WorldWideScience

Sample records for high resolution powder

  1. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  2. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  3. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  4. The high resolution powder diffractometer (HRPD) at ISIS - a user guide

    International Nuclear Information System (INIS)

    Ibberson, R.M.; David, W.I.F.; Knight, K.S.

    1992-05-01

    This guide is intended to give a short description of the High Resolution Powder Diffractometer, HRPD, at ISIS and to provide the basic information required in order to perform a routine powder diffraction experiment. (Author)

  5. D2B, a new high resolution neutron powder diffractometer at ILL Grenoble

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1987-01-01

    Applications of high resolution neutron powder diffraction to materials science have grown rapidly in the past 10 years, with the development of Rietveld methods of profile refinement, and new high resolution diffractometers and multidetectors. Materials studied range from catalysts to zeolites, and from battery electrodes to prestressed superconducting wires. Although the techniques have now been adapted for X-ray and synchrotron radiation, neutron powder diffraction retains unique advantages. In this paper we describe the design and first test measurements on the latest high resolution powder diffractometer D2B at ILL Grenoble. A review of the applications is published in Chemica Scripta (1986). (author) 9 refs., 6 figs., 2 tabs

  6. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    E-mail: siruguri@csr.ernet.in. Abstract. In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel design concepts like the use of bent, perfect crystal monochromator ...

  7. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    allowing diffraction information to be obtained from only the active material during battery operation [2]. High resolution synchrotron x-ray powder diffraction technique has been undertaken to obtain detailed structural and compositional information during lithiation/delithiation of commercial LiFePO4...... materials [3]. We report results from the first in situ time resolved high resolution powder diffraction experiments at beamline ID22/31 at the European Synchrotron Radiation Facility, ESRF. We follow the structural changes during charge of commercial LiFePO4 based battery materials using the Rietveld...... method. Conscientious Rietveld analysis shows slight but continuous deviation of lattice parameters from those of the fully stoichiometric end members LiFePO4 and FePO4 indicating a subsequent variation of stoichiometry during cathode delithiation. The application of an intermittent current pulses during...

  8. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    Science.gov (United States)

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  9. D1A, a high resolution neutron powder diffractometer with a bank of mylar collimators

    International Nuclear Information System (INIS)

    Hewat, A.W.; Bailey, I.

    1976-01-01

    This paper describes a first attempt at following the design criteria set out earlier for a high resolution conventional powder diffractometer. An existing machine, D1A, has been modified using a bank of ten high pressure 3 He counters and almost perfect 10minutes of arc mylar foil collimators. The system is more successful than earlier multicollimator arrangements because each of the collimator/counters is virtually identical; this permits automatic addition of the intensities so that a single high resolution profile, up to X40 times as intense as on the original diffractometer, is obtained just as easily as on a single counter machine. A comparison is made with the other powder diffractometers, D1B and D2 at the ILL. (Auth.)

  10. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  11. High-Resolution Powder Diffractometer HRPT for Thermal Neutrons at SINQ

    International Nuclear Information System (INIS)

    Fischer, P.; Koch, M.; Koennecke, M.; Pomjakushin, V.; Schefer, J.; Schlumpf, N.

    1999-01-01

    The new neutron powder diffractometer at the Swiss continuous spallation neutron source SINQ is designed as a flexible instrument for high resolution [best values δd/d: ( -3 with d = lattice spacing in the high resolution or high intensity modes, respectively]. It uses large scattering angles 2Θ M = 120 deg or 90 deg of the monochromator, a 28 cm high, vertically focusing wafer type Ge(hkk) monochromator and a position-sensitive 3 He detector(3.6 bar) produced by Cerca at Romans, France. It has 1600 (25x64) detectors with an angular separation of 0.1 deg and includes modern electronics developed by E. Berruyer, Cerca and PSI. The SICS software of PSI controls the instrument with a server running on an unix workstation and clients written in Java through the TCP/IP network. The design principles and first experiences are presented. The interdisciplinary applications of HRPT will permit high-resolution refinement of chemical and magnetic structures as well as phase analysis including the detection of defects and internal microstrain. In particular real-time investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. (author)

  12. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Lee, P.; Preissner, C.; Ramanathan, M.; Beno, M.; VonDreele, R.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B.

    2007-01-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  13. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Lee, P.; Preissner, C.; Ramanathan, M.; Beno, M.; VonDreele, R.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B.

    2007-01-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  14. A new high resolution neutron powder diffractometer at the Brookhaven high flux beam reactor

    International Nuclear Information System (INIS)

    Passell, L.; Bar-Ziv, S.; Gardner, D.W.; Cox, D.E.; Axe, J.D.

    1991-01-01

    A high resolution neutron powder diffractometer under construction at the Brookhaven HFBR is expected to be completed by mid-1991. The new machine will have a Ge (511) monochromator with a take-off angle of 120 o (λ=1.89A) and 64 3 He counters in the detector bank. There will be interchangeable collimators before the monochromator allowing a choice of 5 or 11' horizontal divergence, and 10 cm-high, 5' collimators in front of the detectors. In the higher resolution mode, Δd/d is expected to be about 6x10 -4 at the resolution minimum. The diffractometer is generally similar to D2B at the Institut Laue-Langevin except for the monochromator. This will consist of a vertically focussing array of segments 3x1.27 cm in dimensions cut from stacks of 20 0.43 mm wafers that have been pressed and brazed together. Preliminary measurements indicate that a mosaic width of 0.1-0.15 o and a peak reflectivity of 25% can be achieved in this way. (author) 2 figs., 22 refs

  15. Initial results from the high resolution powder diffractometer HRPD at ISIS

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.; Johnson, M.W.

    1986-07-01

    The paper reviews the initial commissioning of the high resolution time-of-flight neutron powder diffractometer, HRPD, on the Spallation Neutron Source, ISIS, at the Rutherford Appleton Laboratory. Preliminary results have confirmed both intensity and resolution predictions indicating that (Δd/d) lies between 0.04% and 0.08% for all d-spacings between 0.2 and 5A. The scientific potential of this increased resolution over existing time-of-flight diffractometers has been demonstrated in the successful ab initio structure determination of an unknown inorganic material, FeAsO 4 , and the detailed study of subtle symmetry changes in NiO. The true instrumental resolution, however, has been observed in only a small number of experiments: sample broadening is often seen to play a dominant role in the determination of the peak shape, particularly at longer d-spacings. This leads to additional useful information about macroscopic properties, such as anisotropic crystallite size, strain distribution and sample homogeneity, but also results in a significant increase in complexity of peak-shape description and data-analysis strategy. (author)

  16. A high-resolution neutron powder diffraction study of neodymium doping in barium cerate

    DEFF Research Database (Denmark)

    Knight, K.S.; Bonanos, N.

    1995-01-01

    High-resolution neutron powder diffraction data have been collected on 6 perovskites of composition BaCe1-xNdxO3-x/(2), with 0 less than or equal to x less than or equal to 0.2, in which structural phase transitions Pmcn-->P4/mbm at x=0.05, and P4/mbm-->Pm3m at x=0.1, were inferred from a recent ...

  17. The high-resolution powder diffraction station PO DI STA is ''running'' at Adone

    International Nuclear Information System (INIS)

    Burattini, E.; Simeoni, S.; Cappuccio, G.; Maistrelli, P.

    1992-01-01

    At the end of February 1991, a ''triple-axis'' high-resolution diffractometer for on powder sample measurements with synchrotron radiation was put in operation on the Adone wiggler line BX1 at Frascati. The diffractometer is based on a Seifert goniometer, designed according to our specifications. During the project, particular attention was paid in assuring the highest reliability together with great flexibility in the use. In fact, the diffractometer can also be used in a ''medium resolution'' configuration. For preliminary alignment and data collection, it is possible to operate with a traditional x-ray tube, too. The alignment procedure of the diffractometer to the x-ray beam is very easy. Powder samples can be measured both on the flat holder and on the capillary. An IBM PC computer is used for the instrument actuation and preliminary on-line data collection, while a large software package has been developed for the data analysis performed by a Macintosh IIcx. The instrument performance has been tested with a standard Si sample and quartz and Ni oxide samples. For the two possible resolution configurations, a test on a NiO sample gave FWHM values of 0.16 degree and 0.04 degree, respectively, for the [012] peak

  18. A new beauty for 'ADONE': a high resolution powder diffractometer for synchrotron radiation experiments

    International Nuclear Information System (INIS)

    Burattini, E.; Simeoni, S.

    1991-01-01

    A high resolution powder diffractometer, connected to the wiggler magnet line BX1, is now operative at the Adone storage ring in Frascati. A Si channel-cut monochromator on the line allows operation in the range 1-3 A. To achieve the desired high resolution in the diffraction spectra, a 'triple-axis configuration' has been chosen: a vertical standing goniometer supports a flat Ge(111) crystal analyzer on the 2O arm. With this configuration, a value of less than 0.02 o for the FWHM of the diffraction peaks has been reached. The special design solutions adopted for a Seifer MZ VI goniometer and the microstep technology used in the stepper motor actuation assure a mechanical resolution better than 0.001 o . A special supporting table, with six degrees of freedom, has been made for the diffractometer orientation in front of the X-ray beam. An IBM-PC is dedicated to the diffractometer positioning control and preliminary data collection. As a Macintosh IICX provides for the data processing, a special software package, named 'Mac Dust', has been developed and is continuously updated. The first experimental results collected on-line during the instrument check-up are presented. (author) 5 figs., 1 tab., 11 refs

  19. Location of adsorbed species in NO-reduction catalysts by high resolution neutron powder diffraction

    International Nuclear Information System (INIS)

    Fowkes, A.J.; Rosseinsky, M.J.

    1999-01-01

    Complete text of publication follows. Catalysts containing copper ion exchanged into zeolites are attracting considerable attention due to their efficiency for both NO decomposition and the selective catalytic reduction of NO x in so-called lean-burn conditions in automotive exhausts. This presentation will describe the application of in-situ high resolution neutron powder diffraction to study active sites in a Cu-zeolite Y catalyst active for NO decomposition. The study under NO pressure reveals the location of two distinct copper sites for sorption. The influence of copper oxidation state on the structure of both the pristine and NO-loaded zeolites will be discussed. (author)

  20. High-resolution neutron powder-diffraction in CMR manganates

    Energy Technology Data Exchange (ETDEWEB)

    Suard, E; Radaelli, P G [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Manganese-oxide materials have recently been the subject of renewed attention, due to the `colossal` magnetoresistance (CMR) displayed near the spin-ordering temperature T{sub c} by some of these compounds. CMR has been evidenced in at least three families of manganese oxides. In most cases, the CMR compounds behave as paramagnetic semiconductors at high temperatures, and as ferromagnetic metals below T{sub c}. The study of this metallization process has lead some theorists to challenge its traditional interpretation in terms of the so-called double-exchange mechanism, and to propose alternative scenarios in which the coupling of the charge carriers with the lattice plays a paramount role. Powder diffraction method, being at the forefront of CMR research is presented. (author). 4 refs.

  1. The analysis of powder diffraction data

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.

    1986-01-01

    The paper reviews neutron powder diffraction data analysis, with emphasis on the structural aspects of powder diffraction and the future possibilities afforded by the latest generation of very high resolution neutron and x-ray powder diffractometers. Traditional x-ray powder diffraction techniques are outlined. Structural studies by powder diffraction are discussed with respect to the Rietveld method, and a case study in the Rietveld refinement method and developments of the Rietveld method are described. Finally studies using high resolution powder diffraction at the Spallation Neutron Source, ISIS at the Rutherford Appleton Laboratory are summarized. (U.K.)

  2. Neutron powder diffraction at a pulsed neutron source: a study of resolution effects

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Hitterman, R.L.

    1985-11-01

    The General Purpose Powder Diffractometer (GPPD), a high resolution (Δd/d = 0.002) time-of-flight instrument, exhibits a resolution function that is almost independent of d-spacing. Some of the special properties of time-of-flight scattering data obtained at a pulsed neutron source will be discussed. A method is described that transforms wavelength dependent data, obtained at a pulsed neutron source, so that standard structural least-squares analyses can be applied. Several criteria are given to show when these techniques are useful in time-of-flight data analysis. 14 refs., 6 figs., 1 tab

  3. Structure of La2Cu2O5 by high-resolution synchrotron X-ray powder diffraction

    International Nuclear Information System (INIS)

    La Placa, S.J.; Bringley, J.F.; Scott, B.A.; Cox, D.E.

    1993-01-01

    Dicopper(II) dilanthanum pentaoxide, La 2 Cu 2 O 5 , M r =484.90, orthorhombic, Pbam. At T=300 K: a=5.5490(1), b=10.4774(2), c=3.8796(1) A, V=225.557(8) A 3 , Z=2, D x =7.139 g cm -3 , λ=1.2000 A. Final R I =6.20, R p =14.6 and R wp =20.61%, 124 independent reflections observed. The structure has been refined from high-resolution synchrotron X-ray powder diffraction data using the Rietveld method. It is of the oxygen-defect perovskite type and is composed entirely of corner-shared CuO 5 square pyramids, which share oxygen vacancies forming vacancy tunnels along the c axis. The La atoms reside at a perovskite-like A-site and are tenfold coordinated by oxygen. (orig.)

  4. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    Science.gov (United States)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  5. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  6. MacDUST - a powder diffraction package developed for the ''ADONE'' high resolution diffraction station

    International Nuclear Information System (INIS)

    Burattini, E.; Cappuccio, G.; Maistrelli, P.; Simeoni, S.

    1993-01-01

    A High Resolution Powder Diffraction Station (PO.DI.STA.) was installed at the beginning of 1991 on the ADONE-Wiggler magnet beam line. The station and the first powder diffraction spectra, collected with synchrotron radiation, were presented at the EPDIC-1 Conference. More details can also be found in. For this station, a very sophisticated software package ''MacDUST'' has been developed on an Apple Macintosh computer, using the Microsoft QuickBASIC compiler. It allows very easy and comfortable operations by means of a graphical user interface environment, typical of the Macintosh system. The package consists of five major programs. The main program, MacDIFF, performs all the graphic operations on the experimental data, including zooming, overlapping, cursor scanning and editing of patterns, control of output operations to printers and HPGL plotters. It also includes several analysis routines for data smoothing, a first derivative peak search algorithm, two background subtraction routines and two profile fitting programs: one based on the simplex method and the other on the Marquardt modification of a least-square algorithm. MacPDF and MacRIC are both dedicated to phase identification. The first program is an archive manager for searching, displaying and printing phase records; MacRIC is a graphic aided search-match program based on the Hanawalt algorithm. Mac3-DIM is a plot program, useful, e.g., for representing kinetics three dimensionally. MacRIET is a Macintosh version of the well known Rietveld refinement program. This version, besides conventional structure refinements, also allows the determination of micro structural parameters, i.e. micro strain and crystallite size. The program can also be used to simulate a pattern, once the structure of the compound is known. Taking advantage of the very intuitive Macintosh graphic user interface, through dialog and alert boxes, the program allows straightforward introduction and modification of the structure

  7. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  8. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  9. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  10. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  11. Accurate masking technology for high-resolution powder blasting

    Science.gov (United States)

    Pawlowski, Anne-Gabrielle; Sayah, Abdeljalil; Gijs, Martin A. M.

