WorldWideScience

Sample records for high salinity conditions

  1. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    Science.gov (United States)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  2. Evaluation of Sugar Beet (Beta vulgaris L. Genotypes for Their Trait Associations under Saline Conditions

    Directory of Open Access Journals (Sweden)

    B Bashiri

    2015-08-01

    Full Text Available To evaluate sugar-beet genotypes for their trait associations, two separate RCBD experiments with three replications were conducted both under non-saline (normal and saline conditions at the Agricultural Research of Miandoab. Analysis of variance of the data collected showed that there were significant differences among genotypes for all traits studied under non-saline condition. But, differences of genotypes under saline condition were significant only for root yield, root potassium content, sugar extraction coefficient, impure and pure (white sugar yields. Salinity stress, in this study, reduced root potassium content, root yield, sugar extraction coefficient, impure and pure (white sugar yields. Mean comparisons of genotypes indicated that root yield of all genotypes, under non-saline condition, were higher than those of under saline one. As whole, genotypes number 1 and 2 produced higher root yields, impure and pure sugar yields respectively, under both saline and non-saline conditions. Based on the results obtained it was revealed that regression coefficients for the traits under study were significant. Step-wise regression and path coefficient analyses also indicated that traits like root yield, pure sugar and root nitrogen contents highly affected white sugar yield under non-saline conditions.

  3. Nutritional value and chemical composition of Cichorium spinosum L. under saline conditions

    OpenAIRE

    Petropoulos, Spyridon Α.; Vasilios, Antoniadis; Efi, Levizou; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C.F.R.

    2016-01-01

    Soil salinity is an ever‐growing problem that hinders vegetable cultivation in many areas within the Mediterranean basin. Cichorium spinosum is native to the Mediterranean basin and is usually found in coastal areas and plateaus. In the present study, C. spinosum plants were grown under saline conditions (1.8, 4 and 8 dS/m), in order to evaluate the effect of salinity on their nutritional value and chemical composition. From the results it was observed that high salinity levels...

  4. N2-fixation in fababean (vicia faba l.) grown in saline and non saline conditions using 15N tracer technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Kurdali, F.

    2002-09-01

    A pot experiment was conducted to study the performance of growing fababean and barley under saline conditions, in terms of, dry matter yield, total nitrogen and, percentages and amount of N derived from soil, fertilizer and atmosphere using 15 N isotope dilution method. Three saline treatments were performed: First, plants were grown in saline soil and irrigated with saline water (Ws Ss), Second, Plants were grown in saline soil and irrigated with saline water (Ws Ss); and Third, Plants grown in non saline soil and irrigated with saline water (Ws Sn). Furthermore, a control treatment was performed by using non-saline soil and non-saline water (Wn Sn). The different salinity treatments reduced plant growth and the reduction was more pronounced in fababean than in barley. However, under conditions of either saline soil-soft irrigation water or non saline soil-salty irrigation water, the relative growth reduction did not exceed 50% of the control; whereas, a significant negative effect was obtained when plants were grown under completely saline conditions of both soil and irrigation water. Percentage of N 2 -fixed (% Ndfa) was not negatively affected by saline conditions. However, our results clearly demonstrated that the effect of salinity in fababean was more evident on plant growth than on N 2 -fixing activity. Further studies are needed to obtain more salt tolerant faba bean genotypes in terms of growth and yield. This could be simultaneously improve yield and N 2 -fixation under sever saline conditions. (author)

  5. Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions.

    Science.gov (United States)

    Zhang, Libin; Feng, Qiming; Sun, Lina; Ding, Kui; Huo, Da; Fang, Yan; Zhang, Tao; Yang, Hongsheng

    2018-03-01

    Sea cucumber, Apostichopus japonicus is an important species for aquaculture, and its behavior and physiology can change in response to changing salinity conditions. For this reason, it is important to understand the molecular responses of A. japonicus when exposed to ambient changes in salinity. In this study, RNA-Seq provided a general overview of the gene expression profiles in the intestine of A. japonicus exposed to high salinity (SD40), normal salinity (SD30) and low salinity (SD20) environments. Screening for differentially expressed genes (DEGs) using the NOISeq method identified 109, 100, and 89 DEGs based on a fold change of ≥2 and divergence probability ≥0.8 according to the comparisons of SD20 vs. SD30, SD20 vs.SD40, and SD30 vs. SD40, respectively. Gene ontology analysis showed that the terms "metabolic process" and "catalytic activity" comprised the most enriched DEGs. These fell into the categories of "biological process" and "molecular function". While "cell" and "cell part" had the most enriched DEGs in the category of "cellular component". With these DEGs mapping to 2119, 159, and 160 pathways in the Kyoto Encyclopedia of Genes and Genomes database. Of these 51, 2, and 57 pathways were significantly enriched, respectively. The osmosis-specific DEGs identified in this study of A. japonicus will be important targets for further studies to understand the biochemical mechanisms involved with the adaption of sea cucumbers to changes in salinity. Copyright © 2017. Published by Elsevier Inc.

  6. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions

    KAUST Repository

    Ochsenkuhn, Michael A.

    2017-08-17

    The endosymbiosis between Symbiodinium dinoflagellates and stony corals provides the foundation of coral reef ecosystems. The survival of these ecosystems is under threat at a global scale, and better knowledge is needed to conceive strategies for mitigating future reef loss. Environmental disturbance imposing temperature, salinity, and nutrient stress can lead to the loss of the Symbiodinium partner, causing so-called coral bleaching. Some of the most thermotolerant coral-Symbiodinium associations occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed to high salinity produced high levels of the osmolyte 2-O-glycerol-α-d-galactopyranoside (floridoside), both in vitro and in their coral host animals, thereby increasing their capacity and, putatively, the capacity of the holobiont to cope with the effects of osmotic stress in extreme environments. Given that floridoside has been previously shown to also act as an antioxidant, this osmolyte may serve a dual function: first, to serve as a compatible organic osmolyte accumulated by Symbiodinium in response to elevated salinities and, second, to counter reactive oxygen species produced as a consequence of potential salinity and heat stress.

  7. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P

  8. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions

    KAUST Repository

    Ochsenkuhn, Michael A.; Rö thig, Till; D’ Angelo, Cecilia; Wiedenmann, Jö rg; Voolstra, Christian R.

    2017-01-01

    occur in the Persian/Arabian Gulf and the Red Sea, which also represent the most saline coral habitats. We studied whether Symbiodinium alter their metabolite content in response to high-salinity environments. We found that Symbiodinium cells exposed

  9. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  10. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    Directory of Open Access Journals (Sweden)

    Wei Shi

    Full Text Available A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T, which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl. Electrical output was further demonstrated in microbial fuel cells (MFCs with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  11. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  12. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NARCIS (Netherlands)

    Smekens, Marret; Van Tienderen, P.H.

    2001-01-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions.

  13. Importance of the High-Expression of Proline Transporter PutP to the Adaptation of Escherichia coli to High Salinity.

    Science.gov (United States)

    Sasaki, Hideaki; Sato, Daichi; Oshima, Akinobu

    2017-01-01

     The effect of the amount of the proline transporter PutP expression on the mechanism of adaptation of E. coli cells to high salinity was analyzed. The PutP gene derived from the E. coli expression plasmid was introduced into the E. coli cell, and a high PutP expression strain was developed. At 1.2 M NaCl culture condition, the growth of normal E. coli cells was inhibited, whereas high ProP expression cells showed growth under 2.5 M NaCl conditions. The uptake of proline by E. coli as a compatible solute and substrate for metabolization was in good accordance with those seen in cell growth. These data suggested that the amount of the proline transporter PutP expression played an important role in the adaptation of E. coli cells to high saline conditions.

  14. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  15. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  16. Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhalim I. A. Mohamed

    2017-01-01

    Full Text Available Emulsified water-in-oil (W/O systems are extensively used in the oil industry for water control and acid stimulation. Emulsifiers are commonly utilized to emulsify a water-soluble material to form W/O emulsion. The selection of a particular surfactant for such jobs is critical and certainly expensive. In this work, the impact of surfactant structure on the stability of W/O emulsions is investigated using the hydrophilic-lipophilic balance (HLB of the surfactant. Different commercial surfactants were evaluated for use as emulsifiers for W/O systems at high-temperature (up to 120°C high-salinity (221,673 ppm HTHS conditions. Diverse surfactants were examined including ethoxylates, polyethylene glycols, fluorinated surfactants, and amides. Both commercial Diesel and waste oil are used for the oleic phase to prepare the emulsified system. Waste oil has shown higher stability (less separation in comparison with Diesel. This work has successfully identified stable emulsified W/O systems that can tolerate HTHS environments using HLB approach. Amine Acetate family shows higher stability in comparison with Glycol Ether family and at even lower concentration. New insights into structure-surfactant stability relationship, beyond the HLB approach, are provided for surfactant selection.

  17. Determination of the Optimum Concentration and Time of Salicylic Acid Foliar Application for Improving Barley Growth under Non-Saline and Saline Conditions

    Directory of Open Access Journals (Sweden)

    GH. Ranjbar

    2017-02-01

    Full Text Available In a 2yrs field study the effect of concentration and time of salicylic acid (SA foliar application on growth of barley under non-saline and saline (2 and 12 dS m-1 of NaCl, respectively conditions was evaluated in National Salinity Research Center of Iran, Yazd, central Iran during 2012-2014 growing seasons. The treatments of SA (11 treatments included without SA and SA foliar application at 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM applied at tillering + stem elongation + ear emergence or stem elongation + ear emergence. Salt stress led to significant decreases in seed yield and yield components; however, grain yield of barley plants were considerably increased when subjected to SA. This positive impact of SA was due probably to its effect on grain number. Average of grain yield in 0.0, 0.35, 0.70, 1.05, 1.40 and 1.75 mM SA concentrations were 496.1, 539.7, 538.5, 553.8, 517.4 and 501.3 g m-2 under non-saline and 189.2, 212.5, 219.1, 206.9, 200.3 and 182.3 g m-2 under saline conditions, respectively. Considering the negative correlation between sodium concentration in shoot and grain yield, modulating role of exogenous SA on adverse effect of salinity might be related to a SA-induced lowered Na+ concentration in such organs. The appropriate treatment seems to be SA foliar application at 1.05 mM for non-saline and 0.70 mM for saline conditions applied at stem elongation + ear emergence, as they increased grain yield by 16.6% and 18.6%, respectively. The result of this study revealed that higher concentration or frequency of SA application could be associated with negative impacts on barley.

  18. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  19. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  20. Evaluation of some soil amendments plant productivity under saline conditions using nuclear techniques

    International Nuclear Information System (INIS)

    Aly, E.A.K.

    2004-01-01

    this study was carried out in Wadi Ras Sudr (south Saini government). this location was characterized as poor soil with high salinity (wasteland). in the same time it suffers from shortage of water resources. therefore, we aimed to utilize this soil as well as the saline ground water for introducing it into production systems. the reclamation of virgin poor soil need large efforts and much research, especially plant exposure to salinity which is rapidly followed by a decrease in growth rate. the use of natural organic sources as organic fertilizers improve the growth and yields of plants, and safe the environment from pollution . organic fertilizers (Of) such as green manure (G M) or poultry manure (P M) can be used as nutrient sources for good plant growth, where the soil amendments improve the physical, chemical and biological properties of the soil. economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. also , phosphorus and/or potassium supplementation separately or in combination with O F (G M and/or P M) improved the growth of both barley and wheat plants under such adverse condition of salinity using 15 N isotope dilution technique

  1. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  2. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    G. M. Weiss

    2017-12-01

    Full Text Available Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  3. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    Science.gov (United States)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  4. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition

    Directory of Open Access Journals (Sweden)

    Fariborz Shekari

    2017-10-01

    Full Text Available Anethum graveolens is an annual herb in the celery family Apiaceae. The experiment was carried out in a factorial design with two factors include salinity, which was applied to the root medium as NaCl (0 and 10 ds/m and nutrition as sodium silicate (0 and 1.5 mM, and selenate (0, 5 μM. Supplementary Si or Se ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Application of Si or Se decreased Na+ concentration and increased K+ concentration in roots and shoots of dill plants. Salinity imposed oxidative stress and leaded to increase malondialdehyde (MDA concentration. Under saline condition, addition of Si/Se significantly increased the activities of superoxide dismutase (SOD and catalase (CAT in salt-stressed plant when compared with plant subjected to salinity alone. Our results revealed that improvement in growth of salt stressed plants under the influence of Si and Se may be due to the improved ion balance, antioxidant enzymes activities and osmotic adjustment. These trace elements had negative effect on growth under non-saline conditions. Therefore, application of these trace elements (especially Silicon under saline condition could be a better strategy for maintaining the crop productivity in these regions.

  5. Selective Breeding under Saline Stressed Conditions of Canola Mutations Induced by Gamma Rays

    International Nuclear Information System (INIS)

    Amer, I.M.; Moustafa, H.A.M.; Mansour, M.F.

    2009-01-01

    Mutation breeding program has been initiated for inducing canola mutations tolerance to saline stressed conditions for growing at harsh land in Egypt. Therefore, seed lots of three cultivars and exotic variety (Bactol, Serow 4, Serow 6 and Evita) were subjected to 100,400 and 600 Gy of gamma rays. Mass selection with 20 % intensity for high number of pods per plant has been done in each treatment in M2 generation. However, individually plants with high number of pods / plant were selected from each variety in M3 generation for test under saline stressed conditions at Ras Sudr region in M4 (8600 and 8300 ppm salinity for soil and irrigation, respectively). The obtained results revealed that eight mutated families from 12- test families in M4 generation surpassed their parents in seed yield / plant and related characters ( plant height ,fruiting zone length , No. of branches , No. of pods / plant ). In addition, the mutant F93 characterized by fast growing and non shuttering pods reflecting 50.4% over Evita control in seed yield/ plant. Twelve mutant lines in M5 represented the mutant families were grown in sandy-loam soil at Inshas region. The three mutant lines (L 22, L 38 and L 45) continuously surpassed their parents in seed yield and related characters, but the increases were less than the previous generation. The increase was 22.3 %, 38.7 % and 36.7 % over seed yield of respective parents. Moreover, mutant L66 exhibited an increase in its yield components in M5 at Inshas only, suggesting that gene expression and genomic structure extremely influenced by environmental factors. Genetic stability for the obtained mutations could be done at different environmental conditions in further studies

  6. Seed Germination and Physiological Response of Sunflower (Helianthus annuus L. Cultivars under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Carmen BEINSAN

    2018-05-01

    Full Text Available The purpose of the experiment was to highlight the germination of sunflower seeds affected by the presence of saline stress and the identification of tolerant genotypes. The biological material was represented by sunflower cvs. (Helianthus annuus L.: Coril, Select, Santiago and Fundulea-206. To simulate the saline conditions, germination solutions of sodium chloride (NaCl were used with concentrations corresponding to the osmotic pressures -6 and -10 atm and the control seed hydration was performed with distilled water. Determination of seed germination, growth of seedling, percentage of plumules dry matter, chlorophyll content and free proline were performed. The experimental data obtained suppose the existence in the assimilation apparatus of sunflowers seedling subjected to stress a competitive chlorophyll/free proline biosynthesis processes. The experimental results regarding the effect of salinity on seed germination and seedling growth revealed important differences between genotypes. The radicle growth in the germination process were strongly affected by saline excess, with significant differences between cultivars. Saline stress results in significant reductions in the amount of chlorophyll, and high levels of free proline. It can be observed that with the increase of the stress level the percentage of the dry matter increases, indicating an accentuated water deficit.

  7. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    Science.gov (United States)

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  8. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  9. Study on a Novel Gelled Foam for Conformance Control in High Temperature and High Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Tong Li

    2018-05-01

    Full Text Available A novel gelled foam for conformance control was investigated for its ability to enhance oil recovery (EOR in high temperature and high salinity reservoirs. The formulation optimization, foaming performance, and core flooding performance of the gelled foam were systematically evaluated under harsh reservoir conditions. The gelled foam formulation was optimized with 0.4% polymer (hydrolyzed polyacrylamide; HPAM, 0.06% cross-linker (phenolic and 0.2% foaming agent (sulphobetaine; SB. The addition of the gel improved the stability of the foam system by 3.8 times that of traditional foam. A stabilization mechanism in the gelled foam was proposed to describe the stabilization process of the foam film. The uniformly distributed three-dimensional network structure of the gel provided a thick protective layer for the foam system that maintained the stability of the foam and improved the strength and thickness of the liquid film. The gelled foam exhibited good formation adaptability, profile control, and EOR performance. The foam flowed into the high permeability layer, plugged the dominant channel, and increased the swept volume. Oil recovery was enhanced by 29.4% under harsh high -temperature and high salinity conditions.

  10. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping

    KAUST Repository

    Al-Tamimi, Nadia Ali

    2016-11-17

    High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration.

  11. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping

    KAUST Repository

    Al-Tamimi, Nadia Ali; Brien, Chris; Oakey, Helena; Berger, Bettina; Saade, Stephanie; Ho, Yung Shwen; Schmö ckel, Sandra M.; Tester, Mark A.; Negrã o, Só nia

    2016-01-01

    High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration.

  12. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  13. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L. under saline conditions.

    Directory of Open Access Journals (Sweden)

    Mahmut Can Hiz

    Full Text Available Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values was performed by qRT-PCR (Quantitative Reverse Transcription PCR analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies.

  14. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2016-07-01

    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  15. Varietal differences of quinoa's tolerance to saline conditions

    DEFF Research Database (Denmark)

    Adolf, Verena Isabelle; Shabala, Sergey; Andersen, Mathias Neumann

    2012-01-01

    varieties, the Danish variety Titicaca and the Bolivian variety Utusaya gas exchange, chlorophyll content index (CCI), fluorescence and ion relations were studied. Results Responses to salinity differed greatly among the varieties; least affected were two varieties from the Bolivian altiplano and a variety...... from Peru. Titicaca and Utusaya both had substantially increased K+ concentrations in the leaf sap. But, Utusaya was much more efficient in restricting xylem Na+ loading. Xylem Na+ and K+ loading were found to be uncoupled. Utusaya maintained a relatively high stomatal conductance resulting in an only...... 25% NaCl-induced reduction in net CO2 assimilation compared to a 67% reduction in salt treated Titicaca plants. Maximum photochemical efficiency of PSII was not affected by salinity. Conclusion In addition to maintaining high gas exchange, tolerant varieties better control xylem Na+ loading. To what...

  16. Bioerosion structures in high-salinity marine environments: Evidence from the Al-Khafji coastline, Saudi Arabia

    Science.gov (United States)

    El-Sorogy, Abdelbaset S.; Alharbi, Talal; Richiano, Sebastián

    2018-05-01

    Salinity is one the major stress factors that controls the biotic activities in marine environments. In general, the mixture with fresh-water has been mention as a great stress factor, but the opposite, i.e. high-salinity conditions, is less developed in the ichnological literature. Along the Al-Khafji coastline, Saudi Arabia, hard substrates (constituted by gastropods, bivalves and coral skeletons) contain diverse and abundant bioerosion traces and associated encrusters. Field and laboratory observations allowed the recognition of eight ichnospecies belong to the ichnogenera Gastrochaenolites, Entobia, Oichnus, Caulostrepsis and Trypanites, which can be attributed to various activities produced by bivalves, sponges, gastropods and annelids. The borings demonstrate two notable ichnological boring assemblages, namely, Entobia-dominated and Gastrochaenolites-dominated assemblages. The highly diversified bioerosion and encrustation in the studied hard organic substrate indicate a long exposition period of organic substrate with slow to moderate rate of deposition in a restricted (high-salinity) marine environment. This bioerosion study shows that high-salinity, at least for the study area, is not an important controlling factor for ichnology.

  17. Effects of Hydro and Hormonal Seed Priming on Seed Germination of Milk Thistle under Saline Stress Condition

    Directory of Open Access Journals (Sweden)

    Yousef NASIRI

    2014-09-01

    Full Text Available Salinity is an abiotic stress which has harmful effects on germination of many plants. Therefore, high germination rate and vigorous early growth under salty soils is preferred. Seed priming is a way to increase salt tolerance of plants. An experiment was conducted to investigate the effect of seed priming on germination of milk thistle under salinity condition. The treatments were 4 levels of seed priming (no priming, distilled water as hydro priming and 0.5 and 1.0 mM salicylic acid and 5 levels of salinity (0, 40 and 80 mM NaCl and 40 and 80 mM CaCl2. The experiment arranged as a factorial in a completely randomized design (CRD with three replications. Results showed that salinity decreased germination percentage and germination rate to about 16 and 32% in 80 mM CaCl2 level compared to control, respectively. The highest mean germination time (5.7 day were belonged to 80 mM CaCl2. Radicle and plumule length significantly decreased by 80 mM NaCl and 40 and 80 mM CaCl2. The lowest seedling weight and seed stamina observed in 80 mM CaCl2. 0.5 mM salicylic acid improved all traits except mean germination time as compared to control.  Salicylic acid (0.5 mM improved radicle length under 0, 40 and 80 mM NaCl salinity levels as well as increased plumule length at the 0 and 40 mM NaCl salinity conditions.

  18. Paleoenvironmental and paleohydrochemical conditions of dolomite formation within a saline wetland in arid northwest Australia

    Science.gov (United States)

    Mather, Caroline C.; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline F.

    2018-04-01

    Groundwater dolocrete occurring within the Fortescue Marsh, a large inland wetland in the Pilbara region of northwest Australia, has been investigated to provide paleoenvironmental and paleohydrological records and further the understanding of low temperature dolomite formation in terrestrial settings over the Quaternary Period. Two major phases of groundwater dolocrete formation are apparent from the presence of two distinct units of dolocrete, based on differences in depth, δ18O values and mineral composition. Group 1 (G1) occurs at depth 20-65 m b.g.l. (below ground level) and contains stoichiometric dolomite with δ18O values of -4.02-0.71‰. Group 2 (G2) is shallower (0-23 m b.g.l.), occurring close to the current groundwater level, and contains Ca-rich dolomite ± secondary calcite with a comparatively lower range of δ18O values (-7.74 and -6.03‰). Modelled δ18O values of paleogroundwater from which older G1 dolomite precipitated indicated highly saline source water, which had similar stable oxygen isotope compositions to relatively old brine groundwater within the Marsh, developed under a different hydroclimatic regime. The higher δ18O values suggest highly evaporitic conditions occurred at the Marsh, which may have been a playa lake to saline mud flat environment. In contrast, G2 dolomite precipitated from comparatively fresher water, and modelled δ18O values suggested formation from mixing between inflowing fresher groundwater with saline-brine groundwater within the Marsh. The δ18O values of the calcite indicates formation from brackish to saline groundwater, which suggests this process may be associated with coeval gypsum dissolution. In contrast to the modern hydrology of the Marsh, which is surface water dependent and driven by a flood and drought regime, past conditions conducive to dolomite precipitation suggest a groundwater dependent system, where shallow groundwaters were influenced by intensive evaporation.

  19. The study of salinity and drought tolerance of Sinorhizobium meliloti isolated from province of Kerman in vivo condition

    Directory of Open Access Journals (Sweden)

    mahboobe abolhasani zeraatkar

    2009-06-01

    Full Text Available It is well known that the host plant inoculation by native strains with high efficiency has a positive effect on plant yield and biological nitrogen fixation process. The main aim of this investigation was to based on salinity and drought experiments, four isolates of Sinorhizobium meliloti (S27K and S36K tolerant isolates, S109K semi-sensitive isolate, S56K sensitive isolate were selected for plant inoculation which was under drought stress in greenhouse condition. This experiment was carried out by using a factorial model in completely randomized design. Results showed that inoculation of alfalfa plants with high salinity and drought tolerant of Sinorhizobium meliloti bacteria could increased biological nitrogen fixation process (symbiotic efficiency, percent crude protein and yield of alfalfa under salinity and drought conditions significantly. There were not any significant differences between S27K and S36K isolates and positive control (no nitrogen limitation. Symbiotic efficiency increased 3.4 times higher than alfalfa plants were inoculated by sensitive isolates S56K when alfalfa plants were inoculated by S27K and S36K isolates.

  20. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  1. Co-inoculation of arbusculr mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions

    International Nuclear Information System (INIS)

    Zhu, R.; Tang, F.; Liu, F.; Chen, J.

    2016-01-01

    The study was to investigate the effects of combined inoculation of Glomus mosseae (arbusculr mycorrhizae fungi, AMF) and Sinorhizobium meliloti (nitrogen-fixing bacteria, i.e., an Rhizobium meliloti, RM) on yield, nutrient contents, nodulation and mycorrhizal colonization of different alfalfa cultivars under saline conditions. An experiment was conducted to test the efficacy of AMF and RM inoculation in development of salt tolerance in alfalfa cultivars (Zhaodong, Nongjing and Longmu) under different salinity levels (0, 60, 120 and 180 mM NaCl). We found that under non stress condition, double inoculation of alfalfa with rhizobium and AM increased the alfalfa yield, nodule weight and number, as well as shoot proline contents, the most when plants were double inoculated followed by AM and rhizobium inoculation, respectively. Whereas under salinity condition, double inoculation of alfalfa with rhizobium and AM increased alfalfa yield, mycorrhizal infection, nodule weight and number as well as increased in shoot proline content, the most followed by AM and rhizobium inoculation, respectively. The Results suggest that growth of alfalfa may be improved by combined inoculation of alfalfa with AM and rhizobium under salt and non-stress conditions. Alleviation of alfalfa growth under saline condition was perhaps due to an increase in mycorrhizal infection and nodule weight and number as well as an increased in shoot proline content by dual inoculation. (author)

  2. Effect of NaCl Priming on Seed Germination of Tunisian Fenugreek (Trigonella foenum-graecum L. Under Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Souguir, Maher

    2013-04-01

    Full Text Available Salinity is one major problem of increasing production in crop growing areas throughout the world. The objective of this research was to evaluate the effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L. under salinity conditions. Seeds of fenugreek were primed with NaCl (4g/l for 36 h in continuous 25°C. Experimental factors were included 2 priming treatments (NaCl and non-priming as control and five salinity solution (4,6,8,10 and 12 gl-1. Results showed that seed priming increased final germination percentage, germination speed and radicle length over the non-primed treatment. At the lowest levels of salinity, there were no notable differences between primed and non-primed seeds, but with increasing salinity levels, primed seeds showed the better performance than non-primed seeds. These results indicated that NaCl priming significantly improved seed performance under salinity conditions.

  3. Population specific salinity tolerance in eelgrass (Zostera marina)

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Pedersen, Morten Foldager; Boström, Christoffer

    2014-01-01

    and that the lowsaline population is better adapted to hyposaline conditions. Despite the long-term adaptation of the low saline population to stable, low salinity, these plants were still able to function normally in high salinities, indicating remarkable plasticity. The results further suggest that altered salinity...

  4. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon

    2017-12-31

    Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

  5. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  6. Salinity ranges of some southern African fish species occurring in ...

    African Journals Online (AJOL)

    The recorded salinity ranges of 96 fish species occurring in southern African estuaries are documented. Factors influen- cing the tolerance of fishes to low and high salinity regimes are discussed, with most species tolerant of low rather than high salinity conditions. This is important since most systems are subject to periodic ...

  7. Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance: Micrococcus luteus.

    Science.gov (United States)

    Zheng, Chunli; Qu, Baocheng; Wang, Jing; Zhou, Jiti; Wang, Jing; Lu, Hong

    2009-06-15

    Strain Z3 was isolated from nitrobenzene-contaminated sludge. Strain Z3 was able to utilize nitrobenzene as a sole source of carbon, nitrogen and energy under aerobic condition. Based on the morphology, physiological biochemical characteristics, and 16S rDNA sequence, strain Z3 was identified as Micrococcus luteus. Strain Z3 completely degraded nitrobenzene with initial concentration of 100, 150, 200, and 250 mg L(-1) within 70, 96, 120 and 196 h, respectively. Kinetics of nitrobenzene degradation was described using the Andrews equation. The kinetic parameters were as follows: q(max)=1.19 h(-1), K(s)=29.11 mg L(-1), and K(i)=94.00 mg L(-1). Strain Z3 had a high salinity tolerance. It degraded 200 mg L(-1) nitrobenzene completely in 5% NaCl (w/w%). Strain Z3 therefore could be an excellent candidate for the bio-treatment of nitrobenzene industrial wastewaters with high salinity. This is the first report on the degradation of nitrobenzene by M. luteus and the degradation of nitrobenzene achieved in such a high salinity.

  8. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  9. High salinity tolerance in eggs and fry of a brackish Esox lucius population

    DEFF Research Database (Denmark)

    Jørgensen, A.T.; Hansen, B.W.; Vismann, B.

    2010-01-01

    Knowledge on the biology and physiology of pike, Esox lucius L., populations inhabiting saline environments is scarce. An experimental setup was used to examine egg development and fry behaviour and growth under varying salinity levels in a brackish-water pike population from the western Baltic Sea....... Eggs and fry developed at 8.5 psu, which is higher than hitherto reported for other populations. Fry exhibited stress behaviour and reduced growth when subjected to salinities above 13 psu. This indicates that early life stages of E. lucius tolerate ambient salinity conditions equivalent to the natural...

  10. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Formation and spreading of Arabian Sea high-salinity water mass

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Prasad, T.G.

    The formation and seasonal spreading of the Arabian Sea High-Salinity Water (ASHSW) mass were studied based on the monthly mean climatology of temperature and salinity in the Arabian Sea, north of the equator and west of 80 degrees E, on a 2 degrees...

  12. Hypertonic saline solution and high-dose furosemide infusion in cardiorenal syndrome: our experience

    Directory of Open Access Journals (Sweden)

    Francesco Ventrella

    2013-03-01

    Full Text Available Introduction Heart failure is frequently complicated by renal failure, and this association is a negative prognostic factor. These patients sometimes present oligo-/anuria and resistance to high-dose furosemide, a condition referred to as the cardiorenal syndrome (CRS. Acute or chronic reductions in left ventricular function result in decreased blood flow, with reduction of renal perfusion and activation of several neurohormonal systems, which cause resistance to diuretic therapy. This condition often requires ultrafiltration, which is an effective, but invasive and expensive procedure. Infusions of hypertonic saline solution (HSS and high-dose furosemide can be an effective alternative. Materials and methods From November 2009 through May 2010, our team treated 20 patients with CRS and resistance to iv boluses of high-dose furosemide. These patients were treated with small-volume (150-250 mL infusions of HSS (NaCl 1.57 – 4.5%, depending on serum Na values and high-dose furosemide twice a day. The aim of this treatment is to modify renal hemodynamics and the water-saline balance in the kidney by counteracting the extracellular fluid accumulation and eliminating symptoms of congestion. Results In 18 patients (90%, urine output was restored and renal function improved during the first hours of treatment. Clinical improvement was evident from the first day of therapy, and there were no adverse events. Two patients (10% did not respond to the treatment: one (who had been in critical condition since admission died; the other required regular sessions of ultrafiltration. Conclusions HSS combined with high-dose furosemide is a safe, effective, low-cost approach to the treatment of CRS that is resistant to diuretic therapy.

  13. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  14. Basic experimental study on the backfilling material under saline seawater condition

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji; Sugita, Yutaka

    2003-11-01

    In geological disposal of high-level radioactive waste, closure of repository is the technique of filling clearance using the backfilling material to preserve barrier performance of the engineered barrier system. The required performances of the backfilling material are clearance filling, low permeability and swelling pressure and stiffness. The expecting behaviors of the backfilling material are very complex which are decrease of section area of the tunnel due to creep displacement, decrease of performance of bentonite due to alteration of the concrete lining and so on. And ideal assessment of the clearance filling performance in the backfilled tunnel will be performed considering the coupled behaviors described above. However, there is not enough data to explain the expecting behaviors, and mechanisms of the coupled behaviors are not clarified yet. Therefore, the clearance filling performance of backfilling material was selected first. In this study, the clearance filling performance was tested using the clearance considering only decrease of the volume of the concrete lining due to alteration of the concrete. Basic examination of the backfilling material was performed, which focused on the feasibility of the backfilling material described in the H12 report and the adequate bentonite/sand mixture to obtain conservative filling clearance performance. Results of the examination showed, under test conditions that 30% of the volume of concrete lining decreases due to alteration and such volume become clearance between the backfilling material and concrete lining, in distilled water condition, the specification (bentonite/sand mixture) of the backfilling material described in H12 report almost filled the clearance. However, in saline seawater, 50% and more bentonite was required to fill the clearance. Since this examination fixed the clearance, water stopping performance will be examined in next phase. Through the saline seawater examination, the basic clearance

  15. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso

    2018-05-02

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications.

  16. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu

    2014-06-01

    Full Text Available Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1. It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

  17. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity.

    Science.gov (United States)

    Ramos-Carreño, Santiago; Valencia-Yáñez, Ricardo; Correa-Sandoval, Francisco; Ruíz-García, Noé; Díaz-Herrera, Fernando; Giffard-Mena, Ivone

    2014-09-01

    White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.

  18. Impact of saline-alkali stress on the accumulation of solids in tomato fruits

    International Nuclear Information System (INIS)

    Jan, N.E.; Din, J.U.; Kawabata, S

    2014-01-01

    Growing of tomato plants in saline conditions, having high rhizospheric EC, is often reported with high solid content in fruits. However, saline-alkali stress conditions, having high rhizospheric pH as well as high EC, have never been studied to evaluate its impact on the solid content of tomato fruits. In this study, we investigated the impact of saline-alkali stress (0, 30, 60, 90, and 120 mM NaHCO/sub 3/) on the accumulation of solids in tomato fruits. Addition of sodium bicarbonate (NaHCO/sub 3/) to plants highly increased pH as well as EC of the soil leachate in 90 and 120 mM NaHCO/sub 3/ treatments in comparison to control treatment. Saline-alkali stress treatments did not influence the fruit dry weight, nonetheless, the content of fruit dry matter was increased significantly from 6.5% at control to 8.5% at 90 and 120 mM treatments. The content of soluble sugar was increased to 3% in 90 mM treatment in comparison to control (2%), owing to significant accumulation of hexose as well as sucrose in ripe fruits. In addition to carbohydrates, saline-alkali stress influenced the accumulation of organic acids in fruits, as well. Citric acid, being the major acid, showed positive correlation with the salt concentration, and was significantly high at stress treatments of higher than 30 mM. These results suggested that saline-alkali stress conditions, in spite of high pH, can increase the contents of fruit solids in tomato, as is usually observed in saline stress conditions. (author)

  19. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    OpenAIRE

    M. Sarai Tabrizi; H. Babazadeh; M. Homaee; F. Kaveh Kaveh; M. Parsinejad

    2016-01-01

    Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil respon...

  20. Larval tolerance to salinity in three species of Australian anuran: an indication of saline specialisation in Litoria aurea.

    Directory of Open Access Journals (Sweden)

    Brian D Kearney

    Full Text Available Recent anthropogenic influences on freshwater habitats are forcing anuran populations to rapidly adapt to high magnitude changes in environmental conditions or face local extinction. We examined the effects of ecologically relevant elevated salinity levels on larval growth, metamorphosis and survival of three species of Australian anuran; the spotted marsh frog (Limnodynastes tasmaniensis, the painted burrowing frog (Neobatrachus sudelli and the green and golden bell frog (Litoria aurea, in order to better understand the responses of these animals to environmental change. Elevated salinity (16% seawater negatively impacted on the survival of L. tasmaniensis (35% survival and N sudelli (0% survival, while reduced salinity had a negative impact on L. aurea. (16% seawater: 85% survival; 0.4% seawater: 35% survival. L. aurea tadpoles survived in salinities much higher than previously reported for this species, indicating the potential for inter-populations differences in salinity tolerance. In L. tasmaniensis and L. aurea, development to metamorphosis was fastest in low and high salinity treatments suggesting it is advantageous for tadpoles to invest energy in development in both highly favourable and developmentally challenging environments. We propose that this response might either maximise potential lifetime fecundity when tadpoles experience favourable environments, or, facilitate a more rapid escape from pond environments where there is a reduced probability of survival.

  1. Combining Ability in Wheat for Seedling Traits by Line X Tester Analysis Under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Osaf

    Full Text Available A line × tester analysis involving five varieties SQ-26, SQ-77, GH-10, 8670, PARC-N2 (lines and three varieties 8721, SARC-5 and DN-4 (testers were crossed to study some hydroponics growing characters. In controlled conditions SQ-26 exhibited the highest positive GCA effects on Shoot length, Shoot fresh weight, Na+ and K+ concentrations, while SQ-77 showed maximum GCA effects on Root length, Root fresh weight and Shoot dry weight in females and in males and both DN-4 and SARC-5 showed the highest GCA effects. Under high saline concentration female SQ-77 showed the maximum positive effects on all characters but on shoot length and Na concentration while male SARC-5 exhibited the highest positive GCA effects on all characters. Under high saline level, the cross combination SQ-26 × 8721 showed SCA effects for shoot length, whereas 8670 x 8721 showed the same effects for shoot fresh weight, root fresh weight and root dry weight. For Na+ and K+ concentrations, the cross combination GH-10 × DN-4 showed then highest SCA effects, whereas for shoot dry weight and root length, the cross combinations GH-10 × SARC-5 and PARC-N2 × 8721 showed the highest SCA effects, respectively.

  2. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    In order to find resistant varieties and study the reaction of some newly released high yielding varieties to different levels of salinity of irrigation water an experiment was conducted at the Rice Research Institute of Iran-Amol station in a greenhouse. Eight varieties, cultivated in pots, were tested with three levels of salinity (2, ...

  3. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Modelling souring in a high salinity reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael; Crossland, Alan; Stott, Jim

    2006-03-15

    CAPCIS Ltd (Capcis) have developed a souring model for use in highly saline reservoirs where salinity limits the growth of sulphate reducing bacteria (SRB). Capcis have successfully applied the model to a field in North Africa. The conceptual basis of the model considers the course of the H2S from generation in the reservoir including dilution, sulphide retardation and scavenging and H2S fluid phase partitioning. At each stage mathematical equations governing the behaviour of the H2S were produced. In order to estimate the potential for H2S generation, it is required to know the chemistry of the injection and formation waters, as well as the properties of the indigenous SRB, i.e. the maximum salinity for their growth. This is determined by bottle testing of H2S generation by SRB at a range of injection/formation water ratios. The maximum salinity for SRB growth then determines the mixing ratios at which H2S generation takes place. Sulphide retardation due to adsorption at immobile interfaces was empirically modeled from reservoir data. Sulphide scavenging due to reaction with iron generated from corrosion was also modelled. Reservoir mineral scavenging was not modelled but could be incorporated in an extension to the model. Finally, in order to compute the gas-phase concentration of generated H2S, the H2S in the well stream is partitioned between the gas, oil and water phases. Capcis has carried out detailed computations of H2S solubility in crude oil and formation waters and the derivation of distribution ratios based on the respective partition coefficients using Gerard's line method, a modification of Henry's Law. (author) (tk)

  5. Chemical content, antibacterial and antioxidant properties of essential oil extract from Tunisian Origanum majorana L. cultivated under saline condition.

    Science.gov (United States)

    Olfa, Baâtour; Mariem, Aouadi; Salah, Abbassi Mohamed; Mouhiba, BenNasri Ayachi

    2016-11-01

    Essential oils of marjoram were extracted from plants, growing under non-saline and saline condition (75mM NaCl). Their antioxidant and antibaterial activity against six bacteria (Enterococcus faecalis, Escherichia coli, Salmonella enteritidis, Listeria ivanovii, Listeria inocula, and Listeria monocytogenes) were assessed. Result showed that, (i) independently of salt treatment, marjoram essential oils inhibited the growth of most of the bacteria but in degrees. The least susceptible one was Enterococcus faecalis. (ii) Gram negative bacteria seemed more sensitive to treated essential oils than Gram positive ones. (iii) Compared to synthetic antibiotics, marjoram essential oils were more effective against E. coli, L. innocua and S. enteridis. This activity was due to their high antioxidant activity. Thus, essential oils of marjoram may be an alternative source of natural antibacterial and antioxidant agents.

  6. Management of saline soils in Israel

    International Nuclear Information System (INIS)

    Rawitz, E.

