/NWTS screening criteria or affect the feasibility of constructing an exploratory shaft. The Site Characterization Plan outlines studies need to: (1) resolve issues sufficiently to allow one or more salt domes to be selected and compared to bedded salt sites in order to determine a prime salt site for an exploratory shaft; (2) conduct issue-related studies to provide a higher level of confidence that the preferred salt dome site is viable for construction of an exploratory shaft; and (3) provide a vehicle for state input to issues. Extensive references, 7 figures, 20 tables

  13. High-Salt Intake Ameliorates Hyperglycemia and Insulin Resistance in WBN/Kob-Leprfa/fa Rats: A New Model of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yoshiichi Takagi

    2018-01-01

    Full Text Available High-salt intake is a major risk factor for developing hypertension in type 2 diabetes mellitus, but its effects on glucose homeostasis are controversial. We previously found that high-salt intake induces severe hypertension in WBN/Kob diabetic fatty (WBKDF rats. In the present study, we examined the effects of a high-salt intake on glucose homeostasis in WBKDF rats. Male WBKDF rats and age-matched Wistar rats at 6 weeks of age were each divided into two groups and fed either a normal-sodium (NS, 0.26% diet or high-sodium (HS, 8% diet for 7 weeks. Systolic blood pressure and urine volume were increased in WBKDF-HS and Wistar-HS. Body weight gain and food consumption were comparable between NS and HS in both strains. Plasma and urine glucose levels were significantly increased in WBKDF-NS but not in WBKDF-HS. HOMA-IR in WBKDF-HS was significantly lower compared with that in WBKDF-NS. The high plasma adiponectin level in WBKDF-NS compared with that in Wistar-NS was further enhanced in WBKDF-HS. Glycogen deposits and fat droplets in the livers of WBKDF-HS were reduced compared with those of WBKDF-NS. The present study demonstrated that HS intake ameliorated hyperglycemia and insulin resistance in WBKDF rats, which may be due to increased plasma levels of adiponectin.

  14. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  15. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  16. Preparation of a Highly Fluorophilic Phosphonium Salt and its Use in a Fluorous Anion-Exchanger Membrane with High Selectivity for Perfluorinated Acids

    OpenAIRE

    Boswell, Paul G.; Anfang, Alyce C.; Bühlmann, Philippe

    2008-01-01

    Fluorous solvents are the most nonpolar, nonpolarizable phases known, whereas ions are inherently polar. This makes it difficult to create salts that are soluble in a fluorous solvent. Here we present the synthesis and characterization of a new fluorophilic phosphonium salt, tris{3,5-bis[(perfluorooctyl)propyl]phenyl}methylphosphonium methyl sulfate. The salt has a solubility of at least 14 mM in perfluoro(perhydrophenanthrene), perfluoro(methylcyclohexane), and perfluorohexanes. It also show...

  17. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  18. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  19. Geohydrolic studies of Gulf Coast interior salt domes

    International Nuclear Information System (INIS)

    Smith, C.G. Jr.

    1977-01-01

    Disposal of high-level radioactive wastes in Gulf Coast salt domes requires that the cavities be free from groundwater dissolution for 250,000 years. Salinity variations of groundwater near selected domes were investigated. Saline groundwater anomalies (saline plumes) in aquifers pierced or uplifted by the dome may be the result of salt solution by groundwater. In the Northeast Texas salt dome basin electric logs of oil and gas wells have been used to estimate groundwater salinities in aquifers near selected domes. Thus far, the analyses have revealed saline groundwater anomalies around 4 of the 9 domes studied. Estimates of the rate of salt dissolution from domes associated with saline groundwater plumes indicate that less than 30 meters of salt will be removed from the upper surfaces of the dome in 250,000 years. Thus, these preliminary studies show that even apparently unstable domes may be sufficiently stable to serve as waste disposal sites. 6 figures

  20. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  1. A New Switching-Based Median Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images

    Directory of Open Access Journals (Sweden)