    2005-07-01

    We have combined eroding 10 µm diameter Al2O3 particles with a new masking technology to realize the smallest and most accurate possible structures by powder blasting. Our masking technology is based on the sequential combination of two polymers:(i) the brittle epoxy resin SU8 for its photosensitivity and (ii) the elastic and thermocurable poly-dimethylsiloxane for its large erosion resistance. We have micropatterned various types of structures with a minimum width of 20 µm for test structures with an aspect ratio of 1, and 50 µm for test structures with an aspect ratio of 2.

  12. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom); Millange, Franck [Institut Lavoisier Versailles (CNRS UMR 8180), Université de Versailles, 78035 Versailles (France); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, CV4 7AL, Coventry (United Kingdom)

    2013-12-12

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  13. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    International Nuclear Information System (INIS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F.; Millange, Franck; Walton, Richard I.

    2013-01-01

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host

  14. High-resolution neutron-diffraction measurements to 8 kbar

    Science.gov (United States)

    Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.

    2017-10-01

    We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.

  15. Solving Crystal Structures from Powder Diffraction Data

    DEFF Research Database (Denmark)

    Christensen, A. Nørlund; Lehmann, M. S.; Nielsen, Mogens

    1985-01-01

    High resolution powder data from both neutron and X-ray (synchrotron) sources have been used to estimate the possibility of direct structure determination from powder data. Two known structures were resolved by direct methods with neutron and X-ray data. With synchrotron X-ray data, the measured ...

  16. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  17. Sharp or broad pulse peak for high resolution instruments? Choice of moderator performance

    International Nuclear Information System (INIS)

    Arai, M.; Watanabe, N.; Teshigawara, M.

    2001-01-01

    We demonstrate a concept how we should choose moderator performance to realize required performance for instruments. Neutron burst pulse can be characterized with peak intensity, peak width and tail. Those can be controllable by designing moderator, i.e. material, temperature, shape, decoupling, poisoning and having premoderator. Hence there are large number of variable parameters to be determined. Here we discuss the required moderator performance for some typical examples, i.e. high resolution powder instrument, chopper instrument, high resolution back scattering machine. (author)

  18. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  19. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  20. High density UO2 powder preparation for HWR fuel

    International Nuclear Information System (INIS)

    Hwang, S. T.; Chang, I. S.; Choi, Y. D.; Cho, B. R.; Kwon, S. W.; Kim, B. H.; Moon, B. H.; Kim, S. D.; Phyu, K. M.; Lee, K. A.

    1992-01-01

    The objective of this project is to study on the preparation of method high density UO 2 powder for HWR Fuel. Accordingly, it is necessary to character ize the AUC processed UO 2 powder and to search method for the preparation of high density UO 2 powder for HWR Fuel. Therefore, it is expected that the results of this study can effect the producing of AUC processed UO 2 powder having sinterability. (Author)

  1. Intensive structural investigation of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds using high resolution powder neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Mujamilah,; Ridwan, [Materials Science Research Center, National Atomic Energy Agency of Indonesia, Jakarta (Indonesia)

    1998-10-01

    The crystallographic and magnetic structure of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds system were refined by Rietveld analyses of the high resolution neutron powder diffraction data. The analyses results show that the substituent atoms were not distributed randomly over the Fe sites, but preferentially occupied some Fe sites. More further, it was also found that the substituent atoms which atomic radius smaller than Fe tend to avoid the 6c site at low concentration while the larger substituent atom tend to replace the Fe atom at this 6c site corresponding to their concentration. From these crystallographic data, it was suggested that the change of magnetic ordering temperature Tc, is not mainly determined by the change of short bond distance between this `dumb-bell` atoms, but it was also influenced by the nearest coordinated atoms to this site. (author)

  2. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  3. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  4. Spheroidization of molybdenum powder by radio frequency thermal plasma

    Science.gov (United States)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  5. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  6. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  7. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment

    DEFF Research Database (Denmark)

    Søgaard, Søren Vinter; Pedersen, Troels; Allesø, Morten

    2014-01-01

    Powder flow in small-scale equipment is challenging to predict. To meet this need, the impact of consolidation during powder flow characterization, the level of consolidation existing during discharge of powders from a tablet press hopper and the uncertainty of shear and wall friction measurements...... normal stress were approximately 200Pa and 114Pa, respectively, in the critical transition from the converging to the lower vertical section of the hopper. The lower limit of consolidation for the shear and wall friction test was approximately 500Pa and 200Pa, respectively. At this consolidation level......, the wall and shear stress resolution influences the precision of the measured powder flow properties. This study highlights the need for an improved experimental setup which would be capable of measuring the flow properties of powders under very small consolidation stresses with a high shear stress...

  8. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  9. Characterization of nanocrystalline zirconia powders by electron optical techniques

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1989-01-01

    Electron optical techniques are described for the characterization of the size distribution of agglomerates, aggregates and primary micro- and nanocrystallites of as-processed zirconia powders. These techniques allow for direct identification of individual crystallites as tetragonal or monoclinic, by optical transform of high-resolution electron micrographs. The latter also permit surface morphology to be examined with atomic resolution. Applications to a range of pure and doped zirconia powders, of recent commercial interest, are presented, which enable the results of concurrent studies by sedimentation, surface specific area measurements, porosity and sinterability to be correctly interpreted. 18 figs

  10. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  11. Influences of the Air in Metal Powder High Velocity Compaction

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2017-01-01

    Full Text Available During the process of metal powder high velocity impact compaction, the air is compressed sharply and portion remains in the compacts. In order to study the Influences, a discrete density volleyball accumulation model for aluminium powder was established with the use of ABAQUS. Study found that the powder porosity air obstruct the pressing process because remaining air reduced strength and density of the compacts in the current high-speed pressing (V≤100m/s. When speed further increased (V≥100m/s, the temperature of the air increased sharply, and was even much higher than the melting point of the material. When aluminium powder was compressed at a speed of 200m/s, temperatures of air could reach 2033 K, far higher than the melting point of 877 K. Increased density of powders was a result of local softening and even melt adhesive while air between particles with high temperature and pressure flowed past.

  12. User guide for the POLARIS powder diffractometer at ISIS

    International Nuclear Information System (INIS)

    Hull, S.; Mayers, J.

    1989-11-01

    The POLARIS spectrometer at ISIS is currently being scheduled for use as a high intensity, medium resolution powder diffractometer. The particularly high neutron flux on POLARIS enables experiments to be performed with comparatively short counting times or on small sample volumes. This ability has been exploited during kinetic experiments of phase changes, where diffraction data is collected whilst the furnace is heating up. The provision of a large detector bank at 2 θ ∼ 90 0 is particularly important for studies of powder samples at high pressures. This scattering geometry has significant advantages for experiments of this kind, as suitable collimation of the incident and outgoing beams eliminates scattering from the surrounding pressure transmitting medium. This guide is intended to give a short description of the POLARIS powder diffractometer and to provide the basic information required to perform a powder diffraction experiment. (author)

  13. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  14. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  15. Powder neutron diffractometers HRPT and DMCG

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P; Doenni, A; Staub, U; Zolliker, M [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Basic properties and applications of SINQ powder neutron diffractometers are described. For optimum use of the continuous neutron beams these instruments are equipped with position sensitive detectors, and both high-intensity and high-resolution modes of operation are possible. HRPT attaining resolutions {delta}d/d{<=}10{sup -3}, d=lattice spacing, at a thermal neutron channel of the target station and DMCG at a cold neutron guide coated with m=2 supermirrors, are complementary concerning the applications: the former will be mainly used for structural studies and the latter to investigate magnetic ordering phenomena. (author) figs., tabs., refs.

  16. Evaluation of high packing density powder X-ray screens by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, P.; Kandarakis, I.; Cavouras, D.; Kalivas, N.; Delis, H.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are employed in intensifying screens of both digital and conventional X-ray imaging detectors. High packing density powder screens have been developed (e.g. screens in ceramic form) exhibiting high-resolution and light emission properties, and thus contributing to improved image transfer characteristics and higher radiation to light conversion efficiency. For the present study, a custom Monte Carlo simulation program was used in order to examine the performance of ceramic powder screens, under various radiographic conditions. The model was developed using Mie scattering theory for the description of light interactions, based on the physical characteristics (e.g. complex refractive index, light wavelength) of the phosphor material. Monte Carlo simulations were carried out assuming: (a) X-ray photon energy ranging from 18 up to 49 keV, (b) Gd 2 O 2 S:Tb phosphor material with packing density of 70% and grain size of 7 μm and (c) phosphor thickness ranging between 30 and 70 mg/cm 2 . The variation of the Modulation Transfer Function (MTF) and the Luminescence Efficiency (LE) with respect to the X-ray energy and the phosphor thickness was evaluated. Both aforementioned imaging characteristics were shown to take high values at 49 keV X-ray energy and 70 mg/cm 2 phosphor thickness. It was found that high packing density screens may be appropriate for use in medical radiographic systems

  17. Treatment of refractory powders by a novel, high enthalpy dc plasma

    Science.gov (United States)

    Pershin, L.; Mitrasinovic, A.; Mostaghimi, J.

    2013-06-01

    Thermophysical properties of CO2-CH4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO2-CH4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders.

  18. Treatment of refractory powders by a novel, high enthalpy dc plasma

    International Nuclear Information System (INIS)

    Pershin, L; Mitrasinovic, A; Mostaghimi, J

    2013-01-01

    Thermophysical properties of CO 2 –CH 4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO 2 –CH 4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders. (paper)

  19. Characterization of prealloyed copper powders treated in high energy ball mill

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2006-01-01

    The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts

  20. Effective High-Frequency Permeability of Compacted Metal Powders

    Science.gov (United States)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  1. Powder processing of high Tc oxide superconductors and their properties

    International Nuclear Information System (INIS)

    Vajpei, A.C.; Upadhyaya, G.S.

    1992-01-01

    Powder processing of ceramics is an established technology and in the area of high T c superconductors, its importance is felt even more significantly. The present monograph is an attempt in this direction to explore the perspectives and practice of powder processing routes towards control and optimization of the microstructure and pertinent properties of high T c oxide superconductors. The monograph consists of 6 chapters. After a very brief introduction (Chapter 1), Chapter 2 describes various classes of high T c oxide superconductors and their phase equilibria. Chapter 3 highlights the preparation of oxide superconductor powders through various routes and details their subtle distinctions. Chapter 4 briefly covers characterisation of the oxide superconductors, laying emphasis on the process-analysis and microstructure. Chapter 5 describes in detail various fabrication techniques for bulk superconductors through the powder routes. The last Chapter (Chapter 6) describing properties of bulk oxide superconductors, discusses the role of subtituents, compositional variations and processing methods on such properties. References are given at the end of each chapter. (orig.)

  2. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  3. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  4. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  5. Competing orbital ordering in RVO3 compounds: High-resolution x-ray diffraction and thermal expansion

    International Nuclear Information System (INIS)

    Sage, M. H.; Blake, G. R.; Palstra, T. T. M.; Marquina, C.

    2007-01-01

    We report evidence for the phase coexistence of orbital orderings of different symmetry in RVO 3 compounds with intermediate-size rare earths. Through a study by high-resolution x-ray powder diffraction and thermal expansion, we show that the competing orbital orderings are associated with the magnitude of the VO 6 octahedral tilting and magnetic exchange striction in these compounds and that the phase-separated state is stabilized by lattice strains

  6. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  7. Mechanochemical effects on high-Tc superconductor powders

    International Nuclear Information System (INIS)

    Yamada, Taichi; Nagai, Ryoji; Takeuchi, Manabu; Minehara, Eisuke.

    1991-03-01

    We have investigated the mechanochemical effects on high-Tc superconductor (YBa 2 Cu 3 O 7 -δ) powders. The powder was mechanically ground in air using an agate mortar with a pestle. The grinding time was varied from 2 to 100 min. The mean particle sizes of the powders were measured by a sedimentation method. The degradation of superconductivity was evaluated by the measurements of the crystallinity and volume fraction of the superconducting phase. The crystallinity was estimated from X-ray diffraction patterns. The volume fraction of the superconducting phase was estimated from the diamagnetization. The results of these changes of 2 min. and 100 min. grinding are respectively as follows; 1) mean particle size: 10.8 μm and 7.2 μm, 2) crystallinity: 40.0 % and 24.8 %, 3) volume fraction of superconducting phase: 91.5 % and 30.0 %. Recovery of the crystallinity and superconductivity of the ground specimens by re-sintering and re-annealing was also studied. It was found that the recovery of both of the characteristics was not complete. (author)

  8. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  9. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  10. High-energy ball milling of powder B-C mixtures

    International Nuclear Information System (INIS)

    Ramos, Alfeu S.; Taguchi, Simone P.; Ramos, Erika C.T.; Arantes, Vera L.; Ribeiro, Sebastiao

    2006-01-01

    The present work reports on the preparation of B-10 at.% C and B-18 at.% C powders by high-energy ball milling and further heat treatment. The milling process was carried out in a planetary ball mill. Following the milling process, powder samples were heat-treated at 1200 deg. C for 4 h using inert atmosphere. The milled and heat-treated B-10C and B-18C powders were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. A reduction on the intensity of B and C peaks was noticed after milling for 2 h, probably due the fine powder particle sizes because the pronounced fracture mechanism during ball milling of brittle starting components. The XRD patterns of B-10C and B-18C powders milled for 6 h indicated the presence of other peaks, suggesting that a metastable structure could have been formed. After milling for 90 h, these unknown peaks were still present. A large amount of B 4 C was formed after heat treatment at 1200 deg. C for 4 h beside these unknown peaks

  11. Development of Dynamic Compaction Technology for Ultra High Strength Powder Products

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, M. K.; Uhm, Y. R.; Park, J. J.; Lee, J. G.; Ivanov, V. V.; Hong, S. J.