    1983-01-01

    The main soil salinity problem in Israel is the danger of gradual salinization as a result of excessively efficient water management. Aquifer management is aimed at preventing flow of groundwater into the ocean, causing a creeping salinization at a rate of about 2 ppm per year. Successful efforts to improve irrigation efficiency brought with them the danger of salt accumulation in the soil. A ten-year monitoring programme carried out by the Irrigation Extension Service at 250 sampling sites showed that appreciable salt accumulation indeed occurred during the rainless irrigation season. However, where annual rainfall is more than about 350 mm this salt accumulation is adequately leached out of the root zone by the winter rains. Soil salinity in the autumn is typically two to three times that in the spring, a level which does not affect yields adversely. In the drier regions of the country long-term increasing soil salinity has been observed, and leaching is required. This is generally accomplished during the pre-irrigation given in the spring, whose size is determined by the rainfall amount of the preceding winter. The increasing need to utilize brackish groundwater and recycled sewage effluent requires special measures, which have so far been successful. In particular, drip irrigation with its high average soil-water potential regime and partial wetting of the soil volume has achieved high yields under adverse conditions. However, the long-term trend of water-quality deterioration is unavoidable under present conditions, and will eventually necessitate either major changes in agricultural patterns or the provision of desalinated water for dilution of the irrigation water. (author)

  7. Evaluation of Frankia and Rhizobial strains as inocula for nitrogen-fixing trees in saline conditions

    International Nuclear Information System (INIS)

    Hafeez, F.Y.; Hameed, S.; Malik, K.A.

    1998-01-01

    Frankia strains isolated from various Casuarina species were screened for nodulation and N 2 -fixing ability on C. glauca and C. obesa under controlled-environment conditions. Five out of thirteen strains induced effective root nodules on C. glauca, but none did so on C. obesa; two strains were selected. Similarly, various rhizobial strains were screened for nodulation and N 2 fixation on four Acacia species and finally three were selected for compatibility with A. ampliceps. The two Frankia strains (CcOl and CcI3) and three Rhizobium strains (Abal, Ar2-1 and PMA63/1) were checked for NaCl-tolerance in vitro, and were used as inocula to estimate N 2 fixation in fast-growing trees under highly saline field conditions. The isotope-dilution method was used to estimate the proportion and amount of N 2 -fixed by A. ampliceps and C. glauca with Eucalyptus camaldulensis as the non-fixing check. After a year, A. ampliceps plants formed a few root nodules at low Ec c levels, but during the second and third years profuse nodulation was observed. In 1-year-old plants the fraction of N derived from fixation (Ndfa) ranged from 7 to 55% (average 31%) in A. ampliceps and from 7 to 24% (average 15%) in C. glauca, and after two years %Ndfa for A. ampliceps increased markedly, with values up to 86%. On the other hand, increases in %Ndfa for C. glauca were insignificant, possibly due to the use of E. camaldulensis as the non-fixing reference plant. Infection of tree roots by vesicular arbuscular mycorrhiza (VAM), scored after 3 years, showed a negative relationship with soil electric conductivity, as did VAM spore number. The spores isolated from saline soils had thicker walls than those from a fertile soil. Decreases in the soil salinity levels were observed at the end of the 3-year experiment. (author)

  8. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (kochia scoparia) under saline condition

    International Nuclear Information System (INIS)

    Masoumi, A.; Kafi, M.; Khazaei, Z.; Davari, K.

    2010-01-01

    Drought stress is considered as the main factor of yield limitations in arid and semi-arid areas, where drought and salinity stresses are usually combined. Kochia species have recently attracted the attention of researchers as forage and fodder crop in marginal lands worldwide due to its drought and salt tolerant characters. This field experiment was performed at the Salinity Research Station (36 deg. 15'N, 59 deg. 28' E) of Ferdowsi University, ashhad, Iran in 2008, in a split plot based on randomized complete block design with three replications. Three levels of drought stress (control, no irrigation in vegetative stage (recovery treatment) and no irrigation at reproductive stage for one month (stress treatment)), and two Kochia ecotypes (Birjand and Borujerd) were allocated as main and sub-plots, respectively. Relative water content (RWC), membrane permeability and antioxidant enzymes were assayed at the beginning of anthesis. Stress treatment caused a significant decrease in the leaf RWC and increase in electrolyte leakage compared with control and recovered conditions. Furthermore, stress treatment caused a significant increase in antioxidant enzyme activities except of superoxide dismutase (SOD) and peroxidase (POX). The Birjand ecotype was significantly more tolerant to drought than Borujerd ecotype. According to the results, there were no difference between recovered plants and control treatment, therefore, Kochia can recover quickly after removing drought stress. Kochia showed high tolerance against drought and salinity stresses and different antioxidant enzymes had different behavior under stress conditions. (author)

  9. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  10. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan; Rö thig, Till; Voolstra, Christian R.; Ochsenkuhn, Michael A.; Lattemann, Sabine; Amy, Gary L.

    2014-01-01

    - specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess

  11. The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider

    Directory of Open Access Journals (Sweden)

    Christoph Petereit

    2009-10-01

    Full Text Available The small pelagic sprat (Sprattus sprattus is a key ecologic player in the Baltic Sea. However, there is long-term variability in recruitment which is thought to be influenced by fluctuations in abiotic and biotic conditions experienced during the early life stages. This study concentrates on the influence of different ambient salinities on sprat egg development, egg buoyancy and survival as well as early yolk sac larval morphometric traits. Egg buoyancy significantly decreased with increasing salinity experienced during fertilization and/or incubation experiments. Field egg buoyancy measurements in 2007 and 2008 exhibited annual and seasonal differences in specific gravity, potentially associated with changes in adult sprat vertical distribution. Neither egg development time nor the duration of the yolk sac phase differed among salinity treatments. At eye pigmentation, larval standard length exhibited high variance among individuals but did not differ among treatments. The largest ecological impact of salinity experienced during spawning was the modification the buoyancy of eggs and yolk sac larvae, which determines their vertical habitat in the Baltic Sea. There are strong thermo- and oxyclines in the Baltic Sea, and thus salinity can indirectly impact the survival of these early life stages by modifying the ambient temperatures and oxygen conditions experienced.

  12. Contributions of groundwater conditions to soil and water salinization

    Science.gov (United States)

    Salama, Ramsis B.; Otto, Claus J.; Fitzpatrick, Robert W.

    Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Résumé La salinisation est le processus par lequel la

  13. The Effect of Potassium Concentration in Nutrient Solution on Lycopene, Vitamin C and Qualitative Characteristics of Cherry Tomato in Saline Conditions

    Directory of Open Access Journals (Sweden)

    E. Shabani Sangtarashani

    2013-06-01

    Full Text Available Potassium (K has a special place in improving the quality of agricultural products. To evaluate the effect of K concentration in nutrient solution on lycopene content, vitamin C and qualitative characteristics of cherry tomato in NaCl salinity conditions, an experiment was carried out as a completely randomized design with five treatments and three replications at university of Tabriz, Tabriz, Iran, in 2010. Treatments consisted of four concentrations of K (0.2, 2, 7 and 14 mM in nutrient solution with 60 mM NaCl concentration. A nutrient solution treatment without salinity was considered as control. The experiment was conducted in greenhouse, in a hydroponic system. The results indicated that increasing of K concentration increased lycopene content in fruit. Lycopene content in control treatment showed significant difference (P<0.01 in comparison with salinity treatments. With increasing the K concentration (except at 14 mM concentration, vitamin C content was increased, but indicated no statistically significant difference. Vitamin C content in saline conditions was more than control treatment, but showed no significant difference. Adding potassium concentration in nutrient solution improved yield and enhanced quality parameters such as percentage of dry matter, soluble solids and electrical conductivity of fruit extract. Since in saline conditions, the qualitative characteristics of tomato at 7 mM concentration were in the best situation, therefore using this concentration is recommended.

  14. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland

    OpenAIRE

    Kalwasi?ska, Agnieszka; Felf?ldi, Tam?s; Szab?, Attila; Deja-Sikora, Edyta; Kosobucki, Przemys?aw; Walczak, Maciej

    2017-01-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth...

  15. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  16. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    Science.gov (United States)

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  17. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-González, M. J.; Sánchez-Guerrero, M.C.; Medrano, E.; Porras, M.E.; Baeza, E.J.; Lorenzo, P.

    2016-11-01

    The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI), the specific leaf area (SLA), the water use efficiency (WUE), the radiation use efficiency (RUE) and dry weight (DW) accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m) increased fruit firmness (N), total soluble solids content (SSC) and titratable acidity (TA), whereas pH was reduced in the three ripening stages: mature green/breaker (G), turning (T), and pink/light red (P). Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality. (Author)

  18. Effect of saline conditions on the maturation process of Clementine clemenules fruits on two different rootstocks

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, J. M.; Gomez-Gomez, A.; Perez-Perez, J. G.; Botia, P.

    2010-07-01

    The production of mandarins is important in the Mediterranean area, where the continued use of saline water reduces fruit yield and modifies fruit quality. Grafted trees of Clemenules mandarin scion on Carrizo citrange and Cleopatra mandarin rootstocks, two of the most common citrus rootstocks employed in this area, were irrigated with two saline treatments (control and 30 mM NaCl). The fruit quality was studied through the last two months before the fruit harvest. Salinity reduced both the fruit number and the mean fruit weight on Carrizo trees whereas no fruit weight reduction was observed on Cleopatra. The decrease of fruit weight on Carrizo trees is probably due to the lower water content and consequently the lower juice percentage. Although the saline treatment produced significant differences in some fruit quality variables (shape and thickness indices) throughout the maturation process, they were minimal at the harvest time. Total soluble solids (TSS) were significantly higher in fruits from the saline treatments, probably due to a passive dehydration. It is also possible that de novo synthesis of sugars occurred, since fruits from Cleopatra trees receiving the saline treatment had similar water contents but higher TSS than control fruits. The external fruit colour indicated that the saline treatment accelerated the maturation process; however, the maturity index showed that the high acidity of these fruits delayed the internal maturation with respect to the control fruits. (Author) 41 refs.

  19. Stability of uranium(VI) doped CSH phases in high saline water

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Jan-Martin; Schmeide, Katja [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    To evaluate the long-term stability of U(VI) doped calcium silicate hydrate (CSH) phases at high saline conditions, leaching experiments with NaCl, NaCl/Na{sub 2}SO{sub 4} and NaCl/NaHCO{sub 3} containing solutions were performed. Time-resolved laser-induced fluorescence spectroscopy (TRLFS), infrared spectroscopy (IR) and X-ray powder diffraction (XRD) were applied to study the U(VI) binding onto the CSH phases and to get a deeper understanding of structural changes due to leaching. Results indicate that neither NaCl nor Na{sub 2}SO{sub 4} affect the structural stability of CSH phases and their retention potential for U(VI). However, carbonate containing solutions lead to a decomposition of CSH phases and thus, to a release of incorporated uranium.

  20. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    Science.gov (United States)

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  1. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    NARCIS (Netherlands)

    Rozema, J.; Schat, H.

    2013-01-01

    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs

  2. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland.

    Science.gov (United States)

    Kalwasińska, Agnieszka; Felföldi, Tamás; Szabó, Attila; Deja-Sikora, Edyta; Kosobucki, Przemysław; Walczak, Maciej

    2017-07-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and EC e up to 423 dS m -1 ) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.

  3. Effect of Seed Priming on Growth and Some Physiological Characteristics of Sesame (Sesamum indicum L. under salinity Stress Condition caused by Alkali Salts

    Directory of Open Access Journals (Sweden)

    H. Bekhrad

    2016-02-01

    Full Text Available Introduction Sesame (Sesamun indicum L. is an important oil seed crop. Its seed has excellent nutritional value with a high and unique protein composition, making it a perfect food. Salinity is a serious problem in many regions of the world including Iran. Salinity stress is one of the widespread environmental constraints affecting crop productivity. Salinity generally induces osmotic stress and causes direct ion injury by disrupting ion homeostasis and the ion balance within plant cells (25. Seed priming is one of the ways to reduce negative effects of salt which is used for increasing germination percentage and seed resistance in salty zones. Seed priming is a pre-germination treatment that provides a moisture level sufficient to start pre-germination metabolic processes. It entails the partial germination of seeds by soaking them in water (or in a solution of salts for specified period of time, and then re-dry them just before radicle emerges (24. Priming stimulates many of the metabolic processes involved with the early phases of germination. Given that part of the germination processes have been initiated, seedlings from primed seed grow faster, grow more vigorously, and perform better in adverse conditions (24. The objective of this study was to investigate the effects of salinity stress caused by alkali salts on growth and some physiologic characteristics of sesame. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in randomized complete block design with three replications. Experimental factors included priming (control (unprimed, hydropriming, halopriming with NaCl and NaHCO3 and level of salinity with sodium bicarbonate salt (Zero, 15, 30 and 45 mM. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution (with half strength Hoagland's solution. After the fourth true leaves appeared, salinty stress in

  4. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.

    2008-01-01

    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge.

  5. Microbial Fuel Cells under Extreme Salinity

    Science.gov (United States)

    Monzon del Olmo, Oihane

    I developed a Microbial Fuel Cell (MFC) that unprecedentedly works (i.e., produces electricity) under extreme salinity (≈ 100 g/L NaCl). Many industries, such as oil and gas extraction, generate hypersaline wastewaters with high organic strength, accounting for about 5% of worldwide generated effluents, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme saline conditions. Specifically, the focus is on the feasibility to treat hypersaline wastewater generated by the emerging unconventional oil and gas industry (hydraulic fracturing) and so, with mean salinity of 100 g/L NaCl (3-fold higher than sea water). The success of this novel technology strongly depends on finding a competent and resilient microbial community that can degrade the waste under extreme saline conditions and be able to use the anode as their terminal electron acceptor (exoelectrogenic capability). I demonstrated that MFCs can produce electricity at extremely high salinity (up to 250 g/l NaCl) with a power production of 71mW/m2. Pyrosequencing analysis of the anode population showed the predominance of Halanaerobium spp. (85%), which has been found in shale formations and oil reservoirs. Promoting Quorum sensing (QS, cell to cell communication between bacteria to control gene expression) was used as strategy to increase the attachment of bacteria to the anode and thus improve the MFC performance. Results show that the power output can be bolstered by adding 100nM of quinolone signal with an increase in power density of 30%, for the first time showing QS in Halanaerobium extremophiles. To make this technology closer to market applications, experiments with real wastewaters were also carried out. A sample of produced wastewater from Barnet Shale, Texas (86 g/L NaCl) produced electricity when fed in an MFC, leading to my discovery of another

  6. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  7. BIO-SEDIMENTARY SIGNATURES OF HIGH-FREQUENCY SALINITY/SUBAERIAL EXPOSURE CHANGES: EXAMPLES FROM THE OXFORDIAN OF PORTUGAL (CABAÇOS FORMATION

    Directory of Open Access Journals (Sweden)

    ANA C. AZERÊDO

    2004-03-01

    Full Text Available The detailed sedimentary and micropalaeontological analysis of a complex association of continental to marginal-marine deposits from the Oxfordian of Portugal (Cabaços Formation has allowed the recognition of high-frequency, subtle changes in the environmental conditions. The main factors controlling the palaeobiological responses to such minor-scale fluctuations were also identified. Two factors have shown to be especially significant: subaerial exposure duration and frequency (estimated by assigning type of features to the exposure index and salinity trends, as suggested by the sedimentary and fossil records. In the west of the basin, salinity fluctuations were much stronger and more frequent (fresh- brackish-restricted marine-hypersaline, and subaerial exposure more marked for longer periods, than in the east of the basin. The microfossil assemblages, as a whole, but in particular the ostracod faunas, show differences in abundance, diversity, dominant species, degree of intrageneric and intraspecific variations, both along the successions and between west and east. The western populations seem to have been much less stable, which suggests that high-frequency changes in salinity (more than its absolute values and degree of exposure were the most important controls on the palaeobiota. PDF

  8. Life-history responses to changing temperature and salinity of the Baltic Sea copepod Eurytemora affinis.

    Science.gov (United States)

    Karlsson, Konrad; Puiac, Simona; Winder, Monika

    2018-01-01

    To understand the effects of predicted warming and changing salinity of marine ecosystems, it is important to have a good knowledge of species vulnerability and their capacity to adapt to environmental changes. In spring and autumn of 2014, we conducted common garden experiments to investigate how different populations of the copepod Eurytemora affinis from the Baltic Sea respond to varying temperatures and salinity conditions. Copepods were collected in the Stockholm archipelago, Bothnian Bay, and Gulf of Riga (latitude, longitude: 58°48.19', 17°37.52'; 65°10.14', 23°14.41'; 58°21.67', 24°30.83'). Using individuals with known family structure, we investigated within population variation of the reaction norm (genotype and salinity interaction) as a means to measure adaptive capacity. Our main finding was that low salinity has a detrimental effect on development time, the additive effects of high temperature and low salinity have a negative effect on survival, and their interaction has a negative effect on hatching success. We observed no variation in survival and development within populations, and all genotypes had similar reaction norms with higher survival and faster development in higher salinities. This suggests that there is no single genotype that performs better in low salinity or high salinity; instead, the best genotype in any given salinity is best in all salinities. Genotypes with fast development time also had higher survival compared to slow developing genotypes at all salinities. Our results suggest that E. affinis can tolerate close to freshwater conditions also in high temperatures, but with a significant reduction in fitness.

  9. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  10. Evaluation of Different Rice Genotypes Tolerance to Saline Irrigation Water

    Directory of Open Access Journals (Sweden)

    S. Jafari Rad

    2015-12-01

    Full Text Available To study the responses of seven rice genotypes (Khazar, SA13, Deylam, Sange Joe, Sepidrud, 831 and T5 to different levels of irrigation water salinity, and determining grain yield based on tolerance indices, a CRD based factorial pot experiment with five levels of irrigation water salinity (1, 2, 4, 6 and 8 dSm-1 and three replications was carried out at Rice Research Institute of Iran in 2011. Indices such as SSI, TOL, MP, GMP, HM, STI, YI and YSI were calculated and their correlations with grain yield were estimated for both stress and non-stress conditions. Results indicated significant differences among genotypes and the indices within both conditions. Results also showed that STI and MP indices could be considered as the best indices to screen salt tolerant genotypes. Among the genotypes used in the experiment, T5 produced the highest yield in both non-stress (19.71 g/plant and stress (10.69 g/plant conditions, while the lowest yield in normal (11.84 g/plant and stressful (4.29 g/plant conditions was recorded for Deylam and Khazar, respectively. The highest and the lowest percentage of yield reduction were found in Khazar (69.49% and Sange Joe (31.48% in stressful conditions, respectively. Overall, genotypes T5, 831, Sepidrud and Sange Joe can probably be considered as superior high yielding genotypes in both saline and non-saline conditions for further research.

  11. Impact of high saline wastewaters on anaerobic granular sludge functionalities

    NARCIS (Netherlands)

    Jeison, D.A.; Rio, del A.; Lier, van J.B.

    2008-01-01

    Three UASB reactors were operated at different salinity levels in order to assess the effects on the granular sludge properties. High levels of activity inhibition were observed at sodium concentrations over 7 g Na+/L, which resulted in low applicable organic loading rates and VFA accumulation in

  12. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta

    2014-01-01

    of the clays which would lead to permanent reservoir damage but evidence of effectiveness at moderate salinity would offer the opportunity to dispose of produced water. The goal is to define boundary conditions so injection water salinity is high enough to prevent reservoir damage and low enough to induce...... the low salinity effect while keeping costs and operational requirements at a minimum. Traditional core plug testing for optimising conditions has some limitations. Each test requires a fresh sample, core testing requires sophisticated and expensive equipment, and reliable core test data requires several...... experiments can be done relatively quickly on very little material, it gives the possibility of testing salinity response on samples from throughout a reservoir and for gathering statistics. Our approach provides a range of data that can be used to screen core plug testing conditions and to provide extra data...

  13. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    Full Text Available Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil . Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977, van Genuchten and Hoffman (1984, Dirksen and Augustijn (1988, and Homaee et al., (2002 were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure, and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done

  14. Agronomic behavior of pseudo cereals genotypes subjected to drought and salinity conditions

    International Nuclear Information System (INIS)

    Cruz T, E. De la; Garcia A, J.M.; Gonzalez R, B.; Laguna C, A.

    2007-01-01

    With the purpose of evaluating the response to the salinity and drought of 7 genotypes of pseudo cereals that include to the variety of quinua Barandales (M7-0) and to the lines obtained by the radioinduced mutagenesis ININ 110 and ININ 333, two collections of red chia (Opopeo and Huiramangaro) and two collections of 'Huauzontle' of Atlacomulco (H1 and H3), were evaluated under a factorial experimental design two levels of humidity: normal watering and drought and three salinity levels 0, 50 and 100 mMhos. It was found a bigger yield in grams by plant in the drought subjected material (without salinity) and a bigger tolerance to the salinity in the genotypes H3, ININ M7-0, and ININ 110, exhibiting the 'Chia red' bigger susceptibility to the evaluated factors. (Author)

  15. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. (cv Chemlali)) under saline water irrigated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-07-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  16. Environmental effects on proline accumulation and water potential in olive leaves (Olea europaea L. CV Chemlali)) under saline water irrigated field conditions

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    In arid regions in Tunisia suffering from limited water resources, the olive extension to irrigated lands has led to the urgent use of saline water, the most readily available water in the these areas. Nevertheless, the effects of salt stress on olive tree seem to be reinforced by environmental conditions. The issue of this paper is to determine how does the olive tree respond to environmental stress in the Mediterranean climate under saline water irrigated field conditions with respect to leaf proline concentrations and water Status. (Author)

  17. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: Comparing the early molecular response using time-series transcriptomic and metabolomic analyses

    Directory of Open Access Journals (Sweden)

    Dutta Bhaskar

    2010-12-01

    Full Text Available Abstract Background In this study, we investigated the individual and combinatorial effect of elevated CO2 conditions and salinity stress on the dynamics of both the transcriptional and metabolic physiology of Arabidopsis thaliana liquid hydroponic cultures over the first 30 hours of continuous treatment. Both perturbations are of particular interest in plant and agro-biotechnological applications. Moreover, within the timeframe of this experiment, they are expected to affect plant growth to opposite directions. Thus, a major objective was to investigate whether this expected "divergence" was valid for the individual perturbations and to study how it is manifested under the combined stress at two molecular levels of cellular function, using high-throughput analyses. Results We observed that a high salinity has stronger effect than elevated CO2 at both the transcriptional and metabolic levels, b the transcriptional responses to the salinity and combined stresses exhibit strong similarity, implying a robust transcriptional machinery acting to the salinity stress independent of the co-occurrence of elevated CO2, c the combinatorial effect of the two perturbations on the metabolic physiology is milder than of the salinity stress alone. Metabolomic analysis suggested that the beneficial role of elevated CO2 on salt-stressed plants within the timeframe of this study should be attributed to the provided additional resources; these allow the plants to respond to high salinity without having to forfeit other major metabolic functions, and d 9 h-12 h and 24 h of treatment coincide with significant changes in the metabolic physiology under any of the investigated stresses. Significant differences between the acute and longer term responses were observed at both molecular levels. Conclusions This study contributes large-scale dynamic omic data from two levels of cellular function for a plant system under various stresses. It provides an additional example

  18. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    Science.gov (United States)

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Salinity tolerance of the South African endemic amphipod ...

    African Journals Online (AJOL)

    Salinities were prepared using natural seawater and synthetic sea salt. Grandidierella lignorum tolerated all salinities, but showed highest survival at salinities of 7–42. Salinity tolerance was modified by temperature, with highest survival occurring between 10 and 25 °C. These represent the range of conditions at which ...

  20. Capability of microalgae for local saline sewage treatment towards biodiesel production

    Science.gov (United States)

    Wu, K.-C.; Yau, Y.-H.; Ho, K.-C.

    2017-08-01

    Seawater flushing was introduced in Hong Kong since 1950’s. High salinity has an inhibitory effect on nitrification and biological phosphorus uptake of microorganisms. Therefore, saline sewage has impact on traditional biological wastewater treatment. Saline conditions of domestic wastewater then pose opportunity to use algal technology in wastewater treatment. During the treatment (phycoremediation), biodiesel can be produced. This study aims to give an in-depth investigation and development on application of local microalgal strains on biodiesel production. Dunaliella tertiolecta was selected the appropriate algal species with high potential for phycoremediation then biodiesel production. D.tertiolecta was further investigated by optimizing its growth in different process condition in preliminary effluent as based medium. The optimized process condition were acclimated culture with medium initial cell number (5.0 ×105 cells mL-1), under 5% CO2 aerations in preliminary effluent adjust to 15 psu (denoting practical salinity unit). Results showed that lipid content increased from 30.2% to 42%, and biomass productivity reached 463.3 mg L-1day-1 by Fatty acid Methyl Ester (FAME) profile was found for biodiesel production in optimized stage. The treatment period of preliminary effluent was shortened from 15d in original design (unacclimated culture, low initial cell number (5.0 ×105 cells mL-1), without CO2 aeration) to 4d.

  1. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    Science.gov (United States)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  2. Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.

    Directory of Open Access Journals (Sweden)

    Thomsen Dennis S

    2008-01-01

    Full Text Available Abstract Background Winter migration of immature brown trout (Salmo trutta into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea. Results We sampled brown trout from two Danish populations entering different saline conditions and quantified expression of the hsp70 and Na/K-ATPases α 1b genes following acclimation to freshwater and full-strength seawater at 2°C and 10°C. An interaction effect of low temperature and high salinity on expression of both hsp70 and Na/K-ATPase α 1b was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities. Conclusion Overall our results support the hypothesis that physiologically stressful conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus strongly suggesting local adaptations driven by the local marine environment.

  3. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis

    International Nuclear Information System (INIS)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-01-01

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54 psu) compared with seawater controls (37 psu) over 6 weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2–4 weeks at 54 psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. - Highlights: • We separated salt effects of desalination brine from other deleterious components. • Sublethal salinity stress depended on both salinity increase and exposure time. • Very effective osmoregulation led to tolerance of short intervals of high salinity.

  4. Plasticity to salinity and transgenerational effects in the nonnative shrub Baccharis halimifolia: Insights into an estuarine invasion.

    Science.gov (United States)

    Caño, Lidia; Fuertes-Mendizabal, Teresa; García-Baquero, Gonzalo; Herrera, Mercedes; González-Moro, M Begoña

    2016-05-01

    Abiotic constraints act as selection filters for plant invasion in stressful habitats. Adaptive phenotypic plasticity and transgenerational effects play a major role in colonization of heterogeneous habitats when the scale of environmental variation is smaller than that of gene flow. We investigated how plasticity and parental salinity conditions influence the performance of the invasive dioecious shrub Baccharis halimifolia, which replaces heterogeneous estuarine communities in Europe with monospecific and continuous stands. In two greenhouse experiments, we grew plants derived from seeds and cuttings collected through interspersed patches differing in edaphic salinity from an invasive population. We estimated parental environmental salinity from leaf Na(+) content in parental plants, and we measured fitness and ion homeostasis of the offspring grown in contrasting salinity conditions. Baccharis halimifolia tolerates high salinity but experiences drastic biomass reduction at moderate salinity. At moderate salinity, responses to salinity are affected by the parental salinity: flowering initiation in seedlings and male cuttings is positively correlated with parental leaf Na(+) content, and biomass is positively correlated with maternal leaf Na(+) in female cuttings and seedlings. Plant height, leaf production, specific leaf area, and ionic homeostasis at the low part of the gradient are also affected by parental salinity, suggesting enhanced shoot growth as parental salinity increases. Our results support plasticity to salinity and transgenerational effects as factors with great potential to contribute to the invasive ability of B. halimifolia through estuarine communities of high conservation value. © 2016 Botanical Society of America.

  5. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  6. Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-01-01

    Pretreated cheese whey wastewater (CWW) has been used at different salinity levels: 1.75, 2.22, 3.22, 5.02 and 10.02 dS m(-1) and compared with fresh water (1.44 dS m(-1)). Two cultivars (cv.) of the tomato plant Lycopersicon Esculentum Mill. (Roma and Rio Grande) were exposed to saline conditions for 72 days. Salinity level (treatment) had no significant effects on the fresh weight and dry matter of the leaves, stems and roots. Similar results were found when specific leaf area, leaflet area, ramifications number of 1st order/plant, stem diameter and length, nodes number/stem and primary root length were considered. Conversely, the salinity level significantly influenced the Soil Plant Analysis Development (SPAD) index and the distance between nodes in the plant stem. In the first case, an increase of 21% was obtained in the salinity levels of 5.02 and 10.02 dS m(-1) for cv. Rio Grande, compared with the control run. The results showed that the pretreated CWW can be a source of nutrients for tomato plants, with reduced effects on growth and development.

  7. The motility and motion duration of jatimbulan tilapia (Oreochromis niloticus) spermatozoa in different salinity

    Science.gov (United States)

    Triastuti, J.; Kintani, D.; Luqman, E. M.; Pujiastuti, D. Y.

    2018-04-01

    Tilapia hatchery is still conducted in freshwater and seeds are death simultaneousy when cultivated in high salinity due to the acclimatization process. An alternative method to implement hatchery at high salinity is required. This study aims to determine the salinity of activation medium that provides the best Jatimbulan Tilapia sperm motility and motion duration at high salinity. The study applies completely randomized design (CRD), which consists of 5 treatments (0 ppt, 4 ppt, 9 ppt, 14 ppt and 19 ppt) and 4 repetitions. The parameters consists of sperm motility, motion duration, fresh sperm data (volume, color, odor, pH, consistency, and the concentration of sperm) and sperm abnormalities. The results exhibited that salinity significantly (p < 0.05). Influeneed the sperm motility and motion duration. Motility reaches its best at 0 ppt and 4 ppt (93.4 % and 87.8 %). For motion duration, best condition was in 0 ppt and 4 ppt treatments, totaling 2128 seconds and 1961.5 seconds. Meanwhile, sperm did not move when treated in waters with 9 ppt, 14 ppt and 19 ppt salinities.

  8. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  10. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    Science.gov (United States)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  11. Influence of salinity and cadmium on the survival and ...

    African Journals Online (AJOL)

    osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c.

  12. Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California

    Directory of Open Access Journals (Sweden)

    Stephen R. Kaffka

    2013-09-01

    Full Text Available Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV. We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L. Pers. growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions.

  13. Growth curve registration for evaluating salinity tolerance in barley

    KAUST Repository

    Meng, Rui

    2017-03-23

    Background: Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits. Results: We derive family-wise salinity sensitivity (FSS) growth curves and use registration techniques to summarize growth patterns of HEB-25 barley families and the commercial variety, Navigator. We account for the spatial variation in smarthouse microclimates and in temporal variation across phenotyping runs using a functional ANOVA model to derive corrected FSS curves. From FSS, we derive corrected values for family-wise salinity tolerance, which are strongly negatively correlated with Na but not significantly with K, indicating that Na content is an important factor affecting salinity tolerance in these families, at least for plants of this age and grown in these conditions. Conclusions: Our family-wise methodology is suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

  14. Growth curve registration for evaluating salinity tolerance in barley

    KAUST Repository

    Meng, Rui; Saade, Stephanie; Kurtek, Sebastian; Berger, Bettina; Brien, Chris; Pillen, Klaus; Tester, Mark A.; Sun, Ying

    2017-01-01

    Background: Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits. Results: We derive family-wise salinity sensitivity (FSS) growth curves and use registration techniques to summarize growth patterns of HEB-25 barley families and the commercial variety, Navigator. We account for the spatial variation in smarthouse microclimates and in temporal variation across phenotyping runs using a functional ANOVA model to derive corrected FSS curves. From FSS, we derive corrected values for family-wise salinity tolerance, which are strongly negatively correlated with Na but not significantly with K, indicating that Na content is an important factor affecting salinity tolerance in these families, at least for plants of this age and grown in these conditions. Conclusions: Our family-wise methodology is suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

  15. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  16. Salinity shifts in marine sediment: Importance of number of fluctuation rather than their intensities on bacterial denitrifying community.

    Science.gov (United States)

    Zaghmouri, Imen; Michotey, Valerie D; Armougom, Fabrice; Guasco, Sophie; Bonin, Patricia C

    2018-05-01

    The sensitivity of denitrifying community to salinity fluctuations was studied in microcosms filled with marine coastal sediments subjected to different salinity disturbances over time (sediment under frequent salinity changes vs sediment with "stable" salinity pattern). Upon short-term salinity shift, denitrification rate and denitrifiers abundance showed high resistance whatever the sediment origin is. Denitrifying community adapted to frequent salinity changes showed high resistance when salinity increases, with a dynamic nosZ relative expression level. Marine sediment denitrifying community, characterized by more stable pattern, was less resistant when salinity decreases. However, after two successive variations of salinity, it shifted toward the characteristic community of fluctuating conditions, with larger proportion of Pseudomonas-nosZ, exhibiting an increase of nosZ relative expression level. The impact of long-term salinity variation upon bacterial community was confirmed at ribosomal level with a higher percentage of Pseudomonas and lower proportion of nosZII clade genera. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  18. Effect of salinity on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    Science.gov (United States)

    Fallah, F; Nokhasi, F; Ghaheri, M; Kahrizi, D; Beheshti Ale Agha, A; Ghorbani, T; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana Bertoni is a famous medicinal plant for its low calorific value compounds which are named steviol glycosides (SGs) and they are 150-300 times sweeter than sugar. Among various SGs, stevioside and rebaudioside A considered to be the main sweetening compounds.  Soil salinity is one of the most essential stress in the world. Salinity affects the survival and yield of crops. In current study the effects of salinity and osmotic stress caused by different concentration of NaCl (0, 20, 40, 60 and 80 mM) on morphological traits, genes expressionand amount of both stevioside and rebaudioside Aunder in vitro conditions has been investigated. The morphological traits such as bud numbers, root numbers, shoot length (after 15 and 30 days) were evaluated. With increasing salinity, the values of all studied morphological traits decreased. To investigation of UGT74G1 and UGT76G1 genes expression that are involved in the synthesis of SGs, RT-PCR was done and there were significant differences between all media. The highest expression of both genes was observed in plantlets grown on MS media (with NaCl-free). Also, the lowest amounts of gene expression of the both genes were seen in MS+ 60 mM NaCl. Based on HPLC results, the highest amount of both stevioside and rebaudioside A were observed in plantlets grown in MS media (with NaCl-free). Finally, it can be concluded that stevia can survive under salt stress, but it has the best performance in the lower salinity.

  19. Effects of environmental conditions on soil salinity and arid region in Tunisia

    International Nuclear Information System (INIS)

    Ben Ahmed, C.; Ben Rouina, B.; Boukhris, M.

    2009-01-01

    The shortage of water resources of good water quality is becoming an issue in the arid and semi arid regions. for this reason, the use of water resources of marginal quality such as treated wastewater and saline groundwater has become and important consideration, particularly in arid region in Tunisia, where large quantities of saline water are used for irrigation. (Author)

  20. Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley

    KAUST Repository

    Saade, Stephanie

    2016-09-02

    Producing sufficient food for nine billion people by 2050 will be constrained by soil salinity, especially in irrigated systems. To improve crop yield, greater understanding of the genetic control of traits contributing to salinity tolerance in the field is needed. Here, we exploit natural variation in exotic germplasm by taking a genome-wide association approach to a new nested association mapping population of barley called HEB-25. The large population (1,336 genotypes) allowed cross-validation of loci, which, along with two years of phenotypic data collected from plants irrigated with fresh and saline water, improved statistical power. We dissect the genetic architecture of flowering time under high salinity and we present genes putatively affecting this trait and salinity tolerance. In addition, we identify a locus on chromosome 2H where, under saline conditions, lines homozygous for the wild allele yielded 30% more than did lines homozygous for the Barke allele. Introgressing this wild allele into elite cultivars could markedly improve yield under saline conditions. © 2016 The Author(s).

  1. High salinity relay as a post-harvest processing method for reducing Vibrio vulnificus levels in oysters (Crassostrea virginica).

    Science.gov (United States)

    Audemard, Corinne; Kator, Howard I; Reece, Kimberly S

    2018-08-20

    High salinity relay of Eastern oysters (Crassostrea virginica) was evaluated as a post-harvest processing (PHP) method for reducing Vibrio vulnificus. This approach relies on the exposure of oysters to natural high salinity waters and preserves a live product compared to previously approved PHPs. Although results of prior studies evaluating high salinity relay as a means to decrease V. vulnificus levels were promising, validation of this method as a PHP following approved guidelines is required. This study was designed to provide data for validation of this method following Food and Drug Administration (FDA) PHP validation guidelines. During each of 3 relay experiments, oysters cultured from 3 different Chesapeake Bay sites of contrasting salinities (10-21 psu) were relayed without acclimation to high salinity waters (31-33 psu) for up to 28 days. Densities of V. vulnificus and densities of total and pathogenic Vibrio parahaemolyticus (as tdh positive strains) were measured using an MPN-quantitative PCR approach. Overall, 9 lots of oysters were relayed with 6 exhibiting initial V. vulnificus >10,000/g. As recommended by the FDA PHP validation guidelines, these lots reached both the 3.52 log reduction and the levels ranged from 2 to 61% after 28 days of relay. Although the identification of the factors implicated in oyster mortality will require further examination, this study strongly supports the validation of high salinity relay as an effective PHP method to reduce levels of V. vulnificus in oysters to endpoint levels approved for human consumption. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event

    International Nuclear Information System (INIS)

    Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.

    2016-01-01

    Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL"−"1, 10ngL"−"1, 2μgL"−"1, 20μgL"−"1) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events. - Highlights:

  3. Numerical Study of Groundwater Flow and Salinity Distribution Cycling Controlled by Seawater/Freshwater Interaction in Karst Aquifer Using SEAWAT

    Science.gov (United States)

    Xu, Z.; Hu, B.

    2017-12-01

    The interest to predict seawater intrusion and salinity distribution in Woodville Karst Plain (WKP) has increased due to the huge challenge on quality of drinkable water and serious environmental problems. Seawater intrudes into the conduit system from submarine karst caves at Spring Creek Spring due to density difference and sea level rising, nowadays the low salinity has been detected at Wakulla Spring which is 18 km from coastal line. The groundwater discharge at two major springs and salinity distribution in this area is controlled by the seawater/freshwater interaction under different rainfall conditions: during low rainfall periods, seawater flow into the submarine spring through karst windows, then the salinity rising at the submarine spring leads to seawater further intrudes into conduit system; during high rainfall periods, seawater is pushed out by fresh water discharge at submarine spring. The previous numerical studies of WKP mainly focused on the density independent transport modeling and seawater/freshwater discharge at major karst springs, in this study, a SEAWAT model has been developed to fully investigate the salinity distribution in the WKP under repeating phases of low rainfall and high rainfall periods, the conduit system was simulated as porous media with high conductivity and porosity. The precipitation, salinity and discharge at springs were used to calibrate the model. The results showed that the salinity distribution in porous media and conduit system is controlled by the rainfall change, in general, the salinity distribution inland under low rainfall conditions is much higher and wider than the high rainfall conditions. The results propose a prediction on the environmental problem caused by seawater intrusion in karst coastal aquifer, in addition, provide a visual and scientific basis for future groundwater remediation.

  4. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    Science.gov (United States)

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  5. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    Science.gov (United States)

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  6. Toxicity of high salinity tannery wastewater and effects on constructed wetland plants

    DEFF Research Database (Denmark)

    Calheirosa, C.S.C.; Silva, G.; Quitério, P.V.B.

    2012-01-01

    The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted ...

  7. New approach of a transient ICP-MS measurement method for samples with high salinity.

    Science.gov (United States)

    Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-03-01

    In the near future it is necessary to establish a disposal for high level nuclear waste (HLW) in deep and stable geological formations. In Germany typical host rocks are salt or claystone. Suitable clay formations exist in the south and in the north of Germany. The geochemical conditions of these clay formations show a strong difference. In the northern ionic strengths of the pore water up to 5M are observed. The determination of parameters like K d values during sorption experiments of metal ions like uranium or europium as homologues for trivalent actinides onto clay stones are very important for long term safety analysis. The measurement of the low concentrated, not sorbed analytes commonly takes place by inductively coupled plasma mass spectrometry (ICP-MS). A direct measurement of high saline samples like seawater with more than 1% total dissolved salt content is not possible. Alternatives like sample clean up, preconcentration or strong dilution have more disadvantages than advantages for example more preparation steps or additional and expensive components. With a small modification of the ICP-MS sample introduction system and a home-made reprogramming of the autosampler a transient analysing method was developed which is suitable for measuring metal ions like europium and uranium in high saline sample matrices up to 5M (NaCl). Comparisons at low ionic strength between the default and the transient measurement show the latter performs similarly well to the default measurement. Additionally no time consuming sample clean-up or expensive online dilution or matrix removal systems are necessary and the analysation shows a high sensitivity due to the data processing based on the peak area. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genetically modified plants for salinity stress tolerance (abstract)

    International Nuclear Information System (INIS)

    Sopory, S.K.; Singia-Pareek, S.I.; Kumar, S.; Rajgopal, D.; Aggarwal, P.; Kumar, D.; Reddy, K.M.