    Jayaraj V

    2010-01-01

    Full Text Available A new switching-based median filtering scheme for restoration of images that are highly corrupted by salt and pepper noise is proposed. An algorithm based on the scheme is developed. The new scheme introduces the concept of substitution of noisy pixels by linear prediction prior to estimation. A novel simplified linear predictor is developed for this purpose. The objective of the scheme and algorithm is the removal of high-density salt and pepper noise in images. The new algorithm shows significantly better image quality with good PSNR, reduced MSE, good edge preservation, and reduced streaking. The good performance is achieved with reduced computational complexity. A comparison of the performance is made with several existing algorithms in terms of visual and quantitative results. The performance of the proposed scheme and algorithm is demonstrated.

  2. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats

    International Nuclear Information System (INIS)

    Vasdev, S.; Prabhakaran, V.; Sampson, C.A.

    1990-01-01

    This study examined the effect of 25% deuterium oxide in drinking water on systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas of Dahl salt-sensitive rats on 0.4% (low) and 8% (high) sodium chloride (salt) diet. Twenty-four rats were divided into four groups. Groups I and II were on the low salt diet and groups III and IV on the high salt diet from 6 weeks of age. Additionally, at 10 weeks of age groups I and III were placed on 100% water and groups II and IV on 25% deuterium oxide. At 14 weeks, systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas were significantly higher (p less than 0.01) in rats on the high salt diet as compared with those on the low salt diet. Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet. Deuterium oxide had no effect on blood pressure or aortic calcium uptake in rats on the low salt diet. The parallel increase in systolic blood pressure and vascular calcium uptake suggests that increased calcium uptake mechanisms are associated with hypertension in salt-sensitive Dahl rats. Furthermore, deuterium oxide appears to normalize elevated blood pressure in salt-sensitive hypertensive rats by normalizing elevated vascular (aortic) calcium uptake

  3. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  4. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  5. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  6. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  7. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  8. Origin of salt giants in abyssal serpentinite systems

    Science.gov (United States)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  9. Investigation of the source of residual phthalate in sundried salt.

    Science.gov (United States)

    Kim, Jin Hyo; Lee, Jin Hwan; Kim, So-Young

    2014-03-01

    Phthalate contamination in sundried salt has recently garnered interest in Korea. Phthalate concentrations were investigated in Korean sundried salts, source waters, and aqueous extracts from polyvinyl chloride materials used in salt ponds. Preliminary screening results for phthalates in Korean sundried salts revealed that only di(2-ethylhexyl)phthalate (DEHP) was over the limit of detection, with an 8.6% detection rate, and the concentration ranged from below the limit of detection to 0.189 mg/kg. The tolerable daily intake contribution ratio of the salt was calculated to be only 0.001%. Residual phthalates were below 0.026 mg/liter in source water, and the aqueous extracted di-n-butylphthalate, benzylbutylphthalate, and DEHP, which are considered endocrine disruptors, were below 0.029 mg/kg as derived from the polyvinyl chloride materials in salt ponds. The transfer ratios of the six phthalates from seawater to sundried salts were investigated; transfer ratio was correlated with vapor pressure (r(2) = 0.9875). Thus, di-n-butylphthalate, benzylbutylphthalate, DEHP, and di-n-octylphthalate can be considered highly likely residual pollutants in some consumer salts.

  10. Effect of umami taste on pleasantness of low-salt soups during repeated testing.

    Science.gov (United States)