    2007-04-01

    A synthesis of ultra fine powder and its compaction have been considered as a new generation and high value added technology in various industrial fields such as automobile, machine tool, electronic chip, sensor and catalyst because of its special characteristics of high toughness, strength and wear resistance which are not shown in conventional process. In this study, ultra hard and fine powders, such as Fe-Si, CuNi and Al 2 O 3 , have been fabricated by the pulsed wire evaporation (PWE) method and mechanical alloying (MA) method. In addition, with ultra hard and fine powders, the magnetic core, diamond tool and water jet nozzle with high density were made by a uniaxial dynamic compaction for the purpose of the real industrial application

  12. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    International Nuclear Information System (INIS)

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  13. TOF powder diffractometer on a reactor source

    International Nuclear Information System (INIS)

    Bleif, H.J.; Wechsler, D.; Mezei, F.

    1999-01-01

    Complete text of publication follows. The performance of time-of-flight (TOF) methods on Long Pulse Spallation Sources can be studied at a reactor source. For this purpose a prototype TOF monochromator instrument will be installed at the KFKI reactor in Budapest. The initial setup will be a powder diffractometer with a resolution of δd/d down to 2 x 10 -3 at a wavelength of 1 A. The instrument uses choppers to produce neutron pulses of down to 10 μs FWHM. The optimal neutron source for a chopper instrument is a Long Pulse Spallation Source, but even on a continuous source simulations have shown that this instrument outperforms a conventional crystal monochromator powder diffractometer at high resolution. The main components of the TOF instrument are one double chopper defining the time resolution and two single choppers to select the wavelength range and to prevent frame overlap. For inelastic experiments a further chopper can be added in front of the sample. The neutron guide has a super-mirror coating and a curvature of 3500m. The total flight path is 20m and there are 24 single detectors in backscattering geometry. (author)

  14. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  15. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  16. High pressure neutron powder diffraction at LANSCE

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1994-01-01

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD) 2 , to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  17. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  18. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  19. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  20. Microstructure/processing relationships in high-energy high-rate consolidated powder composites of Nb-stabilized Ti3Al+TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, B.; Hou, C.; Eliezer, Z.; Marcus, H.L.

    1989-01-01

    A new approach to powder processing is employed in forming titanium aluminide composites. The processing consists of internal heating of a customized powder blend by a fast electrical discharge of a homopolar generator. The high-energy high-rate '1MJ in 1s' pulse permits rapid heating of an electrically conducting powder mixture in a cold wall die. This short time at temperature approach offers the opportunity to control phase transformations and the degree of microstructural coarsening not readily possible with standard powder-processing approaches. This paper describes the consolidation results of titanium aluminide-based powder-composite materials. The focus of this study was the definition of microstructure/processing relationships for each of the composite constituents, first as monoliths and then in composite forms. Non-equilibrium phases present in rapidly solidified TiAl powders are transformed to metastable intermediates en route to the equilibrium gamma phase.

  1. Pulsed Neutron Powder Diffraction for Materials Science

    Science.gov (United States)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1stress mapping inside

  2. High-energy, high-rate consolidation of tungsten and tungsten-based composite powders

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, S.K.; Persad, C.; Bourell, D.L.; Marcus, H.L. (Center for Materials Science and Engineering, Univ. of Texas, Austin (USA))

    1991-01-20

    Tungsten and tungsten-based heavy alloys are well known for their superior mechanical properties at elevated temperatures. However, unalloyed tungsten is difficult to consolidate owing to its very high melting temperature (3683 K). The additions of small amounts of low-melting elements such as iron, nickel, cobalt and copper, facilitate the powder processing of dense heavy alloys at moderate temperatures. Energetic high-current pulses have been used recently for powder consolidation. In this paper, the use of a homopolar generator as a power source to consolidate selected tungsten and tungsten-based alloys is examined. Various materials were consolidated including unalloyed tungsten, W-Nb, W-Ni, and tungsten heavy alloy with boron carbide. The effect of process parameters such as pressure and specific energy input on the consolidation of different alloy systems is described in terms of microstructure and property relationships. (orig.).

  3. Tolerance for High Flavanol Cocoa Powder in Semisweet Chocolate

    Directory of Open Access Journals (Sweden)

    John E. Hayes

    2013-06-01

    Full Text Available Endogenous polyphenolic compounds in cacao impart both bitter and astringent characteristics to chocolate confections. While an increase in these compounds may be desirable from a health perspective, they are generally incongruent with consumer expectations. Traditionally, chocolate products undergo several processing steps (e.g., fermentation and roasting that decrease polyphenol content, and thus bitterness. The objective of this study was to estimate group rejection thresholds for increased content of cocoa powder produced from under-fermented cocoa beans in a semisweet chocolate-type confection. The group rejection threshold was equivalent to 80.7% of the non-fat cocoa solids coming from the under-fermented cocoa powder. Contrary to expectations, there were no differences in rejection thresholds when participants were grouped based on their self-reported preference for milk or dark chocolate, indicating that these groups react similarly to an increase in high cocoa flavanol containing cocoa powder.

  4. Tolerance for high flavanol cocoa powder in semisweet chocolate.

    Science.gov (United States)

    Harwood, Meriel L; Ziegler, Gregory R; Hayes, John E

    2013-06-21

    Endogenous polyphenolic compounds in cacao impart both bitter and astringent characteristics to chocolate confections. While an increase in these compounds may be desirable from a health perspective, they are generally incongruent with consumer expectations. Traditionally, chocolate products undergo several processing steps (e.g., fermentation and roasting) that decrease polyphenol content, and thus bitterness. The objective of this study was to estimate group rejection thresholds for increased content of cocoa powder produced from under-fermented cocoa beans in a semisweet chocolate-type confection. The group rejection threshold was equivalent to 80.7% of the non-fat cocoa solids coming from the under-fermented cocoa powder. Contrary to expectations, there were no differences in rejection thresholds when participants were grouped based on their self-reported preference for milk or dark chocolate, indicating that these groups react similarly to an increase in high cocoa flavanol containing cocoa powder.

  5. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  6. Neutron Powder Diffraction Measurements of the Spinel MgGa2O4:Cr3+ - A Comparative Study between the High Flux Diffractometer D2B at the ILL and the High Resolution Powder Diffractometer Aurora at IPEN

    International Nuclear Information System (INIS)

    Da Silva, M A F M; Sosman, L P; Yokaichiya, F; Henry, P F; Bordallo, H N; Mazzocchi, V L; Parente, C B R; Mestnik-Filho, J

    2012-01-01

    Optical materials that emit from the visible to the near-infrared spectral region are of great interest due to their possible application as tunable radiation sources, as signal transmission, display, optoelectronics signal storage, cellulose industry as well as in dosimetry. One important family of such systems are the spinel compounds doped with Cr 3+ , in which the physical the properties are related to the insertion of punctual defects in the crystalline structure. The purpose of our work is two fold. First, we compare the luminescence of the MgGa 2 O 4 -Ga 2 O 3 system with the single phase Ga 2 O 3 and MgGa 2 O 4 and relate structural changes observed in MgGa 2 O 4 -Ga 2 O 3 system to the optical properties, and secondly, to compare the neutron powder diffraction results obtained using two diffractometers: D2B located at the ILL (Grenoble, France) and Aurora located at IPEN (São Paulo, Brazil). In the configuration chosen, Aurora shows an improved resolution, which is related to the design of its silicon focusing monochromator.

  7. Synthesis of niobium carbide by a high energy milling technique of powder metallurgy

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Gonzalez, Cezar Henrique; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco

    2010-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarced in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  8. Synthesis of niobium carbide (NbC) by powder metallurgy high energy milling technique

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco; Gonzalez, Cezar Henrique

    2009-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarce in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  9. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  10. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  11. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Lu; Li, Rong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Pang, Lijuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jiangtao; Wang, Mouhua [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wu, Guozhong, E-mail: wuguozhong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-30

    Highlights: • Hydrophilic UHMWPE powder and film were obtained by γ-ray pre-irradiation grafting of AA. • A low concentration of AA solution was used for surface modification of UHMWPE. • A small grafting yield of AA sufficiently improved hydrophilicity of UHMWPE powder and film. - Abstract: The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  12. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  13. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling

    International Nuclear Information System (INIS)

    Prabhu, B.; Suryanarayana, C.; An, L.; Vaidyanathan, R.

    2006-01-01

    Al-Al 2 O 3 metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al 2 O 3 were synthesized by high-energy milling of the blended component powders. The particle sizes of Al 2 O 3 studied were 50 nm, 150 nm, and 5 μm. A uniform distribution of the Al 2 O 3 reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al 2 O 3 in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques

  14. Spherical rhenium metal powder

    International Nuclear Information System (INIS)

    Leonhardt, T.; Moore, N.; Hamister, M.

    2001-01-01

    The development of a high-density, spherical rhenium powder (SReP) possessing excellent flow characteristics has enabled the use of advanced processing techniques for the manufacture of rhenium components. The techniques that were investigated were vacuum plasma spraying (VPS), direct-hot isostatic pressing (D-HIP), and various other traditional powder metallurgy processing methods of forming rhenium powder into near-net shaped components. The principal disadvantages of standard rhenium metal powder (RMP) for advanced consolidation applications include: poor flow characteristics; high oxygen content; and low and varying packing densities. SReP will lower costs, reduce processing times, and improve yields when manufacturing powder metallurgy rhenium components. The results of the powder characterization of spherical rhenium powder and the consolidation of the SReP are further discussed. (author)

  15. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  16. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  17. Application of dynamic compaction technology for high performance and precision powder products

    International Nuclear Information System (INIS)

    Lee, Chang Kyu; Lee, Jung Gu; Lee, Min Ku; Uhm, Young Rang; Park, Jin Ju; Lee, Gyeong Ja; Hong, Soon Jik

    2011-06-01

    The automation technology of magnetic pulsed compaction (MPC) has been developed for mass production of high performance powder products by dynamic compaction method. The pulse power equipment in MPC system has been modified for improved lifetime and productivity, so the modified one can produce high-density compacts at a rate of 10 times/min with semipermanent lifetime. Using this modified pulse power equipment, two types of automated MPC apparatus were constructed, which are operated by mechanical and hydraulic driving systems, respectively. By repeated compaction operations at a rate of 5 times/min, durability and productivity of these automated apparatus have been proven to be suitable for mass production. In addition, the lifetime of mold and punch for MPC has been improved by optimizing design and material as well as employing new lubrication system. By applying such automated MPC apparatus, detailed mass production technologies have been developed for several powder products such as diamond drilling segments, ceramic targets for optical coating, silver coins for water disinfection and small powder products for automobile. The developed powder products showed improved performance as compared to commercial ones, so they will be mass-produced industrially before long

  18. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  19. Nanocrystallite characterization of milled simulated dry process fuel powders by neutron diffraction

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Kang, Kwon Ho; Moon, Je Sun; Song, Kee Chan; Choi, Yong Nam

    2003-01-01

    The nano-scale crystallite sizes of simulated spent fuel powders were measured by the neutron diffraction line broadening method in order to analyze the sintering behavior of the dry process fuel. The mixed U0 2 and fission product oxide powders were dry-milled in an attritor for 30, 60, and 120 min. The diffraction patterns of the powders were obtained by using the high resolution powder diffractometer in the HANARO research reactor. Diffraction line broadening due to crystallite size was measured using various techniques such as the Stokes' deconvolution, profile fitting methods using Cauchy function, Gaussian function, and Voigt function, and the Warren-Averbach method. The r.m.s. strain, stacking fault, twin and dislocation density were measured using the information from the diffraction pattern. The realistic crystallite size can be obtained after separation of the contribution from the non-uniform strain, stacking fault and twin

  20. Continuous Process for Low-Cost, High-Quality YSZ Powder

    Energy Technology Data Exchange (ETDEWEB)

    Scott L. Swartz; Michael Beachy; Matthew M. Seabaugh

    2006-03-31

    This report describes results obtained by NexTech Materials, Ltd. in a project funded by DOE under the auspices of the Solid-State Energy Conversion Alliance (SECA). The project focused on development of YSZ electrolyte powder synthesis technology that could be ''tailored'' to the process-specific needs of different solid oxide fuel cell (SOFC) designs being developed by SECA's industry teams. The work in the project involved bench-scale processing work aimed at establishing a homogeneous precipitation process for producing YSZ electrolyte powder, scaleup of the process to 20-kilogram batch sizes, and evaluation of the YSZ powder products produced by the process. The developed process involved the steps of: (a) preparation of an aqueous hydrous oxide slurry via coprecipitation; (b) washing of residual salts from the precipitated hydroxide slurry followed by drying; (c) calcination of the dried powder to crystallize the YSZ powder and achieve desired surface area; and (d) milling of the calcined powder to targeted particle size. YSZ powders thus prepared were subjected to a comprehensive set of characterization and performance tests, including particle size distribution and surface area analyses, sintering performance studies, and ionic conductivity measurements. A number of different YSZ powder formulations were established, all of which had desirable performance attributes relative to commercially available YSZ powders. Powder characterization and performance metrics that were established at the onset of the project were met or exceeded. A manufacturing cost analysis was performed, and a manufactured cost of $27/kg was estimated based on this analysis. The analysis also allowed an identification of process refinements that would lead to even lower cost.

  1. Fabrication of high-alloy powders consisting of spherical particles from ultradispersed components

    Science.gov (United States)

    Samokhin, A. V.; Fadeev, A. A.; Sinayskiy, M. A.; Alekseev, N. V.; Tsvetkov, Yu. V.; Arzhatkina, O. A.

    2017-07-01

    It is shown that powders of a model high alloy consisting of spherical particles 25-50 μm in size can be synthesized from a starting ultradispersed powder, which is made of a mixture of the alloy components and is fabricated by the magnesiothermal reduction of metal chlorides in the potassium chloride melt. The synthesis includes the stages of microgranulation of an ultradispersed powder, heat treatment of microgranules, classification of the microgranules with the separation of microgranule fraction of 25-50 μm, spheroidization of the separated fraction in a thermal plasma flow, and classification with the separation of a fraction of micro- and submicrometer-sized particles.

  2. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures

    International Nuclear Information System (INIS)

    Gajovic, A.; Furic, K.; Tomasic, N.; Popovic, S.; Skoko, Z.; Music, S.