    2005-01-01

    Several recent reports have indicated that the area under salinity is on the increase and currently very few genotypes of important crop plants are available for cultivation under these conditions. In this regard, identification of novel stress responsive genes and transgenic approach offers an important strategy to develop salt tolerant plants. Using an efficient PCR-based cDNA subtraction method a large number of genes upregulated under salinity and dehydration stress have been identified also in rice and Pennisetum. Functional analysis of some of these genes is being done using transgenic approach. Earlier, we reported on the role of one of the stress regulated genes, glyoxalse I in conferring salinity tolerance. We now show that by manipulating the expression of both the genes of the glyoxalse pathway, glyoxalse I and II together, the ability of the double transgenic plants to tolerate salinity stress is greatly enhanced as compared to the single transgenic plants harbouring either the glyoxalse I or glyoxalse II. The cDNA for glyoxalse II was cloned from rice and mobilized into pCAMBIA vector having hptII gene as the selection marker. The seedlings of the T1 generation transgenic plants survived better under high salinity compared to the wild type plants; the double transgenics had higher limits of tolerance as compared to the lines transformed with single gene. A similar trend was seen even when plants were grown in pots under glass house conditions and raised to maturity under the continued presence of NaCl. In this, the transgenic plants were able to grow, flower and set seeds. The overexpression of glyoxalse pathway was also found to confer stress tolerance in rice. We have also isolated a gene encoding vacuolar sodium/proton antiporter from Pennisetum and over expressed in Brassica juncea and rice. The transgenic plants were able to tolerate salinity stress. Our work along with many others' indicates the potential of transgenic technology in developing

  9. The Effect of Rate and Application Method of Potassium on Yield and Yield Components of Cotton in Saline Condition

    Directory of Open Access Journals (Sweden)

    A Ardakani

    2016-12-01

    cotton yield, biological yield and lint percentage. In both K rate, split application of K at planting, vegetative stage, flowering and early boll development (equally at each stage had the highest seed cotton yield. Potassium application at flowering or early boll development had more positive effect on seed cotton yield than planting or vegetative stage. Conclusions The best seed cotton yield could be achieved with a combination of high dose of K fertilizer and split application of K at planting, vegetative stage, flowering and early boll development (equally at each stage. Increased K rate increased seed cotton yield because of improved boll weight and boll number in saline condition. Boll weight had more correlated with seed cotton yield than boll number. The K application as 25% at planting+25% at vegetative stage (5-8 leaves stage, 25% at first flowering and 25% at early boll development (25P+25V+25F+25B gave higher cotton yields than other split applications in saline conditions.

  10. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  11. Effects of salinity on the physiology of the red macroalga, Acanthophora spicifera (Rhodophyta, Ceramiales

    Directory of Open Access Journals (Sweden)

    Débora Tomazi Pereira

    2017-09-01

    Full Text Available ABSTRACT Salinity is an important abiotic factor since it is responsible for the local and/or regional distribution of algae. In coastal regions, salinity changes with prevailing winds, precipitation and tide, and particularly in extreme intertidal conditions. Acanthophora spicifera is a red seaweed that occurs in the supratidal region in which changes in abiotic conditions occur frequently. This study evaluated the effects of salinity on the metabolism and morphology of A. spicifera. Algae were acclimatized under culture conditions with sterilized seawater for seven days. Experiments used different salinities (15 to 50 psu for seven days, followed by metabolic analyses. This study demonstrates that extreme salinities affect physiological parameters of A. spicifera, such as decrease in growth rate, as well as morphological parameters and concentrations of secondary metabolites. Acanthophora spicifera exhibited high tolerance to 25 to 40 psu, with little change in physiology, which favors the occurrence of this species in diverse environments. However, 15, 20, 45 and 50 psu were the most damaging and led to loss of biomass, depigmentation of apices, and the highest concentrations of antioxidant metabolites. The 50 psu treatment caused the greatest changes in general, greatly reducing a biomass and chlorophyll content, and facilitating the presence of endophytes.

  12. Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout ( Salmo trutta L.)

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Eg Nielsen, Einar; Koed, Anders

    2008-01-01

    Background: Winter migration of immature brown trout (Salmo trutta) into freshwater rivers has been hypothesized to result from physiologically stressful combinations of high salinity and low temperature in the sea. Results: We sampled brown trout from two Danish populations entering different...... conditions in the sea drive sea-run brown trout into freshwater rivers in winter. However, our results also demonstrate intra-specific differences in expression of important stress and osmoregulative genes most likely reflecting adaptive differences between trout populations on a regional scale, thus...... was found in trout from the river entering high saline conditions, while a temperature independent up-regulation of both genes in full-strength seawater was found for trout entering marine conditions with lower salinities. Conclusion: Overall our results support the hypothesis that physiologically stressful...

  13. Understanding the apparent diffusivity of Sr-85 ion for MX-80 in different salinity condition at low dry density

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin

    2012-01-01

    The apparent diffusivity of strontium-85 in the compacted MX-80 bentonite under different salinity conditions and dry densities was conducted were studied from the viewpoint of activation energy. Through in-diffusions experiments the effect of salinity on diffusion behavior of Sr-85 ions can also can be explained. As we know, Sr-90 is by product of the fission materials of nuclear wastes and should be manage properly. Sr-85 is radioactive isotope with the same chemical properties of Sr-90. Adsorption affects only non-steady-state diffusion while at the steady state (e.g., a constant concentration gradient between a constant source and a constant sink), there is no net uptake or release by adsorption, so adsorption has no effect on diffusion (Drever, James I., 1997). The changes in the basal spacing of bentonite as a function of salinity are needed to be observed by the X-ray diffraction method to understand the microstructure changes in diffusion pathways for Sr-85 in MX-80 bentonite. As we know, there could be three potential pathways for radionuclide diffusion in solution-saturated, compacted montmorillonite, i.e., pore water, external surfaces and the internal surface (interlayer spaces) of montmorillonite aggregates (Kozaki et al., 2008). So, it is important to understand the diffusion processes in term of apparent diffusivity of Sr-85 ions in different salinity concentration at low dry density of MX-80. Several parameters are needed in explaining the process such as dry density, activation energy, temperature dependence and concentration of the salinity solutions. (author)

  14. Growth and ions (Na/sup +/, K/sup +/ and Cl/sup-1/-) accumulating pattern of some brassica genotypes under saline - sodic field condition

    International Nuclear Information System (INIS)

    Shirazi, M.U.; Ali, M.; Khan, M.A.; Mumtaz, S.; Rajpoot, M.A.; Ali, M.

    2011-01-01

    The growth and ionic uptake pattern of some Brassica genotypes i.e., Rainbow, Wester, Durr-e-NIFA, Abaseen 95 (Brassica napus) and NIFA raya (Brassica juncea) under saline-sodic field conditions was studied. Two sets of experiments on normal and saline-sodic site were conducted at NIA experimental farm, Tandojam, Pakistan during Rabi 2006-07. The salinity of the experimental site ranged between 11.0-22.9 dS/m and the pH was alkaline (8-8.6). The dominant cation was sodium (Na). The growth performance was recorded at the time of crop harvest in terms of plant height, grain weight / plant, grain yield and 100 grain weight. It was observed that the performance of Wester was better followed by NIFA- raya. The ionic uptake pattern, of leaves, stem and roots showed that the accumulation of Na was less in leaf as compared to stem and roots. However, the genotypes having better performance we re found to have accumulating type of behavior showing comparatively higher Na contents in all plant parts than other genotypes. This suggests that these genotypes might adjust their osmotic potential through the accumulation of sodium in vacuole. On the other hand trend in case of K accumulation was reverse i.e. high in leaves and stem as compared to roots. Higher accumulating pattern of K in leaves might be helpful for reducing the toxic effects of sodium. However, no correlation was observed between K-Na selectivity or K/Na ratio among the genotypes tested. It is therefore concluded that better selective mechanism for Na uptake and strict control of intercellular Na influx for cellular osmotic adjustment could be selected for saline environment. (author)

  15. NMR Profiling of Metabolites in Larval and Juvenile Blue Mussels (Mytilus edulis) under Ambient and Low Salinity Conditions.

    Science.gov (United States)

    May, Melissa A; Bishop, Karl D; Rawson, Paul D

    2017-07-06

    Blue mussels ( Mytilus edulis ) are ecologically and economically important marine invertebrates whose populations are at risk from climate change-associated variation in their environment, such as decreased coastal salinity. Blue mussels are osmoconfomers and use components of the metabolome (free amino acids) to help maintain osmotic balance and cellular function during low salinity exposure. However, little is known about the capacity of blue mussels during the planktonic larval stages to regulate metabolites during osmotic stress. Metabolite studies in species such as blue mussels can help improve our understanding of the species' physiology, as well as their capacity to respond to environmental stress. We used 1D ¹H nuclear magnetic resonance (NMR) and 2D total correlation spectroscopy (TOCSY) experiments to describe baseline metabolite pools in larval (veliger and pediveliger stages) and juvenile blue mussels (gill, mantle, and adductor tissues) under ambient conditions and to quantify changes in the abundance of common osmolytes in these stages during low salinity exposure. We found evidence for stage- and tissue-specific differences in the baseline metabolic profiles of blue mussels, which reflect variation in the function and morphology of each larval stage or tissue type of juveniles. These differences impacted the utilization of osmolytes during low salinity exposure, likely stemming from innate physiological variation. This study highlights the importance of foundational metabolomic studies that include multiple tissue types and developmental stages to adequately evaluate organismal responses to stress and better place these findings in a broader physiological context.

  16. Growth and yield of different brassica genotypes under saline sodic conditions

    International Nuclear Information System (INIS)

    Ali, A.; Mahmood, I.A.; Salim, M.

    2013-01-01

    A field study was conducted at farmer's salt-affected field (ECe=12.3 dS m/sup -1/; pH=9.7; SAR=46.2) in Hafizabad to test growth and yield response of six Brassica cultivars (BARD-I, Dunkled, Rainbow, BRS-II, Sultan Raya and cv. 95102-5) under saline sodic conditions. Data on growth and yield parameters were collected randomly (average of five plants per replication) at the time of crop maturity. Ionic concentration in plant tissues and oil content in seeds were also determined. Comparatively more number of branches and pods per plant were produced by cultivar Dunkled closely followed by BARD-I while maximum seed yield (241.7 and 235.1 kg ha ) was obtained from Dunkled and Sultan Raya, respectively which was statistically at par. However, BRS-II and Rainbow showed significantly more percent oil contents in their seeds but genotype Dunkled showed minimum Na+ and K+ concentration in their tissues. (author)

  17. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  18. Development and health status of Centropomus undecimalisparasitized by Rhabdosynochus rhabdosynochus (Monogenea under different salinity and temperature conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Lemos de Mello

    Full Text Available This study evaluated the correlation of hematological parameters with the mean abundance of the monogenean helminth Rhabdosynochus rhabdosynochus in Centropomus undecimalis reared at different temperatures and salinities. The experimental conditions were: 28 °C/0 ppt (parts per thousand; 28 °C/15 ppt; 28 °C/32 ppt; 25 °C/0 ppt; 25 °C/15 ppt; and 25 °C/32 ppt. The prevalence was 100.0% in fish at 28 °C/15 ppt, 28 °C/32 ppt and 25 °C/15 ppt, which was significantly different (p < 0.05 from those at 25 °C/32 ppt. The red blood cell (RBC count, hematocrit and total leukocyte (WBC count were significantly higher in fish at 28 °C/15 ppt and 28 °C/32 ppt. The mean abundance of R. rhabdosynochus, hematocrit and RBC showed positive correlations (P < 0.05 with temperature (ρ= 0.3908; ρ= 0.4771 and ρ = 0.2812. Mean abundance showed negative correlations with hemoglobin (ρ= -0.3567 and mean corpuscular hemoglobin concentration (MCHC (ρ = -0.2684. No correlation between abundance and salinity was detected among the experimental conditions (ρ = -0.0204. The low numbers of monogeneans recorded (min -1 and max -33 explain the few changes to fish health. This suggests that these experimental conditions may be recommended for development of rearing of C. undecimalis in Brazil, without any influence or economic losses from R. rhabdosynochus.

  19. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  20. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, northwest China.

    Science.gov (United States)

    Li, Ke; Liu, Ruyin; Zhang, Hongxun; Yun, Juanli

    2013-07-01

    Although microorganisms, particularly oxygenic phototrophs, are known as the major players in the biogeochemical cycles of elements in desert soil ecosystems and have received extensive attention, still little is known about the effects of salinity on the composition and abundances of microbial community in desert soils. In this study, the diversity and abundance of bacteria and oxygenic phototrophs in biological desert crusts from Xinjiang province, which were under different salinity conditions, were investigated by using clone library and quantitative PCR (qPCR). The 16S rRNA gene phylogenetic analysis showed that cyanobacteria, mainly Microcoleus vagnitus of the order Oscillatoriales, were predominant in the low saline crusts, while other phototrophs, such as diatom, were the main microorganism group responsible for the oxygenic photosynthesis in the high saline crusts. Furthermore, the higher salt content in crusts may stimulate the growth of other bacteria, including Deinococcus-Thermus, Bacteroidetes, and some subdivisions of Proteobacteria (β-, γ-, and δ-Proteobacteria). The cpcBA-IGS gene analysis revealed the existence of novel M. vagnitus strains in this area. The qPCR results showed that the abundance of oxygenic phototrophs was significantly higher under lower saline condition than that in the higher saline crusts, suggesting that the higher salinity in desert crusts could suppress the numbers of total bacteria and phototrophic bacteria but did highly improve the diversity of salt-tolerant bacteria.

  1. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  2. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis.

    Science.gov (United States)

    Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A

    2017-02-15

    Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity

    Directory of Open Access Journals (Sweden)

    Cristiane J. da-Silva

    2017-10-01

    Full Text Available ABSTRACT High salinity affects plants due to stimulation of osmotic stress. Cell signaling triggered by nitric oxide (NO and hydrogen sulfide (H2S activates a cascade of biochemical events that culminate in plant tolerance to abiotic and biotic stresses. For instance, the NO/H2S-stimulated biochemical events that occur in plants during response to high salinity include the control of reactive oxygen species, activation of antioxidant system, accumulation of osmoprotectants in cytosol, induction of K+ uptake and Na+ cell extrusion or its vacuolar compartmentation among others. This review is a compilation of what we have learned in the last 10 years about NO participation during cell signaling in response to high salinity as well as the role of H2S, a new player in the mechanism of plant tolerance to salt stress. The main sources of NO and H2S in plant cells is also discussed together with the evidence of interplay between both signaling molecules during response to stress.

  4. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives.

    Science.gov (United States)

    Grattieri, Matteo; Minteer, Shelley D

    2018-04-01

    This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  6. Stoichiometric variation of halophytes in response to changes in soil salinity.

    Science.gov (United States)

    Sun, X; Gao, Y; Wang, D; Chen, J; Zhang, F; Zhou, J; Yan, X; Li, Y

    2017-05-01

    Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem. Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea - two dominant species of important ecological and economic value in the saline ecosystem. Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends. These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Influence of food quality and salinity on dietary cadmium availability in Mytilus trossulus

    International Nuclear Information System (INIS)

    Widmeyer, Joline R.; Bendell-Young, Leah I.

    2007-01-01

    Surficial sediments (a combination of re-suspended and suspended sediments denoted as RSS) were collected from two distinct marine intertidal habitats. The two habitats differed with respect to salinity (25 ppt versus 15 ppt) and RSS % organic carbon content (24% versus 15%). Feeding experiments were conducted simulating the conditions in the two habitats to determine if salinity and RSS % organic carbon content affected cadmium accumulation in the pacific blue mussel Mytilus trossulus. Eleven different treatments including pure phytoplankton, collected RSS and control clay were radiolabeled with 109 Cd and pulse-fed to M. trossulus under both high (25 ppt) and low salinities (15 ppt). Metal uptake and accumulation was determined using the DYMBAM biodynamic metal bioaccumulation model. Although M. trossulus ingestion rates (IR) were significantly higher at 25 ppt as compared to 15 ppt, assimilation efficiencies (AEs) and [ 109 Cd] tissue levels were significantly lower at high as compared to low salinity exposures. Of the abiotic and biotic parameters examined and in contrast to other studies, differences in salinity rather than ingestion rate or food quality (as defined by % organic carbon content) seemed to best define the observed differences in 109 Cd AE by M. trossulus

  8. Influence of food quality and salinity on dietary cadmium availability in Mytilus trossulus

    Energy Technology Data Exchange (ETDEWEB)

    Widmeyer, Joline R. [Simon Fraser University, Department of Biological Sciences, Burnaby, British Columbia, V5A 1S6 (Canada)]. E-mail: joline_widmeyer@alumni.sfu.ca; Bendell-Young, Leah I. [Simon Fraser University, Department of Biological Sciences, Burnaby, British Columbia, V5A 1S6 (Canada)

    2007-02-28

    Surficial sediments (a combination of re-suspended and suspended sediments denoted as RSS) were collected from two distinct marine intertidal habitats. The two habitats differed with respect to salinity (25 ppt versus 15 ppt) and RSS % organic carbon content (24% versus 15%). Feeding experiments were conducted simulating the conditions in the two habitats to determine if salinity and RSS % organic carbon content affected cadmium accumulation in the pacific blue mussel Mytilus trossulus. Eleven different treatments including pure phytoplankton, collected RSS and control clay were radiolabeled with {sup 109}Cd and pulse-fed to M. trossulus under both high (25 ppt) and low salinities (15 ppt). Metal uptake and accumulation was determined using the DYMBAM biodynamic metal bioaccumulation model. Although M. trossulus ingestion rates (IR) were significantly higher at 25 ppt as compared to 15 ppt, assimilation efficiencies (AEs) and [{sup 109}Cd] tissue levels were significantly lower at high as compared to low salinity exposures. Of the abiotic and biotic parameters examined and in contrast to other studies, differences in salinity rather than ingestion rate or food quality (as defined by % organic carbon content) seemed to best define the observed differences in {sup 109}Cd AE by M. trossulus.

  9. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  10. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  11. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    International Nuclear Information System (INIS)

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Liu, Chen-Wuing; Wang, Pei-Ling; Wang, Chung-Ho; Maji, Sanjoy Kumar

    2011-01-01

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using δ 34 S [SO 4 ] and δ 18 O [SO 4 ] sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of 34 S [SO 4 ] and 18 O [SO 4 ] present in Type A, caused by microbial-mediated reduction of sulfate, and high 18 O enrichment factor (ε [SO 4 -H 2 O] ), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high δ 18 O [SO 4 ] and low δ 34 S [SO 4 ] values under mildly reducing conditions. Base on 18 O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O 2 , caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: → Seawater intrusion and elevated As are the main issues of groundwater in Taiwan. → Sulfur and oxygen isotopes of sulfate were analyzed to evaluate the As mobility. → Reductive dissolution of Fe minerals and

  12. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    Science.gov (United States)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  13. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application

    Science.gov (United States)

    Chrysargyris, Antonios; Michailidi, Evgenia; Tzortzakis, Nikos

    2018-01-01

    Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0–25–50–100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well. PMID:29731759

  14. MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS OF GROWTH AND DEVELOPMENT OF PLANTS IN HIGH SALINITY

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2015-10-01

    Full Text Available The effect of increasing salinity to the morpho-metric parameters of Salix alba L., which dominated in the coastal areas on rivers of Steppe Dnieper, is investigated. We added Mg as salt MgSO4 * 3H2O in the range of concentration: 0.5, 1.0, 1.5, 2.0 and 2.5 g/l in a solution of willow cuttings. In the solution was added and plant growth regulator "Kornevin" the synthetic origin. The negative effect of salt at a concentration from 1.0 g/l to 2.5 g/l in the dynamics of growth and development was found. The correlation between the size and salinity in dynamics of growth and development of plant were demonstrated: in the growth of shoots (R = 0.83, 0.91 and 0.95, in the growth of roots (R = 0.92, 0.68 and 0.84 respectively depended from salt concentration. The length of the leaf blade was from 4% to 8%, from 7% to 43%, from 333% to 11% (R = 0,68, 0,93, 0,61, depending on the concentration of salt and during observing compared with control (distilled water. "Kornevin" and combined effect of salt increased the length of the leaf blade growth by 4-5, 2-4, 3-5 times, the roots by7 and 3-14 times, the shoots by 3-4, 6-7 and 5-7 times in the dynamics of growth compared with control (MgSO4, 2,5 g/l. The recommendations regarding for the advisability of using the plant growth regulator "Kornevin", as very effective plant growth preparation that promoted rooting and activated physiological processes of plant organism, expressed protective effect in conditions of excessive salinity, were provided. Key words: the morpho-metric index, the plant growth regulators, abiotic factors, salinity factor, the adaptation.

  15. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  17. Effect of Black and Clear Polyethylene Mulch on Yield and Yield Components of Melon in Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    Peyman Jafari

    2017-02-01

    Full Text Available Introduction: The term of Mulch, is the German word (Molsh means the soft, however, not soft, and made of plant debris or synthetic substances. Many positive effects attributed to the use of plastic mulch such as adjusting the temperature in the root environment, conserve moisture, reduce weeds, increase root growth, reduce soil erosion, and soil condensation and improve germination and early plant establishment. The use of mulch can reduce the harmful effects of salt in plants. Materials and Methods: To evaluate the effects of black and clear polyethylene mulch on yield and yield components of melon in salinity stress condition, a study was conducted in 2011 using split plot randomized based on complete block design with three replications in Varamin region. Three salinity levels of irrigation water of 2, 5 and 8 dS-1 as main factor and three plastic mulch treatments (no mulch, clear mulch and black mulch were considered as sub-plots. At harvest and after determining the yield and number of fruits harvested from each plot, the average number of fruits per plant was measured and fruit pulp thickness was recorded with calipers. Results Discussion The results showed interactive effects of salinity and mulch on fruit yield, number of fruits per plant, average fruit weight, fruit length, days to first harvest and fruit soluble solids percentage were statistically significant. In salinity levels of 2, 5 and 8 dS m-1, fruit yield increased, respectively, 19.6, 59, and 45.4 %in clear mulch compared to control. Similarly these increases for the black mulch were equal to 15.7, 41.9, and 21.4 percent, respectively. With 2, 5 and 8 dS m-1 salinity levels, fruit yield in the first harvest were 7.44, 7.72, and 6.98 t ha -1, respectively, which was significantly higher than without mulch and black mulch. Mulch can reduce evaporation and increase the level of moisture in the soil and thereby dilute the salt and reduce the harmful effects of salinity. Some

  18. Simulating the Response of Estuarine Salinity to Natural and Anthropogenic Controls

    Directory of Open Access Journals (Sweden)

    Vladimir A. Paramygin

    2016-11-01

    Full Text Available The response of salinity in Apalachicola Bay, Florida to changes in water management alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D, an oyster population model, and probability analysis. The model uses input from river inflow, ocean and atmospheric forcing and is verified with long-term water level and salinity data, including data from the 2004 hurricane season when four hurricanes impacted the system. Strong freshwater flow from the Apalachicola River and good connectivity of the bay to the ocean allow the estuary to restore normal salinity conditions within a few days after the passage of a hurricane. Various scenarios are analyzed; some based on observed data and others using altered freshwater inflow. For observed flow, simulated salinity agrees well with the observed values. In scenarios that reflect increased water demand (~1% upstream of the Apalachicola River, the model results show slightly (less than 5% increased salinity inside the Bay. A worst-case sea-level rise (~1 m by 2100 could increase the bay salinity by up to 20%. A hypothesis that a Sumatra gauge may not fully represent the flow into Apalachicola Bay was tested and appears to be substantiated.

  19. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa

    Science.gov (United States)

    Sandoval-Gil, José M.; Marín-Guirao, Lázaro; Ruiz, Juan M.

    2012-12-01

    There are major concerns in the Mediterranean Sea over the effects of hypersaline effluents from seawater desalination plants on seagrass communities. However, knowledge concerning the specific physiological capacities of seagrasses to tolerate or resist salinity increases is still limited. In this study, changes in the photosynthetic characteristics, pigment content, leaf light absorption, growth and survival of the seagrass Cymodocea nodosa were examined across a range of simulated hypersaline conditions. To this end, large plant fragments were maintained under salinities of 37 (control ambient salinity), 39, 41 and 43 (practical salinity scale) in a laboratory mesocosm system for 47 days. At the end of the experimental period, net photosynthesis exhibited a modest, but significant, decline (12-17%) in all tested hypersaline conditions (39-43). At intermediate salinity levels (39-41), the decline in photosynthetic rates was mainly accounted for by substantial increases in respiratory losses (approximately 98% of the control), the negative effects of which on leaf carbon balance were offset by an improved capacity and efficiency of leaves to absorb light, mainly through changes in accessory pigments, but also in optical properties related to leaf anatomy. Conversely, inhibition of gross photosynthesis (by 19.6% compared to the control mean) in the most severe hypersaline conditions (43) reduced net photosynthesis. In this treatment, the respiration rate was limited in order to facilitate a positive carbon balance (similar to that of the control plants) and shoot survival, although vitality would probably be reduced if such metabolic alterations persisted. These results are consistent with the ecology of Mediterranean C. nodosa populations, which are considered to have high morphological and physiological plasticity and a capacity to grow in a wide variety of coastal environments with varying salinity levels. The results from this study support the premise that C

  20. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Hamdy, A.

    2004-01-01

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach ( 15 N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N 2 -fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N 2 fixation. (Authors)

  1. Pretreated cheese whey wastewater management by agricultural reuse: chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier; Patanita, Manuel; Dôres, Jóse

    2013-10-01

    The agricultural reuse of pretreated industrial wastewater resulting from cheese manufacture is shown as a suitable option for its disposal and management. This alternative presents attractive advantages from the economic and pollution control viewpoints. Pretreated cheese whey wastewater (CWW) has high contents of biodegradable organic matter, salinity and nutrients, which are essential development factors for plants with moderate to elevated salinity tolerance. Five different pretreated CWW treatments (1.75 to 10.02 dS m(-1)) have been applied in the tomato plant growth. Fresh water was used as a control run (average salinity level=1.44 dS m(-1)). Chemical characterization and indicator ratios of the leaves, stems and roots were monitored. The sodium and potassium leaf concentrations increased linearly with the salinity level in both cultivars, Roma and Rio Grande. Similar results were found in the stem sodium content. However, the toxic sodium accumulations in the cv. Roma exceeded the values obtained in the cv. Rio Grande. In this last situation, K and Ca uptake, absorption, transport and accumulation capacities were presented as tolerance mechanisms for the osmotic potential regulation of the tissues and for the ion neutralization. Consequently, Na/Ca and Na/K ratios presented lower values in the cv. Rio Grande. Na/Ca ratio increased linearly with the salinity level in leaves and stems, regardless of the cultivar. Regarding the Na/K ratio, the values demonstrated competition phenomena between the ions for the cv. Rio Grande. Despite the high chloride content of the CWW, no significant differences were observed for this nutrient in the leaves and stems. Thus, no nitrogen deficiency was demonstrated by the interaction NO3(-)/Cl(-). Nitrogen also contributes to maintain the water potential difference between the tissues and the soil. Na, P, Cl and N radicular concentrations were maximized for high salinity levels (≥2.22 dS m(-1)) of the pretreated CWW. © 2013

  2. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    Science.gov (United States)

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity.

  3. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.

    Science.gov (United States)

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-02-18

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

  4. Measurement of N2 fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, K.; Janat, M.

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC e 15, water EC w 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N 2 -fixation using 15 N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N 2 fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N 2 fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  5. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples.

    Science.gov (United States)

    Niu, Zongliang; Yu, Chunwei; He, Xiaowen; Zhang, Jun; Wen, Yingying

    2017-09-05

    A salting-out assisted liquid-liquid extraction (SALLE) combined with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of four pyrethroid insecticides (PYRs) in high salinity and biological samples. Several parameters including sample pH, salting-out solution volume and salting-out solution pH influencing the extraction efficiency were systematically investigated with the aid of orthogonal design. The optimal extraction conditions of SALLE were: 4mL of salting-out solution with pH=4 and the sample pH=3. Under the optimum extraction and determination conditions, good responses for four PYRs were obtained in a range of 5-5000ng/mL, with linear coefficients greater than 0.998. The recoveries of the four PYRs ranged from 74% to 110%, with standard deviations ranging from 1.8% to 9.8%. The limits of detection based on a signal-to-noise ratio of 3 were between 1.5-60.6ng/mL. The method was applied to the determination of PYRs in urine, seawater and wastewater samples with a satisfactory result. The results demonstrated that this SALLE-GC-MS method was successfully applied to determine PYRs in high salinity and biological samples. SALLE avoided the need for the elimination of salinity and protein in the sample matrix, as well as clean-up of the extractant. Most of all, no centrifugation or any special apparatus are required, make this a promising method for rapid sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  7. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  8. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel

    Science.gov (United States)

    Gavrieli, Ittai; Burg, Avi; Guttman, Joseph

    2002-08-01

    An increase in salinity and change from oxic to anoxic conditions are observed in the Upper subaquifer of the Judea Group in the Kefar Uriyya pumping field at the western foothills of the Judea Mountains, Israel. Hydrogeological data indicate that the change, which occurs over a distance of only a few kilometers, coincides with a transition from confined to phreatic conditions in the aquifer. The deterioration in the water quality is explained as a result of seepage of more saline, organic-rich water from above, into the phreatic "roofed" part of the aquifer. The latter is derived from the bituminous chalky rocks of the Mount Scopus Group, which confine the aquifer in its southeastern part. In this confined part, water in perched horizons within the Mount Scopus Group cannot leak down and flow westward while leaching organic matter and accumulating salts. However, upon reaching the transition area from confined to phreatic conditions, seepage to the Judea Upper subaquifer is possible, thereby allowing it to be defined as a leaky aquifer. The incoming organic matter consumes the dissolved oxygen and allows bacterial sulfate reduction. The latter accounts for the H2S in the aquifer, as indicated by sulfur isotopic analyses of coexisting sulfate and sulfide. Thus, from an aquifer management point of view, in order to maintain the high quality of the water in the confined southeastern part of the Kefar Uriyya field, care should be taken not to draw the confined-roofed transition area further east by over pumping.

  9. Supplementary Material for: Growth curve registration for evaluating salinity tolerance in barley

    KAUST Repository

    Meng, Rui

    2017-01-01

    Abstract Background Smarthouses capable of non-destructive, high-throughput plant phenotyping collect large amounts of data that can be used to understand plant growth and productivity in extreme environments. The challenge is to apply the statistical tool that best analyzes the data to study plant traits, such as salinity tolerance, or plant-growth-related traits. Results We derive family-wise salinity sensitivity (FSS) growth curves and use registration techniques to summarize growth patterns of HEB-25 barley families and the commercial variety, Navigator. We account for the spatial variation in smarthouse microclimates and in temporal variation across phenotyping runs using a functional ANOVA model to derive corrected FSS curves. From FSS, we derive corrected values for family-wise salinity tolerance, which are strongly negatively correlated with Na but not significantly with K, indicating that Na content is an important factor affecting salinity tolerance in these families, at least for plants of this age and grown in these conditions. Conclusions Our family-wise methodology is suitable for analyzing the growth curves of a large number of plants from multiple families. The corrected curves accurately account for the spatial and temporal variations among plants that are inherent to high-throughput experiments.

  10. Porewater salinity and the development of swelling pressure in bentonite-based buffer and backfill materials

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A. [Atomic Energy of Canada Limited (Canada)

    2000-06-01

    At the depths proposed for a nuclear fuel waste repository, it is likely that saline groundwater conditions will be encountered in the granitic rocks of Finland and Canada. The potential for saline groundwater to influence of the ability of bentonite-based buffer and backfilling materials to swell and thereby generate swelling pressure has been reviewed. Based on the data collected from existing literature, it would appear that porewater salinities as high as 100 g/l will not compromise the ability of confined, bentonite-based materials to develop a swelling pressure of at least 100 kPa on its confinement, provided the effective clay dry density (ECDD), exceeds approximately 0.9 Mg/m{sup 3}. At densities less than approximately 0.9 Mg/m{sup 3} the swelling pressure of bentonite-based materials may be reduced and become sensitive to salt concentration. The influence of porewater salinity on swelling pressure can be compared on the basis of the ECDD required to develop 100 kPa of swelling pressure. In order to generate 100 kPa of swelling pressure an ECDD of approximately 0.7 Mg/m{sup 3} is required to be present under fresh water or brackish porewater conditions. This density would need to be increased to approximately 0.9 Mg/m{sup 3} where the groundwater conditions were saline. The impact that groundwater salinity will have on density specifications for buffer and backfilling materials are discussed with reference to the nuclear fuel waste disposal concepts of Finland and Canada. (orig.)

  11. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    Science.gov (United States)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  12. Efficacy of high iodine concentration contrast medium with saline pushing in hepatic CT in patients with chronic liver disease. Comparison of high doses-standard contrast medium concentration

    International Nuclear Information System (INIS)

    Matoba, Munetaka; Kondo, Tamaki; Nishikawa, Takahiro; Kuginuki, Yasuaki; Yokota, Hajime; Higashi, Kotaro; Tonami, Hisao

    2006-01-01

    The aim of this study was to compare the enhancement of liver parenchyama with high iodine concentration contrast medium with saline pushing to that with high doses standard iodine concentration in hepatic CT in patients with chronic liver disease. There was no statistically significant difference regarding to the enhancement of liver parenchyama between the 370 mgI/ml of contrast medium with saline pushing and high doses standard iodine concentration contrast medium. (author)

  13. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... the percentage of fertility, stem weight and white grain weight (Kavousi, 1995). ... yield falling in accordance with rising salinity or electrical conduction of ... Due to the effect of salinity on height reduction and its significant effect ..... leaf elongation in maize Is not Mediated by changes in cell wall. Acidification ...

  14. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  15. The role of salinity in the trophic transfer of 137Cs in euryhaline fish.

    Science.gov (United States)

    Pouil, Simon; Oberhänsli, François; Swarzenski, Peter W; Bustamante, Paco; Metian, Marc

    2018-09-01

    In order to better understand the influence of changing salinity conditions on the trophic transfer of 137 Cs in marine fish that live in dynamic coastal environments, its depuration kinetics was investigated in controlled aquaria. The juvenile turbot Scophthalmus maximus was acclimated to three distinct salinity conditions (10, 25 and 38) and then single-fed with compounded pellets that were radiolabelled with 137 Cs. At the end of a 21-d depuration period, assimilation efficiencies (i.e. AEs = proportion of 137 Cs ingested that is actually assimilated by turbots) were determined from observational data acquired over the three weeks. Our results showed that AEs of 137 Cs in the turbots acclimated to the highest salinity condition were significantly lower than for the other conditions (p < 0.05). Osmoregulation likely explains the decreasing AE observed at the highest salinity condition. Indeed, observations indicate that fish depurate ingested 137 Cs at a higher rate when they increase ion excretion, needed to counterbalance the elevated salinity. Such data confirm that ambient salinity plays an important role in trophic transfer of 137 Cs in some fish species. Implications for such findings extend to seafood safety and climate change impact studies, where the salinity of coastal waters may shift in future years in response to changing weather patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO_3, PO_4, NH_4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  17. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  18. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  19. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Yu-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Sheng-Wei [Agricultural Engineering Research Center, Chungli 320, Taiwan, ROC (China); Liu, Chen-Wuing, E-mail: lcw@gwater.agec.ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Pei-Ling [Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, ROC (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Maji, Sanjoy Kumar [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2011-10-15

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using {delta}{sup 34}S{sub [SO{sub 4]}} and {delta}{sup 18}O{sub [SO{sub 4]}} sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of {sup 34}S{sub [SO{sub 4]}} and {sup 18}O{sub [SO{sub 4]}} present in Type A, caused by microbial-mediated reduction of sulfate, and high {sup 18}O enrichment factor ({epsilon}{sub [SO{sub 4-H{sub 2O]}}}), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high {delta}{sup 18}O{sub [SO{sub 4]}} and low {delta}{sup 34}S{sub [SO{sub 4]}} values under mildly reducing conditions. Base on {sup 18}O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O{sub 2}, caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater. - Highlights: {yields} Seawater intrusion and elevated As are the main issues of groundwater in Taiwan

  20. Effects of salinity, temperature, light and dormancy regulating chemicals on seed germination of salsola drummondii ulbr

    International Nuclear Information System (INIS)

    Rasheed, A.; Hameed, A.; Khan, M.A.; Gul, B.

    2015-01-01

    Salsola drummondii Ulbr. is a perennial halophyte found in salt deserts of southern Balochistan, Pakistan. Experiments were conducted to study the effects of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl), thermoperiod (10/20, 15/25, 20/30 and 25/35 degree C), light (12-h photoperiod and dark) and dormancy regulating chemicals (DRCs) on germination, recovery and viability of the seeds of S. drummondii. Seeds of S. drummondii germinated quickly in distilled water at different temperature regimes and increases in salinity decreased seed germination. Interestingly, few seeds could even germinate in 1000 mM NaCl treatment, which is about twice as high as seawater salinity. Seeds were partially photoblastic and showed relatively higher germination under 12-h photoperiod than in dark. Seeds showed poor recovery of germination from salinity and particularly when germinated in dark. Germination inhibition at high salinity (800 mM NaCl) under 12-h photoperiod was partially alleviated by the exogenous application of different DRCs, particularly fusicoccin. Moreover, all the DRCs, except GA4+7, ameliorated germination of salt stressed seeds under complete darkness and GA4 and fusicoccin were most effective. Our study shows that seeds of S. drummondii are highly tolerant to salinity and variation in temperature but partially photoblastic nature indicate that seeds will not germinate if buried under the soil. Seed germination under saline conditions can be improved by the use of DRCs particularly by application of fusicoccin. (author)

  1. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  2. Effect of water regime and salinity on artichoke yield

    Directory of Open Access Journals (Sweden)

    Francesca Boari

    2012-03-01

    Full Text Available This work focuses on the effects of different salinity and water inputs on the yield of artichoke Violetto di Provenza. Two years of experimental works had been carried out in a site in Southern Italy characterized by semi-arid climate and deep loam soil. Three salinity levels of irrigation water (S0, S1 and S2 with electrical conductivity (ECw of 0.5, 5 and 10 dS m-1, respectively, were combined with three water regimes (W1, W2 and W3 corresponding in that order to 20 40 and 60% of available water depletion. The overall results of the salinity tolerance are in agreement with those from the literature. However, an higher tolerance to salinity was demonstrated when crop was watered more frequently (at 20% of available water depletion and a lower one when crop watering was performed less frequently (at 60% of available water depletion. The increase of salinity level reduced marketable yield (from 12.9 to 8.8 Mg ha-1, total heads (from 125,100 to 94,700 n ha-1 and heads mean weight (from 99.9 to 94.6 g, while increased heads dry matter (from 161.8 to 193.6 g kg-1 f.w. and reduced edible parte percentage of heads (from 35.2 to 33.2 %. Watering regimes, as average of the salinity levels, affected total heads marketable yield (115,350 n ha-1 and 11.4 Mg ha-1 for W1 and W2, 105,900 n ha-1 and 10 Mg ha-1 for W3. In addition, different watering regimes affected the secondary heads yield for which it was reduced by 3% of mean weight. The effect of different watering regimes changed with various salinity levels. In condition of moderate salinity (S1, maximum water depletion fraction to preserve heads number and weight yield was 40 and 20% of total soil available water, respectively. However, with high salinity (S2, maximum water depletion fraction to keep unchanged heads number and weight yield was 20% for both. The level of soil salinity at beginning of the crop cycle favoured the incidence of head atrophy in the main heads produced in the second year.

  3. Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River

    Science.gov (United States)

    Bacopoulos, P.

    2015-12-01

    There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.

  4. Impact of highly saline wetland ecosystem on floral diversity of the Cholistan desert

    International Nuclear Information System (INIS)

    Gill, A.H.; Ahmad, K.S.; Habib, S.; Ahmad, S.A.; Nawaz, T.; Ahmad, F.

    2012-01-01

    The impact of highly saline wetland ecosystem created under Salinity Control and Reclamation Project (SCARP) on floral diversity was investigated in the arid environments of Cholistan Desert. Species richness, diversity indices and evenness indices were worked out to look at the distance at which the salt water has altered the native vegetation. Four sites including SCARP ponds of different ages (S1, S2, S3 and S4), and a reference site (SR) were selected for vegetation studies and data were recorded by 1 x 1 m quadrats, which were laid on permanent transect lines. Salt water showed great influence on ecological parameters of the native vegetation up to 40 m. Multivariate (cluster) analysis showed close clustering of highly salt tolerant species, Aeluropus lagopoides, Tamarix dioica and Suaeda fruticosa in one group, and relatively less tolerant Crotalaria burhia, Cyperus conglomeratus, Indigofera argentea, Haloxylon salicornicum, Haloxylon stocksii, Neurada procumbens and Salsola baryosma in second group. Moderately salt tolerant Aristida adscensionis, Lasiurus scindicus and Sporobolus iocladus were clustered in a separate group. (author)

  5. Role of proline to induce salinity tolerance in Sunflower (helianthus annusl.)

    International Nuclear Information System (INIS)

    Iqbal, A.; Iftikhar, I.I.; Nawaz, H.; Nawaz, M.