    Roininen, K; Lähteenmäki, L; Tuorila, H

    1996-09-01

    In the present study the effects of the umami substances, monosodium glutamate (0.2%) and 5'-ribonucleotides (0.05%), on the acceptance of low-salt soups in two groups of subjects, one with low-salt (n = 21) and the other with high-salt (n = 23) preferences were assessed. The groups were presented with soups containing 0.3% sodium chloride (low-salt group) and 0.5% sodium chloride (high-salt group). The subjects three times consumed leek-potato or minestrone soup with umami and three times the other soup without umami during six sessions over 5 weeks (sessions 2-7). In addition they tasted these and two other soups (lentil and mushroom soup) during sessions 1 and 8, during which they evaluated the pleasantness, taste intensity, and ideal saltiness of the soups with and without added umami. These ratings were higher when soups contained umami in both the low- and high-salt groups, and they remained higher regardless of which of the soups served for lunch contained umami. The low- and high-salt groups did not differ in pleasantness ratings, although the former rated the taste intensity of their soups higher and ideal saltiness closer to the ideal than did the latter. The pleasantness ratings of soups without umami were significantly lower at the end of the study than at the beginning, whereas those of soups with umami remained unchanged. These data suggest that the pleasantness of reduced-salt foods could be increased by addition of appropriate flavors.

  11. Aspects on the gas generation and migration in repositories for high level waste in salt formations

    International Nuclear Information System (INIS)

    Ruebel, Andre; Buhmann, Dieter; Meleshyn, Artur; Moenig, Joerg; Spiessl, Sabine

    2013-07-01

    In a deep geological repository for high-level waste, gases may be produced during the post-closure phase by several processes. The generated gases can potentially affect safety relevant features and processes of the repository, like the barrier integrity, the transport of liquids and gases in the repository and the release of gaseous radionuclides from the repository into the biosphere. German long-term safety assessments for repositories for high-level waste in salt which were performed prior 2010 did not explicitly consider gas transport and the consequences from release of volatile radionuclides. Selected aspects of the generation and migration of gases in repositories for high-level waste in a salt formation are studied in this report from the viewpoint of the performance assessment. The knowledge on the availability of water in the repository, in particular the migration of salt rock internal fluids in the temperature field of the radioactive waste repository towards the emplacement drifts, was compiled and the amount of water was roughly estimated. Two other processes studied in this report are on the one hand the release of gaseous radionuclides from the repository and their potential impact in the biosphere and on the other hand the transport of gases along the drifts and shafts of the repository and their interaction with the fluid flow. The results presented show that there is some gas production expected to occur in the repository due to corrosion of container material from water disposed of with the backfill and inflowing from the host rock during the thermal phase. If not dedicated gas storage areas are foreseen in the repository concept, these gases might exceed the storage capacity for gases in the repository. Consequently, an outflow of gases from the repository could occur. If there are failed containers for spent fuel, radioactive gases might be released from the containers into the gas space of the backfill and subsequently transported together

  12. Low-Salt Intake during Mating or Gestation in Rats Is Associated with Low Birth and Survival Rates of Babies

    Directory of Open Access Journals (Sweden)

    Ranna Chou

    2014-01-01

    Full Text Available We investigated the influence of maternal salt restriction during mating or gestation on birth rate and offspring growth in Dahl salt-sensitive rats (DS. DS were divided into 5 groups: DS fed a low-salt (0.3% NaCl, w/w (DS-low or high-salt (4% NaCl, w/w diet (DS-high during mating and DS-high or DS-low during gestation, and DS fed regular chow (0.75% NaCl, w/w (DS-regular throughout mating and gestation. During the unspecified periods, the rats were given regular chow. DS-low during mating delivered fewer infants than high-salt mothers (P<0.05. The birth rate on regular chow was 87%. Six out of 11 DS-low rats during pregnancy produced pups while the rats fed a high-salt diet all delivered pups (P<0.025. The pup survival rate was 67% for high-salt mothers during mating and 54% for mothers on a low-salt diet. The pup survival rate was 95% for mothers on a high-salt diet during pregnancy and 64% for mothers on a low-salt diet (P<0.0001. Seven out of 8 DS-regular rats during mating delivered 59 neonates. However, 66% of the neonates survived. A low-salt diet during mating or pregnancy lowers birth rate and the neonates from low-salt mothers during pregnancy were more likely to die than those from high-salt mothers.

  13. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  14. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    International Nuclear Information System (INIS)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-01

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  15. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  16. Genetic analysis of Myanmar Vigna species in responses to salt ...

    African Journals Online (AJOL)

    Genetic analysis of Myanmar Vigna species in responses to salt stress at the ... of reduction was highly dependent on different genotypes and salinity levels. ... the mechanism of salt tolerance and for the provision of genetic resources for ...