    2005-01-01

    Nanocrystalline TiO 2 powders were prepared by high-energy ball-milling using zirconia vial and balls. The changes of microstructure caused by material processing were studied using Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The milling of the starting TiO 2 powder (anatase + rutile in traces) induced phase transitions to high-pressure polymorph, TiO 2 II, and rutile. We found that the phase transition to TiO 2 II was initiated at the surface of the small particles, while transition to rutile started in their center. Changes in crystallite size during milling process were obtained by the Scherrer method, while the particle size changes were monitored by TEM. The kinetics of phase changes, a decrease in crystallite/particle size, as well as zirconia contamination depended on the powder-to-ball weight ratio. The starting powder and some selected ball-milled samples were investigated in situ by Raman spectroscopy and XRD at high temperatures (up to 1300 deg. C) to examine their behavior during the sintering process. A difference in the results obtained by these two techniques was explained in frame of basic physical properties characterizing both methods. The morphology of the final sinters was monitored by scanning electron microscopy (SEM)

  3. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    Science.gov (United States)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  4. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    Science.gov (United States)

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  5. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  6. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  7. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  8. Production of nanocrystalline cermet thermal spray powders for wear resistant coatings by high-energy milling

    International Nuclear Information System (INIS)

    Eigen, N.; Klassen, T.; Aust, E.; Bormann, R.; Gaertner, F.

    2003-01-01

    TiC-Ni based nanocrystalline cermet powders for thermal spraying were produced by high-energy milling. Milling experiments were performed in an attrition mill and a vibration mill in kilogram scale, and powder morphologies and microstructures were characterized using scanning electron microscopy, X-ray diffraction, and laser scattering for particle size analysis. Milling time and powder input were optimized with respect to the desired microstructure and particle sizes, and the results using both types of mill were compared. Powders with homogeneously dispersed hard phase particles below 300 nm could be produced in both mills. Additional processes for the refinement of powder morphology and particle size distribution are discussed

  9. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    Energy Technology Data Exchange (ETDEWEB)

    Kharanzhevskiy, Evgeny, E-mail: eh@udsu.ru [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation); Kostenkov, Sergey [Udmurt State University, 426034 Universitetskaya St., 1, Izhevsk (Russian Federation)

    2014-02-15

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law.

  10. Modeling of laser radiation transport in powder beds with high-dispersive metal particles

    International Nuclear Information System (INIS)

    Kharanzhevskiy, Evgeny; Kostenkov, Sergey

    2014-01-01

    Highlights: ► Transport of laser energy in dispersive powder beds was numerically simulated. ► The results of simulating are compared with physicals experiments. ► We established the dependence of the extinction coefficient from powder properties. ► A confirmation of a geometric optic approach for monodisperse powders was proposed. -- Abstract: Two-dimensional transfer of laser radiation in a high-dispersive powder heterogeneous media is numerically calculated. The size of particles is comparable with the wave length of laser radiation so the model takes into account all known physical effects that are occurred on the vacuum–metal surface interface. It is shown that in case of small particles size both morphology of powder particles and porosity of beds influence on absorptance by the solid phase and laser radiation penetrate deep into the area of geometric shadow. Intensity of laser radiation may be described as a function corresponded to the Beer–Lambert–Bouguer law

  11. Melt-drop technique for the production of high-purity metal powder

    International Nuclear Information System (INIS)

    Aldinger, F.; Linck, E.; Claussen, N.

    1977-01-01

    The production of high-purity powders of metals and alloys such as beryllium, titanium alloys, or superalloys is a problem. Oxidation of these materials cannot be avoided. Oxidation occurs in inert gases and even in reducing atmospheres when any gas impurities are present. Therefore, the powder production of these materials has to be performed either in high vacuum or at least in a static atmosphere of inert gas purified immediately before coming into contact with the disintegrating material. These requirements are very well met by the melt-drop technique presented in this paper, especially for coarse powders which must not necessarily be cold-workable. This is true, for example, for superalloys where high-temperature applications require large grain sizes; or in titanium alloys because the final microstructure will be achieved by a thermomechanical treatment. In the case of beryllium and beryllium alloys, where grain sizes <5 μm are desired, further milling is necessary. But the melt-drop technique offers a simple and clean method directly from the purifying process of vacuum melting. In melt-drop processes a liquid metal flows through a nozzle at the bottom of a crucible or the melt is just poured through a sieve. The theory of disintegration of a liquid jet into droplets, dates back to the 19th century. More recent investigations attempted to produce uniformly sized droplets by applying a capillary wave of given wave length to the jet. But this has been done only with non-metallic materials. Evidence is presented to prove the theory and show that this concept is applicable to the production of metal powders with controlled particle size

  12. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  13. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  14. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.

    2001-01-01

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  15. APPLICATION OF POWDER HIGH-SPEED STEEL AS ANTIFRICTION MATERIAL

    Directory of Open Access Journals (Sweden)

    M. Beznak

    2011-01-01

    Full Text Available The influence of disulphide molybdenum additives on antifriction characteristics of powder high-speed steel produced by means of hot hydrostatic pressing is investigated. It is shown that disulphide molybdenum additives promote the decrease of coefficient of friction and temperature in hearth of friction as a result the increase of wear resistance of steel.

  16. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  17. Consolidation of powders of the superconductor YBa/sub 2/Cu/sub 3/O/sub 7-. delta. / by high energy-high rate processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.Y.; Persad, C.; Swinnea, J.S.; Marcus, H.L.; Steinfink, H. (Texas Univ., Austin, TX (USA). Center for Materials Science and Engineering)

    1988-01-01

    The consolidation response of powders of the superconducting compound YBa/sub 2/Cu/sub 3/O/sub 7-{delta}/ by itself and admixed with metal powders is reported. The processing approach relies on short duration (high current density (10/sup 4/A/cm/sup 2/), pulse resistive heating of powders under applied pressures of 200 MPa to 400 MPa. Powders and fabricated disk concepts were characterized by X-ray diffraction, optical and scanning electron microscopy.

  18. The synthesis of a high quality, low cost silicon nitride powder by the carbothermal reduction of silica

    International Nuclear Information System (INIS)

    Cochran, G.A.; Conner, C.L.; Eisman, G.A.; Weimer, A.W.; Carroll, D.F.; Dunmead, S.D.; Hwang, C.J.

    1994-01-01

    The development and emergence of silicon nitride in the marketplace depends on the availability of a high quality, low cost powder which meets or exceeds the requirements for the customer's part application. The Dow Chemical Company, funded by the United States Department of Energy Oak Ridge National Laboratory, is engaged in developing a process which will economically synthesize commercial quantities of such a high quality powder. The Dow Chemical Company's approach is based on the carbothermal reduction of silica and has been shown to produce a sub-micron, equi-axed powder with high alpha content (> 95%), low oxygen (< 2%), and minimal carbon and impurities. This paper will review The Dow Chemical Company program and present preliminary results of the synthesis and powder processing efforts. (orig.)

  19. A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction

    Science.gov (United States)

    Sasai, Kenzo; Kofu, Maiko; Ibberson, Richard M.; Hirota, Kazuma; Yamaura, Jun-ichi; Hiroi, Zenji; Yamamuro, Osamu

    2010-01-01

    We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the β-pyrochlore oxide KOs2O6, which has a superconducting transition at Tc = 9.6 K and another novel transition at Tp = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the Tp transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K-1 mol-1, does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the Tp transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the Tp transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

  20. Use of a high temperature hydrostatic extrusion technique for powders strengthening

    International Nuclear Information System (INIS)

    Decours, J.; Gavinet, J.; Weisz, M.

    1975-01-01

    A conventional 575 tonnes extrusion press has been modified by a device permitting the extrusion process by hydrostatic pression through a leakless mechanical set (13,000 bars maximum), from room temperature to 1,200 deg C. This new device allows: the high temperature hydrostatic extrusion for strengthening of powders, the isostatic compression of powders. Examples of realisations obtained by this process are described, including the influence of different parameters: pressure, temperature, extrusion ratio and for different materials: pure metals (iron, nickel, niobium, etc...) and alloys (stainless steel, molybdenum, niobium nickel alloys, etc...). Then, the advantages of the process are emphasized [fr

  1. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  2. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  3. Mixed-linker UiO-66: structure-property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations.

    Science.gov (United States)

    Taddei, Marco; Tiana, Davide; Casati, Nicola; van Bokhoven, Jeroen A; Smit, Berend; Ranocchiari, Marco

    2017-01-04

    The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.

  4. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15{sup th} Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  5. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  6. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  7. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  8. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    International Nuclear Information System (INIS)

    David, W.I.F.; Jorgensen, J.D.

    1990-10-01

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs

  9. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  10. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  11. Powder diffraction from a continuous microjet of submicrometer protein crystals.

    Science.gov (United States)

    Shapiro, D A; Chapman, H N; Deponte, D; Doak, R B; Fromme, P; Hembree, G; Hunter, M; Marchesini, S; Schmidt, K; Spence, J; Starodub, D; Weierstall, U

    2008-11-01

    Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.

  12. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  13. Process Analytical Technology for High Shear Wet Granulation: Wet Mass Consistency Reported by In-Line Drag Flow Force Sensor Is Consistent With Powder Rheology Measured by At-Line FT4 Powder Rheometer.

    Science.gov (United States)

    Narang, Ajit S; Sheverev, Valery; Freeman, Tim; Both, Douglas; Stepaniuk, Vadim; Delancy, Michael; Millington-Smith, Doug; Macias, Kevin; Subramanian, Ganeshkumar

    2016-01-01

    Drag flow force (DFF) sensor that measures the force exerted by wet mass in a granulator on a thin cylindrical probe was shown as a promising process analytical technology for real-time in-line high-resolution monitoring of wet mass consistency during high shear wet granulation. Our previous studies indicated that this process analytical technology tool could be correlated to granulation end point established independently through drug product critical quality attributes. In this study, the measurements of flow force by a DFF sensor, taken during wet granulation of 3 placebo formulations with different binder content, are compared with concurrent at line FT4 Powder Rheometer characterization of wet granules collected at different time points of the processing. The wet mass consistency measured by the DFF sensor correlated well with the granulation's resistance to flow and interparticulate interactions as measured by FT4 Powder Rheometer. This indicated that the force pulse magnitude measured by the DFF sensor was indicative of fundamental material properties (e.g., shear viscosity and granule size/density), as they were changing during the granulation process. These studies indicate that DFF sensor can be a valuable tool for wet granulation formulation and process development and scale up, as well as for routine monitoring and control during manufacturing. Copyright © 2016. Published by Elsevier Inc.

  14. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  15. Wavevector and energy resolution of the polarized diffuse scattering spectrometer D7

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, T., E-mail: tom.fennell@psi.ch [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Mangin-Thro, L., E-mail: mangin-throl@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France); Mutka, H., E-mail: mutka@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France); Nilsen, G.J., E-mail: goran.nilsen@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Wildes, A.R., E-mail: wildes@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France)

    2017-06-11

    The instrumental divergence parameters and resolution for the D7 neutron diffuse scattering spectrometer at the Institut Laue-Langevin, France, are presented. The resolution parameters are calibrated against measurements of powders, single crystals, and the incoherent scattering from vanadium. We find that the powder diffraction resolution is well described by the Cagliotti function, the single crystal resolution function can be parameterized using the Cooper-Nathans formalism, and that in time-of-flight mode the energy resolution is consistent with monochromatic focussing.

  16. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  17. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  18. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  19. Ultra high frequency induction welding of powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, U.; Gulsahin, I.

    2014-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  20. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  1. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  2. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  3. Study on synthesis of ultrafine Cu–Ag core–shell powders with high electrical conductivity

    International Nuclear Information System (INIS)

    Peng Yuhsien; Yang Chihhao; Chen Kuanting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-01-01

    Highlights: ► This synthesis method is relatively facile, novel and eco-friendly. ► Toxic agents were not used for chelating agent, reductant or dispersant in our method. ► The reaction can under room temperature for energy saving purpose. ► Cu–Ag core–shell powders with homogeneous cover-silver layer. ► The resistivity of Cu–Ag core–shell powders has the same value as the pure silver. - Abstract: Cu–Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu–Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10 −4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10 −4 Ω cm).

  4. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Shvab, Ruslan [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden); Bram, Martin; Bitzer, Martin [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), D-52425 Jülich (Germany); Nyborg, Lars [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE - 412 96 Gothenburg (Sweden)

    2016-12-01

    Highlights: • Powder particles of Ti, NiTi and Ti6Al4V are covered by homogeneous Ti-oxide layer. • Thickness of the Ti-oxide layer is in the range of 2.9 to 4.2 nm in as-atomized state. • Exposure to the air results in immediate oxide thickness increase of up to 30%. • Oxide thickness increase of only 15% during storage for 8 years. • High passivation of the Ti, NiTi and Ti6Al4V powder surface by Ti-oxide layer. - Abstract: High affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years. Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected. Results indicate a

  5. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  6. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  7. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  8. Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Zhilyaev, Alexander P. [Institute for Metals Superplasticity Problems, Khalturina 39, Ufa 450001 (Russian Federation); Fundació CTM Centre Tecnològic, Plaça de la Ciencia 2, Manresa, Barcelona 08242 (Spain); Research Laboratory for Mechanics of New Nanomaterials, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251 (Russian Federation); Ringot, Geoffrey [École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), National Polytechnic Institute of Toulouse (INPT), 31077 Toulouse Cedex 04 (France); Huang, Yi [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Maria Cabrera, Jose [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, Bacelona 08028 (Spain); Langdon, Terence G., E-mail: langdon@usc.edu [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2017-03-14

    Research was conducted to investigate the potential for consolidating titanium powder using high-pressure torsion (HPT) at room temperature. The nanostructured samples processed by HPT were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show there is a significant refinement of the Ti powder and it consolidates into bulk nanostructured titanium with a mean grain size estimated by TEM as ~200–300 nm and a mean crystallite size measured by XRD as ~20–30 nm. Microhardness measurements and tensile testing show high strength and low ductility after consolidation under a pressure of 6.0 GPa for 5 revolutions. Additional short annealing at a temperature of 300 °C for 10 min leads to a significant enhancement in ductility while maintaining the high strength.

  9. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    Science.gov (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  10. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  11. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  12. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  13. High-purity tungsten powder: spheroidizing, properties and use in electronics

    International Nuclear Information System (INIS)

    Kapustin, V.I.; Burov, I.V.