    2014-01-01

    The potted experiment was conducted to determine the exogenous role of proline to induce salinity tolerance in sunflower (Helianthus annus L.). Salinity levels (0, 60 and 120 mmol) were created according to the saturation percentage of soil. Different levels (0, 30, 60 mmol) of proline were applied as a foliar spray on sunflower under saline and non saline conditions. Application of proline as a foliar spray ameliorated the toxic effects of salinity on growth, physiological and biochemical attributes of sunflower. Among different levels of proline, 60 mmol was found to be the most effective in ameliorating the toxic effects of salinity on sunflower. (author)

  6. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    KAUST Repository

    Takahashi, Fuminori

    2015-08-05

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  7. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    Directory of Open Access Journals (Sweden)

    Fuminori Takahashi

    Full Text Available Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  8. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    Science.gov (United States)

    Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  9. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    Science.gov (United States)

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  10. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage

    Directory of Open Access Journals (Sweden)

    Ruiting Gu

    2018-03-01

    Full Text Available Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1 wet storage at a salinity of 30–40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2 dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22% of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3 R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C and desiccation; (4 there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  11. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage.

    Science.gov (United States)

    Gu, Ruiting; Zhou, Yi; Song, Xiaoyue; Xu, Shaochun; Zhang, Xiaomei; Lin, Haiying; Xu, Shuai; Yue, Shidong; Zhu, Shuyu

    2018-01-01

    Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1) wet storage at a salinity of 30-40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2) dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22%) of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3) R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C) and desiccation; (4) there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  12. Study some mechanical properties of self-compacting concrete with nano silica under severe saline environment conditions

    Directory of Open Access Journals (Sweden)

    Habeeb Ghalib

    2018-01-01

    Full Text Available The main aim of this research is to evaluate the performance of Nano silica self-compacting concrete which is subjected to severe saline conditions that contain sulfates and chlorides at concentrations similar to those existing in the soils and ground water of the middle and southern parts of Iraq. For this purpose, ordinary and sulfate resistant Portland cement without and with 3% Nano silica addition by weight of cementitious materials were used. Splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity were investigated for all exposure conditions and all types of mixes of self-compacting concrete at ages of 28, 60, 90, 120 and 180 days. Test results revealed that the inclusion of Nano Silica in concrete mixes improved clearly the mechanical properties of self-compacting concrete compared with reference concrete.

  13. Physiological response in the European flounder (Platichthys flesus) to variable salinity and oxygen conditions

    DEFF Research Database (Denmark)

    Lundgreen, Kim; Kiilerich, Pia; Tipsmark, Christian Kølbæk

    2008-01-01

    . Muscle water content was the same at all three salinities, indicating complete cell volume regulation. Gill Na+/K+-ATPase activity did not change with salinity, but hypoxia caused a 25 % decrease in branchial Na+/K+-ATPase activity at all three salinities. Furthermore, hypoxia induced a significant...... the erythrocytic nucleoside triphosphate content, a common mechanism for increasing blood O2 affinity. It is concluded that moderate hypoxia induced an energy saving decrease in branchial Na+/K+-ATPase activity, which did not compromise extracellular osmoregulation....

  14. Effect of Soil Salinity, Type and Amount of Nitrogen Fertilizer on Yield and Biochemical Properties of Mustard (Brassica rapa L.)

    OpenAIRE

    S Tandisseh; A. R Astaraei; H Emami

    2017-01-01

    Introduction Soil salinity is a major limiting factor in agricultural development within Iran. Nitrogen is the most important nutrient that its uptake is limited over other elements under saline conditions due to decrease in the permeability of plant roots, soil microbial activity and mineralization of organic compounds and nitrate uptake by high concentrations of chloride anions in the root zone of the plant. Mustard plant has a good compatibility to weather conditions and since there is...

  15. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    Science.gov (United States)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  16. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  17. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  18. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  19. Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR for inducing salinity tolerance in mung bean under field condition of semi arid climate

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2013-04-01

    Full Text Available Salinity stress severely affects the growth, nodulation and yield of mung bean (Vigna radiata L.. However, its growth can be improved under salinity stress by inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria (PGPR containing 1-Aminocyclopropane-1-carboxylic acid (ACC deaminase enzyme. ACC-deaminase containing bacteria regulate the stress induced ethylene production by hydrolyzing the ACC (immediate precursor of ethylene into ammonia and ketobutyric acid, thus improve plant growth by lowering the ethylene level. A study was conducted under salt affected field conditions where pre-isolated strains of Rhizobium and PGPR were used alone as well as in combination for mitigating the salinity stress on growth, nodulation and yield of mung bean by following the randomized complete block design (RCBD. The data were recorded and analyzed statistically to see the difference among treatments.

  20. Salinity and temperature tolerance of the invasive freshwater gastropod Tarebia granifera

    Directory of Open Access Journals (Sweden)

    Renzo Perissinotto

    2010-04-01

    Full Text Available Invasive aquatic species, such as the gastropod Tarebia granifera, can cause ecological isturbances and potentially reduce biodiversity by displacing indigenous invertebrates. In South Africa, T. granifera was first recorded in an estuarine environment in the St Lucia Estuary. Its tolerance to salinity and temperature was investigated through the experimental manipulation of these factors. T. granifera can tolerate temperatures between 0 ºC and 47.5 ºC, allowing it to survive high temperature extremes. The species may also survive cold snaps and invade higher altitude areas. More remarkably, this snail survives high salinity for a relatively long time, as LS50 (lethal salinity for 50% of the population was reached at 30 psu over 65–75 days. However, higher salinity adversely affected the T. granifera population. Snails acclimated to freshwater conditions and suddenly transferred to 30 psu experienced 100% mortality within 48 h. Snail activity also declined with increasing salinity. T. granifera’s environmental tolerance and parthenogenetic characteristics are the keys to successful introduction and establishment. Therefore, the management of T. granifera may prove diffcult in the short to medium term. The present findings constitute a contribution to the knowledge of biological invasions in Africa and to the understanding of estuarine invasions by T. granifera.

  1. Measurement of N{sub 2} fixation in Sesbania aculeata pers. and Sorghum bicolor L. grown in intercropping system, under saline conditions, using {sup 15}N isotopic dilution technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurdali, F; Khalifa, K; Janat, M [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Agriculture

    2001-09-01

    A field experiment was conducted under saline conditions (soil EC{sub e} 15, water EC{sub w} 8 dS/m/m) to evaluate the performance of sole crops and inter crops of Sesbania aculeata and Sorghum bicolor (1:1 row ratio) in terms of dry matter production, total N yield, soil N uptake and N{sub 2}-fixation using {sup 15}N isotope dilution method. Dry matter yield in sole crop of sesbania was significantly higher that that of sole sorghum; whereas, that of the inter cropping was significantly lower than sole sesbania, but was similar to that produced by sole sorghum. Total nitrogen yield in sole sesbania was four-fold than that accumulated in sole sorghum, whereas, that of mixed cropping was 2.6 fold compared to that of sole sorghum. The LER of total N yield was higher than 1 reflecting a greater advantage of inter cropping system in terms of land use efficiency. The proportion of N derived from N{sub 2} fixation (%Ndfa) in the sesbania was increased from 63 to 79%, for sole and inter cropping system, respectively. There was no evidence of a significant transfer of N from the sesbania to the sorghum. Results on the relative growth of plants on saline soil compared with non-saline soil clearly demonstrated that sesbania was more salt tolerant than the sorghum. soil nitrogen uptake by plants, particularly in sorghum, was adversely affected by salinity. However, amounts of N{sub 2} fixed by sole sesbania grown is saline soil was close or even higher than on non-saline soil. The use of inter cropping systems of legumes and non-legumes could be a promising agricultural approach to reutilize wasted lands, after a careful selection of appropriate tolerant genotypes to prevailing saline conditions. (author)

  2. Studies of marine macroalgae: saline desert water cultivation and effects of environmental stress on proximate composition. Final subcontract report. [Gracilaria tikvahiae; Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; DeBusk, T.A.; Peterson, J.E.

    1985-11-01

    The results presented in this report address the growth potential of marine macroalgae cultivated in desert saline waters, and the effects of certain environmental stresses (e.g., nitrogen, salinity, and temperature) on the proximate composition of several marine macroalgae. Two major desert saline water types were assayed for their ability to support the growth of Gracilaria, Ulva, and Caulerpa. Both water types supported short term growth, but long term growth was not supported. Carbohydrate levels in Gracilaria were increased by cultivation under conditions of high salinity, low temperature, and low nitrogen and phosphorous availability. Data suggests that it may be possible to maximize production of useful proximate constituents by cultivating the algae under optimum conditions for growth, and then holding the resulting biomass under the environmental conditions which favor tissue accumulation of the desired storage products. 16 refs., 21 figs., 19 tabs.

  3. Influence of gypsum amendment on methane emission from paddy rice soil affected by saline irrigation water

    Directory of Open Access Journals (Sweden)

    Ei Ei eTheint

    2016-01-01

    Full Text Available To investigate the influence of gypsum application on methane (CH4 emission from paddy rice soil affected by saline irrigation water, two pot experiments with the rice cultivation were conducted. In pot experiment (I, salinity levels 30 mMNaCl (S30 and 90 mMNaCl (S90, that showed maximum and minimum CH4 production in an incubation experiment, respectively, were selected and studied without and with application of 1 Mg gypsum ha-1(G1. In pot experiment (II, CH4 emission was investigated under different rates of gypsum application: 1 (G1, 2.5 (G2.5 and 5 (G5 Mg gypsum ha-1 under a non-saline and saline condition of 25 mMNaCl (S25. In experiment (I, the smallest CH4 emission was observed in S90. Methane emission in S30 was not significantly different with the non-saline control. The addition of gypsum showed significant lower CH4 emission in saline and non-saline treatments compared with non-saline control. In experiment (II, the CH4 emissions in the saline treatments were not significantly different to the non-saline treatments except S25-G5. However, our work has shown that gypsum can lower CH4 emissions under saline and non-saline conditions. Thus, gypsum can be used as a CH4 mitigation option in non-saline as well as in saline conditions.

  4. Removal of organic substances and oxidation of ammonium nitrogen by a down-flow hanging sponge (DHS) reactor under high salinity conditions.

    Science.gov (United States)

    Uemura, Shigeki; Suzuki, Saori; Abe, Kenichi; Kubota, Keiichi; Yamaguchi, Takashi; Ohashi, Akiyoshi; Takemura, Yasuyuki; Harada, Hideki

    2010-07-01

    A down-flow hanging sponge (DHS) reactor, constructed by connecting three identical treatment units in series, was fed with highly saline artificial coke-plant wastewater containing 1400 mg L(-1) of phenol in terms of chemical oxygen demand (COD) and 500 mg-NL(-1) of ammonium nitrogen. The COD was removed by the 1st unit, achieving 92% removal at an average COD loading rate of 3.0 kg-COD m(-3)d(-1) for all units, with oxidation of ammonium nitrogen occurring primarily in the two downstream units. Microbial assays of the different units of the reactor revealed greater numbers of nitrifying bacteria in the 2nd and 3rd units than in the 1st unit, corresponding with the observed ammonium oxidation pattern of the reactor. These findings suggest that a succession of microflora was successfully established along the DHS. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    significant advantage on yield and WUE and reduces the soil salinity compared to the SDI in potato production under experimental conditions. The SSDI and FI100 irrigation techniques seem to optimize the use of saline water in potato production and to control soil salinity. Under situations of water shortage, adopting deficit irrigation treatment (DI60 could be an alternative for irrigation scheduling of spring and autumn potato under the arid conditions of southern Tunisia.

  6. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    Directory of Open Access Journals (Sweden)

    Kseniya P. Vereshchagina

    2016-11-01

    Full Text Available Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate. Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

  7. High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana

    KAUST Repository

    Awlia, Mariam

    2016-09-28

    Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions.

  8. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    Science.gov (United States)

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  9. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea.

    Science.gov (United States)

    Lee, Seung Jae; Jeong, Eun-Mi; Ki, Ah Young; Oh, Kyung-Seo; Kwon, Joseph; Jeong, Jae-Hyuk; Chung, Nam-Jin

    2016-11-01

    High salinity is a major abiotic stress that affects the growth and development of plants. This type of stress can influence flowering, the production of crops, defense mechanisms and other physiological processes. Previous studies have attempted to elucidate salt-tolerance mechanisms to improve plant growth and productivity in the presence of sodium chloride. One such plant that has been studied in detail is Salicornia, a well-known halophyte, which has adapted to grow in the presence of high salt. To further the understanding of how Salicornia grows and develops under high saline conditions, Salicornia herbacea (S. herbacea) was grown under varying saline concentrations (0, 50, 100, 200, 300, and 400mM), and the resulting phenotype, ion levels, and metabolites were investigated. The optimal condition for the growth of S. herbacea was determined to be 100mM NaCl, and increased salt concentrations directly decreased the internal concentrations of other inorganic ions including Ca 2+ , K + , and Mg 2+ . Metabolomics were performed on the roots of the plant as a systematic metabolomics study has not yet been reported for Salicornia roots. Using ethylacetate and methanol extraction followed by high resolution ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), 1793 metabolites were identified at different NaCl levels. Structural and functional analyses demonstrated that the concentration of 53 metabolites increased as the concentration of NaCl increased. These metabolites have been linked to stress responses, primarily oxidative stress responses, which increase under saline stress. Most metabolites can be classified as polyols, alkaloids, and steroids. Functional studies of these metabolites show that shikimic acid, vitamin K1, and indole-3-carboxylic acid are generated as a result of defense mechanisms, including the shikimate pathway, to protect against reactive oxygen species (ROS) generated by salt stress. This metabolite profiling

  10. Stennis Space Center Salinity Drifter Project. A Collaborative Project with Hancock High School, Kiln, MS

    Science.gov (United States)

    Kalcic, Maria; Turowski, Mark; Hall, Callie

    2010-01-01

    Presentation topics include: importance of salinity of coastal waters, habitat switching algorithm, habitat switching module, salinity estimates from Landsat for Sabine Calcasieu Basin, percent of time inundated in 2006, salinity data, prototyping the system, system as packaged for field tests, salinity probe and casing, opening for water flow, cellular antenna used to transmit data, preparing to launch, system is launched in the Pearl River at Stennis Space Center, data are transmitted to Twitter by cell phone modem every 15 minutes, Google spreadsheet I used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature, results are uploaded to NASA's Applied Science and Technology Project Office Webpage.

  11. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  12. Decline of woody vegetation in a saline landscape in the Groundnut Basin, Senegal

    DEFF Research Database (Denmark)

    Sambou, Antoine; Theilade, Ida; Fensholt, Rasmus

    2016-01-01

    Several studies have documented that vegetation in the Sahel is highly dynamic and is affected by the prevailing climatic conditions, as well as by human use of the areas. However, little is known about vegetation dynamics in the large saline areas bordering the rivers of West Africa. Combining s...

  13. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  14. Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity

    Science.gov (United States)

    Cardona-Olarte, P.; Twilley, R.R.; Krauss, K.W.; Rivera-Monroy, V.

    2006-01-01

    We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase. ?? Springer 2006.

  15. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  16. Effect of nitrate addition on the efficient use of ammonium sulfate fertilizer on corn under saline conditions . II. field experiment

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Zidan, A

    2003-01-01

    two field experiments during two consecutive seasons, were conducted on corn (Zea mays L. var. Ghota-82), grown on a saline soil under flood irrigation system at ACSAD research station located at the Euphrates valley, Deir-Ez-zor district, east of Syria. The objective was to study the effect of applying different ratios of mixed NO 3 -N and NH 4 -N fertilizers on the biomass yield of corn. Five rates of nitrogen (0, 50, 100, 150 and 200 kg N/ha) were applied either in a single or in combination of two forms of 15 N labelled nitrogen fertilizers ( 15 NH 4 ) 2 SO 4 and Ca( 15 NO 3 ) 2 . Total N, 15 N, nitrogen use efficiency (N recovery) and dry matter yield were the parameters investigated. The results showed that: (1) The high concentrations of NH 4 -N reduced dry matter yield; (2) NO 3 -N was more effective in increasing total N content of plant tissues than the same concentration of NH 4 -N; (3) Combination treatments always induced both higher yields and N content of plant tissues than single treatments of NH 4 -N; (4) NH 4 -N form increased the NO 3 -N uptake, and the NO 3 -N form had an effect on the absorption of NH 4 -N; (5) the recovery of NO 3 -N form was much higher than NH 4 -N form under saline soil conditions. (author)

  17. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  18. Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    Directory of Open Access Journals (Sweden)

    Edgar Bonales-Alatorre

    2013-04-01

    Full Text Available Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd., a facultative C3 halophyte species, can efficiently control the activity of slow (SV and fast (FV tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013 Plant Physiology. This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i a higher rate of Na+ exclusion from leaf mesophyll; (ii maintenance of low cytosolic Na+ levels; (iii better K+ retention in the leaf mesophyll; (iv a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  19. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-04-29

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  20. The effect of biofertilizer fungi on Ciherang rice growth at some level of soil salinity

    Directory of Open Access Journals (Sweden)

    Y B Subowo

    2014-04-01

    Full Text Available A research about the effect of fungus contained biofertilizer on Ciherang rice that was growth on different level of soil salinity was conducted. One of the effect of global climate changes is the increase of sea water level. It leads to the expansion of sea water submerged land for agriculture. Salt intrution to the agriculture area considerably decrease soil fertility because of the high salinity. Some of microbes especially soil fungi such as Aspergillus sp and Penicillium sp. are able to grow at high salinity environment. Those fungi were also able to degrade lignocellulose, sollubilize in organic phosphate and provide organic phosphat and produce plant growth hormon especially IAA. Such activities benefit to improve soil fertility in high salinity land as a bio-fertilizer.The objective of this research was to know the growth of rice plant that treated with fungus contained bio-fertilizer on land with different level of salinity. The rice were planted in Green house of Cibinong Science Centre, Cibinong.The research was set up as complete random design with five replication. The rice were watered by 5 conditions: 50% of sea water, 100% of sea water, 100% sea water + 2 % NaCl , fresh water + 5 % NaCl and 100% fresh water as the control. Fertilizer was added to the medium twice. Ten grams of fertilizer were used per polybag (10g/7 Kg, 2 weeks after planting and before flowering subsequently. The observed parameters were plant height, number of tiller, leaves colour, biomass dry weight, soil organic carbon content, cellulosic and lignin degrading activities of the fungus, fungus phosphate-solubilizing potency and fungus production of IAA.The watering treatment lead to 5 level of salinity i.e. : 5,93 dS/m (50% sea water, 9,15 dS/m (100% sea water, 10,42 dS/m (sea water + 2% NaCl, 12,43 dS/m (fresh water + 5% NaCl and 0,74 dS/m (fresh water. The result showed that among those 5 watering condition, the rice grew best on 5,93 dS/m (watering 50% of

  1. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    Science.gov (United States)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  2. Down-regulation of activity and expression of three transport-related proteins in the gills of the euryhaline green crab, Carcinus maenas, in response to high salinity acclimation.

    Science.gov (United States)

    Jillette, Nathaniel; Cammack, Lauren; Lowenstein, Margaret; Henry, Raymond P

    2011-02-01

    The euryhaline green crab, Carcinus maenas, undergoes an annual cycle of salinity exposure, having to adapt to low salinity during its annual spring migration into estuaries, and then having to re-adapt to high salinity when it moves off-shore at the end of summer. Most studies have focused on low salinity acclimation, the activation of osmoregulatory mechanisms, and the induction of transport protein and transport-related enzyme activity and gene expression. In this study we followed the changes in hemolymph osmolality, carbonic anhydrase activity, and mRNA expression of three proteins through a complete cycle of low (15 ppt) and high (32 ppt) salinity acclimation. One week of low salinity acclimation resulted in hemolymph osmoregulation and a four-fold induction of branchial carbonic anhydrase activity. Relative mRNA expression increased for two CA isoforms (CAc 100-fold, and CAg 7-fold) and the α-subunit of the Na/K-ATPase (8-fold). Upon re-exposure to high salinity, hemolymph osmolality increased to 32 ppt acclimated levels by 6 h, and mRNA levels returned to high salinity, baseline levels within 1 week. However, CA activity remained unchanged in response to high salinity exposure for the first week and then gradually declined to baseline levels over 4 weeks. The relative timing of these changes suggests that while whole-organism physiological adaptations and regulation at the gene level can be very rapid, changes at the level of protein expression and turnover are much slower. It is possible that the high metabolic cost of protein synthesis and/or processing could be the underlying reason for long biological life spans of physiologically important proteins. Published by Elsevier Inc.

  3. The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta

    Directory of Open Access Journals (Sweden)

    S.J. Scarlett

    2013-10-01

    Full Text Available In the oil sands development region near Fort McMurray, Alberta, wetlands cover ~62 % of the landscape, and ~95 % of these wetlands are peatlands. A saline fen was studied as a reference site for peatland reclamation. Despite highly saline conditions, a freshwater bog was observed in the path of local saline groundwater flow. The purpose of this study was to identify the hydrological controls that have allowed the development and persistence of a bog in this setting. The presence of bog vegetation and its dilute water chemistry suggest that saline groundwater from the fen rarely enters the bog, which functions predominantly as a groundwater recharge system. Chloride (Cl– and sodium (Na+ were the dominant ions in fen water, with concentrations averaging 5394 and 2307 mg L-1, respectively, while the concentrations in bog water were 5 and 4 mg L-1, respectively. These concentrations were reflected by salinity and electrical conductivity measurements, which in the fen averaged 9.3 ppt, and 15.8 mS cm-1, respectively, and in the bog averaged 0.1 ppt and 0.3 mS cm-1, respectively. A small ridge in the mineral substratum was found at the fen–bog margin, which created a persistent groundwater mound. Under the dry conditions experienced in early summer, groundwater flow was directed away from the bog at a rate of 14.6 mm day-1. The convex water table at the fen-bog margin impeded flow of saline water into the bog and instead directed it around the bog margin. However, the groundwater mound was eliminated during flooding in autumn, when the horizontal hydraulic gradient across the margin became negligible, suggesting the possibility of saline water ingress into the bog under these conditions.

  4. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  5. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  6. High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium.

    Science.gov (United States)

    Stritzler, Margarita; Elba, Pagano; Berini, Carolina; Gomez, Cristina; Ayub, Nicolás; Soto, Gabriela

    2018-06-20

    Alfalfa, usually known as the "Queen of Forages", is the main source of vegetable protein to meat and milk production systems worldwide. This legume is extremely rich in proteins due to its highly efficient symbiotic association with nitrogen-fixing strains. In the last years, alfalfa culture has been displaced to saline environments by other important crops, including major cereals, a fact that has reduced its biomass production and symbiotic nitrogen fixation. In this short communication, we report the high forage production and nutrient quality of alfalfa under saline conditions by alfalfa transformation with the AtNHX1 Na + /H + antiporter and inoculation with the stress-resistant nitrogen-fixing strain Sinorhizobium meliloti B401. Therefore, the incorporation of transgenic traits into salt-sensitive legumes in association with the inoculation with natural stress-resistant isolates could be a robust approach to improve the productivity and quality of these important nitrogen-fixing crops. Copyright © 2018. Published by Elsevier B.V.

  7. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  8. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome

    KAUST Repository

    Röthig, Till

    2016-02-03

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater runoff, and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration, and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae, and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulfur oxidation, and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.

  9. Study of Salinity Tolerance in an Advanced Back Cross Rice Population Based on Some Inorganic Ions at Seedling Stage

    Directory of Open Access Journals (Sweden)

    S. Mohammadi Chamnari1

    2015-12-01

    Full Text Available The objective of the present research was to investigate the effect of salinity stress on sodium, potassium and calcium concentrations, and Na+/K+ and Na+/Ca2+ ratios at seedling stage in an advanced back cross (BC2F6 rice population. The population was derived from crossing between Hashemi, an Iranian cultivar, and IR67418-110-32222 (IR-22 from IRRI. The ANOVA indicated that the effects of genotypes, salinity stress and interaction between stress and genotype were significant for all the traits, which is suggestive of high level of genetic variation, salinity effect on traits and different response of the genotypes to salinity levels. The salinity stress markedly decreased the K+ concentration in the shoot. However the shoot Na+ and Ca2+ concentration and Na+/K+ and Na+/Ca2+ ratios were significantly increased in saline environment. The population characteristics mean value were found to be between of parents values and it often shifted to recurrent parent (Hashemi value in both stress and non stress conditions. It shows that Hashemi variety gene’s leave more influences on the expression of the traits in the population. Transgressive segregation was observed for all the studied traits in the population lines. Genetic and phenotypic correlations among the studied traits showed the same trend. The highest correlation coefficients were related to Na+ concentration and Na+/K+ (rg= 0.89** in non stress condition. The high heritability levels of the traits provide selection possibility for salinity tolerance in the population based on these traits. According to the present findings, it is possible to candidate some lines (such as line number 139 as salt tolerant at the seedling stage.

  10. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities.

    Science.gov (United States)

    Sinha, Amit Kumar; Rasoloniriana, Rindra; Dasan, Antony Franklin; Pipralia, Nitin; Blust, Ronny; De Boeck, Gudrun

    2015-03-01

    We investigated the interactive effect of ammonia toxicity, salinity challenge and nutritional status on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to normal seawater (32ppt), to brackish water (20ppt and 10ppt) and to hyposaline water (2.5ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20mg/L ∼1.18mM representing 50% of 96h LC50 value for ammonia) for 12h, 48h, 84h and 180h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Biochemical responses such as ammonia (Jamm) and urea excretion rate, plasma ammonia, urea and lactate, plasma ions (Na(+), Cl(-) and K(+)) and osmolality, muscle water content (MWC) and liver and muscle energy budget (glycogen, lipid and protein), as well as branchial Na(+)/K(+)-ATPase (NKA) and H(+)-ATPase activity, and branchial mRNA expression of NKA and Na(+)/K(+)/2Cl(-) co-transporter (NKCC1) were investigated in order to understand metabolic and ion- osmoregulatory consequences of the experimental conditions. During HEA, Jamm was inhibited in fasted fish at 10ppt, while fed fish were still able to excrete efficiently. At 2.5ppt, both feeding groups subjected to HEA experienced severe reductions and eventually a reversion in Jamm. Overall, the build-up of plasma ammonia in HEA exposed fed fish was much lower than fasted ones. Unlike fasted fish, fed fish acclimated to lower salinities (10ppt-2.5ppt) could maintain plasma osmolality, [Na(+)], [Cl(-)] and MWC during HEA exposure. Thus fed fish were able to sustain ion-osmotic homeostasis which was associated with a more pronounced up-regulation in NKA expression and activity. At 2.5ppt both feeding groups activated H(+)-ATPase. The expression of NKCC1 was down-regulated at lower salinities in both fed and fasted fish, but was upregulated within each salinity after a few days of HEA exposure. Though an

  11. High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina

    DEFF Research Database (Denmark)

    Villazán, Beatriz; Salo, Tiina Elina; Brun, Fernando G.

    2015-01-01

    Climate change intensifies the frequency and intensity of rainfall events, which increases the discharge of freshwater and nutrients to coastal areas. This may lower salinity and increase nutrient availability and, thus, affect estuarine eelgrass populations. We studied the interactive effect...... of increasing NH4+ levels and low salinity on estuarine eelgrass Zostera marina, grown in microcosm at various combinations of NH4+ enrichment (0, 10 and 25 µM) and salinity (5, 12.5 and 20). Increasing NH4+ had a positive effect on eelgrass performance as long as salinity was kept at ambient level (20). N...... enrichment was followed by an increase in pigments, photosynthesis and various growth variables and a decrease in stored carbon concentrations (sucrose and starch). Low salinity had an overall negative effect on plant fitness; pigment concentration, photosynthesis and growth were reduced while mortality...

  12. Mapping the Salinity Gradient in a Microfluidic Device with Schlieren Imaging

    Directory of Open Access Journals (Sweden)

    Chen-li Sun

    2015-05-01

    Full Text Available This work presents the use of the schlieren imaging to quantify the salinity gradients in a microfluidic device. By partially blocking the back focal plane of the objective lens, the schlieren microscope produces an image with patterns that correspond to spatial derivative of refractive index in the specimen. Since salinity variation leads to change in refractive index, the fluid mixing of an aqueous salt solution of a known concentration and water in a T-microchannel is used to establish the relation between salinity gradients and grayscale readouts. This relation is then employed to map the salinity gradients in the target microfluidic device from the grayscale readouts of the corresponding micro-schlieren image. For saline solution with salinity close to that of the seawater, the grayscale readouts vary linearly with the salinity gradient, and the regression line is independent of the flow condition and the salinity of the injected solution. It is shown that the schlieren technique is well suited to quantify the salinity gradients in microfluidic devices, for it provides a spatially resolved, non-invasive, full-field measurement.

  13. The effect of salinity on some endocommensalic ciliates from shipworms

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.

    . Seasonal incidence and relative abundance of these ciliates showed that they were more abundant during the low saline than the high saline periods. Eventhough these ciliates can endure higher salinities through gradual acclimatization of their habitat...

  14. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio).

    Science.gov (United States)

    Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C

    2010-11-01

    Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    Science.gov (United States)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable

  16. Physiological response of Cucurbita pepo var. pepo mycorrhized by Sonoran desert native arbuscular fungi to drought and salinity stresses

    Directory of Open Access Journals (Sweden)

    Citlalli Harris-Valle

    Full Text Available ABSTRACT Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium, and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa. Under high salinity, the field consortium increased aerial dry weight (more than 1 g and osmotic potential (0.54 MPa, as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.

  17. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  18. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures

    DEFF Research Database (Denmark)

    Christensen, Emil Aputsiaq Flindt; Svendsen, Morten Bo Søndergaard; Steffensen, John Fleng

    2017-01-01

    with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20...... of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity......The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased...

  19. Determination of iron in highly-saline matrices by FIA-ICP-MS

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    Analysis of iron by inductively-coupled-plasma mass-spectrometry (ICP-MS) may be significantly improved by applying a protocol of flow-injection analysis. The iron species of the sample was preconcentrated by an ammonia buffer at pH = 9.2 on a filterless nylon-knotted reactor, and the adsorbed...... species were subsequently eluted by hydrochloric acid and analysed by ICP-MS. During the FIA step of preconcentration, a high degree of salinity did not influence the adsorption mechanism of iron, which may be related to formation of iron-hydroxide complexes at the sites of amide moieties of the nylon...

  20. Effect of Salinity on Growth and Physiological Parameters of Four Olive (OleaeuropaeaL. Cultivars underGreenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Farzaneh Olyaei

    2017-02-01

    Full Text Available Introduction: Salinity is a common abiotic stress that seriously affects crop production around the world, particularly in arid and semi-arid regions.The deleterious effects of salinity on plant growth are associated with low osmotic potential of soil solution (water stress, nutritional imbalance, specific ion effect (salt stress, or a combination of these factors. Olive is one of the most important fruit crops in Iran and the world. Despite olive has been classified as moderately salt tolerant plant, poor quality of irrigation water in association with salt build-up soils has reduced the yields, especially in arid and semi-arid regions of Iran. The tolerance of the olive to salt is to a great extent depends on the cultivar. Selecting salinity-resistant cultivars is one of the most important strategies used for mitigating salinity effects on olive. Therefore, this study was performed to assess the salt tolerance of four olive cultivars under greenhouse condition. Materials and Methods: For this purpose, one-year-old rooted cuttings of Iranian olive cultivars (‘Dakal’, ‘Shiraz’, ‘Zard’ and non-Iranian cultivar ‘Amigdal’ were grown in the research greenhouse of Agricultural College, Isfahan University of Technology of Iran. Plants were grown in plastic pots. The pots were 180 mm in diameter and 20 mm in depth with volume of 7 L. The minimum and maximum temperatures during the experiment period were 19 and 35˚C, respectively. After sticking the cuttings, the pots with uniform plants were subjected to the treatment with 0 (control, 100, 150 or 200 mMNaCl. The electrical conductivities of these solutions were 0.003, 10.52, 15.43 and 19.55 dS m-1, respectively. To avoid osmotic shock, the NaCl concentration was gradually increased. The layout was a 4×4 factorial experiment based oncompletely randomized design, with four replications. The experimental measurements were carried out three months after beginning the salt treatments

  1. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  2. [Relationship between the ionic composition of blood and urine and the salinity of the external environment of the crab Hemigrapsus sanguineus].

    Science.gov (United States)

    Busev, V M; Semen'kov, P G; Mishchenko, T Ia

    1977-01-01

    Studies have been made on the dependence of sodium, potassium, magnesium and calcium concentrations of the blood and urine on the salinity of the external milieu in the crab H. sanguineus. Effective regulation of sodium and potasssium balance at low salinities was found. Within the salinity range investigated, magnesium level in the blood is maintained at lower level as compared to that in the environment. At low salinities, regulation of potassium and sodium concentrations in the blood is monitored by extrarenal mechanisms. Uber high salinity conditions, regulation of magnesium and potassium concentrations in the blood is accomplished at the expense of the activity of antennal glands. Calcium concentration in the blood is regulated by extra-renal mechanisms. The antennal glands affect regulation of calcium balance.

  3. Development of a Coastal Drought Index Using Salinity Data

    Science.gov (United States)

    Conrads, P. A.; Darby, L. S.

    2014-12-01

    The freshwater-saltwater interface in surface-water bodies along the coast is an important factor in the ecological and socio-economic dynamics of coastal communities. It influences community composition in freshwater and saltwater ecosystems, determines fisheries spawning habitat, and controls freshwater availability for municipal and industrial water intakes. These dynamics may be affected by coastal drought through changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. There are many definitions of drought, with most describing a decline in precipitation having negative impacts on water supply and agriculture. Four general types of drought are recognized: hydrological, agricultural, meteorological, and socio-economic. Indices have been developed for these drought types incorporating data such as rainfall, streamflow, soil moisture, groundwater levels, and snow pack. These indices were developed for upland areas and may not be appropriate for characterizing drought in coastal areas. Because of the uniqueness of drought impacts on coastal ecosystems, a need exists to develop a coastal drought index. The availability of real-time and historical salinity datasets provides an opportunity to develop a salinity-based coastal drought index. The challenge of characterizing salinity dynamics in response to drought is excluding responses attributable to occasional saltwater intrusion events. Our approach to develop a coastal drought index modified the Standardized Precipitation Index and applied it to sites in South Carolina and Georgia, USA. Coastal drought indices characterizing 1-, 3-, 6-, 9-, and12-month drought conditions were developed. Evaluation of the coastal drought index indicates that it can be used for different estuary types, for comparison between estuaries, and as an index for wet conditions (high freshwater inflow) in addition to drought conditions.

  4. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  5. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  6. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  7. Enhanced remediation of an oily sludge with saline water

    African Journals Online (AJOL)

    UFUOMA

    biodegradation of oily sludge by hydrocarbon utilizing bacteria (Bacillus subtilis) at salinity (NaCl ... petroleum waste. In recent times, several literatures have shown that bioremediation has high potentials for restoring polluted media with least negative impact on the ..... salinity, bacterial consortium is highly stable in immo-.

  8. Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity.

    Science.gov (United States)

    Charrieau, Laurie M; Filipsson, Helena L; Nagai, Yukiko; Kawada, Sachiko; Ljung, Karl; Kritzberg, Emma; Toyofuku, Takashi

    2018-04-03

    Coastal areas display natural large environmental variability such as frequent changes in salinity, pH, and carbonate chemistry. Anthropogenic impacts - especially ocean acidification - increase this variability, which may affect the living conditions of coastal species, particularly, calcifiers. We performed culture experiments on living benthic foraminifera to study the combined effects of lowered pH and salinity on the calcification abilities and survival of the coastal, calcitic species Ammonia sp. and Elphidium crispum. We found that in open ocean conditions (salinity ∼35) and lower pH than usual values for these species, the specimens displayed resistance to shell (test) dissolution for a longer time than in brackish conditions (salinity ∼5 to 20). However, the response was species specific as Ammonia sp. specimens survived longer than E. crispum specimens when placed in the same conditions of salinity and pH. Living, decalcified juveniles of Ammonia sp. were observed and we show that desalination is one cause for the decalcification. Finally, we highlight the ability of foraminifera to survive under Ω calc  salinity and [Ca 2+ ] as building blocks are crucial for the foraminiferal calcification process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  10. Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions.

    Science.gov (United States)

    Ehlinger, Gretchen S; Tankersley, Richard A

    2004-04-01

    The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.

  11. Ecophysiological Analysis of Drought and Salinity Stress Quinoa (Chenopodium Quinoa Willd.

    Directory of Open Access Journals (Sweden)

    Bosque Sanchez, H.

    2000-01-01

    Full Text Available We have studied the relative influence of drought and salinity stress, with similar soil water potentials on growth, water relations and photosynthetic rate of quinoa (Chenopodium quinoa Willd., testing at the same time certain techniques of stress physiology studies. As treatments, we have imposed two levels of salinity stress (S1 = 3852, 8 mg. V-1 NaCI and S2 = 8051.2 mg. V-1 NaCI and two of levels of drought stress with-0.159 MPa (D1 and -0, 279 MPa (D2 of soil water potentials (f^, and the control (c treatment without stress (65 % of volumetric soil water content, i. e. ¥m = -0.059 MPa. Our results of the greenhouse experiment have shown that quinoa has better relative and absolute growth rate in saline conditions, and the plant have developed adaptations mechanisms to drought through higher water use efficiency and high root/shoot ratio. The stomatal resistance and leaf water potential were higher as higher were the stress conditions. The variable chlorophyll fluoresence to maximal chlorophyll fluorescence-ratio (Fv/Fm and the fluorescence quenching analysis (photochemical : qP and non-photochemical : qN have shown the plants under drought stress are less protected against photoinhibition. Finally the use of Dynamic Diffusion Porometer has limitations for studies of plants species with salt bladders as quinoa.

  12. Treatment of Rural Wastewater Using a Spiral Fiber Based Salinity-Persistent Sequencing Batch Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    Ying-Xin Zhao

    2017-12-01

    Full Text Available Differing from municipal wastewater, rural wastewater in salinization areas is characterized with arbitrary discharge and high concentration of salt, COD, nitrogen and phosphorus, which would cause severe deterioration of rivers and lakes. To overcome the limits of traditional biological processes, a spiral fiber based salinity-persistent Sequencing Biofilm Batch Reactor (SBBR was developed and investigated with synthetic rural wastewater (COD = 500 mg/L, NH4+-N = 50 mg/L, TP = 6 mg/L under different salinity (0.0–10.0 g/L of NaCl. Results indicated that a quick start-up could be achieved in 15 days, along with sufficient biomass up to 7275 mg/L. During operating period, the removal of COD, NH4+-N, TN was almost not disturbed by salt varying from 0.0 to 10.0 g/L with stable efficiency reaching 92%, 82% and 80%, respectively. Although TP could be removed at high efficiency of 90% in low salinity conditions (from 0.0 to 5.0 g/L of NaCl, it was seriously inhibited due to nitrite accumulation and reduction of Phosphorus Accumulating Organisms (PAOs after addition of 10.0 g/L of salt. The behavior proposed in this study will provide theoretical foundation and guidance for application of SBBR in saline rural wastewater treatment.

  13. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.