  17. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  18. Synthesis of thiazolium salts and their screening for catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul Ki; Kim, Do Joong; Park, Jin Kyoon [Dept. of Chemistry and Institute of Functional Materials, Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    A facile synthetic method to prepare thiazolium-based ionic liquids in high yield was developed. The direct alkylation of thiazole was performed using a trialkyl orthoester as both the alkyl donor and the solvent. The synthesized thiazolium salts were subsequently screened for their ability to catalyze the benzoin condensation reaction. Of the salts that were tested, 3-butyl,4,5-dimethyl thiazolium salt, was found to be the best catalyst.

  19. Seismic evidence of Messinian salt in opposite margins of West Mediterranean

    Science.gov (United States)

    Mocnik, Arianna; Camerlenghi, Angelo; Del Ben, Anna; Geletti, Riccardo; Wardell, Nigel; Zgur, Fabrizio

    2015-04-01

    The post drift Messinian Salinity Crisis (MSC) affected the whole Mediterranean basin, with deposition of evaporitic sequences in the deep basins, in the lower continental slopes, and in several shallower marginal basins; usually, in the continental margins, the MSC originated noticeable erosional truncations that locally cause important hiatuses in the pre-Messinian sequences, covered by the Plio-Quaternary sediments. In this work we focus on the MSC seismic signature of two new seismic datasets acquired in 2010 (West Sardinia offshore) and in 2012 (within the Eurofleet project SALTFLU in the South Balearic continental margin and the northern Algero abyssal plain). The "Messinian trilogy" recognized in the West-Mediterranean abyssal plain, is characterized by different seismic facies: the Lower evaporite Unit (LU), the salt Mobile Unit (MU) and the Upper evaporite mainly gypsiferous Unit (UU). Both seismic datasets show the presence of the Messinian trilogy also if the LU is not always clearly interpretable due to the strong seismic signal absorption by the halite layers; the salt thickness of the MU is similar in both the basins as also the thickness and stratigraphy of the UU. The Upper Unit (UU) is made up of a well reflecting package of about 10 reflectors, partially deformed by salt tectonic and characterized by a thin transparent layer that we interpreted as salt sequence inner the shallower part of the UU. Below the stratified UU, the MU exhibits a transparent layer in the deep basin and also on the foot of the slope, where a negative reflector, related to the high interval velocity of salt, marks its base. The halokinetic processes are not homogeneously distributed in the region, forming a great number of diapirs on the foot of the slope (due to the pression of the slided sediments) and giant domes toward the deep basin (due to the higher thickness of the Plio-quaternary sediments). This distribution seems to be related to the amount of salt and of the

  20. Salt geologic evaluation of the impact of cryogenic fissures and halokinetic deformation processes on the integrity of the geological barrier of the salt dome Gorleben

    International Nuclear Information System (INIS)

    Hammer, Joerg; Fleig, Stephanie; Mingerzahn, Gerhard

    2012-07-01

    In several salt domes of the area close to Hannover fissures were observed that might be caused by thermally induced fissure formation due to cold periods (cryogenic fissures). Comprehensive substantial-structural analyses are performed as an example for the salt dome Bokeloh with respect to genesis and transferability to the salt dome Gorleben. Based on recent structure-geological, mineralogical-geochemical and micro-paleontological studies and thermo-mechanical modeling a solely thermally induced fissure formation due to cold periods is unlikely for the salt dome Bokeloh. There is a direct relation between the genesis of the salt dome Bokeloh, its regional tectonic site and the fissure formation. Due to the completely different genesis and another regional-tectonic situation the existence of cryogenic fissures is excluded for the salt dome Gorleben. The salt-geologic and experimental studies on the deformation of anhydrite layers in salt domes are summarized and evaluated with respect to the long-term consequences for a potential final repository for high-level heat-generating radioactive waste in the salt dome Gorleben. The studies confirm the older BGR studies that anhydrite layers do not represent hydraulic potential ling-distance liquid paths.