    1999-01-01

    A study was made on the method of spheroidizing of tungsten powder in plasma of super high-frequency (SHF) discharge for formation of matrices, cathodes with regular porous structure. Kinetics of interphase interaction in the basic W-Y 2 O 3 cathode system was investigated. Possibility of using small additions of Re 2 Yintermetallic compound as an activator of emission-active component of cathodes was analyzed, High efficiency of plasma SHF-treatment with the use of laminar plasma flow is shown [ru

  14. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  15. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  16. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  17. High-resolution 3D X-ray microtomography as tool to investigate size distribution of grain phase and pore space in sandstones

    Science.gov (United States)

    Kahl, Wolf-Achim; Holzheid, Astrid

    2013-04-01

    The geometry and internal structures of sandstone reservoirs, like grain size, sorting, degree of bioturbation, and the history of the diagenetic alterations determine the quantity, flow rates, and recovery of hydrocarbons present in the pore space. In this respect, processes influencing the deep reservoir quality in sandstones are either of depositional, shallow diagenetic, or deep-burial origin. To assess the effect of compaction and cementation on the pore space during diagenesis, we investigated a set of sandstone samples using high-resolution microtomography (µ-CT). By high-resolution µ-CT, size distributions (in 2D and 3D), surface areas and volume fractions of the grain skeleton and pore space of sandstones and - in addition - of mineral powders have been determined. For this study, we analysed aliquots of sandstones that exhibit either complete, partial or no cemententation of the pore space, and sets of mineral powders (quartz, feldspar, calcite). As the resolution of the µ-CT scans is in the µm-range, the surface areas determined for sandstones and powders do detect the geometric surface of the material (Kahl & Holzheid, 2010). Since there are differing approaches to "size" parameters like e.g., long/short particle axes, area equivalent radius, Feret-diameter (2D), and structural thickness (3D), we decided to illustrate the effect of various size determinations for (a) single grains, (b) grain skeletons, and (c) pore space. Therefor, the computer-aided morphometric analysis of the segmented 3D models of the reconstructed scan images comprises versatile calculation algorithms. For example, size distribution of the pore space of partially cemented sandstones can be used to infer the timing of the formation of the cement in respect to tectonic/diagenetic activities. In the case of a late-stage partial cementation of a Bunter sandstone, both pore space and cement phase show identical size distributions. On the contrary, the anhydrite cement of a

  18. Roller compaction of moist pharmaceutical powders.

    Science.gov (United States)

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Use of Amino‐Functionalized CNTs and CVD Grown CNTs for Better Dispersion in Al Powder in the Fabrication of Composites

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, S. K.; Mathur, R. B. [National Physical Laboratory (CSIR), New Delhi‐1100 12 (India); Mamta,; Teotia, Satish [Guru Jambheshwar University of Science and Technology, Hisar (India); Chahal, Rajiv [Nanoscience and Nanotechnology, Panjab University, Chandigarh (India)

    2011-12-12

    We report an improved process for the better dispersion of multiwalled carbon nanotubes (MWCNTs) in Al powder used for the fabrication of Al‐matrix composites employing powder metallurgy process. For obtaining a better dispersion of MWCNTs in Al, we used two types of MWCNTs. In the first type, the MWCNTs were firstly functionalized by using ammonium bi‐carbonate and mix with Al powder using a high energy ball mill in the presence of a process control agent. In the second type we grew MWCNTs directly on Al powder using CVD. Various mechanical properties of the composites including micro hardness, compressive strength etc. were determined. It has been observed that using functionalized MWCNTs (fCNTs) and CVD grown MWCNTs, these properties were found to enhance significantly. The dispersion of functionalized CNTs was studied by SEM and the interfacial bonding between functionalized CNTs and Al matrix using high resolution transmission electron microscopy (HRTEM).

  20. Radiation of powdered milk produced at Londrina; PR, Brazil

    CERN Document Server

    Melquiades, F L

    2001-01-01

    This work deals with the measurement of radioactive activities in powdered milk, with high resolution gamma-ray spectrometry, using a HPGe detector. Preliminary measurements were accomplished to define the kind of the system shield, the geometry of the sample recipient, the size of the sampling and the self absorption correction. It was possible to measure the radionuclides sup 4 sup 0 K, sup 1 sup 3 sup 7 Cs and sup 2 sup 0 sup 8 Tl. Tukey's average comparison test was used to check the repeatability of the measurements.

  1. The Influence of the Powder Stream on High-Deposition-Rate Laser Metal Deposition with Inconel 718

    Directory of Open Access Journals (Sweden)

    Chongliang Zhong

    2017-10-01

    Full Text Available For the purpose of improving the productivity of laser metal deposition (LMD, the focus of current research is set on increasing the deposition rate, in order to develop high-deposition-rate LMD (HDR-LMD. The presented work studies the effects of the powder stream on HDR-LMD with Inconel 718. Experiments have been designed and conducted by using different powder feeding nozzles—a three-jet and a coaxial powder feeding nozzle—since the powder stream is mainly determined by the geometry of the powder feeding nozzle. After the deposition trials, metallographic analysis of the samples has been performed. The laser intensity distribution (LID and the powder stream intensity distribution (PID have been characterized, based on which the processes have been simulated. Finally, for verifying and correcting the used models for the simulation, the simulated results have been compared with the experimental results. Through the conducted work, suitable boundary conditions for simulating the process with different powder streams has been determined, and the effects of the powder stream on the process have also been determined. For a LMD process with a three-jet nozzle a substantial part of the powder particles that hit the melt pool surface are rebounded; for a LMD process with a coaxial nozzle almost all the particles are caught in the melt pool. This is due to the different particle velocities achieved with the two different nozzles. Moreover, the powder stream affects the heat exchange between the heated particles and the melt pool: a surface boundary condition applies for a powder stream with lower particle velocities, in the experiment provided by a three-jet nozzle, and a volumetric boundary condition applies for a powder stream with higher particle velocities, provided by a coaxial nozzle.

  2. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  3. Two layer powder pressing

    International Nuclear Information System (INIS)

    Schreiner, H.

    1979-01-01

    First, significance and advantages of sintered materials consisting of two layers are pointed out. By means of the two layer powder pressing technique metal powders are formed resulting in compacts with high accuracy of shape and mass. Attributes of basic powders, different filling methods and pressing techniques are discussed. The described technique is supposed to find further applications in the field of two layer compacts in the near future

  4. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  5. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  6. Development of high performance liquid chromatography method for miconazole analysis in powder sample

    Science.gov (United States)

    Hermawan, D.; Suwandri; Sulaeman, U.; Istiqomah, A.; Aboul-Enein, H. Y.

    2017-02-01

    A simple high performance liquid chromatography (HPLC) method has been developed in this study for the analysis of miconazole, an antifungal drug, in powder sample. The optimized HPLC system using C8 column was achieved using mobile phase composition containing methanol:water (85:15, v/v), a flow rate of 0.8 mL/min, and UV detection at 220 nm. The calibration graph was linear in the range from 10 to 50 mg/L with r 2 of 0.9983. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 2.24 mg/L and 7.47 mg/L, respectively. The present HPLC method is applicable for the determination of miconazole in the powder sample with a recovery of 101.28 % (RSD = 0.96%, n = 3). The developed HPLC method provides short analysis time, high reproducibility and high sensitivity.

  7. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  8. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  9. Ultrafine TaC powders prepared in a high frequency plasma

    International Nuclear Information System (INIS)

    Canteloup, J.; Mocellin, A.

    1976-01-01

    Ultrafine tantalum carbide powders were prepared under conditions allowing higher purities to be achieved than when plasma or chemical vapour deposition techniques are used. The process consists of dissociation-vaporisation of powders in a radio frequency argon plasma followed by quenching of the vapours and collection in an electrostatic precipitator. Physical and chemical properties are given. The presence of excess carbon appears to protect against oxidation and as a dispersing medium for the carbide powders. (U.K.)

  10. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  11. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  12. A new powder morphology for making high-porosity nickel structures

    International Nuclear Information System (INIS)

    Cormier, Elena; Yang, Quan Min; Charles, Doug; Wasmund, Eric Bain; Renny, Les V.

    2007-01-01

    Nickel powders with a special branched chain microstructure such as CVRD Inco Limited's Type 255 trademark have been used for more than 50 years as the basis for making porous metal monoliths for applications such as the electrical backbone of nickel electrode batteries by the sinter/slurry process. The classic trade-off when making these structures is that the strength and porosity are inversely correlated. A number of adaptations to the sinter/slurry making process have been proposed to address this problem. The current approach proposes another solution, optimization of the particle microstructure. The strength and porosity relationship of battery plaques made from Type 255 trademark is compared with plaques made with the new powder and it is statistically verified that plaques made from the new powder have an improved combination of structural properties. A comparison of the rheological characteristics of metal powder slurries suggests ways that the new powder can be incorporated into existing processes. Finally, it is shown that properties such as the slurry apparent viscosity can be used as the basis for measuring and predicting the characteristics of particle microstructure that impute these benefits to the sinter/slurry process. An analysis of battery plaques made with the new powder on an industrial battery sinter/slurry production line confirms that the laboratory results are valid. (author)

  13. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  14. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer (TM) disposable high-dose dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne H.; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    Objectives To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer (TM) dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Methods Comparison

  15. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  16. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Science.gov (United States)

    Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana

    2014-05-01

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  17. Introducing a novel gravitation-based high-velocity compaction analysis method for pharmaceutical powders.

    Science.gov (United States)

    Tanner, Timo; Antikainen, Osmo; Ehlers, Henrik; Yliruusi, Jouko

    2017-06-30

    With modern tableting machines large amounts of tablets are produced with high output. Consequently, methods to examine powder compression in a high-velocity setting are in demand. In the present study, a novel gravitation-based method was developed to examine powder compression. A steel bar is dropped on a punch to compress microcrystalline cellulose and starch samples inside the die. The distance of the bar is being read by a high-accuracy laser displacement sensor which provides a reliable distance-time plot for the bar movement. In-die height and density of the compact can be seen directly from this data, which can be examined further to obtain information on velocity, acceleration and energy distribution during compression. The energy consumed in compact formation could also be seen. Despite the high vertical compression speed, the method was proven to be cost-efficient, accurate and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    Energy Technology Data Exchange (ETDEWEB)

    Pakseresht, A.H., E-mail: amirh_pak@yahoo.com [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Rahimipour, M.R. [Department of Ceramics, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Vaezi, M.R. [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box 31787-316, Karaj (Iran, Islamic Republic of); Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, P.O. Box 84156-83111, Isfahan (Iran, Islamic Republic of)

    2016-04-15

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO{sub 3} powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  19. Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder

    International Nuclear Information System (INIS)

    Pakseresht, A.H.; Rahimipour, M.R.; Vaezi, M.R.; Salehi, M.

    2016-01-01

    In this paper, atmospheric plasma spray method was used to produce dense plasma sprayable powder and thick barium titanate film. In this regard, the commercially feedstock powders were granulated and spheroidized by the organic binder and the thermal spray process, respectively. Scanning electron microscopy was used to investigate the microstructure of the produced powders and the final deposits. X-ray diffraction was also implemented to characterize phase of the sprayed powder. The results indicated that spheroidized powder had suitable flowability as well as high density. The micro-hardness of the film produced by the sprayed powders was higher than that of the film deposited by the irregular granules. Additionally, relative permittivity of the films was increased by decreasing the defects from 160 to 293 for film deposited using spheroidized powder. The reduction in the relative permittivity of deposits, in comparison with the bulk material, was due to the existence of common defects in the thermal spray process. - Highlights: • We prepare sprayable BaTiO_3 powder with no or less inside voids for plasma spray application for first time. • The sprayable powder has good flow characteristics and high density. • Powder spheroidization via plasma spray improves the hardness and dielectric properties of the deposited film.

  20. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  1. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  2. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    Science.gov (United States)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  3. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    OpenAIRE

    Mehmet Koç; Figen Kaymak-Ertekin

    2016-01-01

    Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity) and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transiti...

  4. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    Science.gov (United States)

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  5. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM, Circuito de la Investigacion Cientifica s/n, C.U. Del. Coyoacan (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico)

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  6. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    International Nuclear Information System (INIS)

    Rojas-Chavez, H.; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-01-01

    Highlights: → PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. → During high-energy milling oxygen has to be chemically reduced from the lead oxide. → Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  7. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination

    International Nuclear Information System (INIS)

    Bhattacharya, Prajina; Bellon, Pascal; Averback, Robert S.; Hales, Stephen J.

    2004-01-01

    High-energy ball milling was employed to produce nanocrystalline Ti-Al powders. As sticking of the powders can be sufficiently severe to result in a near zero yield, emphasis was placed on varying milling conditions so as to increase the yield, while avoiding contamination of the powders. The effects of milling parameters such as milling tools, initial state of the powders and addition of process control agents (PCA's) were investigated. Cyclohexane, stearic acid and titanium hydride were used as PCA's. Milling was conducted either in a Cr-steel vial with C-steel balls, or in a tungsten carbide (WC) vial with WC balls, using either elemental or pre-alloyed powders. Powder samples were characterized using X-ray diffraction, scanning and transmission electron microscopy. In the absence of PCA's mechanical alloying in a WC vial and attrition milling in a Cr-steel vial were shown to lead to satisfactory yields, about 65-80%, without inducing any significant contamination of the powders. The results suggest that sticking of the powders on to the milling tools is correlated with the phase evolution occurring in these powders during milling

  8. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    Science.gov (United States)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-01

    Stereocomplexation between enantiomeric poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  9. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency

    Science.gov (United States)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-01-01

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240–260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180–210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time. PMID:26837848

  10. Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency.

    Science.gov (United States)

    Bai, Dongyu; Liu, Huili; Bai, Hongwei; Zhang, Qin; Fu, Qiang

    2016-02-03

    Stereocomplexation between enantiomeric poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) provides an avenue to greatly enhance performance of eco-friendly polylactide (PLA). Unfortunately, although the manufacturing of semicrystalline polymers generally involves melt processing, it is still hugely challenging to create high-performance stereocomplexed polylactide (sc-PLA) products from melt-processed high-molecular-weight PLLA/PDLA blends due to the weak crystallization memory effect of stereocomplex (sc) crystallites after complete melting as well as the substantial degradation of PLA chains at elevated melt-processing temperatures of ca. 240-260 °C. Inspired by the concept of powder metallurgy, here we report a new facile route to address these obstacles by sintering of sc-PLA powder at temperatures as low as 180-210 °C, which is distinctly different from traditional sintering of polymer powders performed at temperatures far exceeding their melting temperatures. The enantiomeric PLA chain segments from adjacent powder particles can interdiffuse across particle interfaces and co-crystallize into new sc crystallites capable of tightly welding the interfaces during the low-temperature sintering process, and thus highly transparent sc-PLA products with outstanding heat resistance, mechanical strength, and hydrolytic stability have been successfully fabricated for the first time.