    Science.gov (United States)

    Chandrasekaran, Murugesan; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Walitang, Denver; Sundaram, Subbiah; Joe, Manoharan M; Selvakumar, Gopal; Hu, Shuijin; Oh, Sang-Hyon; Sa, Tongmin

    2016-01-01

    A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF) are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i) identity of AMF species and AMF inoculation, (ii) identity of host plants (C3 vs. C4) and plant functional groups, (iii) soil texture and level of salinity and (iv) experimental condition (greenhouse vs. field). Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC 8 ds/m) saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus irregularis had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K) uptake. However, it showed negative effects in sodium (Na

  14. Radio elements / bottom salts separation by nano-filtration aided by complexation in a highly saline environment

    International Nuclear Information System (INIS)

    Gaubert, Eric

    1997-01-01

    This research thesis addresses the use of a membrane-based technique, nano-filtration, aided or not by complexation, for the processing of highly saline liquid effluents produced by radio-chemical decontamination. The objective is to separate non-radioactive elements (sodium nitrate) from radio-elements (caesium, strontium and actinides) in order to reduce the volume of wastes. Within the perspective of an industrial application, a system to concentrate the effluent is firstly defined. Different nano-filtration membranes are tested and reveal to be insufficient in highly saline environment. A stage of selective complexation of radio-elements is therefore considered before nano-filtration. The main factors affecting performance of nano-filtration-complexation (for a given membrane system) are identified: ionic force, pH, ligand content, trans-membrane pressure. Finally, a nano-filtration pilot is implemented to perform nano-filtration-complexation operations by remote handling on radioactive substances [fr

  15. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    Science.gov (United States)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  16. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part I: Impact of Salinity, Initial pH and Initial Zn(II Concentration in Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available The sorption of inorganic elements on carbonate minerals is well known in strictly controlled conditions which limit the impact of other phenomena such as dissolution and/or precipitation. In this study, we evidence the behavior of Zn(II (initially in solution and two trace elements, Mn(II and Sr(II (released by carbonate dissolution in the context of a leakage from a CO2 storage site. The initial pH chosen are either equal to the pH of the water-CO2 equilibrium (~ 2.98 or equal to the pH of the water-CO2-calcite system (~ 4.8 in CO2 storage conditions. From this initial influx of liquid, saturated or not with respect to calcite, the batch experiments evolve freely to their equilibrium, as it would occur in a natural context after a perturbation. The batch experiments are carried out on two natural carbonates (from Lavoux and St-Emilion with PCO2 = 10−3.5 bar, with different initial conditions ([Zn(II]i from 10−4 to 10−6 M, either with pure water or 100 g/L NaCl brine. The equilibrium regarding calcite dissolution is confirmed in all experiments, while the zinc sorption evidenced does not always correspond to the two-step mechanism described in the literature. A preferential sorption of about 10% of the concentration is evidenced for Mn(II in aqueous experiments, while Sr(II is more sorbed in saline conditions. This study also shows that this preferential sorption, depending on the salinity, is independent of the natural carbonate considered. Then, the simulations carried out with PHREEQC show that experiments and simulations match well concerning the equilibrium of dissolution and the sole zinc sorption, with log KZn(II ~ 2 in pure water and close to 4 in high salinity conditions. When the simulations were possible, the log K values for Mn(II and Sr(II were much different from those in the literature obtained by sorption in controlled conditions. It is shown that a new conceptual model regarding multiple Trace Elements (TE sorption is

  17. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    International Nuclear Information System (INIS)

    Savage, David

    2005-08-01

    , leading to decreased water activity in the clay. Introduced ions enter the swelling pressure-inducing volume in the clay. Swelling pressure is systematically reduced at all clay densities by interaction with saline fluids. SKB believes that if the buffer density exceeds 1.9 Mg/m 3 , the functional requirements for the swelling pressure to exceed 1 MPa will be fulfilled, even with groundwater salinities equivalent to 3 M NaCl. Similarly, the functional requirement for buffer hydraulic conductivity of 10 -12 m/s will also be fulfilled if the buffer density is greater than 1.8 Mg/m 3 , and with NaCl equivalent salinity equal to 3M (∼175 g/l TDS). A review of work carried out elsewhere related to the swelling of montmorillonitic clays shows that the mechanistic understanding of such processes is less well advanced than that presented by SKB. Backfill materials are even more susceptible to loss of swelling pressure in saline groundwaters. SKB is currently studying several different designs for tunnel and repository backfill. With regard to salinity effects, they state that a hydraulic conductivity of 10 -10 m/s and a swelling pressure > 0.1 MPa at a groundwater TDS of 35 g/l is the target for this assessment. According to the results of the Backfill and Plug test, the 'concept A' backfill (SKB's current reference backfill concept) had a density of 1.7 Mg/m 3 , a hydraulic conductivity of 4x10 -10 m/s, a compressibility of 30 MPa and a swelling pressure of 0.15 - 0.2 MPa (all with a groundwater salinity of 1.2 % NaCl). These values are deemed acceptable by SKB, except for the slightly too high hydraulic conductivity. However, it should be noted that SKB had to increase the proportion of clay in the mixture from 15 % to 30 % to achieve these properties. SKB continues its research in this area in conjunction with Posiva to assess different backfill formulations. Research on tunnel backfilling in Canada suggests that an initial density of at least 0.9 Mg/m 3 is required to

  18. The Effects of High Salinity Groundwater on the Performance of Clay Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Quintessa Ltd., Nottingham (United Kingdom)

    2005-07-01

    external electrolyte solution enter the clay volume, leading to decreased water activity in the clay. Introduced ions enter the swelling pressure-inducing volume in the clay. Swelling pressure is systematically reduced at all clay densities by interaction with saline fluids. SKB believes that if the buffer density exceeds 1.9 Mg/m{sup 3}, the functional requirements for the swelling pressure to exceed 1 MPa will be fulfilled, even with groundwater salinities equivalent to 3 M NaCl. Similarly, the functional requirement for buffer hydraulic conductivity of 10{sup -12} m/s will also be fulfilled if the buffer density is greater than 1.8 Mg/m{sup 3}, and with NaCl equivalent salinity equal to 3M ({approx}175 g/l TDS). A review of work carried out elsewhere related to the swelling of montmorillonitic clays shows that the mechanistic understanding of such processes is less well advanced than that presented by SKB. Backfill materials are even more susceptible to loss of swelling pressure in saline groundwaters. SKB is currently studying several different designs for tunnel and repository backfill. With regard to salinity effects, they state that a hydraulic conductivity of 10{sup -10} m/s and a swelling pressure > 0.1 MPa at a groundwater TDS of 35 g/l is the target for this assessment. According to the results of the Backfill and Plug test, the 'concept A' backfill (SKB's current reference backfill concept) had a density of 1.7 Mg/m{sup 3}, a hydraulic conductivity of 4x10{sup -10} m/s, a compressibility of 30 MPa and a swelling pressure of 0.15 - 0.2 MPa (all with a groundwater salinity of 1.2 % NaCl). These values are deemed acceptable by SKB, except for the slightly too high hydraulic conductivity. However, it should be noted that SKB had to increase the proportion of clay in the mixture from 15 % to 30 % to achieve these properties. SKB continues its research in this area in conjunction with Posiva to assess different backfill formulations. Research on tunnel

  19. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  20. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  1. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome.

    Science.gov (United States)

    Röthig, Till; Ochsenkühn, Michael A; Roik, Anna; van der Merwe, Riaan; Voolstra, Christian R

    2016-03-01

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  2. Influence of salinity and water content on soil microorganisms

    Directory of Open Access Journals (Sweden)

    Nan Yan

    2015-12-01

    Full Text Available Salinization is one of the most serious land degradation problems facing world. Salinity results in poor plant growth and low soil microbial activity due to osmotic stress and toxic ions. Soil microorganisms play a pivotal role in soils through mineralization of organic matter into plant available nutrients. Therefore it is important to maintain high microbial activity in soils. Salinity tolerant soil microbes counteract osmotic stress by synthesizing osmolytes which allows them to maintain their cell turgor and metabolism. Osmotic potential is a function of the salt concentration in the soil solution and therefore affected by both salinity (measured as electrical conductivity at a certain water content and soil water content. Soil salinity and water content vary in time and space. Understanding the effect of changes in salinity and water content on soil microorganisms is important for crop production, sustainable land use and rehabilitation of saline soils. In this review, the effects of soil salinity and water content on microbes are discussed to guide future research into management of saline soils.

  3. Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring.

    Science.gov (United States)

    Urzúa, Ángel; Bascur, Miguel; Guzmán, Fabián; Urbina, Mauricio

    2018-03-01

    Hemigrapsus crenulatus is a key species of coastal and estuarine ecosystems in the Southeastern Pacific and New Zealand. Since the gravid females-and their embryos-develop under conditions of variable salinity, we propose that low external salinity will be met with an increase in energy expenditures in order to maintain osmoregulation; subsequently, the use of energy reserves for reproduction will be affected. In this study, we investigate in H. crenulatus whether 1) the biomass and energy content of embryos is influenced by salinity experienced during oogenesis and embryogenesis and 2) how variation in the biomass and energy content of embryos affects larval energetic condition at hatching. Here at low salinity (5PSU), egg-bearing females experienced massive and frequent egg losses, and therefore the development of their eggs during embryogenesis was not completed. In turn, at intermediate and high salinity (15 and 30PSU) embryogenesis was completed, egg development was successful, and larvae were obtained. Consistently, larvae hatched from eggs produced and incubated at high salinity (30PSU) were larger, had higher dry weight, and had increased carbon content and energy than larvae hatched from eggs produced at intermediate salinity (15PSU). From these results, it is seen that the size and biomass of early life stages of H. crenulatus can be affected by environmental salinity experienced during oogenesis and embryogenesis, and this variation can then directly affect the energetic condition of offspring at birth. Therefore, this study reveals a "cascade effect" modulated by salinity during the early ontogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  5. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    International Nuclear Information System (INIS)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu; Wen-DA, J.

    1997-01-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water

  6. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    Energy Technology Data Exchange (ETDEWEB)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu [China National Petroleum Corp. (China). Jianghan Well Logging Institute; Wen-DA, J. [China National Petroleum Corp. (China). Development Bureau

    1997-10-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water 4 refs., 2 tabs., 7 figs.

  7. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders?

    Science.gov (United States)

    Renault, D; Puzin, C; Foucreau, N; Bouchereau, A; Pétillon, J

    2016-07-01

    In salt marshes, the alternation of low and high tides entails rapid shifts of submersion and aerial exposure for terrestrial communities. In these intertidal environments, terrestrial species have to deal with an osmotic loss in body water content and an increase in sodium chloride concentration when salt load increases. In salt marshes, spiders represent an abundant arthropod group, whose physiological ecology in response to variations of soil salinity must be further investigated. In this study, we compared the effect of salinity on the survival and physiology of three species of Lycosidae; two salt marsh species (Arctosa fulvolineata and Pardosa purbeckensis) and one forest species (P. saltans). Spiders were individually exposed at three salinity conditions (0‰, 35‰ and 70‰) and survival, changes in body water content, hemolymph ions (Na(+), Ca(2+), Mg(2+), K(+); ICP-MS technique) and metabolites (mainly amino acids, polyols, sugars; LC and GC techniques) were assessed. The survival of the forest species P. saltans was very quickly hampered at moderate and high salinities. In this spider, variations of hemolymph ions and metabolites revealed a quick loss of physiological homeostasis and a rapid salt-induced dehydration of the specimens. Conversely, high survival durations were measured in the two salt-marsh spiders, and more particularly in A. fulvolineata. In both P. purbeckensis and A. fulvolineata, the proportion of Na(+), Ca(2+), Mg(2+), K(+) remained constant at the three experimental conditions. Accumulation of hemolymph Na(+) and amino acids (mainly glutamine and proline) demonstrated stronger osmoregulatory capacities in these salt-marsh resident spiders. To conclude, even if phylogenetically close (belonging to the same, monophyletic, family), we found different physiological capacities to cope with salt load among the three tested spider species. Nevertheless, physiological responses to salinity were highly consistent with the realized

  8. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Directory of Open Access Journals (Sweden)

    E. E. van Soelen

    2018-04-01

    Full Text Available The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian–Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction

  9. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    Science.gov (United States)

    van Soelen, Elsbeth E.; Twitchett, Richard J.; Kürschner, Wolfram M.

    2018-04-01

    The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian-Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction in salinity can only be

  10. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    International Nuclear Information System (INIS)

    Hassanli, M.; Ebrahimian, H.

    2016-01-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  11. Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region

    Energy Technology Data Exchange (ETDEWEB)

    Hassanli, M.; Ebrahimian, H.

    2016-07-01

    Use of saline water for irrigation is a strategy to mitigate water shortage. The objective of this study was to investigate the impact of the cyclic and constant use of saline and non-saline water on drip irrigated maize yield and irrigation water use efficiency (IWUE). Nine field treatments were laid out based on alternative irrigation management of non-saline and saline water combinations. The treatments were: two salinity levels of 3.5 and 5.7 dS/m and freshwater (0.4 dS/m) application in every one, three and five saline water application (1:1, 3:1 and 5:1, respectively). Results showed that the 1:1 combination management was the best in terms of crop yield and IWUE. In this treatment, salt concentration at the end of growing season was not significantly changed compared to its initial condition. If off-season precipitation or leaching was available, the 3:1 and 5:1 treatments were appropriated. Highest and lowest values of IWUE were 15.3 and 8.7 kg/m3 for the 1:1 management using water salinity of 3.5 dS/m and the treatment of constant irrigation with water salinity of 5.7 dS/m, respectively. Under low off-season precipitations, artificial leaching is essential for land sustainability in most treatments.

  12. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Directory of Open Access Journals (Sweden)

    Caroline S Fortunato

    Full Text Available Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33, the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1 the taxonomy of the community changed strongly with salinity, 2 metabolic potential was highly similar across samples, with few differences in

  13. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  14. Effect of salinity on carbon and sulfur cycles in Umm Alhool sabkha microbial mat ecosystem in Qatar

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2012-10-19

    Microbial mats are only present under extreme conditions, where grazing by higher organisms is limited. Therefore, microbial mats may provide insight into extraterrestrial life, due to their adaptations to extreme temperatures, desiccation or salinity. They are faced with a diurnal cycle with variable length based on their location, which exposes them to extreme salinity conditions (i.e., water withdrawal and high evaporation). Cyanobacteria in the photic zone of a mat ecosystem supply the other microorganism with the required organic material to produce energy and grow. Subsequently, this will reproduce the nutrients needed by the phototrophs through elemental re-mineralization. In this work, we investigated the effect of water salinity that covers the microbial mat ecosystem of Umm Alhool sabkha, Qatar, regarding the most important processes within microbial mats: photosynthesis and sulfate reduction (SR). Our results showed that both photosynthetic and sulfate reduction rates decreased with increasing the salinity. The microbial community structure, assessed by 454 pyro-sequencing, revealed that the cyanobacterial community structure changed in response to the change in salinity. This was not the case for the sulfate reducer community structure, which stayed as it is in the mats incubated at different salinities. Therefore, we speculate that salinity affects the photosynthetic community structure, and consequently affects the photosynthetic activity of the whole ecosystem. However, sulfate reduction rates decreased due to less organic material supply from the upper layers and not due to change in microbial community structure of SR. Other factors such as the activity of the enzymes could also have an effect on SRR, but it was not investigated in this study.

  15. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK

    International Nuclear Information System (INIS)

    Worden, R.H.; Manning, D.A.C.; Bottrell, S.H.

    2006-01-01

    The origin and heterogeneity of oilfield formation water in the Lower Triassic Sherwood Sandstone at Wytch Farm in the Wessex Basin, UK, have been investigated using production data, detailed water geochemistry and O, S and H stable isotope data. The formation waters are highly saline, NaCl-type brines with TDS values of up to 230,000mg/L. There is a general decrease in salinity from the flanks of the field to the crest with Cl - decreasing from about 136,000 to 109,000mg/L. The Cl/Br ratio of the water shows that salinity was largely derived from the dissolution of Upper Triassic continental evaporites found off-structure to the west and north of the field. The water in the field had a meteoric source although variation in δ 2 H values suggests that there may be meteoric waters of different ages in the oilfield, reflecting recharge under different palaeoclimatic conditions. At the crest of the field, aqueous SO 4 2- resulted from dissolution of anhydrite in the reservoir. In contrast, in other parts of the field there is an indication that some of the dissolved SO 4 2- was derived from oxidation of pyrite at some point on the recharge path of meteoric water to the field. There were two meteoric influx events bringing different Cl - concentrations and different δ 2 H values. The first was probably before the Eocene oil influx and could have occurred in the Lower Cretaceous or early Tertiary. The second meteoric influx event probably occurred after or during oil migration into the Wytch Farm structure since the second meteoric water is found at the flanks of the field adjacent to the regions where salt is found in the stratigraphy. The preservation of heterogeneities in oilfield formation water compositions suggests that there has been little aqueous fluid movement or diffusive flux for over 40 million years. Mass flux has been restricted by density stratification within the aquifer and the very low effective permeability for the aqueous phase in the oil

  16. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2015-01-01

    (trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a

  17. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  18. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  19. A groundwater salinity hotspot and its connection to an intermittent stream identified by environmental tracers (Mt Lofty Ranges, South Australia)

    Science.gov (United States)

    Anderson, Thomas A.; Bestland, Erick A.; Soloninka, Lesja; Wallis, Ilka; Banks, Edward W.; Pichler, Markus

    2017-12-01

    High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (˜800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity `hotspot'. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.

  20. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico

    Science.gov (United States)

    Madrid, Eric N.; Armitage, Anna R.; López-Portillo, Jorge

    2014-01-01

    Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana) had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near-term climate change

  1. Avicennia germinans (black mangrove vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Eric N Madrid

    2014-09-01

    Full Text Available Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near

  2. Effect of Soil Salinity, Type and Amount of Nitrogen Fertilizer on Yield and Biochemical Properties of Mustard (Brassica rapa L.

    Directory of Open Access Journals (Sweden)

    S Tandisseh

    2017-03-01

    Full Text Available Introduction Soil salinity is a major limiting factor in agricultural development within Iran. Nitrogen is the most important nutrient that its uptake is limited over other elements under saline conditions due to decrease in the permeability of plant roots, soil microbial activity and mineralization of organic compounds and nitrate uptake by high concentrations of chloride anions in the root zone of the plant. Mustard plant has a good compatibility to weather conditions and since there is an extreme need of vegetable oilseed in our country and also wide extent of saline soils in Iran, this study was conducted to determine the best type and amount of nitrogen fertilizers between calcium nitrate and ammonium sulfate under saline conditions. Materials and Methods A greenhouse experiment was conducted in a completely randomized design (factorial with three replications in February 2012 in the Research greenhouse of the Ferdowsi University of Mashhad. The treatments were consisted of two types of nitrogen fertilizer (calcium nitrate and ammonium sulfate, each with three levels of N (40, 80 and 120 mg per kg of soil in three levels of soil salinity (C0= control, C1= 5 and C2= 10dS m-1. Experimental soil (control collected from agricultural experimental station was leached by salt solutions containing salts of calcium chloride, magnesium chloride and sodium sulfate with specified concentrations and ratios during 50 days to reach the similar salt concentrations of leached water consisting the desired levels of salinity. The seeds of mustard were planted at a depth of one centimeter in soil of each pot and were irrigated with tap water to field capacity (by weight. Plants were harvested after 5 months and plant fresh and dry weights and nitrogen concentration and uptake of plant were measured by the Kjeldahl method. Irrigation water and physical and chemical properties of soil before and after harvest were determined. Data obtained were analyzed using

  3. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  5. Application of AM Fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil

    Directory of Open Access Journals (Sweden)

    Nisha Kadian

    2014-08-01

    Full Text Available A pot experiment was conducted under polyhouse conditions, to evaluate the effect of two different arbuscular mycorrhizal fungi (G. mosseae and A. laevis in combination with Bradyrhizobium japonicum on growth and nutrition of mungbean plant grown under different salt stress levels (4 dS m−1, 8dS m−1 and 12 dS m−1. It was found that under saline conditions, mycorrhizal fungi protect the host plant against the detrimental effect of salinity. The AM inoculated plants showed positive effects on plant growth, dry biomass production, chlorophyll content, mineral uptake, electrolyte leakage, proline, protein content and yield of mungbean plants in comparison to non-mycorrhizal ones but the extent of response varied with the increasing level of salinity. In general, the reduction in Na uptake along with associated increase in P, N, K, electrolyte leakage and high proline content were also found to be better in inoculated ones. The overall results demonstrate that the co-inoculation of microbes with AM fungi promotes salinity tolerance by enhancing nutrient acquisition especially phosphorus (P, producing plant growth hormones, improving rhizospheric and condition of soil by altering the physiological and biochemical properties of the mungbean plant.

  6. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  7. Effects of Soil Salinization and Waterlogging on the Concentrations of Some Macronutrients and Sodium in Corn Root

    Directory of Open Access Journals (Sweden)

    N Najafi

    2015-05-01

    Full Text Available Salinity and waterlogging are two abiotic stresses decrease plants yield. In this research, the effects of soil salinization and waterlogging having concentrations of calcium (Ca, potassium (K, magnesium (Mg and sodium (Na and K:Na ratio in corn (Zea mays cv. single cross 704 root were studied under greenhouse conditions. A factorial experiment with two factors on the basis of completely randomized design with three replications was performed. The factors under study were: waterlogging duration in five levels (0, 2, 4, 8, 20 days and soil saturate extract salinity in four levels (0.11, 2, 4, 8 dS/m. A loamy sand soil for plant growth substrate and NaCl salt for establishing the levels of salinity was used. The salinity and waterlogging factors were imposed simultaneously to the plants from the five-leaf stage of plant growth period. The plants were harvested 60 days after sowing and the concentrations of Ca, K, Mg and Na in corn root were determined by dry ashi method. The results showed that by increasing the level of NaCl salinity in the soil, the K concentration and K:Na ratio of corn root were decreased significantly but concentrations of Ca, Mg and Na in corn root were increased significantly. The Mg and Na concentrations of root in waterlogged conditions were significantly lower than that of non-waterlogged conditions but the K and Ca concentrations of root in waterlogged conditions were significantly greater than non-waterlogged conditions. However, the effects of soil waterlogging duration on the Ca, K, Mg and Na concentrations and Na:K ratio of root were dependent on the level of NaCl salinity in the soil. The results demonstrated that even short periods of soil waterlogging had considerable long-term effects on the concentrations of Ca, K, Mg and Na and K:Na ratio in corn root under saline and non-saline conditions.

  8. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    Science.gov (United States)

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  9. Exogenous Trehalose Largely Alleviates Ionic Unbalance, ROS Burst and PCD Occurrence Induced by High Salinity in Arabidopsis Seedlings

    Directory of Open Access Journals (Sweden)

    Lei eYang

    2014-10-01

    Full Text Available Trehalose (Tre has been reported to play a critical role in plant response to salinity and the involved mechanisms remain to be investigated in detail. Here, the putative roles of Tre in regulation of ionic balance, cellular redox state, cell death were studied in Arabidopsis under high salt condition. Our results found that the salt-induced restrictions on both vegetative and reproductive growth in salt-stressed plants were largely alleviated by exogenous supply with Tre. The microprobe analysis of ionic dynamics in the leaf and stem of florescence highlighted the Tre ability to retain K and K/Na ratio in plant tissues to improve salt tolerance. The flow cytometric (FCM assay of cellular levels of ROS (reactive oxygen species and PCD (programmed cell death displayed that Tre was able to antagonized salt-induced damages in redox state and cell death and sucrose did not play the same role with Tre. By comparing ionic distribution in leaf and IS (inflorescence stem, we found that Tre was able to restrict Na transportation to IS from leaves since that the ratio of Na accumulation in leaves relative to IS was largely improved due to Tre. The marked decrease of Na ion and improved sucrose level in IS might account for the promoted floral growth when Tre was included in the saline solution. At the same time, endogenous soluble sugars and antioxidant enzyme activities in the salt-stressed plants were also elevated by Tre to counteract high salt stress. We concluded that Tre could improve Arabidopsis salt resistance with respect to biomass accumulation and floral transition in the means of regulating plant redox state, cell death and ionic distribution.

  10. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions

  11. Dynamic ikaite production and dissolution in sea ice - control by temperature, salinity and pCO2 conditions

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.

    2013-12-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.

  12. Growth responses of Phragmites karka - a candidate for second generation biofuel from degraded saline lands

    Science.gov (United States)

    Zaheer Ahmed, Muhammad; Shoukat, Erum; Abideen, Zainul; Aziz, Irfan; Gulzar, Salman; Ajmal Khan, M.

    2017-04-01

    Global changes like rapidly increasing population, limited fresh water resources, increasing salinity and aridity are the major causes of land degradation. Increasing feed production for bioenergy through direct and indirect land use cause major threat to biodiversity besides competing with food resources. Growing halophytes on saline lands would provide alternate source of energy without compromising food and cash crop farming. Phragmites karkahas recently emerged as a potential bio-fuel crop, which maintains optimal growth at 100 mM NaCl with high ligno-cellulosic biomass. However, temporal and organ specific plant responses under salinity needs to be understood for effective management of degraded saline lands. This study was designed to investigate variation in growth, water relations, ion-flux, damage markers, soluble sugars, stomatal stoichiometry and photosynthetic responses of P. karka to short (0-7 days) and long (15-30 days) term exposure with 0 (control), 100 (moderate) and 300 (high) mM NaCl. A reduced shoot growth ( 45%) during earlier (within 7 days) phase was observed in 300 mM NaCl compared to control and moderate salinity. Reduced leaf elongation rate and leaf senescence from 7th day in 300 mM NaCl (and later in moderate salinity) correspond to increasing hydrogen peroxide and malondialdehyde contents. Leaf turgor loss represents the osmotic effect of NaCl at both concentrations, however turgor recovered completely in moderate salinity within a week. Plant appeared to use both organic solutes (soluble sugars) and ions (Na++K++Cl-) for osmotic adjustment along with improved water use efficiency under saline conditions. Turgor loss in high salinity (300 mM NaCl) was related to increased bulk elastic modulus and decreased hydraulic capacitance which ultimately resulted in low water potential. Leaf Na+ and Cl- accumulation increased earlier (from 7th day) in 300 mM NaCl and later in 100 mM. Higher ion sequestration in different organs was found in the

  13. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    NARCIS (Netherlands)

    Bruning, B.; van Logtestijn, R.S.P; Broekman, R.A.; de Vos, A.C.; Parra González, A.; Rozema, J.

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environments and thus contribute to the sustainability of agricultural systems. Here, we present results from a field experiment conducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation

  14. Metabolic Fingerprinting to Assess the Impact of Salinity on Carotenoid Content in Developing Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Lieven Van Meulebroek

    2016-05-01

    Full Text Available As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita. Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS m−1 was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant’s genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant’s salinity response (at the fruit level, whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well.

  15. QTLs for seedling traits under salinity stress in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Yongzhe Ren

    2018-03-01

    Full Text Available ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411. Values of wheat seedling traits including maximum root length (MRL, root dry weight (RDW, shoot dry weight (SDW, total dry weight (TDW and the ratio of TDW of wheat plants between salt stress and control (TDWR were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.

  16. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  17. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  18. Gelation Behavior Study of a Resorcinol–Hexamethyleneteramine Crosslinked Polymer Gel for Water Shut-Off Treatment in Low Temperature and High Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Yongpeng Sun

    2017-07-01

    Full Text Available Mature oilfields usually encounter the problem of high watercut. It is practical to use chemical methods for water-shutoff in production wells, however conventional water-shutoff agents have problems of long gelation time, low gel strength, and poor stability under low temperature and high salinity conditions. In this work a novel polymer gel for low temperature and high salinity reservoirs was developed. This water-shutoff agent had controllable gelation time, adjustable gel strength and good stability performance. The crosslinking process of this polymer gel was studied by rheological experiments. The process could be divided into an induction period, a fast crosslinking period, and a stable period. Its gelation behaviors were investigated in detail. According to the Gel Strength Code (GSC and vacuum breakthrough method, the gel strength was displayed in contour maps. The composition of the polymer gel was optimized to 0.25~0.3% YG100 + 0.6~0.9% resorcinol + 0.2~0.4% hexamethylenetetramine (HMTA + 0.08~0.27% conditioner (oxalic acid. With the concentration increase of the polymer gel and temperature, the decrease of pH, the induction period became shorter and the crosslinking was more efficient, resulting in better stability performance. Various factors of the gelation behavior which have an impact on the crosslinking reaction process were examined. The relationships between each impact factor and the initial crosslinking time were described with mathematical equations.

  19. The salicylic acid effect on the tomato (lycopersicum esculentum Mill. germination, growth and photosynthetic pigment under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    Shahba Zahra

    2010-09-01

    Full Text Available Soil salinity is a serious environmental problem that has negative effect on plant growth, production and photosynthesis. Fresh and dry plant weights decreases with salinity treatments. The very important role of salicylic acid (SA in response to different stress and modification and decline damages due to stresses has established in different studies. In this research tomato seeds planted in pots containing perlite in a growth chamber under controlled conditions of 27±2°c and 23±2°c temperature , 16h lightness and 8h darkness respectively, 15 Klux light intensity and 75% humidity; NaCl concentration of 0, 25, 50, 75 and 100 mM and salicylic acid concentration of 0, 0.5, 1 and 1.5 mM were used in the form of factorial experiment in a complete randomized design (CRD. Results show that germination was decreased with salinity increasing. At low levels of salinity, SA leads to decrease in germination and had no effect in high levels of salinity. The length of shoot were not effected by salinity but decrease with increase in SA concentration. Low salinity concentrations led to significant increase in root length and high concentrations don’t have significant difference with control. SA also had no effect on it. The highest amount of a, b, c and total chlorophyll and carotenoid was show in 50 mM salinity levels.

  20. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    Science.gov (United States)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  1. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  2. Investigation of micro-plasma in physiological saline produced by a high-power YAG laser

    International Nuclear Information System (INIS)

    Lu Jian; Ni Xiaowu; He Anzhi

    1994-01-01

    Micro-plasma and shock waves in the physiological saline produced by a Q-switched pulse YAG laser with nearby optical breakdown threshold energy are investigated by using optical shadowing exploring method, and a series of optical shadow graphs of micro-plasma and shock waves versus the incident laser energy and the delay time are obtained. Influence of mechanical action of shock waves for the high-power pulse laser on the ophthalmic treatment is discussed

  3. Apparent carbohydrate and lipid digestibility of feeds for whiteleg shrimp, Litopenaeus vannamei (Decapoda: Penaeidae, cultivated at different salinities

    Directory of Open Access Journals (Sweden)

    Milena Gucic

    2013-09-01

    Full Text Available Whiteleg shrimp, Litopenaeus vannamei is one of the most commercially farmed species worldwide because of its fast growth, good survival rate at high farming densities, and osmoregulatory capacity, which makes it an excellent candidate for cultures at different salinities. The knowledge of shrimp nutritional requirements is critical in the formulation of diets to allow optimal growth at different environmental conditions and development stages. The effect of salinity on apparent digestibility of shrimp feed is not well known, and this information is required in shrimp diet formulation. For this purpose, the apparent digestibility coefficients of carbohydrates (ACD and lipids (ALD were determined for juvenile whiteleg shrimps under controlled culture conditions. We evaluated the apparent digestibility of six commercial (D1:37CP, D2:38CP, D3:39CP, D4:34CP, D5:35CP, and D6:37CP and two experimental (E1:33CP and E2:33CP diets for juvenile whiteleg shrimp cultivated at three salinities (5, 35 and 50psu in 60L aquariums. ACD and ALD were determined in vivo using chromic oxide as an inert marker. Our results showed that ALD in most cases was over 80%, independent of salinity, except the E1:33CPdiet which had 74.0% at 50psu. Diet D3:39CP showed the highest ALD coefficient (90.1 and 90.6% at 5 and 35psu, respectively. For ACD, differences were detected between commercial and experimental diets at every salinity level, although salinity effect on ACD was not significant. Diet D4:34CP had the highest coefficient (92.4% at 5psu, and E2:33CP at 35 and 50psu (97.3 and 94.7%. This study demonstrated that there is no significant effect of saline variations on carbohydrate and lipid digestibility by juvenile whiteleg shrimp, under the experimental conditions. Rev. Biol. Trop. 61 (3: 1201-1213. Epub 2013 September 01.

  4. Response of stream invertebrates to short-term salinization: A mesocosm approach

    International Nuclear Information System (INIS)

    Cañedo-Argüelles, Miguel; Grantham, Theodore E.; Perrée, Isabelle; Rieradevall, Maria; Céspedes-Sánchez, Raquel; Prat, Narcís

    2012-01-01

    Salinization is a major and growing threat to freshwater ecosystems, yet its effects on aquatic invertebrates have been poorly described at a community-level. Here we use a controlled experimental setting to evaluate short-term stream community responses to salinization, under conditions designed to replicate the duration (72 h) and intensity (up to 5 mS cm −1 ) of salinity pulses common to Mediterranean rivers subjected to mining pollution during runoff events. There was a significant overall effect, but differences between individual treatments and the control were only significant for the highest salinity treatment. The community response to salinization was characterized by a decline in total invertebrate density, taxon richness and diversity, an increase in invertebrate drift and loss of the most sensitive taxa. The findings indicate that short-term salinity increases have a significant impact on the stream invertebrate community, but concentrations of 5 mS cm −1 are needed to produce a significant ecological response. - Highlights: ► Short-term salinization has a significant impact on the aquatic invertebrates. ► A significant short-term ecological response is registered at 5 mS cm −1 . ► Salinization causes a decline in invertebrate density, richness and diversity. ► Biotic quality indices decline with increasing salinity and exposure time. - Short-term salinization in a stream mesocosm caused a significant response in the aquatic invertebrate community and led to declines in biological quality indices.

  5. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    Science.gov (United States)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  6. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    correlations using instrumental data, which imply that high SST can be coincident with high salinity, low salinity, or there may be no significant relationship, implying that site-dependent assessments are crucial in attempts to use coral δ18O records to assess past salinity changes.

  7. Seffects of hydrogen ion concentration and salinity on the survival of ...

    African Journals Online (AJOL)

    Experiments were conducted to determine the effects of the interactions of two environmental parameters, pH and salinity on the survival of juvenile Clarias gariepinus (4 – 12 g) under laboratory conditions. The pH values used were 3, 3.5, 4, 7 and 10 while salinity values varied thus: 0, 5 10 15 and 20 ppt ineach o the pH ...

  8. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    Science.gov (United States)

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions. © 2013.

  9. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  10. Non‐diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle

    2016-01-01

    Background The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non‐diluted seawater and diluted seawater, on nasal mucosa functional parameters. Methods For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non‐diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Results Non‐diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Conclusion Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non‐diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. PMID:27101776

  11. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  12. Impact of Potassium Foliar Application in Alleviating the Harmful Effects of Salinity in Spinach

    Directory of Open Access Journals (Sweden)

    Amirhooshang jalali

    2017-02-01

    Full Text Available Introduction: Spinach is an important leafy vegetable in the cold season, and despite the fact that is considered as low-calorie food source contains significant amount of minerals such as iron, and vitamin A and C. According to the University of Utah 3.8 dS m-1 is salinity tolerance threshold for the spinach and yield decrease that have been reported by 10%, 25% and 50% at 5.5, 7 and 8 dS m-1 salinity. The necessity to supply adequate potassium has been demonstrated in salinity conditions. In salt stress conditions, foliar application of K in spinach, reduces the harmful effects of salt and increase the ratio of potassium to sodium (1.61 to 2.72. Foliar application of K with prevent of potassium transfer from root to shoot is causing continuation of photosynthesis and reduce the effects of salinity. Absorption of potassium from the leaves depends on the type of used compound. In this context, characteristics of plant (leaves with a waxy composition, duration of growth and leaf area are important. 100 kg ha-1 of potassium in salt stress conditions by reducing the absorption of sodium, increased salt tolerance on the sunflower. Materials and Methods: In order to evaluate the foliar application of K on the yield and yield components of spinach in salt stress condition, a study was conducted in 2012 by using split plot randomized based on complete block design with four replications at Isfahan Agricultural and Natural Resources Research Station. Three levels of irrigation water salinity consisted of a control (2 dS m-1, well water with salinity (4 dS m-1 and well water with salinity (8dS m-1 arranged in main plots and two levels of control and foliar applications of potassium fertilizer containing potassium oxide solubility in water (2.5 ml per liter arranged in subplots. Statistical analysis was conducted by using SAS software and statistical tests were compared with Duncan at 5 percent. Result and Discussions: The results showed that the yield of

  13. The role of silicon in higher plants under salinity and drought stress

    Directory of Open Access Journals (Sweden)

    Devrim Coskun

    2016-07-01

    Full Text Available Although deemed a non-essential mineral nutrient, silicon (Si is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e. suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water, and those of the symplast (i.e. transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism, and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.

  14. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  15. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    Science.gov (United States)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  16. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    Science.gov (United States)

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  17. Sympathetic responses during saline infusion into the veins of an occluded limb.

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick; Moradkhan, Raman; Pagana, Charles; Sinoway, Lawrence I

    2009-07-15

    Animal studies have shown that the increased intravenous pressure stimulates the group III and IV muscle afferent fibres, and in turn induce cardiovascular responses. However, this pathway of autonomic regulation has not been examined in humans. The aim of this study was to examine the hypothesis that infusion of saline into the venous circulation of an arterially occluded vascular bed evokes sympathetic activation in healthy individuals. Blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) responses were assessed in 19 young healthy subjects during local infusion of 40 ml saline into a forearm vein in the circulatory arrested condition. From baseline (11.8 +/- 1.2 bursts min(-1)), MSNA increased significantly during the saline infusion (22.5 +/- 2.6 bursts min(-1), P Blood pressure also increased significantly during the saline infusion. Three control trials were performed during separate visits. The results from the control trial show that the observed MSNA and blood pressure responses were not due to muscle ischaemia. The present data show that saline infusion into the venous circulation of an arterially occluded vascular bed induces sympathetic activation and an increase in blood pressure. We speculate that the infusion under such conditions stimulates the afferent endings near the vessels, and evokes the sympathetic activation.

  18. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities.

    Science.gov (United States)

    Xue, Dong-Sheng; Liang, Long-Yuan; Lin, Dong-Qiang; Yao, Shan-Jing

    2017-11-01

    Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

  19. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  20. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    Science.gov (United States)

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  1. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    Science.gov (United States)

    Wang, Lei; Baskin, Jerry M; Baskin, Carol C; Cornelissen, J Hans C; Dong, Ming; Huang, Zhenying

    2012-09-25

    Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration.

  2. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    Science.gov (United States)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  3. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  4. Monitoring Drought along the Gulf of Mexico and the Southeastern Atlantic Ocean Using the Coastal Salinity Index

    Science.gov (United States)

    Conrads, P. A.; Rouen, L.; Lackstrom, K.; McCloskey, B.

    2017-12-01

    Coastal droughts have a different dynamic than upland droughts, which are typically characterized by agricultural, hydrologic, meteorological, and (or) socio-economic impacts. Drought uniquely affects coastal ecosystems due to changes in salinity conditions of estuarine creeks and rivers. The location of the freshwater-saltwater interface in surface-water bodies is an important factor in the ecological and socio-economic dynamics of coastal communities. The location of the interface determines the freshwater and saltwater aquatic communities, fisheries spawning habitat, and the freshwater availability for municipal and industrial water intakes. The severity of coastal drought may explain changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. To address the data and information gap for characterizing coastal drought, a coastal salinity index (CSI) was developed using salinity data. The CSI uses a computational approach similar to the Standardized Precipitation Index (SPI). The CSI is computed for unique time intervals (for example 1-, 6-, 12-, and 24-month) that can characterize the onset and recovery of short- and long-term drought. Evaluation of the CSI indicates that the index can be used for different estuary types (for example: brackish, oligohaline, or mesohaline), for regional comparison between estuaries, and as an index of wet conditions (high freshwater inflow) in addition to drought (saline) conditions. In 2017, three activities in 2017 will be presented that enhance the use and application of the CSI. One, a software package was developed for the consistent computation of the CSI that includes preprocessing of salinity data, filling missing data, computing the CSI, post-processing, and generating the supporting metadata. Two, the CSI has been computed at sites along the Gulf of Mexico (Texas to Florida) and the Southeastern Atlantic Ocean (Florida to

  5. Remote sensing of drought and salinity stressed turfgrass

    Science.gov (United States)

    Ikemura, Yoshiaki

    The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as

  6. Sustainable management of coastal saline soils in the Saloum river ...

    African Journals Online (AJOL)

    conductivity, pH, water soluble cations and anions) were analysed to estimate the salinity level at each .... (floodplain, low terrace), saline soils are now .... Apart from having a high salt content, ..... permeability and thereby promotes continuous.

  7. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  8. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  9. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-15

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  10. Effects of salinity, temperature and phosphorus concentration on the chemical composition of Gelidium crinale (Turner Lamouroux (Gelidiaceae, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Lúcia Rebello Dillenburg

    2005-05-01

    Full Text Available The effects of different culture conditions (temperature, salinity and dissolved inorganic phosphorus were investigated for seven days, under controlled conditions. The maximum production of proteins occurred in cultures where the temperature was 25°C, with concentrations of 5.0 and 10.0 µM of dissolved inorganic phosphorus and salinity between 15 and 20 psu, with values varying from 2.62 to 2.83% of algae dry weight. For carbohydrates, a third-order interaction was not observed in the statistical analysis; only a second order interaction was observed between temperature and inorganic phosphorus concentrations Efeito dos parâmetros abióticos em cultivo de G. crinale (P < 0.005 and between temperature and salinity (P < 0.000. The greatest phosphorus increase in the thalli (0.80 % occurred in the lowest temperature (15 °C, associated with low salinity (10 psu and high inorganic phosphorus concentration (10.0 µM. The Pearson’s correlation coefficient revealed positive correlations (P < 0.001 among protein content, temperature and inorganic phosphorus available in the growth medium. For carbohydrates, correlations were positive with all three abiotic parameters. For tissue phosphorus, a positive correlation occurred only with dissolved inorganic phosphorus; with temperature and salinity, the correlations were negative. Among the chemical components present in the algae, proteins and carbohydrates showed a positive correlation, while tissue phosphorus presented a negative correlation with both, although this correlation was not significant with regard to protein.