  11. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  12. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  13. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties.

    Science.gov (United States)

    Darniadi, Sandi; Ho, Peter; Murray, Brent S

    2018-03-01

    Blueberry juice powder was developed via foam-mat freeze-drying (FMFD) and spray-drying (SD) via addition of maltodextrin (MD) and whey protein isolate (WPI) at weight ratios of MD/WPI = 0.4 to 3.2 (with a fixed solids content of 5 wt% for FMFD and 10 wt% for SD). Feed rates of 180 and 360 mL h -1 were tested in SD. The objective was to evaluate the effect of the drying methods and carrier agents on the physical properties of the corresponding blueberry powders and reconstituted products. Ratios of MD/WPI = 0.4, 1.0 and 1.6 produced highly stable foams most suitable for FMFD. FMFD gave high yields and low bulk density powders with flake-like particles of large size that were also dark purple with high red values. SD gave low powder recoveries. The powders had higher bulk density and faster rehydration times, consisting of smooth, spherical and smaller particles than in FMFD powders. The SD powders were bright purple but less red than FMFD powders. Solubility was greater than 95% for both FMFD and SD powders. The FMFD method is a feasible method of producing blueberry juice powder and gives products retaining more characteristics of the original juice than SD. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  15. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  16. Radiation effects in high-disperse metal media and their application in powder metallurgy

    International Nuclear Information System (INIS)

    Zaykin, Y.A.; Aliyev, B.A.

    2002-01-01

    Experimental and theoretical results showing up effects of metal powder radiation processing, such as powder grinding, chemical refinement, and changes in powder particle surface state, are discussed. It is shown that preliminary irradiation of metal powders leads to profound structural alterations at all further stages of their processing by conventional methods of powder metallurgy and eventually effects the properties of the resulting product

  17. High homogeneity powder of Ti-Ba-Ca-Cu-O (2223) prepared by Freeze-Drying method

    International Nuclear Information System (INIS)

    Al-Shakarchi, Emad Kh.; Toma, Ziad A.

    1999-01-01

    Full text.Homogeneous high temerature superconductor ceramic powder of TI-Ba-Ca-Cu-O with transition temperature [Tc=123K] have been successfully prepared from the mixture of nitrate salts [TlNO 3 , Ba(NO 3 ) 2 , Ca(NO 3 ) 2 .4H 2 O and Cu(NO 3 ) 2 .3H 2 O] by using freeze-drying method. Freeze-dryer that was used in this work designed locally in our laboratory. This technique consider a better to get a fine powder of ceramic materials by depending on the procedure of frozen droplets with present of liquid nitrogen. SEM pictures showed the size of grains of about [0.8 μm]. We conclude that the high sintering temperature, for the prepared powders in this technique, for long time [120 hrs] will increase the inter diffusion between the grains ahich caused the decreasing in the density of the sample which may be given a better results than the obtained in a previous works

  18. Preparation of 50Ni-45Ti-5Zr powders by high-energy ball milling and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Marinzeck de Alcantara Abdala, Julia, E-mail: juabdala@yahoo.com.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil); Bacci Fernandes, Bruno, E-mail: brunobacci@yahoo.com.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Santos, Dalcy Roberto dos, E-mail: dalcy@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Rodrigues Henriques, Vinicius Andre, E-mail: vinicius@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Moura Neto, Carlos de, E-mail: mneto@ita.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Saraiva Ramos, Alfeu, E-mail: alfeu@univap.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil)

    2010-04-16

    This study reports on the preparation of the 50Ni-45Ti-5Zr (at.%) alloy by high-energy ball milling and hot pressing. The elemental powder mixture was processed in silicon nitride and hardened steel vials, and samples were collected after different milling times. To recover the previous powders in addition wet milling isopropyl alcohol (for 20 min) was adopted. The mechanically alloyed powders were hot-pressed under vacuum at 900 {sup o}C for 1 h using pressure levels close to 200 MPa. The milled powders were characterized by means of scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry techniques. It was noted that the ductile starting powders were continuously cold-welded during ball milling. This fact was more pronounced during the processing of 50Ni-45Ti-5Zr powders in hardened steel vial. After milling for 5 h, the results suggested that amorphous and nanocrystalline structures were achieved. The complete consolidation was found after hot pressing of mechanically alloyed 50Ni-45Ti-5Zr powders, and a large amount of the B2-NiTi phase was formed mainly after processing in stainless steel balls and vial.

  19. Powder-in-Tube (PIT) Nb3Sn conductors for high-field magnets

    NARCIS (Netherlands)

    Lindenhovius, J.H.; Hornsveld, E.M.; den Ouden, A.; Wessel, Wilhelm A.J.; ten Kate, Herman H.J.

    2000-01-01

    New Nb3Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment

  20. The Efficiency of Irradiated Garlic Powder in Mitigation of Hypercholesterolemic Risk Factor in High cholesterol Fed Rats

    International Nuclear Information System (INIS)

    El-Neily, H.F.G.; El-Shennawy, H.M.

    2011-01-01

    The present study was conducted to explore the efficiency of radiation processed dried garlic powder at 10, 15 and 20 kGy on the average daily body gain, internal organ weights, certain hematological and biochemical parameters; including total plasma protein, albumin, globulin, total cholesterol, low and high density lipoprotein cholesterol (LDL-C and HDL-C), triglyceride levels, and aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities in rats fed with a high-cholesterol diet. Experimental rats were fed a high cholesterol diet (10 g kg -1 ) with and without raw or radiation processed dried garlic powder at the above-mentioned doses for 6 weeks. Control rats were fed a casein diet (C). 20 g kg -1 dietary raw or irradiated dried garlic powder was used to supplemented cholesterol diet (Ch). It was observed that cholesterol-fed (Ch) animals had a significant increase in relative liver weight, plasma total cholesterol, LDL-C, triglyceride levels, LDL/HDL ratio, AST and ALT activities and a significant decrease in HDL-C level compared to the control group of rats fed on a Casein diet (C). However, when the rats were fed with a high cholesterol diet mixed with 20 g kg -1 raw (ChRG) or irradiated dried garlic powder at 10 (ChG10), 15 (ChG15), and 20 kGy (ChG20), there was a significant reduction in their relative liver weight, hemoglobin, haematocrit, plasma total cholesterol, LDL-C, triglyceride levels, LDL/HDL ratio, and increased HDL level and amended AST and ALT activities levels as compared with the group which was on a diet containing high cholesterol without garlic powder (Ch). No significant changes were observed in relative spleen, kidney, lung, heart and testes weights, as well as, the total plasma protein, albumin, globulin concentrations in all of treated groups. These results show that the dietary 20 g kg -1 irradiated dried garlic powder at 10, 15 and 20 kGy are beneficial in reducing plasma cholesterol, triglycerides, LDL-C levels, El

  1. Resolution of crystal structures by X-ray and neutrons powder diffraction using global optimisation methods; Resolution des structures cristallines par diffraction des rayons X et neutrons sur poudres en utilisant les methodes d'optimisation globale

    Energy Technology Data Exchange (ETDEWEB)

    Palin, L

    2005-03-15

    We have shown in this work that X-ray diffraction on powder is a powerful tool to analyze crystal structure. The purpose of this thesis is the resolution of crystal structures by X-ray and neutrons diffraction on powder using global optimisation methods. We have studied 3 different topics. The first one is the order-disorder phenomena observed in some globular organic molecular solids. The second is the opiate family of neuropeptides. These neurotransmitters regulate sensory functions including pain and control of respiration in the central nervous system. The aim of our study was to try to determine the crystal structure of Leu-enkephalin and some of its sub-fragments. The determination of the crystal structures has been done performing Monte Carlo simulations. The third one is the location of benzene in a sodium-X zeolite. The zeolite framework was already known and the benzene has been localized by simulated annealing and by the use of maximum entropy maps.

  2. Aluminum Level in Infants’ Powdered Milk Based Formulae

    Directory of Open Access Journals (Sweden)

    Ahmed Abdel-Hameid Ahmed

    2016-10-01

    Full Text Available Aluminum level (Al in infant formula was determined to postulate its public health significance and suggesting recommendations to avoid such contamination. Hence, fifty random samples of infants powdered         milk based formulae were collected from different markets and pharmacies in Assiut Governorate, Egypt. These samples were digested and Al level was detected by using HR-CS (High Resolution Continum Source Atomic Absorption Spectrophotometer and compared with Maximum Permissible Limit (MPL. About 90% of examined infant formula samples containing Al with an average value of 0.145 mg/L and 8% of samples were above the MPL.

  3. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    Directory of Open Access Journals (Sweden)

    Chia-Hsuan Lin

    2017-12-01

    Full Text Available The synthesis and optical properties of Mg-Al layered double hydroxide (LDH precursor powders were investigated using X-ray diffraction (XRD, Fourier transform-infrared (FT-IR spectroscopy, transmission electron microscopy (TEM, selected area electron diffraction (SAED, high-resolution TEM (HRTEM, UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363–1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH2](CO30.083·(H2O0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  4. Obtaining beta phase in Ti through processing in high energy mill powders of Ti and Nb

    International Nuclear Information System (INIS)

    Milanez, Mateus; Ferretto, Aline; Rocha, Marcio Roberto da; Arnt, Angela Coelho; Milanez, Alexandre; Schaeffer, Lirio

    2014-01-01

    An orthopedic implant, ideal, must meet the requirements of biocompatibility, have good mechanical properties among others. Titanium and Niobium exhibit biocompatibility and the β-Ti phase relationships have the highest strength / weight among all titanium alloys, presenting lower values of elastic modulus. The alloy has mechanically produced specific microstructural characteristics and improved mechanical properties compared with conventional powder metallurgy. In this study, a titanium alloy with different additions of niobium was used. The metal powders were mixed via mechanical alloy in high energy mill (attritor). The powder samples were analyzed by X-ray diffraction (X-RD) and property held by adhesive wear testing with a Pin-on-Disk. The present study revealed that through the high-energy milling is possible the atomic interaction between Ti and Nb particles and the mechanical properties are affected by the concentration of Nb. (author)

  5. Resolution enhancement of low-quality videos using a high-resolution frame

    Science.gov (United States)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  6. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  7. New target for high-intensity laser-matter interaction: Gravitational flow of micrometer-sized powders

    International Nuclear Information System (INIS)

    Servol, M.; Quere, F.; Bougeard, M.; Monot, P.; Martin, Ph.; Faenov, A.Ya; Pikuz, T.A.; Audebert, P.; Francucci, M.; Petrocelli, G.

    2005-01-01

    The design of efficient targets for high-intensity laser-matter interaction is essential to fully exploit the advantages of laser-induced photons or particles sources. We present an advantageous kind of target, consisting in a free gravitational flow of micrometer-sized powder, and describe its main technical characteristics. We demonstrate a laser-induced keV x-ray source using this target, and show that the photon flux obtained for the Kα line of Si by irradiating different silica powders is comparable to the one obtained with a bulk silica target

  8. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  9. Modern trends in x-ray powder diffraction

    International Nuclear Information System (INIS)

    Goebel, H.E.; Snyder, R.L.

    1985-01-01

    The revival of interest in X-ray powder diffraction, being quoted as a metamorphosis from the 'ugly duckling' to a 'beautiful swan', can be attributed to a number of modern developments in instrumentation and evaluation software. They result in faster data collection, improved accuracy and resolution, and better detectability of minor phases. The ease of data evaluation on small computers coupled direct to the instrument allows convenient execution of previously tedious and time-consuming off-line tasks like qualitative and quantitative analysis, characterization of microcrystalline properties, indexing, and lattice-constant refinements, as well as structure refinements or even exploration of new crystal structures. Powder diffraction has also progressed from an isolated analytical laboratory method to an in situ technique for analysing solid-state reactions or for the on-stream control of industrial processes. The paper surveys these developments and their real and potential applications, and tries to emphasize new trends that are regarded as important steps for the further progress of X-ray powder diffraction

  10. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  11. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  12. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.

    Science.gov (United States)

    Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun

    2012-12-01

    Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.

  13. Unit-cell refinement from powder diffraction scans

    International Nuclear Information System (INIS)

    Pawley, G.S.

    1981-01-01

    A procedure for the refinement of the crystal unit cell from a powder diffraction scan is presented. In this procedure knowledge of the crystal structure is not required, and at the end of the refinement a list of indexed intensities is produced. This list may well be usable as the starting point for the application of direct methods. The problems of least-squares ill-conditioning due to overlapping reflections are overcome by constraints. An example using decafluorocyclohexene, C 6 F 10 , shows the quality of fit obtained in a case which may even be a false minimum. The method should become more relevant as powder scans of improved resolution become available, through the use of pulsed neutron sources. (Auth.)

  14. Consolidation of powders of the oxide superconductor YBa/sub 2/Cu/sub 3/Ox by high energy-high rate processing

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, S.J.; Peterson, D.R.; Swinnea, J.S.; Schmerling, M.

    1988-01-01

    The consolidation response of powders of the superconducting compound YBa/sub 2/Cu/sub 3/Ox is reported. Copper, silver, tin, and Cu-based metallic glass infiltrates have also been employed in preliminary fabricability studies. The processing approach relies on short-duration (< 1s), high-current-density 10000 A/sq.cm, pulse-resistive heating of powders under applied pressures of 200 MPa to 400 MPa. Powders and fabricated disk compacts were characterized by X-ray diffraction, optical and scanning electron microscopy, and resistivity measurements. X-ray diffraction comparisons of starting powder and consolidated material show retention of the single phase 1-2-3 structure and the development of a preferred orientation. In the consolidated pure YBa/sub 2/Cu/sub 3/0x, Tc onsets of 87K were accompanied by broad transitions. Iodometric analyses indicated oxygen depletion in the as-consolidated disks. Observed oxygen-content profiles across the sample thickness had values 0.11< x <0.35. The variation in the peak processing temperature within the disk was found to correlate with the oxygen content profile.

  15. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  16. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  17. Zirconium dioxide ultrafine powders formation in ultra-high frequency discharge plasma

    International Nuclear Information System (INIS)

    Triotskij, V.N.; Kurkin, E.N.; Torbov, V.I.; Berestenko, V.I.; Torbova, O.D.; Gurov, S.V.; Alekseev, N.V.

    1995-01-01

    ZrO 2 fine powders of 30...60 nm particle size were synthesized by ZrCl 4 oxidation in a flow of oxygen microwave plasma. Oxygen flow rate and ZrCl 4 feeding rate were the defining parameters effecting on powder particles size at constant discharge power.At predominant contribution of the coalescence process into ZrO 2 powder particles formation their heterogeneous growth was shown necessary to take into account. 16 refs.; 5 figs

  18. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  19. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  20. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  1. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  2. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  3. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  5. Fabrication of Al-20 wt%Si powder using scrap Si by ultra high-energy milling process

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won-Kyung [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of); Y Latin-Small-Letter-Dotless-I lmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tasliciftlik Campus, 60240 Tokat (Turkey); Kim, Hyo-Seob; Koo, Jar-Myung [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 275, Budae-dong, Cheonan, Chungnam 330-717 (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer High energy ball milling process has been successfully employed to produce Al-20Si alloy using scrap Si powders. Black-Right-Pointing-Pointer Fully finer and homogenous structure could be achieved after 60 min of milling time. Black-Right-Pointing-Pointer Si particles were not dissolved but uniformly dispersed in the Al matrix in a milled state. Black-Right-Pointing-Pointer The hardness of as-milled Al-20Si powder increased steadily with the increase of milling time. Black-Right-Pointing-Pointer Grain size and dispersion strengthening are two mechanisms being responsible for hardness increment. - Abstract: In this study, microstructural evolution and mechanical properties of Al-20 wt%Si and pure Al powders fabricated by ultra high-energy ball milling technique were investigated as a function of milling time. The microstructure and mechanical properties of the as-milled powders were examined by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), X-ray diffractometer (XRD) and Vickers hardness tester. SEM observation showed that the particle size increased at an early stage of milling, and then decreased drastically with further milling. XRD and cross-sectional EDS-mapping analyses revealed that Si particles were not dissolved but uniformly dispersed in the Al matrix in a milled state. Vickers hardness of both pure Al and Al-Si powder increases with milling time, which attributes to the grain size strengthening and dispersion strengthening.

  6. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  7. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    Science.gov (United States)

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  8. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading.

    Science.gov (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh

    2013-02-14

    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  10. Effects of surfactant addition and high-speed ball milling on magnetic powders based on Pr-Fe-B obtained by HDDR

    International Nuclear Information System (INIS)

    Santos, Patricia Brissi

    2011-01-01

    This work verified the effect caused by adding the surfactant in the high speed/energy milling in order to obtain Pr 12 Fe 65.9 Co 16 B 6 Nb 0.1 magnetic nano powders. The first part of this work involved the magnetic powder obtainment through the process of hydrogenation, disproportionation, desorption and recombination (HDDR). The pressure of H2 during the hydrogenation and disproportion steps was 930 mbar and the temperature of desorption and recombination was 840 deg C. Initially, the HDDR powders were subjected a high speed milling process at 900 rpm, with quantity variations of the milling medium (cyclohexane) and without the addition of oleic acid. Then, the HDDR powders were subjected to the milling process with the addition of oleic acid and with milling time variations. After the milling process, heat treatments of the powder were carried out at 700 deg C or 800 deg C for 30 minutes in order to obtain the crystallization of the powder. By performing the procedures, it was verified that the milling efficiency improved with the addition of 6.6 ml of cyclohexane as the milling medium and with the addition of oleic acid. It was determined that for the surfactant additions of 0.02 ml to 0.05 ml, with a milling time of up to 360 minutes, powder agglomeration does not occur in the milling pot and the milling efficiency is higher than 90%. The second stage of this work involved the magnetic powder's characterization obtained by using vibrating sample magnetometer, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Through the characterizations it was found that the powder's magnetic properties improved when the addition of oleic acid in a high-speed /energy milling occurred. It was also verified that the α-Fe phase, present in the powder, shows a crystallite size decrease (from 35 nm to ∼ 10 nm) when the time milling variation occurred; meanwhile, the crystallinity degree was lower in the Pr 2 Fe 14 B phase when the time

  11. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  12. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  13. High pressure sintering (HP-HT) of diamond powders with titanium and titanium carbide

    International Nuclear Information System (INIS)

    Jaworska, L.

    1999-01-01

    Polycrystalline diamond compacts for cutting tools are mostly manufactured using high pressure sintering (HP-HT). The standard diamond compacts are prepared by diamond powders sintering with metallic binding phase. The first group of metallic binder are metals able to solve carbon - Co, Ni. The second group of metal binders are carbide forming elements - Ti, Cr, W and others. The paper describes high pressure sintering of diamond powder with titanium and nonstoichiometry titanium carbide for cutting tool application. A type of binding phase has the significant influence on microstructure and mechanical properties of diamond compacts. Very homogeneous structure was achieved in case of compacts obtained from metalized diamond where diamond-TiC-diamond connection were predominant. In the case of compacts prepared by mechanical mixing of diamond with titanium powders the obtained structure was nonhomogeneous with titanium carbide clusters. They had more diamond to diamond connections. These compacts compared to the compact made of metallized diamond have greater wear resistance. In the case of the diamond and TiC 0.92 sintering the strong bonding of TiC diamond grains was obtained. The microstructure observations for diamond with 5% wt. Ti and diamond with 5% wt. TiC 0.92 (the initial composition) compacts were performed in transmission microscope. For two type of compacts the strong bonding phase TiC without defects is creating. (author)

  14. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2017-10-01

    Full Text Available In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD for the selective laser melting (SLM process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g−1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

  15. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  16. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fast X-ray powder diffraction on I11 at Diamond.

    Science.gov (United States)

    Thompson, Stephen P; Parker, Julia E; Marchal, Julien; Potter, Jonathan; Birt, Adrian; Yuan, Fajin; Fearn, Richard D; Lennie, Alistair R; Street, Steven R; Tang, Chiu C

    2011-07-01

    The commissioning and performance characterization of a position-sensitive detector designed for fast X-ray powder diffraction experiments on beamline I11 at Diamond Light Source are described. The detecting elements comprise 18 detector-readout modules of MYTHEN-II silicon strip technology tiled to provide 90° coverage in 2θ. The modules are located in a rigid housing custom designed at Diamond with control of the device fully integrated into the beamline data acquisition environment. The detector is mounted on the I11 three-circle powder diffractometer to provide an intrinsic resolution of Δ2θ approximately equal to 0.004°. The results of commissioning and performance measurements using reference samples (Si and AgI) are presented, along with new results from scientific experiments selected to demonstrate the suitability of this facility for powder diffraction experiments where conventional angle scanning is too slow to capture rapid structural changes. The real-time dehydrogenation of MgH(2), a potential hydrogen storage compound, is investigated along with ultrafast high-throughput measurements to determine the crystallite quality of different samples of the metastable carbonate phase vaterite (CaCO(3)) precipitated and stabilized in the presence of amino acid molecules in a biomimetic synthesis process.

  18. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  19. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    Science.gov (United States)

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  20. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  1. Structure solution from powder neutron and x-ray diffraction data: getting the best of both worlds

    International Nuclear Information System (INIS)

    Hunter, B.A.

    2000-01-01

    Full text: Powder diffraction methods have traditionally been used in three main areas: phase identification and quantification, lattice parameter determination and structure refinement. Until recently structure solution has been the almost exclusive domain of single crystal diffraction methods, predominantly using x-rays. The increasing use of synchrotron and neutron sources, and the unrelenting advances in computing hardware and software means that powder methods are challenging single crystal methods as a practical method for structure solution, especially when single crystal method can not be applied. It is known that structural refinements from a known starting structure using combined X-ray and neutron data sets are capable of providing highly accurate structures. Likewise, using combined x-ray and neutron powder diffraction data in the structure solution process should also be a powerful technique, although to date no one is pursuing this methodology. This paper present examples of solutions to the problem. Namely we are using high resolution powder X-ray and neutron methods to solve the structures of molecular materials and minerals, then refining the structures using both sets of data. In this way we exploit the advantages of both methods while minimising the disadvantages. We present our solution for a small amino acid structure, a metalorganic and a mineral structure

  2. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  3. Vibration-Assisted Handling of Dry Fine Powders

    Directory of Open Access Journals (Sweden)

    Paul Dunst

    2018-04-01

    Full Text Available Since fine powders tend strongly to adhesion and agglomeration, their processing with conventional methods is difficult or impossible. Typically, in order to enable the handling of fine powders, chemicals are added to increase the flowability and reduce adhesion. This contribution shows that instead of additives also vibrations can be used to increase the flowability, to reduce adhesion and cohesion, and thus to enable or improve processes such as precision dosing, mixing, and transport of very fine powders. The methods for manipulating powder properties are described in detail and prototypes for experimental studies are presented. It is shown that the handling of fine powders can be improved by using low-frequency, high-frequency or a combination of low- and high-frequency vibration.

  4. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  5. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  6. Optimisation Of Process Parameters In High Energy Mixing As A Method Of Cohesive Powder Flowability Improvement

    Directory of Open Access Journals (Sweden)

    Leś Karolina

    2015-12-01

    Full Text Available Flowability of fine, highly cohesive calcium carbonate powder was improved using high energy mixing (dry coating method consisting in coating of CaCO3 particles with a small amount of Aerosil nanoparticles in a planetary ball mill. As measures of flowability the angle of repose and compressibility index were used. As process variables the mixing speed, mixing time, and the amount of Aerosil and amount of isopropanol were chosen. To obtain optimal values of the process variables, a Response Surface Methodology (RSM based on Central Composite Rotatable Design (CCRD was applied. To match the RSM requirements it was necessary to perform a total of 31 experimental tests needed to complete mathematical model equations. The equations that are second-order response functions representing the angle of repose and compressibility index were expressed as functions of all the process variables. Predicted values of the responses were found to be in a good agreement with experimental values. The models were presented as 3-D response surface plots from which the optimal values of the process variables could be correctly assigned. The proposed, mechanochemical method of powder treatment coupled with response surface methodology is a new, effective approach to flowability of cohesive powder improvement and powder processing optimisation.

  7. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  8. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design.

    Science.gov (United States)

    Farkas, Dale R; Hindle, Michael; Longest, P Worth

    2015-11-01

    The objective of this study was to develop a new high-efficiency dry powder inhaler (DPI) that can effectively aerosolize large masses (25-100 mg) of spray dried powder formulations. The DPI was designed to implement a concept similar to a fluidized bed for aerosolization using small mixing balls made of polytetrafluoroethylene along with a larger, hollow dosing sphere filled with the powder. The performance of the fluidized bed DPI was compared, based on emitted dose (ED) and aerosolization efficiency, to other recently developed capsule-based DPIs that were designed to accommodate smaller powder masses (~2-20 mg). The inhalers were tested with spray dried excipient enhanced growth (EEG) formulations that contained an antibiotic (ciprofloxacin) and hygroscopic excipient (mannitol). The new fluidized bed design produced an ED of 71% along with a mass median aerodynamic diameter of 1.53 μm and fine particle fractions <5 and 1 μm of 93 and 36%, respectively, when used to deliver a 100 mg loaded mass of EEG powder with the advantage of not requiring multiple capsules. Surprisingly, performance of the device was further improved by removing the mixing balls from the inhaler and only retaining the dose containment sphere.

  9. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  10. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  11. Fundamentals of powder x-ray diffraction practice

    International Nuclear Information System (INIS)

    Raftery, T.

    2002-01-01

    Full text: The goal of powder Xray diffraction is to gain information about a specimen or sample. Key aspects of this goal are 1. the sample selection, preparation and presentation; 2. the data collection process and conditions; 3. the interaction between these and the interpretation of the data. The 'ideal' powder (or polycrystalline) xray diffraction sample is fine grained, randomly orientated, homogenous and representative. There exists standard sample selection and preparation techniques for powders - sometimes however, the required information must be gained by alternate sample selection and preparation techniques. While there are few variables in the data collection process, there are some significant ones such as matching diffractometer resolution and intensity to the data collection goal whether that is phase identity, quantitative analysis or structure refinement, etc. There are also options of optical arrangement (Bragg-Brintano versus parallel beam versus Debye-Scherrer). One important aspect of the collection process is the assessment of the data quality. Powder xray diffraction has many applications from the straight-forward confirmation of phase identity and purity to structural analysis. Some of these applications will be considered and the interaction between the goal of the application and aspects of sample selection. Copyright (2002) Australian X-ray Analytical Association Inc

  12. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  13. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  14. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  15. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  16. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  17. Powder technological vitrification of simulated high-level waste

    International Nuclear Information System (INIS)

    Gahlert, S.

    1988-03-01

    High-level waste simulate from the reprocessing of light water reactor and fast breeder fuel was vitrified by powder technology. After denitration with formaldehyde, the simulated HLW is mixed with glass frit and simultaneously dried in an oil-heated mixer. After 'in-can calcination' for at least 24 hours at 850 or 950 K (depending on the type of waste and glass), the mixture is hot-pressed in-can for several hours at 920 or 1020 K respectively, at pressures between 0.4 and 1.0 MPa. The technology has been demonstrated inactively up to diameters of 30 cm. Leach resistance is significantly enhanced when compared to common borosilicate glasses by the utilization of glasses with higher silicon and aluminium content and lower sodium content. (orig.) [de

  18. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  19. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  20. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  1. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  2. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  3. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  4. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  5. Report on neutron powder diffraction for the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Hunter, B.A.

    2000-01-01

    There is a clear need for two neutron powder diffractometers at the Australian Replacement Research Reactor when it starts operation in 2005. The high-intensity instrument should be capable of measuring a 10mg sample of moderate complexity, or perform single-shot time-resolved experiments with 1-second time slices, or perform stroboscopic measurements with time slices of order 50 microseconds. The high-resolution instrument should have a target resolution of Δd/d∼6x10 -4 , and be capable of collecting data at this resolution within 1-48 hours depending on sample size and crystal complexity. Key questions that need to be answered in the next 9 months include: (1) a detailed study of monochromator options, (2) analysing the detector options for the high-intensity machine and exploring ways in which the solid angle can be maximised for both instruments, (3) whether the instruments are better situated at the reactor face or on super mirror guides, (4) how to integrate the two instruments (physically, if they are only the same guide), and scientifically as regards detailed performance specifications. The user community clearly wants a wide range of sample-environment options, and these are listed in the report. Combinations of these options will be important

  6. A simple magnetic balance technique for determining transition temperatures of high T/sub c/ superconducting powders

    International Nuclear Information System (INIS)

    Takamori, T.; Dove, D.B.

    1988-01-01

    A simple arrangement is described that provides a convenient method for determining transition behavior of high Tc superconductors that are in powder form. A single-pan balance was modified so that its deviation from balance could be measured by an inductive displacement transducer. A small magnet was attached to the balance and placed in close proximity above the sample to be measured. As the sample is cooled through the transition, magnetic flux lines are locally excluded resulting in a repulsive force on the magnet attached to the balance. The resulting deflection of the balance has sufficient sensitivity to allow measurements on several mg of powder. This technique provides a convenient method for routine surveying of powder samples during materials development. Example measurements are described

  7. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    Energy Technology Data Exchange (ETDEWEB)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    2018-02-06

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance against corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.