  11. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    International Nuclear Information System (INIS)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de; Mattos, Jacó Joaquim; Lüchmann, Karim Hahn; Araújo de Miranda Gomes, Carlos Henrique; Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou; Dias Bainy, Afonso Celso

    2017-01-01

    Highlights: • Salinity effect on Crassostrea brasiliana exposed to phenanthrene. • Higher transcription of biotransformation genes under hyposmotic condition. • Elevated transcription of oxidative stress-related genes under hyposmotic condition. • Amino acid metabolism-related genes changes according to salinity. • Phenanthrene does not affect amino acid metabolism-related genes. - Abstract: Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15 days and then exposed to 100 μg L"−"1 PHE for 24 h and 96 h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24 h and 96 h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24 h and CYP2-like2 after 96 h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96 h) and GSTΩ-like (24 h) in oysters kept at salinity

  12. Transcriptional changes in oysters Crassostrea brasiliana exposed to phenanthrene at different salinities

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Flávia Lucena; Lima, Daína; Flores-Nunes, Fabrício de [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil); Mattos, Jacó Joaquim [Aquaculture Pathology Research Center – NEPAQ, Federal University of Santa Catarina, Florianópolis (Brazil); Lüchmann, Karim Hahn [Laboratory of Biochemistry and Molecular Biology – LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna (Brazil); Araújo de Miranda Gomes, Carlos Henrique [Laboratory of Marine Mollusks – LMM, Federal University of Santa Catarina, Florianópolis (Brazil); Bícego, Márcia Caruso; Taniguchi, Satie; Sasaki, Silvio Tarou [Laboratory of Marine Organic Chemistry – LABQOM, Oceanographic Institute, University of São Paulo, São Paulo (Brazil); Dias Bainy, Afonso Celso, E-mail: afonso.bainy@ufsc.br [Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry − LABCAI, Federal University Santa Catarina, Florianópolis (Brazil)

    2017-02-15

    Highlights: • Salinity effect on Crassostrea brasiliana exposed to phenanthrene. • Higher transcription of biotransformation genes under hyposmotic condition. • Elevated transcription of oxidative stress-related genes under hyposmotic condition. • Amino acid metabolism-related genes changes according to salinity. • Phenanthrene does not affect amino acid metabolism-related genes. - Abstract: Euryhaline animals from estuaries, such as the oyster Crassostrea brasiliana, show physiological mechanisms of adaptation to tolerate salinity changes. These ecosystems receive constant input of xenobiotics from urban areas, including polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE). In order to understand the influence of salinity on the molecular responses of C. brasiliana exposed to PHE, oysters were acclimatized to different salinities (35, 25 and 10) for 15 days and then exposed to 100 μg L{sup −1} PHE for 24 h and 96 h. Control groups were kept at the same salinities without PHE. Oysters were sampled for chemical analysis and the gills were excised for mRNA quantification by qPCR. Transcript levels of different genes were measured, including some involved in oxidative stress pathways, phases I and II of the xenobiotic biotransformation systems, amino acid metabolism, fatty acid metabolism and aryl hydrocarbon receptor nuclear translocator putative gene. Higher transcript levels of Sulfotransferase-like gene (SULT-like) were observed in oysters exposed to PHE at salinity 10 compared to control (24 h and 96 h); cytochrome P450 isoforms (CYP2AU1, CYP2-like1) were more elevated in oysters exposed for 24 h and CYP2-like2 after 96 h of oysters exposed to PHE at salinity 10 compared to control. These results are probably associated to an enhanced Phase I biotransformation activity required for PHE detoxification under hyposmotic stress. Higher transcript levels of CAT-like, SOD-like, GSTm-like (96 h) and GSTΩ-like (24 h) in oysters kept at

  13. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces.

    Science.gov (United States)

    Sgherri, Cristina; Pérez-López, Usue; Micaelli, Francesco; Miranda-Apodaca, Jon; Mena-Petite, Amaia; Muñoz-Rueda, Alberto; Quartacci, Mike Frank

    2017-06-01

    Both salt stress and high CO 2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO 2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO 2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO 2 , alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO 2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO 2 , reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Intra-articular sodium hyaluronate 2 mL versus physiological saline 20 mL versus physiological saline 2 mL for painful knee osteoarthritis: a randomized clinical trial

    DEFF Research Database (Denmark)

    Lundsgaard, C.; Dufour, N.; Fallentin, E.

    2008-01-01

    , Knee Injury and Osteoarthritis Outcome Score (KOOS), Osteoarthritis Research Society International (OARSI) criteria, and global assessment of the patient's condition. Results: The mean age of the patients was 69.4 years; 55% were women. The effects of hyaluronate 2 mL, physiological saline 20 m......Objective: Methodological constraints weaken previous evidence on intra-articular viscosupplementation and physiological saline distention for osteoarthritis. We conducted a randomized, patient- and observer-blind trial to evaluate these interventions in patients with painful knee osteoarthritis....... Methods: We centrally randomized 251 patients with knee ostcoarthritis to four weekly intra-articular injections of sodium hyaluronate 2 mL (Hyalgan(R) 10.3 mg/mL) versus physiological saline 20 mL (distention) versus physiological saline 2 mL (placebo) and followed patients for 26 weeks. Inclusion...

  15. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Science.gov (United States)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  16. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae, a recent freshwater colonizer

    Directory of Open Access Journals (Sweden)

    Carolina A. Freire

    2017-10-01

    Full Text Available ABSTRACT Palaemonid shrimps occur in the tropical and temperate regions of South America and the Indo-Pacific, in brackish/freshwater habitats, and marine coastal areas. They form a clade that recently (i.e., ~30 mya invaded freshwater, and one included genus, Macrobrachium Bate, 1868, is especially successful in limnic habitats. Adult Macrobrachium acanthurus (Wiegmann, 1836 dwell in coastal freshwaters, have diadromous habit, and need brackish water to develop. Thus, they are widely recognized as euryhaline. Here we test how this species responds to a short-term exposure to increased salinity. We hypothesized that abrupt exposure to high salinity would result in reduced gill ventilation/perfusion and decreased oxygen consumption. Shrimps were subjected to control (0 psu and experimental salinities (10, 20, 30 psu, for four and eight hours (n = 8 in each group. The water in the experimental containers was saturated with oxygen before the beginning of the experiment; aeration was interrupted before placing the shrimp in the experimental container. Dissolved oxygen (DO, ammonia concentration, and pH were measured from the aquaria water, at the start and end of each experiment. After exposure, the shrimp’s hemolymph was sampled for lactate and osmolality assays. Muscle tissue was sampled for hydration content (Muscle Water Content, MWC. Oxygen consumption was not reduced and hemolymph lactate did not increase with increased salinity. The pH of the water decreased with time, under all conditions. Ammonia excretion decreased with increased salinity. Hemolymph osmolality and MWC remained stable at 10 and 20 psu, but osmolality increased (~50% and MWC decreased (~4% at 30 psu. The expected reduction in oxygen consumption was not observed. This shrimp is able to tolerate significant changes in water salt concentrations for a few hours by keeping its metabolism in aerobic mode, and putatively shutting down branchial salt uptake to avoid massive salt

  19. Effect of salinity on N₂O production during shortcut biological nitrogen removal from landfill leachate.

    Science.gov (United States)

    Liu, Mu; Liu, Tiantian; Peng, Yongzhen; Wang, Shuying; Xiao, Han

    2014-05-01

    Three identical SBR adapted to different salinity were applied to investigate the characteristics of the treatment performance and N2O production [Formula: see text] during shortcut biological nitrogen removal from landfill leachate under various operating parameters. Increase of salinity might deteriorate the activity of the microorganisms leading to the increase of [Formula: see text] , however, the system could be gradually adapted to the inhibition and alleviate the detrimental effect to some extent. The system acclimated to high salinity provided better performance under high salinity shock and a lower possibility of [Formula: see text] , while a sudden decrease in salinity can cause a temporary increase in [Formula: see text] . High salinity strengthened the influence of high ammonia nitrogen concentration and low DO concentration on [Formula: see text] while the strengthening effect was unconspicuous at high DO concentration. The anoxic phase did not produce a significant amount of N2O even at the lowest C/N ratio of 0.5 and was less susceptible to salinity. Characterization of the biomass composition using fluorescence in situ hybridization analysis confirmed that the relative proportion of Nitrosomonas europaea was increased with the increase of the salinity, which may be an important factor for the strengthening effect of salinity on [Formula: see text] . Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  1. Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta).

    Science.gov (United States)

    Ding, Lanping; Ma, Yuanyuan; Huang, Bingxin; Chen, Shanwen

    2013-01-01

    This study simulated outdoor environmental living conditions and observed the growth rates and changes of several photosynthetic pigments (Chl a, Car, PE, and PC) in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) by setting up different ranges of salinity (25, 30, 35, 40, 45, and 50) and temperature (15, 20, 25, and 30°C). At conditions of culture, the results are as follows. (1) Changes in salinity and temperature have significant effects on the growth of H. cervicornis. The growth rates first increase then decrease as the temperature increases, while growth tends to decline as salinity increases. The optimum salinity and temperature conditions for growth are 25 and 25°C, respectively. (2) Salinity and temperature have significant or extremely significant effects on photosynthetic pigments (Chl a, Car, PE, and PC) in H. cervicornis. The results of this study are advantageous to ensure propagation and economic development of this species in the southern sea area of China.

  2. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  3. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool

    International Nuclear Information System (INIS)

    Zafar, S.; Niaz, M.; Kausar, A.

    2015-01-01

    Salinity is a major threat to world food security, to ensure future food needs of an increasing world population, development of salt tolerant crop varieties are necessary. Effective screening techniques for salinity tolerance would be beneficial in developing high yielding and salt tolerant wheat varieties. In the present study, an attempt for rapid screening of wheat genotypes for salt tolerance was made. Twenty wheat genotypes were evaluated for salinity tolerance under laboratory/green-house conditions using different physiological indices like germination stress tolerance index (GSI), shoot length stress tolerance index (SLSI), root length stress tolerance index (RLSI) , shoot dry biomass stress tolerance index (SDSI). The data was pooled together to different multivariate techniques including correlation and cluster analysis to assess the diversity for salt tolerance in wheat genotypes. Highly significant and positive correlations were found between GSI, SDWSI and RDWSI. Cluster analysis classified 20 genotypes into three divergent groups. The members of first cluster (Abadgharr, Bhakkar-2000, Chakwal-86, Kiran-95, LU-26-S, Margalla-99, Marvi Pak-81, Sarsabaz) exhibited adequate degree of salt tolerance on the basis of various physiological stress tolerance indices, whereas, cluster-2 included genotypes (Bhattai, Pasban-90, Shafaq-2006, Soghat-90) with medium level of salt tolerance and cluster-3 consisted of wheat genotypes (Inqilab-91, Iqbal-2000, Kohistan-97, PARI-73, Punjab-90, Sehar-2006 and Uqab-6) with lower level of salt tolerance and did not perform upto the mark. On the basis of results and scores obtained, indicated that physiological indices can be used as a selection tool for salinity tolerance in wheat. (author)

  4. Impacts of irrigation regimes with saline water on carrot productivity and soil salinity

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-01-01

    Full Text Available A three-year study was conducted to evaluate the effects of different irrigation regimes with saline water on soil salinity, yield and water productivity of carrot as a fall-winter crop under actual commercial-farming conditions in the arid region of Tunisia. Carrot was grown on a sandy soil and surface-irrigated with a water having an ECi of 3.6 dS/m. For the three years, a complete randomized block design with four replicates was used to evaluate five irrigation regimes. Four irrigation methods were based on the use of soil water balance (SWB to estimate irrigation amounts and timing while the fifth consisted of using traditional farmers practices. SWB methods consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI-100, 80% (DI-80 and 60% (DI-60. FI-100 was considered as full irrigation while DI-80 and DI-60 were considered as deficit irrigation regimes. Regulated deficit irrigation regime where 40% reduction is applied only during ripening stage (FI-DI60 was also used. Farmer method (Farmer consisted in giving fixed amounts of water (25 mm every 7 days from planting till harvest. Results on carrot production and soil salinization are globally consistent between the three-year experiments and shows significant difference between irrigation regimes. Higher soil salinity in the root zone is observed at harvest under DI-60 (3.1, 3.4, 3.9 dS/m, respectively, for the three years and farmer irrigation (3.3, 3.6, 3.9 dS/m treatments compared to FI-100 treatment (2.3, 2.6 and 3.1 dS/m. Relatively low ECe values were also observed under FI-DI60 and DI-80 treatments with respectively (2.7, 3, 3.5 dS/m and (2.5, 2.9, 3.3 dS/m. ECe values under the different irrigation treatments were generally lower than or equal to the EC of irrigation water used. Rainfall received during fall and/or winter periods (57, 26 and 29 mm, respectively, during the three years contributed probably to leaching soluble

  5. Enhancement of salinity tolerance in wheat through soil applied calcium carbide

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2009-05-01

    Full Text Available Calcium carbide (CaC2 has been reported to increase growth and yield of crops under normal soil conditions. This study assessed its capacity to enhance salinity tolerance in wheat (Triticum aestivum L.; cv- 1076 under saline conditions. Three levels of salinity: 0, 7 and 12 dS m-1 were created using NaCl. Nitrogen, phosphorus and potassium were applied as ammonium sulphate and KH2PO4 at 50 and 25 mg kg-1 soil, respectively. The encapsulated calcium carbide (ECC at 45 mg kg-1 soil produced 1291.8 µmols of acetylene (C2H2 and 257.5 µmols of its product ethylene (C2H4 over a period of 80 days. The results of the pot study indicated that ECC increased the weight of spike, weight of grains per spike, length of spike, total water concentration, root/shoot ratio and relative leaf water content up to 17, 23, 22, 35, 33 and 3%, respectively, over the control. Contrary to this, salinity (at 12 dS m -1 decreased all these parameters up to 68, 60, 26, 30, 28 and 8%, respectively, compared to the control. These results indicate that ECC enhances salinity tolerance in wheat by improving uptake of nutrients through enhanced root growth, increased hydraulic conductivity and hormonal action of ethylene released by ECC. Total water concentration was positively correlated (0.73 with grains spike-1 at P ≤ 0.05

  6. Certain growth related attributes of micropropagated banana under different salinity levels

    International Nuclear Information System (INIS)

    Haq, I.U.; Soomro, F.

    2011-01-01

    The effect of salinity (NaCl) was assessed on banana (Musa spp.) cv., Sindhri Banana (Basrai) propagating plantlets in aseptic condition. Four different NaCl levels [0 (control) 50, 100 and 150 mM] were maintained at shoot multiplication stage for 6-weeks. Salinity reduced the number of plantlets per explants and plant biomass significantly. A proportional relationship was observed for Na/sup +/ and Cl/sub -/ but K/sup +/, Ca/sup 2+/and NO/sub 3/ were observed to be inversely proportioned with NaCl stress. Similarly, total proteins as well as carbohydrate contents were decreased significantly. Increasing mode of secondary metabolites (proline, betaine contents and reducing sugars) were showing a negative relationship of saline stress with plant micro-propagation efficiency. Among photosynthetic pigments, total carotenoids were increased while chlorophyll contents (Chl a and b) decreased. Similarly, nitrate reductase activity also reduced. Overall, vegetative propagation of banana was affected significantly by NaCl stress under in-vitro conditions. (author)

  7. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    Science.gov (United States)

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  8. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline.

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle; de Gabory, Ludovic

    2016-10-01

    The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non-diluted seawater and diluted seawater, on nasal mucosa functional parameters. For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non-diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Non-diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non-diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. © 2016 The Authors International Forum of Allergy & Rhinology, published by ARSAAOA, LLC.

  9. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  10. Effect of Nitrogen and Triple Super Phosphate Levels on Physiological Characteristics of Kochia scoparia in Salinity Stress

    Directory of Open Access Journals (Sweden)

    saeed khaninejad

    2014-09-01

    Full Text Available Decreasing yield and forage quality in saline water irrigating conditions, is one of the problems of forage production. Therefore, using the chemical fertilizers can be considered as a useful solution. This study was conducted to assess the effects of different levels of phosphorus and nitrogen fertilizers with saline water on physiological characteristics of Kochia, through a split plot factorial experiments with three replications .The main experimental units consisted of the levels of salinity of irrigating water, 5.2 and 16.5 dS m-1, and the subsidiary experimental units consisted of three nitrogen levels in form of 46%N (0, 100, 200 kg ha-1 and three phosphorus levels in form of triple super phosphate (0, 75, 150 kg ha-1, arranged in factorial form in experimental units. Results showed that the effect of salinity on studied physiological properties was not significant. Green area index (GAI and membrane stability index (MSI were significantly increased with using nitrogen fertilizers on 5.2 dS/m salinity level to control group ,while phosphorus did not affect on them. In all properties, fertilizers application on 16.5 dS/m salinity level not only had no considerable effect on stress tolerance, but also increased the harmful effects of salinity. GAI had a high correlation (0.71 with dry forage yield related to the studied factors. Generally, 75 kg Triple Super Phosphate fertilizer from 100 kg Urea improved studied physiological properties without side effects.

  11. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour.

    Science.gov (United States)

    Baxter, Graeme; Zhao, Jian; Blanchard, Christopher

    2011-09-01

    Salinity is one of the major threats to production of rice and other agricultural crops worldwide. Although numerous studies have shown that salinity can severely reduce rice yield, little is known about its impact on the chemical composition, processing and sensory characteristics of rice. The objective of the current study was to investigate the effect of salinity on the pasting and textural properties of rice flour as well as on the protein content and composition of rice endosperm. Rice grown under saline conditions had significantly lower yields but substantially higher protein content. The increase in protein content was mainly attributed to increases in the amount of glutelin, with lesser contributions from albumin. Salinity also altered the relative proportions of the individual peptides within the glutelin fraction. Flours obtained from rice grown under saline conditions showed significantly higher pasting temperatures, but lower peak and breakdown viscosities. Rice gels prepared from the flour showed significantly higher hardness and adhesiveness values, compared to the freshwater controls. Salinity can significantly affect the pasting and textural characteristics of rice flour. Although some of the effects could be attributed to changes in protein content of the rice flour, especially the increased glutelin level, the impact of salinity on the physicochemical properties of rice is rather complex and may involve the interrelated effects of other rice components such as starch and lipids. Copyright © 2011 Society of Chemical Industry.

  12. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Effect of Different Alternate Irrigation Strategies using Saline and Non-Saline Water on Corn Yield, Salinity and Moisture Distribution in Soil Profile

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiani

    2017-01-01

    Full Text Available Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques. Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013 in northern Iran (Gorgan Agricultural Research Station to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline

  14. Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino

    Science.gov (United States)

    Kong, Ning; Liu, Xiao; Li, Junyuan; Mu, Wendan; Lian, Jianwu; Xue, Yanjie; Li, Qi

    2017-09-01

    Temperature and salinity are two of the most potent abiotic factors influencing marine mollusks. In this study, we investigated the individual and combined effects of temperature and salinity on the survival and growth of juvenile Pacific abalone, Haliotis discus hannai Ino, and also examined the DNA methylation alteration that may underpin the phenotypic variation of abalone exposed to different rearing conditions. The single-factor data showed that the suitable ranges of temperature and salinity were 16-28°C at a constant salinity of 32, and 24-40 at a constant temperature of 20°C, respectively. The two-factor data indicated that both survival and growth were significantly affected by temperature, salinity and their interaction. The optimal temperature-salinity combination for juveniles was 23-25°C and 30-36. To explore environment-induced DNA methylation alteration, the methylation-sensitive amplified polymorphism (MSAP) technique was used to analyze the genomic methylation profiles of abalone reared in optimal and adverse conditions. Neither temperature nor salinity induced evident changes in the global methylation level, but 67 and 63 differentially methylated loci were identified in temperature and salinity treatments, respectively. The between-group eigen analysis also showed that both temperature and salinity could induce epigenetic differentiation in H. discus hannai Ino. The results of our study provide optimal rearing conditions for juvenile H. discus hannai Ino, and represent the first step toward revealing the epigenetic regulatory mechanism of abalone in response to thermal and salt stresses.

  15. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Science.gov (United States)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under

  16. Assessment of risk to aquatic biota from elevated salinity -- a case study from the Hunter River, Australia.

    Science.gov (United States)

    Muschal, Monika

    2006-05-01

    An ecological risk assessment was performed on salinity levels of the Hunter River and its tributaries to respond to concerns that high salinity may be damaging aquatic ecosystems. Probabilistic techniques were used to assess likelihood and consequence, and hence the risk to aquatic biota from salinity. Continuous electrical conductivity distributions were used to describe the likelihood that high salinity would occur (exposure dataset) and toxicity values were compiled from the limited literature sources available to describe the consequence of high salinity (effects dataset). The assessment was preliminary in the sense that it modelled risk on the basis of existing data and did not undertake site-specific toxicity testing. Some sections of the Hunter River catchment have geologies that are saline because of their marine origins. Catchment development has increased the liberation rates of salts into surface-waters. Such modifying activities include coal-mining, power generation and land clearing. The aquatic biota of tributaries had a greater risk of impairment from high salinity than that of the Hunter River. High salinities in the tributaries were attributed to the combined factors of naturally saline geologies, increased liberation of salts due to modification of the landscape, and reduced dilution by flushing flows. A salinity guideline trigger value of 1100 mg L(-1) was recommended.

  17. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.

    Science.gov (United States)

    Dugdug, Abdelhafid Ahmed; Chang, Scott X; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Anyia, Anthony

    2018-02-10

    Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m -1 ) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g -1 ) followed by hardwood (1.20 mg g -1 ) and wheat straw biochars (1.06 mg g -1 ) in a 25 mg L -1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m -1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw

  18. Effect of salinity on survival, growth and biochemical parameters in juvenile Lebranch mullet Mugil liza (Perciformes: Mugilidae

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa

    Full Text Available Teleost fish growth may be improved under isosmotic condition. Growth and metabolic performance of juvenile Mugil liza (isosmotic point: 12‰ were evaluated after 40 days in different salinities (0, 6, 12 and 24‰. Tests were performed in quadruplicate (30 fish/tank; 0.48 ± 0.1 g body weight; 3.27 ± 0.1 cm total length under controlled water temperature (28.2 ± 0.1ºC and oxygen content (>90% saturation. Fish were fed on artificial diet (50% crude protein four times a day until apparent satiation. Results showed that salinity influenced juvenile mullet growth. Fish reared at salinity 24‰ grew better than those maintained in freshwater (salinity 0‰. Gill Na+,K+-ATPase activity and whole body oxygen consumption showed an U-shape-type response over the range of salinities tested, with the lower values being observed at the intermediate salinities. Although no significant difference was observed in liver glycogen content at different salinities, it tended to augment with increasing salinity. These findings indicate that energy demand for osmorregulation in juvenile M. liza can be minimized under isosmotic condition. However, the amount of energy spared is not enough to improve fish growth. Results also suggest that M. liza is able to alternate between different energy-rich substrates during acclimation to environmental salinity.

  19. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  20. utilization of bio fertilizers and organic sources in arable soils under saline conditions using tracer technique

    International Nuclear Information System (INIS)

    Salama, O.A.E.

    2011-01-01

    Recently, more attention has been paid to conserve and save surrounding environment via minimizing the excessive use of chemical fertilizers and, in general, the agrochemicals applied in heavy quantities in agricultural agroecosystems. Therefore, the attention of most of agronomists was turned towards the use of so called clean agriculture or organic farming. Many of organic systems was pointed out such as the recycling of farm wastes i.e. crop residues, animal manure, organic conditioners for reclamation of soil and in the same time enhancement of plant growth and improving yield quality. The application of organic wastes combined with or without microbial inoculants to plant media are considered as a good management practice in any agricultural production system because it improves, plant quality and soil fertility. Therefore, we have the opportunity to conduct some experiments for achieving the clean agriculture approach, combating the adverse effects of salinity and avoiding the environmental pollution. Series of laboratory and greenhouse experiments were carried out to evaluate the impact of (1) potent isolated fungi (Aspergillus oryzae and Aspergillus terreus) on degrading plant residues (Leucaena and Acacia green parts), and (2) biofertilizers (Sinorhizobium meliloti, Azospirillum brasilense, and Pseudomonas aeruginosa) in assessing barley and spinach plants to combat salinity of soil and irrigation water. 15 N-tracer technique that considered unique and more reliable technique may benefits in clarifying the responsible mechanisms related to plant growth and gave us the opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to spinach and barley plants grown on sandy saline soil and irrigated with saline water.

  1. Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.E.; Ting, Y.P.; Birkholz-Lambrecht, A.

    1984-03-01

    Retinas were labeled in culture with (/sup 3/H)glucosamine or (/sup 3/H)leucine and (/sup 35/S)sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sulfated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.

  2. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    Directory of Open Access Journals (Sweden)

    D Davani

    2016-07-01

    Full Text Available Introduction Maize (Zea mays L. which belongs to the Poaceae family is the third important cereal crop of the world after wheat and rice. Salinity is one of the major environmental factors limiting plant growth and productivity. Maize is sensitive to salinity. Planting method is a crucial factor for improving crop yield. Planting methods in saline and non-saline conditions are different. Kinetin is one of the cytokinins known to significantly improve the growth of crop plants grown under salinity. Indole acetic acid (IAA is also known to play a significant role in plant tolerance to salt stress. However, little information appears to be available on the relationship between salinity tolerance and auxin or cytokinins levels in plants. In this respect, the objective of this study was to study the effects of foliar applications of cytokinin and auxin hormones on yield and yield components of grain maize under different planting patterns in saline conditions. Materials and Methods The experiment was carried out at Bushehr Agricultural and Natural Resources Research Center, Dashtestan station with 29° 16´ E latitude and 51° 31´ N, longitude and 70 m above the see surface during the 2013 growing season. Dashtestan region is a warm-arid region with 250 mm precipitation per year. The field plowed by April 2013 and then prepared and sowed by August 2013. There were five rows with 75 cm distance. The experiment was conducted as a split-plot factorial design based on complete randomized blocks with three replications. Planting pattern (ridge planting, double rows of planting on a ridge in zigzag form and furrow planting as the main factor and time of cytokinin (0 as a control, V5- V6 stage and V8- V10 stage and auxin (0 as a control, silking stage, two weeks after silking stage foliar-applied was considered in a factorial. Cytokinin (Benzyl Adenine, Merck and Auxin (Indole-3-Butiric Acid, Merck were sprayed on the entire plant in the evening with

  3. Cellulolytic activity of some cellulose-decomposing fungi in salinized soils

    Directory of Open Access Journals (Sweden)

    R. A. Badran

    2014-08-01

    Full Text Available Maximum evolution of CO2 was marked in control soil inoculated by tested fungi but its rate decreased with the increasing salinity. The period of 10 days was most suitable for cellulose degradation by A. niger and P. chrysoecnum and 15 days by A. flavus and C. globosum in control soil. High salinity levels affected greatly the cellulolylic activities of tesled fungi. Carbon content of saline soils increased white the nitrogen content decreased.

  4. Growth and chlorophyll fluorescence under salinity stress in sugar beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Fadi Abbas

    2014-02-01

    Full Text Available This study was carried out in the General Commission for Scientific Agricultural Research (GCSAR, Syria, at Der EzZour Agricultural Research Center, from 2008-2010, to examine the effect of salt conditions on some growth attributes and chlorophyll fluorescence in 10 Sugar Beet (Beta vulgaris L. genotypes under salinity stress. Sugar beet plants were irrigated with saline water, having electrical conductivity ranged from 8.6-10 dS.m-1during first year and 8.4-10.4 dS.m-1 during second year. A randomized completely block design with three replicates was used. The results showed that all studied growth attributes, leaf area, leaf number, relative growth rate, and net assimilation rate were decreased in salinity stress conditions compared to the controlled state. The findings indicated that salinity caused a decrement of light utilizing through increased values of fluorescence origin (fo, decreased values of fluorescence maximum (fm, and maximum yield of quantum in photosystem-II (fv/fm. Genotypes differed significantly in all studied attributes except in leaf number. Under salt conditions, Brigitta (monogerm achieved an increase in net assimilation rate, while Kawimera (multigerm achieved the lowest decrement in quantum yield in photosystem-II. Further studies are necessary to correlate the yield with yield components under similar conditions to determine the most tolerant genotype.International Journal of Environment Vol.3(1 2014: 1-9 DOI: http://dx.doi.org/10.3126/ije.v3i1.9937

  5. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  6. Mapping Erosion and Salinity Risk Categories Using GIS and the Rangeland Hydrology Erosion Model

    Science.gov (United States)

    Up to fifteen percent of rangelands in the state of Utah in the United States are classified as being in severely eroding condition. Some of these degraded lands are located on saline, erodible soils of the Mancos Shale formation. This results in a disproportionate contribution of sediment, salinity...

  7. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    Science.gov (United States)

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected

  8. Effects of temperature and salinity on the development of the amphipod crustacean Eogammarus sinensis

    Science.gov (United States)

    Xue, Suyan; Fang, Jianguang; Zhang, Jihong; Jiang, Zengjie; Mao, Yuze; Zhao, Fazhen

    2013-09-01

    The amphipod crustacean Eogammarus sinensis has useful features that make it suitable for use in the aquaculture of fish and large decapod crustaceans. In this study, we investigated the effects of temperature and salinity on the development, fecundity, survival, and growth rate of E. sinensis. The results show that temperature significantly affected E. sinensis development, but salinity. As temperature increased, the duration of E. sinensis embryonic development decreased. Fecundity was affected significantly by temperature and the combination of temperature and salinity, but by salinity alone. In addition, high temperatures accelerated E. sinensis juvenile growth rates, whereas high salinity reduced it. Therefore, our data suggest that E. sinensis tolerates a wide range of salinities and that temperature has more significant effects than salinity on the embryonic development, fecundity, and growth of E. sinensis. Our results shall be useful for mass production of this species for use in aquaculture.

  9. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  10. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  11. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity.

    Science.gov (United States)

    Moorman, Benjamin P; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2015-03-01

    This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge. © 2015. Published by The Company of Biologists Ltd.

  12. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions

    Czech Academy of Sciences Publication Activity Database

    De Diego, N.; Fürst, T.; Humplík, Jan; Ugena, L.; Podlešáková, K.; Spíchal, L.

    2017-01-01

    Roč. 8, OCT 4 (2017), č. článku 1702. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : salt stress * chlorophyll fluorescence * salinity tolerance * plant-responses * cold-tolerance * water-deficit * thaliana * selection * platform * reveals * high-throughput screening assay * Arabidopsis * multi-well plates * rosette growth * stress conditions Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  13. Seasonal formation of ikaite (caco 3 · 6h 2o) in saline spring discharge at Expedition Fiord, Canadian High Arctic: Assessing conditional constraints for natural crystal growth

    Science.gov (United States)

    Omelon, Christopher R.; Pollard, Wayne H.; Marion, Giles M.

    2001-05-01

    - Spring discharge at Expedition Fiord (Pollard et al., 1999) on Axel Heiberg Island in the Canadian High Arctic produces a variety of travertine forms in addition to a diverse collection of mineral precipitates. This paper focuses on clusters of thermally unstable crystals believed to be the mineral ikaite (CaCO 3 · 6H 2O) growing seasonally along two spring outflows at Colour Peak. This form of calcium carbonate mineral occurs along small sections of discharge outflow as white euhedral crystals up to 0.5 cm in length. Difficulty in sampling, storage and transport of the samples for analysis has hampered attempts to confirm the presence of ikaite by X-ray diffraction. However, various field observations and the remarkable instability of these crystals at normal ambient temperatures strengthens our argument. This paper provides a description of these particular CaCO 3 · 6H 2O crystals and their environmental surroundings, and attempts to determine the validity of ikaite precipitation at this site by theoretical geochemical modeling: these results are compared with other reported observations of ikaite to both understand their occurrence and help delineate their geochemical characteristics. It is believed that the restrictive combination of spring water chemistry and long periods of low temperatures characteristic of arctic climates are necessary for ikaite growth at this site. The fact that ikaite is not forming at a second group of saline springs 11 km away allows us to more specifically outline conditions controlling its presence.

  14. Finding a solution: Heparinised saline versus normal saline in the maintenance of invasive arterial lines in intensive care.

    Science.gov (United States)

    Everson, Matthew; Webber, Lucy; Penfold, Chris; Shah, Sanjoy; Freshwater-Turner, Dan

    2016-11-01

    We assessed the impact of heparinised saline versus 0.9% normal saline on arterial line patency. Maintaining the patency of arterial lines is essential for obtaining accurate physiological measurements, enabling blood sampling and minimising line replacement. Use of heparinised saline is associated with risks such as thrombocytopenia, haemorrhage and mis-selection. Historical studies draw variable conclusions but suggest that normal saline is at least as effective at maintaining line patency, although recent evidence has questioned this. We conducted a prospective analysis of the use of heparinised saline versus normal saline on unselected patients in the intensive care of our hospital. Data concerning duration of 471 lines insertion and reason for removal was collected. We found a higher risk of blockage for lines flushed with normal saline compared with heparinised saline (RR = 2.15, 95% CI 1.392-3.32, p  ≤ 0.001). Of the 56 lines which blocked initially (19 heparinised saline and 37 normal saline lines), 16 were replaced with new lines; 5 heparinised saline lines and 11 normal saline lines were reinserted; 5 of these lines subsequently blocked again, 3 of which were flushed with normal saline. Our study demonstrates a clinically important reduction in arterial line longevity due to blockages when flushed with normal saline compared to heparinised saline. We have determined that these excess blockages have a significant clinical impact with further lines being inserted after blockage, resulting in increased risks to patients, wasted time and cost of resources. Our findings suggest that the current UK guidance favouring normal saline flushes should be reviewed.

  15. Salinity Temperature and Roughness Remote Scanner (STARRS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides spatially continuous high-resolution surface salinity imagery in a synoptic manner from small aircraft. Its output complements data collected from...

  16. Water logging and salinity control for environmentally sustainable crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Bhutta, M.N.

    2005-01-01

    Irrigation supplies at proper time and adequate quantities are imperative for potential agricultural production under arid and semi-arid climatic conditions. To achieve this goal one of the largest integrated irrigation network was established. Without adequate drainage it resulted in the problems of water logging and salinity. To control these problems a big programme of Salinity Control and Reclamation projects (SCARPs) was initiated during 1960 and 82 such SCARPs have been completed and 9 were in progress up to June, 2002 covering an area of 18.6 ma (7.5 mh) at a cost of Rs.93 billions. Under these projects 12746 tube wells in fresh, 3572 in saline groundwater and 13726 km surface and 12612 km tile pipes covering 6391.7 ha, 160 km interceptor drains have been constructed an area of 0.998 ma (GCA). In addition to this some other measures like on farm water management, canal command project, canal lining, construction of evaporation ponds, establishment of research Inst./Organizations were also taken. Many drainage plans like Master Plan (1963), Northern Regional Plan (1967), Water Sector Investment Plan Study (1990), Right Bank Master Plan (1992), Drainage Sector Environmental Assessment (1993) and National Drainage Programme (1995) were prepared and implemented. The cost of the, phase-I of the National Drainage Programme was 785 million US$. The main activities undertaken were remodeling/extension of existing surface and new drains; rehabilitation/replacement of saline ground water (SGW) tube wells; construction of interceptor drains, reclamation of waterlogged areas through biological drainage and transfer of fresh ground water tube wells to the farmers. The data indicate that all the measures taken have played a significant role in reducing the water logging, salinity/sodicity and have increased the crop production and consequently improved the socio-economic conditions of the peoples especially the farming community. The environment in these areas was also

  17. Thermodynamics of saline and fresh water mixing in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  18. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  19. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  20. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  1. Effect of saline water on growth, yield and N2 fixation by faba bean and lentil plants using nitrogen-15

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Elakel, E.A.; Ismail, H.; Hamdy, A.

    2003-01-01

    This work had been carried out under greenhouse conditions through joint research project between international agronomic mediterranean (IAM, Bari), italy and soils and water dept., Egyptian atomic energy authority. The aim of this dy was to assess the effect of saline water irrigation on growth, yield and nitrogen fixation (% Ndfa) by faba bean and lentil plants inoculated with selected rhizobium strains. Four saline irrigation water levels (fresh water, 3.6 and ds/m) were used. 20 kg N/ha as ammonium sulfate contained 10% N-15 atom excess was applied for quantification of biological N-fixation N-portions derived from fertilizer (Ndff). Results showed that high levels of salinity negatively affected seed yield and N accumulated in tissue of faba bean. Similar trend was noticed with dry matter of lentil while shoot-N was increased at 6 and 9 ds/m. Both leguminous crops were mainly dependent on N 2 fixation as an important source of nitrogen nutrition. Under adverse conditions salinity, the plants gained some of their N requirements from the other two N sources (Ndff and Ndfs). Application of the suitable Rhizobium bacteria strains could be beneficial for both the plant growth and soil fertility via N 2 fixation

  2. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  3. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  4. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  5. Receding and advancing (CO_2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity

    International Nuclear Information System (INIS)

    Al-Yaseri, Ahmed Z.; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-01-01

    Highlights: • (Water + CO_2) contact angle on quartz increases substantially with pressure and salinity. • (Water + CO_2) contact angle on quartz increases slightly with temperature. • Surface roughness has only a minor influence on (water + CO_2 + quartz) contact angles. - Abstract: The wetting characteristics of CO_2 in rock are of vital importance in carbon geo-storage as they determine fluid dynamics and storage capacities. However, the current literature data has a high uncertainty, which translates into uncertain predictions in terms of containment security and economic project feasibility. We thus measured contact angles for the CO_2/water/quartz system at relevant reservoir conditions, and analysed the effects of pressure (0.1 to 20) MPa, temperature (296 to 343) K, surface roughness (56 to 1300) nm, salt type (NaCl, CaCl_2, and MgCl_2) and brine salinities (0 to 35) wt%. Water contact angles decreased with surface roughness, but increased with pressure, temperature, and brine salinity. Overall the contact angles were significantly increased at storage conditions (∼50°) when compared to ambient conditions (always 0°). Consequently quartz is weakly water-wet (not completely water-wet) at storage conditions, and structural and residual trapping capacities are reduced accordingly.

  6. Effects of Drought and Salinity Stresses on Germination Characteristics of Dodder (Cuscuta campestris

    Directory of Open Access Journals (Sweden)

    A Ghanbari

    2012-10-01

    Full Text Available In order to study the germination characteristics of dodder (Cuscuta campestris under drought and salinity stress conditions, two laboratory's experiment were conducted. Experiments were conducted in completely randomized design with 4 replications. The treatments, for salinity and drought stress were six potential levels (0,-3, -6, -9, -12 and -15 bar of NaCl and five potential levels (0, -3, -6, -9 and -12 bar of PEG 6000 respectively. Results showed that increasing drought and salinity stress significantly germination rate and germination percentage, plumule and radicle length, plumule of Dodder and its radicle fresh weight decreased. However ratio of radicle to plumule and root to shoot were increased (P≤0.01. It seems that among the characters, plumule length is more sensitive to drought and salinity stresses. In addition, germination of dodder was tolernt to drought stress more than salinity stresses.

  7. Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level

    DEFF Research Database (Denmark)

    Politis, Sebastian Nikitas; Mazurais, David; Servili, Arianna

    2018-01-01

    . Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely......European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph......). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1...

  8. Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Geng, Chenfan; Tian, Yi; Shang, Yanpeng; Wang, Liqiang; Jiang, Yanan; Chang, Yaqing

    2016-01-01

    Sea cucumbers ( Apostichopus japonicus ) are an imperiled fauna exposed to a variety of environmental condition such as salinity and studies are urgently needed to assess their effects to guide aquaculture efforts. The effects of acute salinity stress on coelomic fluid osmotic pressure, ion concentrations, the activity of Na + /K + -ATPase in respiratory trees and the histological variations were measured to evaluate the salinity tolerance of sea cucumbers. Significant correlations in osmotic pressure were observed between coelomic fluid and ambient environmental salinity. In coelomic fluid, Na + concentration was observed fluctuated during salinity 18 psu and the inflection point presented at the 6 h. The Na + /K + -ATPase activity in respiratory trees indicated the "U-shaped" fluctuant change and the change trend was opposite with the Na + concentration. The ions (K + , Cl - ) concentration decreased and showed the same tendency at salinity 40 psu with salinity 18 psu. The total coelomocytes counts and phagocytosis of coelomic fluid Na + /K + -ATPase activity indicated fluctuating changes under different salinity stress. Histological variation revealed a negative relation between decreasing salt concentration and tissue integrity. Tissue damages were significantly observed in intestines, muscles and tube feet under low salinity environment (18, 23 and 27 psu). The connective tissue in intestines of A. japonicus exposed to 18 and 23 psu damaged and partly separated from the mucosal epithelium. The significant variations occurred in tube feet, which presented the swelling in connective tissue and a fracture in longitudinal muscles under low salinity (18 psu). The morphological change of tube feet showed the shrinkage of connective tissue under high salinity (40 psu). The amount of infusoria in the respiratory trees decreased or even disappeared in salinity treatment groups (18 and 23 psu). The results inferred that osmoconformity and ionoregulation were

  9. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    The salinity problem is one of the severe constraints for agriculture in Pakistan. In a socio-economic and salinity and drainage survey over an area of about 25000 acres of salt-affected land recently, crop production is found to be very low. Livestock is underfed and malnourished. Pakistan has spent and allocated over one billion US dollars on Salinity Control and Reclamation Projects (SCARP), of course, with dubious results. Over the years, a Saline Agriculture Technology has been developed as a cheap alternative at NIAB for comfortably living with salinity and to profitably utilize saline land rather than its reclamation. The soil improvement is a fringe benefit in this approach. The Saline Agriculture Technology has been tested at laboratory level, at field stations and at farms of some progressive farmers. Now we are sharing this technology with farming communities through a 'Saline Agriculture Farmer Participatory Development Project in Pakistan', with assistance from the National Rural Support Programme. The new project has been launched simultaneously in all four provinces of Pakistan on 25000 acres of salt-affected land. Under this project seeds of salt tolerant crop varieties wheat, cotton, rice, castor, brassica and barley and saplings of trees/shrubs, e.g. Acacia ampliceps, A. nilotica, Casuarina glauca, ber, jaman, etc selected for development work in various institutions of Pakistan are being provided to farmers. Know-how on new irrigation techniques like bed-and-corrugation and bed-and-furrow, agronomic practices like laser land leveling, planting on beds and in auger holes and soil/water amendment practices (use of gypsum and mineral acids) are being shared with farmers. These interventions are quite efficient, save water up to 40% and enable farmers to utilize bad quality water. In general, farmers are being familiarized with prevalent animal diseases, nutritional problems and prophylactic techniques. They are being helped in developing Saline

  10. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    Science.gov (United States)

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Murugesan Chandrasekaran

    2016-08-01

    Full Text Available A wide range of C3 and C4 plant species could acclimatize and grow under the impact of salinity stress. Symbiotic relationship between plant roots and arbuscular mycorrhizal fungi (AMF are widespread and are well known to ameliorate the influence of salinity stress on agro-ecosystem. In the present study, we sought to understand the phenomenon of variability on AMF symbiotic relationship on saline stress amelioration in C3 and C4 plants. Thus, the objective was to compare varied mycorrhizal symbiotic relationship between C3 and C4 plants in saline conditions. To accomplish the above mentioned objective, we conducted a random effects models meta-analysis across 60 published studies. An effect size was calculated as the difference in mycorrhizal responses between the AMF inoculated plants and its corresponding control under saline conditions. Responses were compared between (i identity of AMF species and AMF inoculation, (ii identity of host plants (C3 vs. C4 and plant functional groups, (iii soil texture and level of salinity and (iv experimental condition (greenhouse vs. field. Results indicate that both C3 and C4 plants under saline condition responded positively to AMF inoculation, thereby overcoming the predicted effects of symbiotic efficiency. Although C3 and C4 plants showed positive effects under low (EC8 ds/m saline conditions, C3 plants showed significant effects for mycorrhizal inoculation over C4 plants. Among the plant types, C4 annual and perennial plants, C4 herbs and C4 dicot had a significant effect over other counterparts. Between single and mixed AMF inoculants, single inoculants Rhizophagus intraradices had a positive effect on C3 plants whereas Funneliformis mosseae had a positive effect on C4 plants than other species. In all of the observed studies, mycorrhizal inoculation showed positive effects on shoot, root and total biomass, and in nitrogen, phosphorous and potassium (K uptake. However, it showed negative effects in

  12. Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.)

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Jacobsen, Sven-Erik

    2012-01-01

    Drought and salinity reduce crop productivity especially in arid and semi-arid regions, and finding a crop which produces yield under these adverse conditions is therefore very important. Quinoa (Chenopodium quinoa Willd.) is such a crop. Hence, a study was conducted in field lysimeters to invest...... matter. Increasing salinity from 20 to 40 dS m-1 did not further decrease the seed number per m2 and seed yield, which shows that quinoa (cv. Titicaca) acclimated to saline conditions when exposed to salinity levels between 20 and 40 dS m-1....

  13. THE EFFECTS OF SEED SOAKING WITH PLANT GROWTH REGULATORS ON SEEDLING VIGOR OF WHEAT UNDER SALINITY STRESS

    Directory of Open Access Journals (Sweden)

    Afzal Irfan

    2005-08-01

    Full Text Available Effects of seed soaking with plant growth regulators (IAA, GA3, kinetin or prostart on wheat (Triticum aestivum cv. Auqab-2000 emergence and seedling growth under normal (4 dS/cm and saline (15 dS/cm conditions were studied to determine their usefulness in increasing relative salt-tolerance. During emergence test, emergence percentage and mean emergence time (MET were significantly affected by most of priming treatments, however, root and shoot length, fresh and dry weight of seedlings were significantly increased by 25 ppm kinetin followed by 1% prostart for 2 h treatments under both normal and saline conditions. All pre-sowing seed treatments decreased the electrolyte leakage of steep water as compared to that of non-primed seeds even after 12 h of soaking. Seed soaking with 25 ppm kinetin induced maximum decrease in electrolyte leakage while an increase in electrolyte leakage was observed by 25, 50 or 100 ppm IAA treatments. It is concluded that priming has reduced the severity of the effect of salinity but the amelioration was better due to 25 ppm kinetin and 1% prostart (2 h treatments as these showed best results on seedling growth, fresh and dry weights under non-saline and saline conditions whereas seed soaking with IAA and GA3 were not effective in inducing salt tolerance under present experimental material and conditions.

  14. AM Fungi Influences the Photosynthetic Activity, Growth and Antioxidant Enzymes in Allium sativum L. under Salinity Condition

    Directory of Open Access Journals (Sweden)

    Mahesh BORDE

    2010-12-01

    Full Text Available Potential of Arbuscular mycorrhizal (AM fungi in alleviating adverse salt effects on growth was tested in garlic (Allium sativum L.. Towards this objective we analyzed the AM root colonization and the activities of various antioxidant enzymes like peroxidase, catalase, and superoxide dismutase at 0, 100, 200 and 300 mM salinity levels. The activities of all the antioxidant enzymes studied were found to be increased in AM garlic plants. Antioxidant activity was maximum in 100 and 200 mM NaCl (sodium chloride in AM and non-AM plants. Proline accumulation was induced by salt levels and it was more in leaves as well as roots of AM plants as compared to non-AM plants, this indicating that mycorrhiza reduced salt injury. Growth parameters of garlic plants like leaf area, plant fresh and dry weight and antioxidant enzyme activities were higher at moderate salinity level. This work suggests that the mycorrhiza helps garlic plants to perform better under moderate salinity level by enhancing the antioxidant activity and proline content as compared to non-AM plants.

  15. Effects of Light and Salinity Stresses in Production of Mycosporine-Like Amino Acids by Gymnodinium catenatum (Dinophyceae).

    Science.gov (United States)

    Vale, Paulo

    2015-01-01

    Mycosporine-like amino acids (MAAs) were analyzed in a Portuguese Gymnodinium catenatum strain when transferred to high salinity and high light conditions. Total MAA concentrations increased progressively between 30 and 36 psu, attaining at 36 psu 2.9-fold the 30 psu treatment. When abruptly transferred to solar light in an outdoor shadowed location, MAA concentration increased steadily along the day for most compounds. After 8 h, mycosporine-glycine, palythene and M-319 attained or surpassed 25-fold their initial concentration, while M-370 only attained 4-fold concentration. When transferred from halogen to fluorescent light, polar MAAs such as shinorine and porphyra-334, increased until day two and then declined, while M-370 increase slowly, becoming the dominant compound from the profile after 1 week. These experiments put into evidence the relation of palythene with M-319, which was further identified as its acid degradation product, palythine. Acid degradation of M-370 originated M-324, while M-311 seems to be the precursor of M-370. Under high salinity and high light conditions chain formation was altered toward shorter chains or solitary cells. This alteration can represent a morphological stress sign, which in the natural environment could affect average population speed during daily vertical migrations. © 2015 The American Society of Photobiology.

  16. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    Directory of Open Access Journals (Sweden)

    N. Bischoff

    2018-01-01

    Full Text Available Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak by assessing the organic carbon (OC stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity, and the microbial community composition based on phospholipid fatty acid (PLFA patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i soil OC stocks decrease along the salinity gradient, (ii the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii sodicity reduces the proportion and stability of mineral-associated OM, and (iv the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only  <  10 % in all three soil types, while mineral-associated OM contributed  >  90 %. Isotopic data (δ13C, 14C activity and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe

  17. Dextrose saline compared with normal saline rehydration of hyperemesis gravidarum: a randomized controlled trial.

    Science.gov (United States)

    Tan, Peng Chiong; Norazilah, Mat Jin; Omar, Siti Zawiah

    2013-02-01

    To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum. Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours. Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different. Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes. ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409. I.

  18. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  19. Modelling soil salinity in Oued El Abid watershed, Morocco

    Science.gov (United States)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  20. Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China

    Directory of Open Access Journals (Sweden)

    H. Qiao

    2018-06-01

    Full Text Available Interaction studies of vegetation within flow environments are essential for the determination of bank protection, morphological characteristics and ecological conditions for wetlands. This paper uses the MIKE 21 hydrodynamic and salinity model to simulate the hydrodynamic characteristics and salinity transport processes in the Pink Beach wetlands of the Liao River estuary. The effect of wetland plants on tidal flow in wetland areas is represented by a varying Manning coefficient in the bottom friction term. Acquisition of the vegetation distribution is based on Landsat TM satellites by remote sensing techniques. Detailed comparisons between field observation and simulated results of water depth, salinity and tidal currents are presented in the vegetated domain of the Pink Beach wetlands. Satisfactory results were obtained from simulations of both flow characteristics and salinity concentration, with or without vegetation. A numerical experiment was conducted based on variations in vegetation density, and compared with the tidal currents in non-vegetated areas; the computed current speed decreased remarkably with an increase in vegetation density. The impact of vegetation on water depth and salinity was simulated, and the findings revealed that wetland vegetation has an insignificant effect on the water depth and salinity in this wetland domain. Several stations (from upstream to downstream in the Pink Beach wetlands were selected to estimate the longitudinal variation of salinity under different river runoff conditions; the results showed that salinity concentration decreases with an increase in river runoff. This study can consequently help increase the understanding of favourable salinity conditions for particular vegetation growth in the Pink Beach wetlands of the Liao River estuary. The results also provide crucial guidance for related interaction studies of vegetation, flow and salinity in other wetland systems.

  1. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  2. Flexural creep behavior of epoxy/cotton composite materials before and after saline absorption for orthopedics applications

    Science.gov (United States)

    Kontaxis, L. C.; Georgali, A.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, epoxy resin-non-woven cotton fibers fabric composite plates were manufactured by using the vacuum infusion technique. Next, flexural creep-recovery experiments were performed in order to study the viscoelastic behavior of both the neat resin and the composite material manufactured under both dry and wet conditions. A low cost, mechanically operated flexural creep testing machine was designed and manufactured according to ASTM standards, for providing an economical means of performing flexural creep experiments. Initially, specimens were immersed in physiological saline for different periods of time at constant temperature of 37°C and subsequently tested under flexural creep conditions in order to study the effect of saline absorption on the creep-recovery behavior of the composites. The specific environmental conditions were chosen such as to simulate the real conditions existed into the human body. The combined effect of applied stress, time of immersion, creep time and amount of saline absorbed on the overall flexural viscoelastic behavior of composites was studied. The maximum amount of saline absorbed by the composites was 3.2%, which is double the saline intake of pure resin. It is believed that the 1.5% extra saline was absorbed into the now formed interphase between the matrix and the hydrophobic cotton fibers. It was observed that the creep strain increases as the immersion time increases. This is believed to occur because of the cumulative effect of absorbed saline from the fibers, the matrix, as well as from the fiber-matrix interphase resulting in the fiber matrix debonding and easier relaxation of the macromolecules at higher moisture contents leading to larger deformations at longer times. However, it should be noted that the strain levels of the epoxy resin/cotton fibers fabric composites, never surpassed those of the pure resin, indicating that the fabric successfully reinforces the composite even under the immersion of the

  3. Selection by higher-order effects of salinity and bacteria on early life-stages of Western Baltic spring-spawning herring.

    Science.gov (United States)

    Poirier, Maude; Listmann, Luisa; Roth, Olivia

    2017-07-01

    Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring-spawning herring ( Clupea harengus ) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher-order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus . In addition, larvae were exposed to a Vibrio spp . infection. Life-history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.

  4. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  5. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.

    Science.gov (United States)

    Hadad, H R; Mufarrege, M M; Di Luca, G A; Maine, M A

    2017-04-01

    Salvinia herzogii, Pistia stratiotes and Eichhornia crassipes (floating species) were the dominant macrophytes in a constructed wetland (CW) over the first years of operation. Later, the emergent Typha domingensis displaced the floating species, becoming dominant. The industrial effluent treated at this CW showed high pH and salinity. The aim of this work was to study the tolerance of floating species and T. domingensis exposed to different pH and salinity treatments. Treatments at pH 8, 9, 10 and 11 and salinities of 2,000; 3,000; 4,000; 6,000; and 8,000 mg L -1 were performed. Floating macrophytes were unable to tolerate the studied pH and salinity ranges, while T. domingensis tolerated higher pH and salinity values. Many industrial effluents commonly show high pH and salinity. T. domingensis demonstrated to be a suitable macrophyte to treat this type of effluents.

  6. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    International Nuclear Information System (INIS)

    Salari Joo, Hamid; Kalbassi, Mohammad Reza; Yu, Il Je; Lee, Ji Hyun; Johari, Seyed Ali

    2013-01-01

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ max of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ max quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following order

  7. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Salari Joo, Hamid, E-mail: h.salary1365@gmail.com [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Kalbassi, Mohammad Reza, E-mail: kalbassi_m@modares.ac.ir [Department of Aquaculture, Marine Science Faculty, Tarbiat Modares University, Mazandaran, Noor (Iran, Islamic Republic of); Yu, Il Je, E-mail: u1670916@chol.com [Institute of Nano-product Safety Research, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan 336-795 (Korea, Republic of); Lee, Ji Hyun, E-mail: toxin@dreamwiz.com [Institute of Nano-product Safety Research, Hoseo University, Asan (Korea, Republic of); Johari, Seyed Ali, E-mail: a.johari@uok.ac.ir [Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-09-15

    Highlights: •We studied influence of concentration and salinity on bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss). •The Ag-NPs were characterized using standard methods. •The organisms were exposed to Ag-NPs in three different salinity concentrations, for 14 days in static renewal systems. •The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities and its order were liver > kidneys ≈ gills > white muscles respectively. -- Abstract: With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV–vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV–vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λ{sub max} of the Ag-NPs remained stable (415–420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λ{sub max} quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following

  8. Groundwater salinity in coastal aquifer of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Ahmad, E.; Tasneem, M.A.; Sajjad, M.I.; Khan, H.A.

    2002-01-01

    Potable groundwater salinity has become a problem of great concern in the Karachi Metropolis, which is not only the most populous and biggest industrial base but also the largest coastal dwelling of Pakistan. Stable isotope techniques [O/sup 18/ content of Oxygen in the water molecular and C/sup 13/ content of the Total Dissolved Inorganic Carbon (TDIC)] have been used, in conjunction with physiochemical tools (temperature, dissolved oxygen, pH, redox electrical conductivity, salinity), to examine the quality of potable water and the source of salinity. Surface water samples (12 No.) were collected from polluted streams, namely: Layeri River, Malir River; Hub River/Hub Lake and the Indus River. Shallow groundwater samples (7 No. ) were collected from operating dug wells. Relatively deep groundwater samples (12 No.) were collected from operating dug wells, relatively deep groundwater samples (12 No.) were collected from pumping wells/tube-wells. Physicochemical analysis of water samples was completed in the field. In the laboratory, water samples were analyzed for O/sup 18/ content of oxygen in the water molecule and C/sup 13/ content of the TDIC, using specific gas extraction systems and a modified GD-150 gas source mass spectrometer. It is concluded from this preliminary investigation that the potable aquifer system in coastal Karachi hosts a mixture of precipitation (rainwater only) from hinterlands, trapped seawater in relatively deep aquifer system, as well as intruded seawater under natural infiltration conditions and/or induced recharge conditions (in shallow aquifers). (author)

  9. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    Science.gov (United States)

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  10. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants.

    Science.gov (United States)

    Nakaminami, Kentaro; Okamoto, Masanori; Higuchi-Takeuchi, Mieko; Yoshizumi, Takeshi; Yamaguchi, Yube; Fukao, Yoichiro; Shimizu, Minami; Ohashi, Chihiro; Tanaka, Maho; Matsui, Minami; Shinozaki, Kazuo; Seki, Motoaki; Hanada, Kousuke

    2018-05-29

    Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3 , which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis .

  11. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh

    International Nuclear Information System (INIS)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-01-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19–25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. - Highlights: • Freshwater salinization will affect more people and to a greater extent as climate projections are realised in low-lying regions of the world.

  12. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    Science.gov (United States)

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  13. Effect of silica Nanoparticles on Basil (Ocimum basilicum Under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Manizheh Kalteh

    2014-08-01

    Full Text Available Application of nanofertilizers is one of the promising methods for increasing resources use efficiency and reducing environmental pollutions. Uncontrolled application of chemical fertilizer and pesticides has caused many problems to human health and domestic animals. Nanofertilizers application could be a suitable way to reduce these problems. Accordingly, in order to assess the silicon nanoparticles effect on some vegetative features of basil under salinity stress, a factorial experiment based on a completely randomized design with three replications was conducted in greenhouse condition. Treatments included different levels of silicon fertilizer (without silicon, normal silicon fertilizer and silicon nanoparticles and salinity stress (1, 3 and 6 ds/m. Physiological traits (chlorophyll and proline content of leaves and morphological traits (shoot fresh weight and dry weight were investigated in this study. Results showed a significant reduction in growth and development indices due to the salinity stress.  Leaf dry and fresh weight reduced by increment in NaCl concentration while significantly (P≤0.01 increased with silicon nanoparticles application. The chlorophyll content reduced in salinity stress, but increased by silicon nanoparticles treatment. Proline content increased under salinity stress which was a response to stress. Moreover, proline increased by silicon nanoparticles which was due to tolerance induction in plant. Silicon nanoparticles application reduced the pollution effects originated from salinity in Basil.

  14. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  15. Saline irrigation water and its effect on N.use efficiency, growth and yield of Sorghum plant using 15N

    International Nuclear Information System (INIS)

    Abd El-Latteef, E.M.

    2010-01-01

    Series of pot experiments were conducted and randomly arranged under greenhouse conditions for evaluating the effect of irrigation with saline water (alternative source) in combination with different organic sources (amendments) i.e. leucaena plant residue (LU), Quail feces (QF) and chicken manure (ChM) added in different percentages against the mineral form (ammonium sulfate) either in ordinary or 15 N labeled (2 and 5% 15 N atom excess) forms, on sorghum growth and nutrients acquisition. Artificial saline water with different EC and SAR values was prepared at laboratory using computer program designed by the author with guiding of the designed Package named Artificial Saline Irrigation Water (ASIW) (Manual of Salinity Research Methods). In addition, proline acid was also sprayed (foliar) on leaves of sorghum plants at different concentrations. The experimental results indicated the positive effect of organic amendments, as compared to mineral fertilizer, and foliar application of proline acid on enhancement of plant growth and nutrient uptake. This phenomenon was pronounced under water salinity conditions. In this regard, increasing of water salinity levels induced reduction in plant growth as well as nutrients acquisition. Data of 14 N/ 15 N ratio analysis pointed out enhancement of N derived from mineral source as affected by organic amendments. At the same time, considerable amounts of N was derived from organic sources and utilized by plants. The superiority of organic sources on each others was fluctuated depending on interaction with water salinity levels and proline concentrations. In conclusion, organic additives and proline acid has an improvement effects especially under adverse condition of irrigation water salinity.

  16. Does increased salinity influence the competitive outcome of two producer species?

    Science.gov (United States)

    Venâncio, C; Anselmo, E; Soares, A; Lopes, I

    2017-02-01

    Within the context of global climate changes, it is expected that low-lying coastal freshwater ecosystems will face seawater intrusion with concomitant increase in salinity levels. Increased salinity may provoke disruption of competitive relationships among freshwater species. However, species may be capable of acclimating to salinity, which, in turn, may influence the resilience of ecosystems. Accordingly, this work aimed at assessing the effects of multigenerational exposure to low levels of salinity in the competitive outcome of two species of green microalgae: Raphidocelis subcapitata and Chlorella vulgaris. To attain this, three specific objectives were delineated: (1) compare the toxicity of natural seawater (SW) and NaCl (as a surrogate of SW) to the two microalgae, (2) determine the capacity of the two microalgae species to acclimate to low salinity levels, and (3) assess the influence of exposure to low salinity levels in the competitive outcome of the two microalgae. Results revealed SW to be slightly less toxic than NaCl for the two microalgae. The EC 25,72 h for growth rate was 4.63 and 10.3 mS cm -1 for R. subcapitata and 6.94 and 15.4 mS cm -1 for C. vulgaris, respectively for NaCl and SW. Both algae were capable of acclimating to low levels of salinity, but C. vulgaris seemed to acclimate faster than R. subcapitata. When exposed in competition, under control conditions, the growth rates of C. vulgaris were lower than those of R. subcapitata. However, C. vulgaris was capable of acquiring competitive advantage equaling or surpassing the growth rate of R. subcapitata with the addition of NaCl or SW, respectively. The multigenerational exposure to low levels of salinity influenced the competitive outcome of the two algae both under control and salinity exposure. These results suggest that long-term exposure to low salinity stress can cause shifts in structure of algae communities and, therefore, should not be neglected since algae are at the basis

  17. LEUKOCYTE DIFFERENTIAL OF ANGUILLID EEL, Anguilla bicolor McClelland, EXPOSED TO VARIED SALINITIES

    Directory of Open Access Journals (Sweden)

    Fita Fatimah

    2017-06-01

    Full Text Available The anguillid eel is a catadromous eel capable of inhabiting freshwater growth habitat and seawater spawning habitat throughout their life cycle. At the juvenile to mature stage, they inhabit freshwater then migrate to marine water to spawn. Changes in salinity, which is one of the stressful environmental factors for the eel, affect their physiological condition by increasing the leukocytes number. This increase is an adaptation method to improve their immune system as a response to salinity change. This study intended to evaluate the leukocyte differential of anguillid eel (Anguilla bicolor McClelland exposed to various salinities. This research applied a Completely Randomized Design. The treatment was three levels of saline media including 4 ppt, 15 ppt, and 30 ppt with five replicates. The independent variable was the different salinity, and the dependent variable was the leukocyte differential. The parameters measured consisted of the different percentage of neutrophils, lymphocytes, monocytes, and eosinophils in which the measurements administered after two months of the eel exposure. We analyzed the data with ANOVA at the confidence level of 95%. The results showed that exposure of salinity significantly affected the percentage of leukocyte differential (P < 0.05. The increase in salinity decreased the neutrophils and monocytes, but increased the lymphocytes, and showed no effect on eosinophils.

  18. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.

    Science.gov (United States)

    Ko, Myoung-Soo; Cho, Kyungjin; Jeong, Dawoon; Lee, Seunghak

    2016-03-01

    In this study, indigenous microbes enabling Fe reduction under saline groundwater conditions were identified, and their potential contribution to Fe release from aquifer sediments during managed aquifer recharge (MAR) was evaluated. Sediment and groundwater samples were collected from a MAR feasibility test site in Korea, where adjacent river water will be injected into the confined aquifer. The residual groundwater had a high salinity over 26.0 psu, as well as strong reducing conditions (dissolved oxygen, DOaquifer were found to be Citrobacter sp. However, column experiments to simulate field operation scenarios indicated that additional Fe release would be limited during MAR, as the dominant microbial community in the sediment would shift from Citrobacter sp. to Pseudomonas sp. and Limnohabitans sp. as river water injection alters the pore water chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of Saline Water on Yield and Nitrogen Acquisition by Sugar Beet (Beta vulgaris L.) Using 15N Technique

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Abdel Aziz, A.; Hamdy, A.

    2007-01-01

    Sugar beet growth response to the interactive effects of salinity and N-fertilization was investigated using 15N tracer technique under greenhouse condition. Data showed that dry matter yield of sugar beet shoots and roots were frequently affected by N and water regime. Total N uptake by leaves was increased under almost water salinity treatments in spite of increasing salinity levels. It appears that in case of W I , N I I the N-uptake by roots was significantly decreased along with raising salinity levels from 4 to 8 dS/m. The portions of N derived from fertilizer (whole plant) showed that the trend was affected by salinity level of irrigation water, and fertilization treatments. The highest amount of N derived from fertilizer was obtained with the 4 dS/m level under N I I with the two water regimes. The efficient use of fertilizer-N was slightly but positively affected by raising salinity levels of irrigation water. Sugar percent was increased with increasing salinity levels of irrigation water under both N I and N I I treatments, but it was higher in case of N I than NII under different salinity levels. Generally, Irrigation with saline water in combination with water regime of 75-80% of field capacity and splitting nitrogen technique are better for enhancement of sugar beet production grown under such adverse conditions

  20. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  1. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity

    International Nuclear Information System (INIS)

    Tachi, Y.; Yotsuji, K.; Suyama, T.; Seida, Y.; Yui, M.; Nakazawa, T.; Yamada, N.; Ochs, M.

    2010-01-01

    Diffusion and sorption of radionuclides in compacted bentonite/montmorillonite are key processes in the safe geological disposal of radioactive waste. In this study, the effects of carbonate and salinity on neptunium(V) diffusion and sorption in compacted sodium montmorillonite were investigated by experimental and modeling approaches. Effective diffusion coefficients (D e ) and distribution coefficients (K d ) of 237 Np(V) in sodium montmorillonite compacted to a dry density of 800 kg m -3 were measured under four chemical conditions with different salinities (0.05/0.5 M NaCl) and carbonate concentrations (0.0.01 M NaHCO 3 ). D e values for carbonate-free conditions were of the order of 10 -10 -10 -11 m 2 s -1 and decreased as salinity increased, and those for carbonate conditions were of the order of 10 -11 -10 -12 m 2 s -1 and showed the opposite dependence. Diffusion-derived K d values for carbonate-free conditions were higher by one order of magnitude than those for carbonate conditions. Diffusion and sorption behaviors were interpreted based on mechanistic models by coupling thermodynamic aqueous speciation, thermodynamic sorption model (TSM) based on ion exchange, and surface complexation reactions, and a diffusion model based on electrical double layer (EDL) theory in homogeneous narrow pores. The model predicted the experimentally observed tendency of D e and K d qualitatively, as a result of the following mechanisms; 1) the dominant aqueous species are NpO 2 + and NpO 2 CO 3 - for carbonate-free and carbonate conditions, respectively, 2) the effects of cation excess and anion exclusion result in opposite tendencies of D e for salinity, 3) higher carbonate in solution inhibits sorption due to the formation of carbonate complexes. (orig.)

  2. The Effects of Varying Salinity on Ammonium Exchange in Estuarine Sediments of the Parker River, Massachusetts

    DEFF Research Database (Denmark)

    Weston, Nathaniel B.; Giblin, Anne E; Banta, Gary Thomas

    2010-01-01

    We examined the effects of seasonal salinity changes on sediment ammonium (NH4+) adsorption and exchange across the sediment–water interface in the Parker River Estuary, by means of seasonal field sampling, laboratory adsorption experiments, and modeling. The fraction of dissolvedNH4+relative...... to adsorbedNH4+in oligohaline sediments rose significantly with increased pore water salinity over the season. Laboratory experiments demonstrated that small (∼3) increases in salinity from freshwater conditions had the greatest effect onNH4+adsorption by reducing the exchangeable pool from 69% to 14......% of the totalNH4+in the upper estuary sediments that experience large (0–20) seasonal salinity shifts.NH4+dynamics did not appear to be significantly affected bysalinity in sediments of the lower estuary where salinities under 10 were not measured. We further assessed the importance of salinity...

  3. Features of acid-saline systems of Southern Australia

    International Nuclear Information System (INIS)

    Dickson, Bruce L.; Giblin, Angela M.

    2009-01-01

    The discovery of layered, SO 4 -rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid-saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid-saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid-saline groundwaters typically have dissolved solids of 30-60 g/L and pH commonly 4 and MgSO 4 ) or differential separation of elements with differing solubility (K, Na, Ti, Cr). Thus, it is considered unlikely that groundwaters or evaporative salt-lake systems, as found on earth, were involved. Instead, these features point to a water-poor system with local alteration and very little mobilization of elements

  4. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  5. The Baltic Sea natural long-term variability of salinity

    Science.gov (United States)

    Schimanke, Semjon; Markus Meier, H. E.

    2015-04-01

    The Baltic Sea is one of the largest brackish sea areas of the world. The sensitive state of the Baltic Sea is sustained by a fresh-water surplus by river discharge and precipitation on one hand as well as inflows of highly saline and oxygen-rich water masses from the North Sea on the other. Major inflows which are crucial for the renewal of the deep water occur very intermittent with a mean frequency of approximately one per year. Stagnation periods (periods without major inflows) lead for instance to a reduction of oxygen concentration in the deep Baltic Sea spreading hypoxic conditions. Depending on the amount of salt water inflow and fresh-water supply the deep water salinity of the Baltic Sea varies between 11 to 14 PSU on the decadal scale. The goal of this study is to understand the contribution of different driving factors for the decadal to multi-decadal variability of salinity in the Baltic Sea. Continuous measurement series of salinity exist from the 1950 but are not sufficiently long for the investigation of long-term fluctuations. Therefore, a climate simulation of more than 800 years has been carried out with the Rossby Center Ocean model (RCO). RCO is a biogeochemical regional climate model which covers the entire Baltic Sea. It is driven with atmospheric data dynamical downscaled from a GCM mimicking natural climate variability. The analysis focus on the role of variations in river discharge and precipitation, changes in wind speed and direction, fluctuations in temperature and shifts in large scale pressure patterns (e.g. NAO). Hereby, the length of the simulation will allow to identify mechanisms working on decadal to multi-decadal time scales. Moreover, it will be discussed how likely long stagnation periods are under natural climate variability and if the observed exceptional long stagnation period between 1983-1993 might be related to beginning climate change.

  6. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    Science.gov (United States)

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  7. Simulation of Quinoa (Chenopodium Quinoa Willd.) response to soil salinity using the saltmed model

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Ahmadi, Seyed Hamid

    Quinoa (Chenopodium quinoa Willd.) is a crop with high tolerance to salinity and drought and its response to varying soil moisture and salinity levels was studied in a field lysimeter experiment. Quinoa (cv. Titicaca) was irrigated with different concentrations of saline water (0, 10, 20, 30 and 40...

  8. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress.

    Science.gov (United States)

    Bharti, Nidhi; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

    2015-07-01

    The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant-microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus (STR2), Halomonas desiderata (STR8), and Exiguobacterium oxidotolerans (STR36) on the indigenous root-associated microbial (bacterial and fungal) communities in maize under non-saline and salinity stress. Plants inoculated with halotolerant rhizobacteria recorded improved growth as illustrated by significantly higher shoot and root dry weight and elongation in comparison to un-inoculated control plants under both non-saline and saline conditions. Additive main effect and multiplicative interaction ordination analysis revealed that plant growth promoting rhizobacteria (PGPR) inoculations as well as salinity are major drivers of microbial community shift in maize rhizosphere. Salinity negatively impacts microbial community as analysed through diversity indices; among the PGPR-inoculated plants, STR2-inoculated plants recorded higher values of diversity indices. As observed in the terminal-restriction fragment length polymorphism analysis, the inoculation of halotolerant rhizobacteria prevents major shift of the microbial community structure, thus enhancing the resilience capacity of the microbial communities.

  9. Salinity extrema in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shetye, S.R.; Gouveia, A.D.; Michael, G.S.

    are described. Two of the maxima arise from the influence of Red Sea and the Persian Gulf Water. The third, which lies at the bottom of the Equatorial Surface Water, forms due to freshening at the surface of high salinity Arabian Sea near-surface waters...

  10. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA

    Science.gov (United States)

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Soileau, D.M.; DeBosier, A.S.

    2000-01-01

    Saltwater intrusion from the Gulf of Mexico is one important factor in the destruction of baldcypress (Taxodium distichum (L.) Rich.) swamps along the Louisiana Gulf Coast, USA. Recent restoration efforts have focused on identification of baldcypress genotypes with greater tolerance to saline conditions than previously reported. To date, salt tolerance investigations have not been conducted under saline field conditions. In 1996, therefore, three plantations were established with 10 half-sib genotype collections of baldcypress in mesohaline wetlands. Tree survival and growth were measured at the end of two growing seasons, and foliar ion concentrations of Na, Cl, K, and Ca and available soil nutrients were measured during the 1996 growing season. In general, soil nutrient concentrations exceeded averages found in other baldcypress stands in the southeastern United States. Seedlings differed among sites in all parameters measured, with height, diameter, foliar biomass, and survival decreasing as site salinity increased. Average seedling height at the end of two years, for example, was 196.4 cm on the lowest salinity site and 121.6 cm on the highest. Several half-sib families maintained greater height growth increments (ranging from 25.5 to 54.5 cm on the highest salinity site), as well as lower foliar ion concentrations of K, Cl, and Ca. Results indicate that genotypic screening of baldcypress may improve growth and vigor of seedlings planted within wetlands impacted by saltwater intrusion.

  11. Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions

    International Nuclear Information System (INIS)

    Jabeen, N.; Ahmad, R.

    2012-01-01

    The effect of salinity and foliar application of nutrient solutions on sunflower and safflower in vegetative and reproductive phases of the growth were investigated in Bio saline Research Field, University of Karachi, Pakistan. The seeds were sown in pots under non saline condition and saline water irrigation was started at three leaf stage after germination. Different concentration of saline water were made by dissolving 3g and 6g sea salt per litre of tap water, equivalent to an EC of 4.8 and 8.6 dS/m respectively. Nutrient solution (KNO/sub 3 /, H/sub 3/ BO/sub 3/, Fe-EDTA or its mixture) was sprayed thrice, i.e., 45, 75 and 95 days after planting. KNO/sub 3/ was given at the rate 250 ppm and other H/sub 3/ BO/sub 3/ and Fe-EDTA was given at the rate 5 ppm. Salinity caused a significant reduction in nutrient uptake, height, biomass and yield of both sunflower and safflower. Foliar application of macro and micro nutrients (i.e. KNO/sub 3/, H/sub 3/BO/sub 3/, Fe-EDTA and mixture of KNO/sub 3/ + H/sub 3/BO/sub 3/ + Fe-EDTA) partially minimized the salt induced deficiency and showed significant increase in height, fresh and dry biomass, number and weight of seeds, and amount of oil per sunflower and safflower plant irrespective to their growth under non saline or saline conditions. Among the nutrient solutions, mixture of KNO/sub 3/+ H/sub 3/BO/sub 3/ + Fe-EDTA seemed to be the most effective followed by H/sub 3/ BO/sub 3/ and Fe-EDTA. These results suggested that foliar application of nutrients could be used to improve plant tolerance to salinity by alleviating the adverse effects of salinity on growth and reproductive yield. (author)

  12. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    MOHAMED A. BAKHETA

    2014-05-01

    Full Text Available Bakheta MA, Hussein MM. 2014. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordium vulgare under salinity stress (NaCl. Nusantara Bioscience 6: 39-44. Pot experiments were carried out during two growth seasons 2010 / 2011 under greenhouse conditions of the National Research Centre, Dokki, Cairo, Egypt to investigate the response of barley plants (Hordium vulgare L grown under salinity stress (2500 or 5000 ppm to spraying with solutions of uniconazole at 150 or 200 ppm. The obtained results showed that irrigation with saline solutions caused increases in the amounts of abscisic acid (ABA, crude protein, total soluble-protein and proline contents. The results showed that spraying barley plants grown under saline solutions with uniconazole increased endogenous hormone contents of ABA, cytokinins, crude protein, total soluble protein and proline but caused decreases in the amounts of endogenous indole acetic acid (IAA and gibberellic acid (GA3. High protection of abscisic acid in treating plants with uniconazole and under salt stress (interaction effect increases proline, proteins and soluble protein which has been proposed to act as compatible solutes that adjust the osmotic potential in the cytoplasm. Thus, these biochemical characters can be used as a metabolic marker in relation to salinity stress.

  13. Estimating Leaching Requirements for Barley Growth under Saline Irrigation

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi

    2012-01-01

    Full Text Available The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L. growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF. The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a the salts were found higher near or immediate below the soil surface; b an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1 added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas.

  14. Efficacy of nebulised L-adrenaline with 3% hypertonic saline versus normal saline in bronchiolitis

    Directory of Open Access Journals (Sweden)

    Shabnam Sharmin

    2016-08-01

    Full Text Available Background: Bronchiolitis is one of the most common respiratory diseases requiring hospitalization. Nebulized epineph­rine and salbutamol therapy has been used in different centres with varying results. Objective: The objective of the study was to compare the efficacy of nebulised adrenaline diluted with 3% hypertonic saline with nebulised adrenaline diluted with normal saline in bronchiolitis. Methods: Fifty three infants and young children with bronchiolitis, age ranging from 2 months to 2 years, presenting in the emergency department of Manikganj Sadar Hospital were enrolled in the study. After initial evaluation, patients were randomized to receive either nebulized adrenaline I .5 ml ( 1.5 mg diluted with 2 ml of3% hypertonic saline (group I ornebulised adrenaline 1.5 ml (1.5 mg diluted with 2 ml of normal saline (group II. Patients were evaluated again 30 minutes after nebulization. Results: Twenty eight patients in the group I (hypertonic saline and twenty five in groupII (normal saline were included in the study. After nebulization, mean respiratory rate decreased from 63.7 to 48.1 (p<.01, mean clinical severity score decreased from 8.5 to 3.5 (p<.01 and mean oxygen satw·ation increased 94.7% to 96.9% (p<.01 in group I. In group II, mean respiratory rate decreased from 62.4 to 47.4 (p<.01, mean clinical severity score decreased from 7.2 to 4.1 (p<.01 and mean oxygen saturation increased from 94. 7% to 96. 7% (p<.01. Mean respiratory rate decreased by 16 in group I versus 14.8 (p>.05 in group 11, mean clinical severity score decreased by 4.6 in group versus 3 (p<.05 in group, and mean oxygen saturation increased by 2.2% and 1.9% in group and group respectively. Difference in reduction in clinical severity score was statistically significant , though the changes in respiratory rate and oxygen saturation were not statistically significant. Conclusion: The study concluded that both nebulised adrenaline diluted with 3% hypertonic saline and

  15. Effect of Organic Matter and Gypsum Powder Some Traits of Maize in a Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    M Khotabaee

    2015-04-01

    Full Text Available Saline-sodic soils have improper physical, chemical and biological condition and the crop productivity is low in these conditions. Application of conditioners often can be a proper solution for reclamation and improving the productivity of saline-sodic soils. In order to study the effect of some conditioners on soil chemical characteristics and yield of maize (SC260 cultivar in a saline-sodic soil, an experiment was carried out as a completely randomized design with 3 replications in a research greenhouse of Ferdowsi university of Mashhad. The studied treatments included control and 10 ton/ha of compost (MC, vermi-compost (VC, poultry manure (PM, and gypsum powder (G. The results showed that poultry manure and vemi-compost treatments increased significantly (p

  16. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  17. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  18. Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models

    Science.gov (United States)

    Wang, F.; Xu, X.; Chassignet, E.

    2017-12-01

    On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.

  19. A Study on the Coupled Model of Hydrothermal-Salt for Saturated Freezing Salinized Soil

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available Water and heat interact in the process of freezing for the saturated soil. And for the salinized soil, water, heat, and salt interact in the freezing process, because salinized soil has soluble salt. In this paper, a one-dimensional mathematical coupled model of hydraulic-thermal-salt is established. In the model, Darcy’s law, law of conservation of energy, and law of conservation of mass are applied to derive the equations. Consider that a saturated salinized soil column is subjected to the condition of freezing to model the moisture migration and salt transport. Both experiment and numerical simulation under the same condition are developed in the soil column. Then the moisture content and salt content between simulation and experiment are compared. The result indicates that simulation matches well with the experiment data, and after 96 hours, the temperature distribution becomes stable, freezing front reaches a stable position, and a lot of unfrozen water has time to migrate. Besides, the excess salt precipitates when the concentration is greater than the solubility, and the precipitation is distributed discontinuously. These results can provide reference for engineering geology and environmental engineering in cold region and saline soil area.

  20. Influence of bacterial exopolymers, conspecific adult extract and salinity on the cyprid metamorphosis of Balanus amphitrite (Cirripedia: Thoracica)

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Khandeparker, R.

    salinities. The epm extracted from the pool of these three strains (mixed culture) was also tested similarly. The influence of epm varied with the strain of bacteria and salinity. The surface condition and time interval significantly influenced...

  1. Salinity and temperature tolerance of an emergent alien species, the Amazon fish Astronotus ocellatus

    Science.gov (United States)

    Gutierrel, Silvia M M; Schofield, Pam; Prodocimo, Viviane

    2016-01-01

    Astronotus ocellatus (oscar), is native to the Amazon basin and, although it has been introduced to many countries, little is known regarding its tolerances for salinity and temperature. In this report, we provide data on the tolerance of A. ocellatus to abrupt and gradual changes in salinity, its high and low temperature tolerance, and information on how salinity, temperature, and fish size interact to affect survival. Fish were able to survive abrupt transfer to salinities as high as 16 ppt with no mortality. When salinity change was gradual (2 ppt/day), fish in the warm-temperature experiment (28°C) survived longer than fish in the cool-temperature experiment (18°C). Larger fish survived longer than smaller ones at the higher salinities when the temperature was warm, but when the temperature was cool fish size had little effect on survival. In the temperature-tolerance experiments, fish survived from 9 to 41°C for short periods of time. Overall, the species showed a wide range of temperature and salinity tolerance. Thus, in spite of the tropical freshwater origin of this species, physiological stress is not likely to hinder its dispersal to brackish waters, especially when temperatures are warm.

  2. Effect of irrigation water salinity and zinc application on yield, yield components and zinc accumulation of wheat

    Directory of Open Access Journals (Sweden)

    mohamad ahmadi

    2009-06-01

    Full Text Available Salinity stress is one of the most important problems of agriculture in crop production in arid and semi arid regions. Under these conditions, in addition to management strategies, proper and adequate nutrition also has an important role in crop improvement. A greenhouse experiment was conducted to study the effect of 4 different irrigation water salinities (blank, 4, 8 and 12 dS m-1, prepared with 1:1 molar ratio of chlorides of calcium and sodium and magnesium sulphate salts. and 5 different zinc applications (0, 10, 20, 30 mg Kg-1 soil and foliar application of salt of zinc sulphate on yield, yield components and zinc concentration of wheat, using a completely randomized design, factorial with three replications. Plant height, spike length, 1000 grain weight, number of grain per spike, grain and straw yield was decreased by Irrigation water salinity. And all of these parameters were improved by zinc application except 1000 grain weight. Zinc absorption and concentration in straw and grain was decreased by Saline water compared to blank. And concentration of zinc significantly was increased in straw and grain by increase zinc application. The results indicated that, zinc application under low to medium salinity conditions improved growth and yield of wheat due to decreasing the impacts salinity.

  3. Stress tolerance of a subtropical Crassostrea virginica population to the combined effects of temperature and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Heilmayer, Olaf; DiGialleonardo, Julian J.; Qian, Lianfen; Roesijadi, Guritno

    2008-08-10

    The combination of salinity and temperature has synergistic effects on virtually all aspects of the biology of estuarine organisms. Of interest were site-specific characteristics in the response of the eastern oyster, Crassostrea virginica, from the St. Lucie River Estuary to the interactive effects of temperature and salinity. This estuary, one of the largest on the central east coast of Florida, is strongly influenced by anthropogenic modifications due to management needs to control the patterns of freshwater flow in the St. Lucie River watershed. C. virginica is designated a valued ecosystem component for monitoring the health of this estuary. Our approach used a multidimensional response surface design to study the effects of temperature and salinity on sublethal measures of oyster performance: (1) body condition index as an overall indicator of bioenergetic status and (2) the RNA/DNA ratio as a biochemical indicator of cellular stress. The results showed that there was a greater ability to withstand extreme salinity conditions at lower temperatures. However, there were no site-specific attributes that differentiated the response of the St. Lucie Estuary population from populations along the distribution range. Condition index was a less variable response than the RNA/DNA ratio, and the final models for mean condition index and the RNA:DNA ratios explained 77.3% and 35.8% of the respective variances.

  4. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  5. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  6. Physiological responses to salinity in solanum lycopersicum l. varieties

    International Nuclear Information System (INIS)

    Amador, B.M.; Montiel, L.G.H.; Perez, J.J.R.; Puente, E.O.R.

    2017-01-01

    Worldwide over 30% of irrigated and 7% of rainfed agriculture has been limited by salinity stress. Tolerance of crops to salinity varies and negatively affects agricultural productivity. Despite the plethora of information on NaCl tolerance mechanisms, it is still not completely elucidated. The purpose of this research was to determine NaCl tolerance of eight tomato varieties (Tropic, Feroz, Ace, Super Rio Grande, Yaqui, Missouri, Vita and Floradade) by evaluating their physiological traits. These varieties were exposed to salinity stress by the addition of NaCl (0, 50, 100, 150 and 200 mM). The physiological variables measured were stomatal conductance, water potential, chlorophyll a, b, total, indirect chlorophyll content, leaf temperature, transpiration and relative water content. The results showed differences in tolerance between varieties in terms of NaCl concentrations and there was interaction between varieties * NaCl in the majority of physiological variables. Symptoms of NaCl stress in the tomato plants were leaf wilting, desiccation, necrosis, and death. All measured variables decreased as salinity increased, except for relative water content and leaf temperature, values of both these variables increased with higher concentrations of NaCl. Physiological traits may be used as an effective means for screening for salinity tolerance in tomato varieties. Amongst the tomato varieties evaluated were Missouri the most tolerant, and Rio Grande the least tolerant. The results indicate that the varieties best tolerant to NaCl conditions from most to least tolerant in successive orderare: Missouri, followed by Ace, Yaqui, Tropic, Floradade, Feroz, Vita and Rio Grande. (author)

  7. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  8. Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Jensen, Karsten Høgh; Binley, Andrew

    2015-01-01

    The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment...... methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly...

  9. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  10. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-10-15

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health--changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and other conditions unfavorable to propagation of the most desirable moist soil plants. Hence, the implementation of a program to monitor annual changes in the most common moist soil plants might serve as an index of habitat health and sustainability. Our review of the current scientific and popular literature failed to identify a good, comprehensive field guide that could be used to calibrate and verify high resolution remote sensing imagery, that we had started to use to develop maps of wetland moist soil plants in the Grassland Water District. Since completing the guide it has been used to conduct ground truthing field surveys using the California Native Plant Society methodology in 2004. Results of this survey and a previous wetland plant survey in 2003 are published in a companion LBNL publication summarizing 4 years of fieldwork to advance the science of real-time wetland salinity management.

  11. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-11-01

    With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for

  12. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  13. Effect of Salinity on Germination and Its Relationship with Vegetative growth in Bromus danthoniae Genotypes from Saline and Non-Saline Areas of Iran

    Directory of Open Access Journals (Sweden)

    M. Rezaei

    2018-02-01

    Full Text Available Bromus danthoniae Trin. is an annual grass species that is well adapted to harsh climates and could be considered as an important genetic resources for tolerance to environmental stresses such as salinity. In this study, 24 genotypes collected from Ilam, Kurdistan, Kermanshah (non-saline areas and West Azerbaijan (saline area: shores of Uremia Salt Lake provinces of Iran were investigated at the germination stage under salt treatments with concentrations of 0, 60, 120, 180, 240 and 300 mM sodium chloride. Germination percentage, germination rate index, seed vigor, root length, shoot length and seedling fresh and dry weights were measured. In addition, the relationship between the percentage of germination in 300 mM sodium chloride and the survival rate (% after four weeks in 350 mM sodium chloride at the vegetative stage was evaluated. The results of analysis of variance showed that salinity treatments caused significant reductions in all the studied traits. Genotypic variation and the interaction of genotype × salt treatments were also significant. Genotypes USLN3 and KER4 were found to be the most tolerant and sensitive genotypes to salinity stress, with 13% and 98% reduction in germination percentage at 300 mM NaCl, respectively. Cluster analysis divided the genotypes into three groups, with one group containing only tolerant genotypes from Uremia Salt Lake, another one comprising only sensitive genotypes from non-saline regions, and the third one containing genotypes from both regions. The correlation between the germination percentage and the survival rate at the vegetative stage was not significant, indicating that different mechanisms are, perhaps, responsible for salinity tolerance at the germination and vegetative stages in B. danthoniae.

  14. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    Science.gov (United States)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  15. Salinity stress and some physiological relationships in Kochia (Kochia scoparia

    Directory of Open Access Journals (Sweden)

    Jafar Nabati

    2018-06-01

    Full Text Available Introduction Soil salinity is one of the major abiotic stresses affecting plant growth and production. It is estimated that approximately half of the irrigated lands of Iran are affected by salinity and much of the agricultural lands of Iran especially in the central regions are susceptible to salinity. According to the development of saline soils and water resources, utilization of halophytes as alternatives for cultivation in saline conditions could be a suitable strategy to crop production. In addition to understanding the physiological salinity tolerance pathways, studying such crops could help to plant breeding and transferring these useful traits to crop species and also domestication of these plants. Materials and methods This experiment was conducted in 2009-2010 in Salinity Research Station of faculty of agriculture, Ferdowsi University of Mashhad as split-plot based on Complete Randomized Block Design with three replications. Salinity as the main plot had two levels of 5.2 and 16.5 dSm-1 and five kochia ecotypes including Birjand, Urmia, Borujerd, Esfahan and Sabzevar were allocated as sub-plot. Seedlings were irrigated with saline water having electrical conductivity (EC of 5.2 dSm-1 until the full establishment and thereafter salinity stress was imposed with saline water having EC=16.5 dSm-1. Physiological and biochemical traits were measured in the youngest fully expanded leaf at the beginning of the anthesis and shoot biomass at the end of the growth season. Data analysis was performed using Minitab 16 and means were compared by LSD test at a significance level of 0.05. Results and Discussion Results indicated that biomass was increased in Birjand, Isfahan and Urmia ecotypes as salinity level increased while it was decreased in Sabzevar and Boroujerd ecotypes. A reduction of 34, 31, 11 and 29 percentage and an increase of 4 percentage in seed yield was seen in Sabzevar, Birjand, Boroujerd, Urmia and Isfahan, respectively. Harvest

  16. CO{sub 2} storage in saline aquifers; Stockage du CO{sub 2} dans les aquiferes salins

    Energy Technology Data Exchange (ETDEWEB)

    Bentham, M.; Kirby, G. [British Geological Survey (BGS), Kingsley Dunham Centre, Keyworth, Nottingham (United Kingdom)

    2005-06-01

    Saline aquifers represent a promising way for CO{sub 2} sequestration. Storage capacities of saline aquifers are very important around the world. The Sleipner site in the North Sea is currently the single case world-wide of CO{sub 2} storage in a saline aquifer. A general review is given on the specific risks for CO{sub 2} storage in saline aquifer. The regional distribution of CO{sub 2} storage potential is presented. Finally, the knowledge gaps and the future research in this field are defined. (authors)

  17. Escherichia coli O157:H7 bacteriophage 241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Directory of Open Access Journals (Sweden)

    Zhongjing eLu

    2015-02-01

    Full Text Available A novel phage, 241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH  3.7 and salinity ( 5% NaCl were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7 or the 2 O antigen-negative mutants of O157:H7 strain, 43895per (also lacking H7 antigen and F12 (still expressing H7 antigen. However, the phage was able to lyse a per-complemented strain (43895perComp which expresses O157 antigen. These results indicated that phage 241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3 or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage 241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment.

  18. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  19. Ocean acidification alters temperature and salinity preferences in larval fish.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Connell, Sean D

    2017-02-01

    Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO 2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO 2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO 2 -treated fish showed no such response. Natural estuarine water-of higher temperature, lower salinity, and containing estuarine olfactory cues-was only preferred by fish treated under forecasted high CO 2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO 2 from human emissions.

  20. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    Science.gov (United States)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  1. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    Science.gov (United States)

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  2. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  3. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils

    International Nuclear Information System (INIS)

    Manousaki, Eleni; Kadukova, Jana; Papadantonakis, Nikolaos; Kalogerakis, Nicolas

    2008-01-01

    Phytoremediation and more specifically phytoextraction, is an alternative restoration strategy for the clean up of heavy metal contaminated soils. Phytoextraction can only be successful if suitable plant species colonize the contaminated area, extract the toxic substances and accumulate them in their above ground tissues. In this study, the salt cedar Tamarix smyrnensis that is a widespread salt-tolerant plant in the Mediterranean region has been investigated. A pot experiment is conducted with T. smyrnensis grown in polluted soil with 16 ppm of cadmium and at three different salt concentrations (0.0, 0.5, 3.0% NaCl) for a 10-week period. It took place in an open-air area with natural light, at ambient temperature and humidity in an effort to keep the plants under conditions as similar as possible to those in the field. However, care was taken not to let them be rained on. Temperature ranged from 19 to 50 deg. C with 33 and 21 deg. C being the average day and night temperature, respectively. Humidity ranged from 28% to 87% with a 13-14 h photoperiod. The specific aims of this work are to investigate the accumulation of cadmium via root uptake at different saline conditions and cadmium excretion through salt glands on the surface of the leaves as a probable detoxification mechanism of the plant. Furthermore, measurements of chlorophyll content, biomass, and shoot length are used to evaluate the potential of the plant for the removal of cadmium from contaminated saline and non-saline soils. The experimental data suggest that increased soil salinity results in an increase of the cadmium uptake by T. smyrnensis. Analysis of white salt crystals taken from glandular tissue confirmed the fact that this plant excretes cadmium through its salt glands on the surface of the leaves as a possible detoxification mechanism in order to resist metal toxicity. Excreted cadmium is again released into the environment and it is redeposited on the top soil. Furthermore, increased

  4. High salinity volatile phases in magmatic Ni-Cu-platinum group element deposits

    Science.gov (United States)

    Hanley, J. J.; Mungall, J. E.

    2004-12-01

    The role of "deuteric" fluids (exsolved magmatic volatile phases) in the development of Ni-Cu-PGE (platinum group element) deposits in mafic-ultramafic igneous systems is poorly understood. Although considerable field evidence demonstrates unambiguously that fluids modified most large primary Ni-Cu-PGE concentrations, models which hypothesize that fluids alone were largely responsible for the economic concentration of the base and precious metals are not widely accepted. Determination of the trace element composition of magmatic volatile phases in such ore-forming systems can offer considerable insight into the origin of potentially mineralizing fluids in such igneous environments. Laser ablation ICP-MS microanalysis allows researchers to confirm the original metal budget of magmatic volatile phases and quantify the behavior of trace ore metals in the fluid phase in the absence of well-constrained theoretical or experimental predictions of ore metal solubility. In this study, we present new evidence from major deposits (Sudbury, Ontario, Canada; Stillwater Complex, Montana, U.S.A.) that compositionally distinct magmatic brines and halide melt phases were exsolved from crystallizing residual silicate melt and trapped within high-T fluid conduits now comprised of evolved rock compositions (albite-quartz graphic granite, orthoclase-quartz granophyre). Petrographic evidence demonstrates that brines and halide melts coexisted with immiscible carbonic phases at the time of entrapment (light aliphatic hydrocarbons, CO2). Brine and halide melt inclusions are rich in Na, Fe, Mn, K, Pb, Zn, Ba, Sr, Al and Cl, and homogenize by either halite dissolution at high T ( ˜450-700° C) or by melting of the salt phase (700-800° C). LA-ICPMS analyses of single inclusions demonstrate that high salinity volatile phases contained abundant base metals (Cu, Fe, Sn, Bi) and precious metals (Pt, Pd, Au, Ag) at the time of entrapment. Notably, precious metal concentrations in the inclusions

  5. The role of osmolality in saline fluid nebulization after tracheostomy: time for changing?

    Science.gov (United States)

    Wen, Zunjia; Wu, Chao; Cui, Feifei; Zhang, Haiying; Mei, Binbin; Shen, Meifen

    2016-12-09

    Saline fluid nebulization is highly recommend to combat the complications following tracheostomy, yet the understandings on the role of osmolality in saline solution for nebulization remain unclear. To investigate the biological changes in the early stage after tracheostomy, to verify the efficacy of saline fluid nebulization and explore the potential role of osmolality of saline nebulization after tracheostomy. Sprague-Dawley rats undergone tracheostomy were taken for study model, the sputum viscosity was detected by rotational viscometer, the expressions of TNF-α, AQP4 in bronchoalveolar lavage fluid were assessed by western blot analysis, and the histological changes in endothelium were evaluated by HE staining and scanning electron microscopy (SEM). Study results revealed that tracheostomy gave rise to the increase of sputum viscosity, TNF-α and AQP4 expression, mucosa and cilia damage, yet the saline fluid nebulization could significantly decrease the changes of those indicators, besides, the hypertonic, isotonic and hypertonic saline nebulization produced different efficacy. Osmolality plays an important role in the saline fluid nebulization after tracheostomy, and 3% saline fluid nebulization seems to be more beneficial, further studies on the role of osmolality in saline fluid nebulization are warranted.

  6. A site scale analysis of groundwater flow and salinity distribution in the Aespoe area

    International Nuclear Information System (INIS)

    Svensson, Urban

    1997-10-01

    The objective of the study is to develop, calibrate and apply a numerical simulation model of the Aespoe area. An area of 1.8 x 1.8 km 2 , centred around the Aespoe Hard Rock Laboratory (HRL), gives the horizontal extent of the model. In the vertical direction the model follows the topography at the upper boundary and has a lower boundary at 1000 metres below sea level. The model is based on a mathematical model that includes equations for the Darcy velocities, mass conservation and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater model was used to generate boundary conditions for vertical and bottom boundaries. Transmissivities of fracture zones and conductivities for the rock in between, as used in the model, are based on field data. An extensive calibration of the model is carried out, using data for natural conditions (i.e. prior to the construction of the Aespoe HRL), drawdowns from a pump test and data collected during the excavation of the tunnel. A satisfactory agreement with field data is obtained by the calibration. Main results from the model include vertical and horizontal sections of flow, salinity and hydraulic head distributions for natural conditions and for completed tunnel. A sensitivity study, where boundary conditions and material properties are modified, is also carried out. The model is also used to describe some characteristic features of the site like infiltration rates, flux statistics at a depth of 450 metres, salinity of inflows to the tunnel and flow and salinity distributions in fracture zones. The general conclusion of the study is that the model developed can simulate the conditions at Aespoe, both natural and with Aespoe HRL present, in a realistic manner

  7. The use of composite ferrocyanide materials for treatment of high salinity liquid radioactive wastes rich in cesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, Andrey S. [National Nuclear Centre of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Shakarim Semey State Univ. (Kazakhstan); Satayeva, Aliya R. [Shakarim Semey State Univ. (Kazakhstan); Mikhalovsky, Sergey [Nazarbayev Univ. (Kazakhstan); Brighton Univ. (United Kingdom); Cundy, Andrew B. [Brighton Univ. (United Kingdom)

    2014-07-01

    The use of composite materials based on metal ferrocyanides combined with natural mineral sorbents for treatment of high salinity Cs-containing liquid radioactive waste (LRW) was investigated. The study indicated that among the investigated composites, the best sorption characteristics for Cs were shown by materials based on copper ferrocyanide. Several factors affecting the removal of cesium from LRW, namely total salt content, pH and organic matter content, were also investigated. High concentrations of complexing organic matter significantly reduced the sorption capacity of ferrocyanide sorbents.

  8. Seagrass proliferation precedes mortality during hypo-salinity events: a stress-induced morphometric response.

    Directory of Open Access Journals (Sweden)

    Catherine J Collier

    Full Text Available Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response--analogous to a stress induced morphometric response (SIMR. Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.

  9. Not so pristine – characterising the physico-chemical conditions of ...

    African Journals Online (AJOL)

    2013-08-15

    Aug 15, 2013 ... Salinity stratification and hypoxic conditions (dissolved oxygen (DO) < 3 mg∙ℓ-1) were ... However high nutrient concentrations were measured in the middle and upper .... 9% irrigation, 78% commercial afforestation and 13% uptake ...... ROBERTSON HA and FUNNELL EP (2012) Aquatic plant dynamics.

  10. The Effect of Water Table Fluctuation and its Salinity on Fe Crystal and Noncrystal in some Khuzestan Soils

    Directory of Open Access Journals (Sweden)

    mostafa Pajohannia

    2017-01-01

    -tionite treatments was different regarding the salinity, texture, organic matters, cultivation and the water table fluctuation. The total Fe content in the middle layers had permanently increased due to the groundwater fluctuation levels and this caused the creation of mottle in this layer. All saline soils had saline subsurface water. The salinity has caused that the effective microorganisms have not been actived on the reduction processes in some profiles and the Fe deposit more in the Fe3+forms. The Fe was found more in non-crystal form in saline regions, but it was in the crystal form in non-saline regions which indicated the suitable conditions for Fe’s nodule formation. For example, when soil salinity decreased from 14.9 to 8.1 dS/m, Fec increased from 460.1 to 497.8 mg/kg soil. With increasing the amount of clay, and cultivation periods, the Fed content has also been increased. The Feo/ Fec ratio in undevelopted soils was higher than developed soils. This ratio was low in non-saline soil and was high for saline soil. this indicates that non-saline soil had more development than saline soils. The maximum amount (1.6 was belonged to saline soil and minimum was for no saline soils. With increasing in soil age, tillage periods and clay content this ratio was decreased., statistical analysis Also showed that there was significant difference between Fec and Feo in saline and no saline soils. Also, with increasing in salinity, Fec content decreased and Feo increased. aggregate stability was also increased with increasing Fec content. Conclusions: The Feo content was more in surface of saline soil than subsurface when pedon was ponded and saturated from surface. Feo was very higher in saline soils than no saline soils. Fec had not significant difference between saline and nonsaline soils. Salinity decreased Fec and increased Feo content in soils. Feo/Fec ratio of saline soils was 4 to 5 times fold of non-saline soils. Increasing Feo/Fec ratio in saline soils and decreasing in this

  11. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    Science.gov (United States)

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  12. Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Per; Wastegaard, Stefan; Schoning, Kristian [Stockholm Univ. (Sweden). Dept. of Quaternary Research; Gustafsson, Bo [Oceanus Havsundersoekningar, Goeteborg (Sweden); Omstedt, Anders [SMHI, Norrkoeping (Sweden)

    1999-12-01

    The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeo-salinity and the climate are reviewed. These data is further used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat. This will then be extended to a model of the future development of the salinity in the Baltic Sea. We conclude that the changes in the inlet cross-section areas together with a 15% to 60% lower net freshwater input compared to the present input can explain the higher salinity in the Baltic Sea during earlier times.

  13. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  14. Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models

    International Nuclear Information System (INIS)

    Westman, Per; Wastegaard, Stefan; Schoning, Kristian; Omstedt, Anders

    1999-12-01

    The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeo-salinity and the climate are reviewed. These data is further used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat. This will then be extended to a model of the future development of the salinity in the Baltic Sea. We conclude that the changes in the inlet cross-section areas together with a 15% to 60% lower net freshwater input compared to the present input can explain the higher salinity in the Baltic Sea during earlier times

  15. Effect of NaCl induced salinity on some physiological and agronomic traits of wheat

    International Nuclear Information System (INIS)

    Bilkis, A.; Islam, M.H.R.; Hasan, M.A.

    2016-01-01

    Wheat genotypes were evaluated for salt stress at early seedling stage (solution culture) and maturity (pot culture) at Crop Physiology and Ecology Laboratory, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh. Shoot length, root length, root to shoot length ratio and seedling dry weight of 15 days old seedlings were found to be reduced at 12 dS m-1 salinity level compared to control condition. Based on seedling dry weight Shatabdi, BARI Gom 25, BARI Gom 26, BAW 1111, BAW 1146, BAW 1154 and BAW 1156 were identified as salt tolerant (STI = >0.70); BAW 1130, BAW 1135 and BAW 1142 were salt sensitive (STI = <0.60) and other ten were screened as moderately salt tolerant (STI = 0.60 to 0.70) wheat genotypes. Out of twenty genotypes, two salt tolerant (Shatabdi and BARI Gom 25) and two salt sensitive (BAW 1130 and BAW 1142) wheat genotypes were grown in pot irrigated with three levels of saline water (control, 6 dS m/sup -1/ and 12 dS m/sup -1/). Salt tolerant wheat genotypes maintained lower level of leaf Na, higher level of leaf K, greater K to Na ratio, increased level of flag leaf proline and greater flag leaf SPAD value in saline condition than the sensitive ones. Salt sensitive genotypes affected more in spikes plant-1, grains spike/sup -1/, grain dry weight spike-1, 100 grain weight and grain yield plant-1 under saline condition than salt tolerant genotypes. (author)

  16. Effects of planting method on agronomic characteristics, yield and yield components of sweet and super sweet corn (Zea mays L. varieties under saline conditions

    Directory of Open Access Journals (Sweden)

    F. Faridi

    2016-05-01

    Full Text Available In order to evaluate the effects of planting pattern on morphological, Phonological, yield and yield components of sweet and super sweet corn (Zea mays L. varieties under saline conditions, a field experiment was conducted as split plots based on a randomized complete block design with four replications. Planting pattern in 3 levels included one row in ridge, two row in ridge and furrow planting, as a main plot and varieties in 4 levels sweet corn with 2 types (KSc 403 su, Merit and super sweet with two types (Basin, obsession as sub plots. The results showed that planting pattern had significant differences on plant height, ear height, leaf length, leaf width, number of kernel per row, number of rows per ear and 1000-kernel weight. but had no significant effects on the length of tassel, number of leaf/plant, number of leaf per plant above ear, stem diameter, time of anthesis, time of silking, anthesis silking interval ASI, grain yield, biological yield and harvest index. Different varieties had significant effects on the total characteristics studied except number of leaf above ear and stem diameter. Most of the conservable grain yield and harvest index was in Obsession variety (10 kg and 39%, respectively and the least was seen in Basin (4 kg and 20%, respectively. The result showed that use of furrow planting pattern for sweet and super sweet corn in saline conditions can effects result in higher yield.

  17. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor

    Directory of Open Access Journals (Sweden)

    Lin Hongxuan

    2009-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenously expressed small RNAs with a length of about 21 nt. MiRNAs silence their target genes at the post-transcriptional level. In plants, miRNAs play various developmental and physiological roles by cleavaging mRNAs predominantly. Drought and high salinity are the most severe environmental abiotic stresses and cause crop losses all over the world. Results In this study, we identified miR-169g and miR-169n (o as high salinity-responsive miRNAs in rice. MiR-169n and miR169o were in a miRNA cluster with a distance of 3707 base pairs (bp. The high degree of conservation and close phylogenic distance of pre-miR-169n and pre-miR-169o indicated that they were derived from a very recent tandem duplication evolutionary event. The existence of a cis-acting abscisic acid responsive element (ABRE in the upstream region of miR-169n (o suggested that miR-169n (o may be regulated by ABA. In our previous study, we found that miR-169g was induced by the osmotic stress caused by drought via a dehydration-responsive element (DRE. Thus, our data showed that there were both overlapping and distinct responses of the miR-169 family to drought and salt stresses. We also showed that these miR-169 members selectively cleaved one of the NF-YA genes, Os03g29760, which is a CCAAT-box binding transcription factor and participates in transcriptional regulation of large number genes. Finally, we found one or more ath-miR-169 member that was also induced by high salinity. Conclusion We identified members of the miR-169 family as salt-induced miRNAs and analyzed their evolution, gene organization, expression, transcriptional regulation motif and target gene. Our data also indicated that the salt-induction of some miR-169 members was a general property in plants.

  18. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor.

    Science.gov (United States)

    Zhao, Botao; Ge, Liangfa; Liang, Ruqiang; Li, Wei; Ruan, Kangcheng; Lin, Hongxuan; Jin, Youxin

    2009-04-08

    MicroRNAs (miRNAs) are endogenously expressed small RNAs with a length of about 21 nt. MiRNAs silence their target genes at the post-transcriptional level. In plants, miRNAs play various developmental and physiological roles by cleavaging mRNAs predominantly. Drought and high salinity are the most severe environmental abiotic stresses and cause crop losses all over the world. In this study, we identified miR-169g and miR-169n (o) as high salinity-responsive miRNAs in rice. MiR-169n and miR169o were in a miRNA cluster with a distance of 3707 base pairs (bp). The high degree of conservation and close phylogenic distance of pre-miR-169n and pre-miR-169o indicated that they were derived from a very recent tandem duplication evolutionary event. The existence of a cis-acting abscisic acid responsive element (ABRE) in the upstream region of miR-169n (o) suggested that miR-169n (o) may be regulated by ABA. In our previous study, we found that miR-169g was induced by the osmotic stress caused by drought via a dehydration-responsive element (DRE). Thus, our data showed that there were both overlapping and distinct responses of the miR-169 family to drought and salt stresses. We also showed that these miR-169 members selectively cleaved one of the NF-YA genes, Os03g29760, which is a CCAAT-box binding transcription factor and participates in transcriptional regulation of large number genes. Finally, we found one or more ath-miR-169 member that was also induced by high salinity. We identified members of the miR-169 family as salt-induced miRNAs and analyzed their evolution, gene organization, expression, transcriptional regulation motif and target gene. Our data also indicated that the salt-induction of some miR-169 members was a general property in plants.

  19. EFFECTS OF IRRIGATION WATER QUALITY (DIFFERENT SALINITY LEVELS AND BORON CONCENTRATIONS ON MORPHOLOGICAL CHARACTERISTICS OF GRAFTED AND NON-GRAFTED EGGPLANTS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available High yield cultivars with quite high resistance against pests and diseases, irrigation water salinity and deficit irrigation conditions are significant in plant production activities. Researches have been conducted also to improve the resistance of available cultivars. Since 1990s, researchers have tried to use low quality irrigation waters just because of deficit water resources and current trends in global warming and climate change. The basic target in all these researches is to reduce production costs and to improve quality and yields. Availability of low quality irrigation waters is a basic component of sustainable agricultural production. The present study was conducted in 40 liter pots under greenhouse conditions. Grafted and non-grafted eggplant seedlings were planted into these pots. Then, plants were irrigated with irrigations waters with different salinity levels (0.25, 1, 1.5, 2, 4, 6, 10 and 15 dS/m and boron concentrations (0, 1, 2, 4, 8, 16, 32 and 64 ppm. In this way, effects of different irrigation water qualities on plant morphological characteristics were investigated.

  20. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  1. Responses to ozone pollution of alfalfa exposed to increasing salinity levels

    International Nuclear Information System (INIS)

    Maggio, Albino; Chiaranda, Fabrizio Quaglietta; Cefariello, Roberto; Fagnano, Massimo

    2009-01-01

    Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O 3 damages, we hypothesized that soil salinization may increase O 3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O 3 (-33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m -1 reduced both stomatal conductance and plant O 3 uptake, thus linearly reducing O 3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O 3 on crop yield should take into account soil salinity. - Moderate saline stress can reduce ozone uptake and yield losses in alfalfa plants.

  2. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    KAUST Repository

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  3. The Temperature and Salinity Variabilities at Cisadane Estuary

    Directory of Open Access Journals (Sweden)

    Hadikusumah

    2008-11-01

    Full Text Available The study was conducted at Cisadane Estuary at 18 oceanographic station in Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II from 2003 to 2005. The area of the study was located at the longitude of 106.58° - 106.70° E and the latitude of 5.96° - 6.02°S. The measurements of temperature, salinity, tubidity and light transmision used CTD (Conductivity, Temperature and Depth Model SBE-19. The result shows that the temperature and salinity vertical profil variabilities at Cisadane Estuary underwent a change in the influence of Transition Monsoon Season I, East Monsoon Season, and Transition Monsoon Season II, for example it was obtained the leg time of the maximum salinity of Transition Monsoon Season II as the same as that of East Monsoon Season. Based on the horizontal and vertical distribution pattern analysis of the interaction between low salinity fresh water of Cisadane River and high salinity sea water of Java Sea, it was also influenced by the season variability and tide. The surface layer was much more influenced by the low salinity and the heat of sunray (seasonal variability with the weaker intensity to the lower layer. The change of the heat energy by the increase of seasonal temperature occurred in September 2003 to May 2004 ((ΔE = 600.6 ⋅ 105 Joule, July to November 2005 (ΔE = 84.9 Joule. The decrease of the heat energy occurred in June to September 2003 ((-267.6 ⋅ 105, May ke October 2004 (ΔE = 189.3 ⋅ 105 Joule and October 2004 to July 2005 (ΔE = -215.4 ⋅ 105 Joule.

  4. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  5. Application of green remediation on soil salinity treatment : A review on halophytoremediation

    NARCIS (Netherlands)

    Nouri, Hamideh; Chavoshi Borujeni, Sattar; Nirola, Ramkrishna; Hassanli, Ali; Beecham, Simon; Alaghmand, Sina; Saint, Chris; Mulcahy, Dennis

    2017-01-01

    The salinity of soil and water resources is one of the economically expensive challenges to achieve sustainable development across the world. Salinity, which is a major environmental issue for both arid and semi-arid regions, is highly stressful for vegetation and adds to other stresses including

  6. Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner

    2017-09-01

    The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3  NaCl while C50 was between 50 and 100 mol m -3  NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  8. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  9. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    Science.gov (United States)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  10. Screening of sesame ecotypes (Sesamum indicum L. for salinity tolerance under field conditions: 1-Phenological and morphological characteristics

    Directory of Open Access Journals (Sweden)

    F. Fazeli Kakhki

    2016-05-01

    Full Text Available Salinity is one of the most restrictions in plant growth in dry and semi dry land which effects production of many crops such as sesame. In order to study the phenology and morphology characteristics of 43 ecotypes and line of sesame (Sesamum indicum L. under salinity of irrigation water (5.2 dS.m-1 a field experiment was conducted at research farm of center of excellence for special crops, Ferdowsi University of Mashhad, Iran, during growing season of 2009-2010 based on a randomized complete block design with three replications. Results showed that four sesame ecotypes could not emerge, 14 sesame ecotypes had appropriate emergence but died before reproductive stage and only 58 % of sesame ecotypes could alive until maturity. There was significant difference between sesame ecotypes for phenological stages and were varied from 64 to 81 days for vegetative and 60 to 65 days for reproductive stages. Plant height, number and length of branches also were different between sesame ecotypes. The highest and the lowest plant height were observed in MSC43 and MSC12 ecotypes, respectively. Number of branches per plant was from 1 to 8 and length of branches in 32 percent of ecotypes was more than 100 cm. There was a considerable correlation between seed weight in plant with reproductive growth (r=0.38** and plant height (r=0.25. In addition different response of sesame ecotypes to saline water and also better morphological indices in some sesame ecotypes may be show the tolerance of these accessions to salinity. More studies may be useful for selection of sesame salt tolerance resources.

  11. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    Science.gov (United States)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  12. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  13. Salinity-Dependent Adhesion Response Properties of Aluminosilicate (K-Feldspar) Surfaces

    DEFF Research Database (Denmark)

    Lorenz, Bärbel; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    is composed predominantly of quartz with some clay, but feldspar grains are often also present. While the wettability of quartz and clay surfaces has been thoroughly investigated, little is known about the adhesion properties of feldspar. We explored the interaction of model oil compounds, molecules...... in well sorted sandstone. Adhesion forces, measured with the chemical force mapping (CFM) mode of atomic force microscopy (AFM), showed a low salinity effect on the fresh feldspar surfaces. Adhesion force, measured with -COO(H)-functionalized tips, was 60% lower in artificial low salinity seawater (LS......, ∼1500 ppm total dissolved solids) than in the high salinity solution, artificial seawater (HS, ASW, ∼35 600 ppm). Adhesion with the -CH3 tips was as much as 30% lower in LS than in HS. Density functional theory calculations indicated that the low salinity response resulted from expansion of the electric...

  14. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  15. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  16. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  17. Quantification and characterization of putative diazotrophic bacteria from forage palm under saline water irrigation

    Directory of Open Access Journals (Sweden)

    Gabiane dos Reis Antunes

    2017-09-01

    Full Text Available The aim of this study was to evaluate the density and phenotypical diversity of diazotrophic endophytic bacteria from the forage palm irrigated with different saline water depths. Opuntia stricta (IPA-200016 received five depths of saline water (L1: 80%. ETo; L2: 60%.ETo; L3: 40%; ETo; L4: 20%; ETo and, L5: 0% ETo, where ETo is the reference evapotranspiration. The roots were collected in the field, disinfected, grounded and serial diluted from 10-1 to 10-4. The total concentration of diazotrophic bacteria was determined by the most probable number method (MPN and the isolated bacteria were characterized phenotipically. The concentration of bacteria found in forage palm roots ranged from 0.36 x 104 to 109.89 104 cells per gram of root, with highest occurrence on the 60 and 80% ETo. In the dendrogram of similarity it was possible to observe the formation of 24 phenotypic groups with 100% similarity. All bacteria presented similarity superior to 40%. Among these groups, 14 are rare groups, formed by only a single bacterial isolate. In the Semi-Arid conditions, the forage palm that receives the highest amount of saline water, presents a higher density of putative nitrogen-fixing endophytic bacteria with high phenotypic diversity.

  18. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  19. Simulating Durum Wheat (Triticum turgidum L. Response to Root Zone Salinity based on Statistics and Macroscopic Models

    Directory of Open Access Journals (Sweden)

    Vahid Reza Jalali

    2017-10-01

    Full Text Available Introduction Salinity as an abiotic stress can cause excessive disturbance for seed germination and plant sustainable production. Salinity with three different mechanisms of osmotic potential reduction, ionic toxicity and disturbance of plant nutritional balance, can reduce performance of the final product. Planning for optimal use of available water and saline water with poor quality in agricultural activities is of great importance. Wheat is one of the eight main food sources including rice, corn, sugar beet, cattle, sorghum, millet and cassava which provide 70-90% of all calories and 66-90% of the protein consumed in developing countries. Durum wheat (Triticum turgidum L. is an important crop grows in some arid and semi-arid areas of the world such as Middle East and North Africa. In these regions, in addition to soil salinity, sharp decline in rainfall and a sharp drop in groundwater levels in recent years has emphasized on the efficient use of limited soil and water resources. Consequently, in order to use brackish water for agricultural productions, it is required to analyze its quantitative response to salinity stress by simulation models in those regions. The objective of this study is to assess the capability of statistics and macro-simulation models of yield in saline conditions. Materials and methods In this study, two general approach of simulation includes process-physical models and statistical-experimental models were investigated. For this purpose, in order to quantify the salinity effect on seed relative yield of durum wheat (Behrang Variety at different levels of soil salinity, process-physical models of Maas & Hoffman, van Genuchten & Hoffman, Dirksen et al. and Homaee et al. models were used. Also, statistical-experimental models of Modified Gompertz Function, Bi-Exponential Function and Modified Weibull Function were used too. In order to get closer to real conditions of growth circumstances in saline soils, a natural saline

  20. Effects of the amplitude and frequency of salinity fluctuations on antioxidant responses in juvenile tongue sole, Cynoglossus semilaevis

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, S.A.; Tian, X.; Dong, S.; Fang, Z.; Solanki, B.V.; Shanthanagouda, H.A.

    2016-11-01

    To understand the tolerance of tongue sole, Cynoglossus semilaevis, to varying salinities, the effects of the amplitude (2, 4, 6 and 8 g/L) and frequency (2, 4 and 8 days) of salinity fluctuations on the activities of antioxidant responses, including acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) from antioxidant system in liver, muscle, gills and kidney were investigated in this study. The results showed that the antioxidant responses of tongue sole were highly tissue-specific during the varying salinity fluctuations. In all tissues, ACP and AKP activity was found to be highest at moderate salinity fluctuations compared to the control, low and high salinity treatments (p<0.05). SOD and CAT activities had significant effect due to salinity fluctuations in all tissues (p<0.05), except in hepatic and renal tissues. Variations in branchial SOD activity proved that salinity fluctuations had greater impact on tongue sole at moderate and high fluctuating salinities compared to the control and low fluctuating salinities, whereas the branchial CAT activities showed contrasting trend. Further, cortisol levels were significantly affected in lower and higher salinity fluctuations. However, plasma cortisol levels remained low in moderate salinity fluctuations and control (p<0.05). Taken together, the results indicated that salinity fluctuations could effectively stimulate and enhance the antioxidant enzyme activity in the liver, kidney, gills and muscle of the juvenile tongue sole, thus effectively eliminating the excessive reactive oxygen species and minimizing the body damage in tongue sole or could be for any other euryhaline teleosts. (Author)