  8. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  9. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  10. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  11. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  12. High-Resolution Microbiome Profiling for Detection and Tracking of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Christopher J. Grim

    2017-08-01

    Full Text Available 16S rRNA community profiling continues to be a useful tool to study microbiome composition and dynamics, in part due to advances in next generation sequencing technology that translate into reductions in cost. Reliable taxonomic identification to the species-level, however, remains difficult, especially for short-read sequencing platforms, due to incomplete coverage of the 16S rRNA gene. This is especially true for Salmonella enterica, which is often found as a low abundant member of the microbial community, and is often found in combination with several other closely related enteric species. Here, we report on the evaluation and application of Resphera Insight, an ultra-high resolution taxonomic assignment algorithm for 16S rRNA sequences to the species level. The analytical pipeline achieved 99.7% sensitivity to correctly identify S. enterica from WGS datasets extracted from the FDA GenomeTrakr Bioproject, while demonstrating 99.9% specificity over other Enterobacteriaceae members. From low-diversity and low-complexity samples, namely ice cream, the algorithm achieved 100% specificity and sensitivity for Salmonella detection. As demonstrated using cilantro and chili powder, for highly complex and diverse samples, especially those that contain closely related species, the detection threshold will likely have to be adjusted higher to account for misidentifications. We also demonstrate the utility of this approach to detect Salmonella in the clinical setting, in this case, bloodborne infections.

  13. DREAM — a versatile powder diffractometer at the ESS

    International Nuclear Information System (INIS)

    Schweika, W; Violini, N; Lieutenant, K; Nekrassov, D; Zendler, C; Henry, P F; Houben, A; Jacobs, P

    2016-01-01

    The instrument DREAM, in construction at the long pulse European Spallation Source (ESS), is a new type of neutron time-of-flight powder diffractometer, which utilizes additional choppers to meet the typical high resolution requests. Pulses will be of symmetric shape and their width can be varied from 10 μs to 1 ms, providing an unprecedented flexibility from highest to low resolution with optimized intensities at the superior brightness of the 5 MW source. The design is driven particularly by the needs and challenges for small and complex samples, large unit cell materials, thermoelectric cage structures or metal-organic framework structures, multiphase battery materials and complex magnetic structures. Therefore, the chosen wavelength bandwidth of 3.7 Å may cover well the peak intensities of the thermal and cold moderator used simultaneously and provides a sufficient Q (and d ) range for obtaining diffraction patterns in a single setting. VITESS simulations show a performance that is about two orders of magnitude higher than current best instruments. (paper)

  14. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  15. Improvement of detector system of the two-axis neutron powder diffractometer

    International Nuclear Information System (INIS)

    Xue Yanjie; Guo Liping; Chen Dongfeng; Zhang Baisheng; Chen Na; Zhang Li; Sun Kai; Xiao Hongwen; Zhang Lingfei; Wang Hongli; Li Junhong; Wu Erdong; Yuan Xuezhong

    2005-01-01

    The detector system of the two-axis neutron powder diffractometer at the Heavy Water Research Reactor of China Institute of Atomic Energy was improved by increasing the number of detectors from one to four and by installing the third Soller collimators with horizontal divergence of 20'. The measurements of Fe powder diffraction patterns show that the counting rate of the diffractometer is increased by a factor of 2.3 and the resolution is also improved at the lower and mediate scattering angle region. (author)

  16. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  17. Synchrotron powder diffraction on Aztec blue pigments

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, Grenoble Cedex (France); Gutierrez-Leon, A.; Castro, G.R.; Rubio-Zuazo, J. [Spanish CRG Beamline at the European Synchrotron Radiation Facility, SpLine, B.P. 220, Grenoble Cedex (France); Solis, C. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, D.F. (Mexico); Sanchez-Hernandez, R. [INAH Subdireccion de Laboratorios y Apoyo Academico, Mexico, D.F. (Mexico); Robles-Camacho, J. [INAH Centro Regional Michoacan, Morelia, Michoacan (Mexico); Rojas-Gaytan, J. [INAH Direccion de Salvamento Arqueologico, Naucalpan de Juarez (Mexico)

    2008-01-15

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few {mu}g of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as anil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue. (orig.)

  18. Synchrotron powder diffraction on Aztec blue pigments

    Science.gov (United States)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  19. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  20. Some aspects of UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, P; Asnani, C K; Prabhakar Rao, L; Kartha, R M; Pillai, P K.M. [Nuclear Fuel Complex, Hyderabad (India)

    1994-06-01

    UO{sub 2} powder is being produced in a chemical plant from enriched UF{sub 6} and supplied to the pelletizing plant. Small quantities of scrap UO{sub 2} received back from the pelletizing plant are also recycled in the chemical plant to produce UO{sub 2} powder. The powder should be of a consistently high quality so as to finally yield high density sintered pellets with minimum rejection. The final yield of acceptable finished pellets depends on the quality of the powder in the chemical plant as well as the quality of pressing in the pelletizing plant. In this paper, some examples of measures adopted for achieving good quality powder production are presented. (author). 9 refs., 2 figs.

  1. Controlling fundamentals in high-energy high-rate pulsed power materials processing of powdered tungsten, titanium aluminides, and copper-graphite composites. Final technical report, 1 Jun 87-31 Aug 90

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Bourell, D.L.; Eliezer, Z.; Weldon, W.F.

    1990-10-01

    This study was conducted to determine the controlling fundamentals in the high-energy high-rate (1 MJ in 1s) processing of metal powders. This processing utilizes a large electrical current pulse to heat a pressurized powder mass. The current pulse was provided by a homopolar generator. Simple short cylindrical shapes were consolidated so as to minimize tooling costs. Powders were subjected to current densities of 5 kA/cm2 to 25 kA/cm2 under applied pressures ranging from 70 MPa to 500 MPa. Disks with diameters of 25 mm to 70 mm, and thicknesses of 1 mm to 10 mm were consolidated. Densities of 75% to 99% of theoretical values were obtained in powder consolidates of tungsten, titanium aluminides, copper-graphite, and other metal-ceramic composites. Extensive microstructural characterization was performed to follow the changes occuring in the shape and microstructure of the various powders. The processing science has at its foundation the control of the duration of elevated temperature exposure during powder consolidation.

  2. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  4. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

    Directory of Open Access Journals (Sweden)

    Philipp Drescher

    2016-12-01

    Full Text Available Selective electron beam melting (SEBM is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  5. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  6. Surface chemistry and microscopy of food powders

    Science.gov (United States)

    Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire

    2017-12-01

    Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.

  7. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  8. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  9. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  10. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    Science.gov (United States)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  11. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  12. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  13. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  14. Development and characterization of high payload combination dry powders of anti-tubercular drugs for treating pulmonary tuberculosis.

    Science.gov (United States)

    Eedara, Basanth Babu; Rangnekar, Bhamini; Sinha, Shubhra; Doyle, Colin; Cavallaro, Alex; Das, Shyamal C

    2018-06-15

    This study aimed to develop a high payload dry powder inhalation formulation containing a combination of the first line anti-tubercular drug, pyrazinamide, and the second line drug, moxifloxacin HCl. Individual powders of pyrazinamide (P SD ) and moxifloxacin (M SD ) and combination powders of the two drugs without (PM) and with 10% l-leucine (PML) and 10% DPPC (PMLD) were produced by spray drying. P SD contained >10 μm crystalline particles and showed poor aerosolization behaviour with a fine particle fraction (FPF) of 18.7 ± 3.4%. PM produced spherical hollow particles with aerodynamic diameter  0.05) compared to PML . Solid state studies and surface elemental analysis by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the surface coating of particles contained amorphous moxifloxacin and both l-leucine and DPPC over crystalline pyrazinamide. Furthermore, pyrazinamide, moxifloxacin, PML and PMLD were found to display low toxicity to both A549 and Calu-3 cell lines even at a concentration of 100 μg/mL. In conclusion, a combination powder formulation of PML has the potential to deliver a high drug dose to the site of infection resulting in efficient treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Method of making highly sinterable lanthanum chromite powder

    Science.gov (United States)

    Richards, Von L.; Singhal, Subhash C.

    1992-01-01

    A highly sinterable powder consisting essentially of LaCrO.sub.3, containing from 5 weight % to 20 weight % of a chromite of dopant Ca, Sr, Co, Ba, or Mg and a coating of a chromate of dopant Ca, Sr, Co, Ba, or Mg; is made by (1) forming a solution of La, Cr, and dopant; (2) heating their solutions; (3) forming a combined solution having a desired ratio of La, Cr, and dopant and heating to reduce solvent; (4) forming a foamed mass under vacuum; (5) burning off organic components and forming a charred material; (6) grinding the charred material; (7) heating the char at from 590.degree. C. to 950 C. in inert gas containing up to 50,000 ppm O.sub.2 to provide high specific surface area particles; (8) adding that material to a mixture of a nitrate of Cr and dopant to form a slurry; (9) grinding the particles in the slurry; (10) freeze or spray drying the slurry to provide a coating of nitrates on the particles; and (11) heating the coated particles to convert the nitrate coating to a chromate coating and provide a highly sinterable material having a high specific surface area of over 7 m.sup.2 /g.

  17. Separation and quantitation of colour pigments of chili powder (Capsicum frutescens) by high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Cserháti, T; Forgács, E; Morais, M H; Mota, T; Ramos, A

    2000-10-27

    The performance of reversed-phase thin-layer (RP-TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC) was compared for the separation and determination of the colour pigments of chili (Capsicum frutescens) powder using a wide variety of eluent systems. No separation of pigments was achieved in RP-TLC, however, it was established that tetrahydrofuran shows an unusually high solvent strength. RP-HPLC using water-methanol-acetonitrile gradient elution separated the chili pigments in many fractions. Diode array detection (DAD) indicated that yellow pigments are eluted earlier than the red ones and chili powder contains more yellow pigments than common paprika powders. It was established that the very different absorption spectra of pigments make the use of DAD necessary.

  18. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  19. Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

    Science.gov (United States)

    Irrinki, Harish; Dexter, Michael; Barmore, Brenton; Enneti, Ravi; Pasebani, Somayeh; Badwe, Sunil; Stitzel, Jason; Malhotra, Rajiv; Atre, Sundar V.

    2016-03-01

    The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500-1100 MPa; hardness: 25-39 HRC; elongation: 10-25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

  20. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  1. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  2. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  3. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    Science.gov (United States)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  4. Development of high efficiency ventilation bag actuated dry powder inhalers.

    Science.gov (United States)

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-04-25

    New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 μm of 65-85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  6. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern.

    Science.gov (United States)

    Chou, Liang-Mao; Lin, Ching-I; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2016-08-01

    Research has suggested that the consumption of foods rich in polyphenols is beneficial to the cognitive functions of the elderly. We investigated the effects of grape consumption on spatial learning, memory performance and neurodegeneration-related protein expression in aged rats fed a high-fructose-high-fat (HFHF) diet. Six-week-old Wistar rats were fed an HFHF diet to 66 weeks of age to establish a model of an HFHF dietary pattern, before receiving intervention diets containing different amounts of grape powder for another 12 weeks in the second part of the experiment. Spatial learning, memory performance and cortical and hippocampal protein expression levels were assessed. After consuming the HFHF diet for a year, results showed that the rats fed a high grape powder-containing diet had significantly better spatial learning and memory performance, lower expression of β-amyloid and β-secretase and higher expression of α-secretase than the rats fed a low grape powder-containing diet. Therefore, long-term consumption of an HFHF diet caused a decline in cognitive functions and increased the risk factors for neurodegeneration, which could subsequently be ameliorated by the consumption of a polyphenol-rich diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Preparation and utilization of metal oxide fine powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Soo; Jang, Hee Dong; Lim, Young Woong; Kim, Sung Don; Lee, Hi Sun; Lee, Hoo In; Kim, Chul Joo; Shim, Gun Joo; Jang, Dae Kyu [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Metal oxide fine powders finds many applications in industry as new materials. It is very much necessary for the development of such powders to improve the domestic industry. The purpose of present research is to develop a process for the preparation and utilization of metal oxide fine powder. This project is consisted of two main subjects. (1) Production of ultrafine metal oxide powder: Ultrafine metal oxide powder is defined as a metal oxide powder of less than 100 nanometer in particle size. Experiments for the control of particle size and distributions in the various reaction system and compared with results of (2 nd year research). Various reaction systems were adopted for the development of feasible process. Ultrafine particles could be prepared even higher concentration of TiCl{sub 4} and lower gas flowrate compared to TiCl{sub 4}-O{sub 2} system in the TiCl{sub 4}-Air-H{sub 2}O system. Ultrafine Al{sub 2}O{sub 3} powders also prepared with the change of concentration and gas flowrate. Experiments on the treatment of surface characteristics of ultrafine TiO{sub 2} powders were investigated using esterification and surface treating agents. A mathematical model that can predict the particle size and distribution was also developed. (2) Preparation of cerium oxide for high-grade polishing powder: Used cerium polishing powder was recycled for preparation of high grade cerium oxide polishing powder. Also, cerium hydroxide which was generated as by-product in processing of monazite ore was used as another material. These two materials were leached respectively by using acid, and the precipitate was gained in each leached solution by adjusting pH of the solution, and by selective crystallization. These precipitates were calcined to make high grade cerium oxide polishing powder. The effect of several experimental variables were investigated, and the optimum conditions were obtained through the experiments. (author). 81 refs., 49 figs., 27 tabs.

  8. Synthesis of high-purity Li{sub 8}ZrO{sub 6} powder by solid state reaction under hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shin-mura, Kiyoto; Otani, Yu; Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuchi, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.ac.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-11-01

    Highlights: • A fine pure Li{sub 8}ZrO{sub 6} powder was synthesized by using Li{sub 2}CO{sub 3} and ZrO{sub 2} via a solid state reaction. • Influences on the purity of product powder, lattice defect, and crystal orientation were revealed. • The suitable synthesis conditions of the fine and high purity Li{sub 8}ZrO{sub 6} powder were found. • The reaction process of the synthesis of Li{sub 8}ZrO{sub 6} was estimated. - Abstract: Li{sub 8}ZrO{sub 6} contains a large amount of Li and has a significant potential as a tritium breeder. However, few syntheses of fine-grain, high-purity Li{sub 8}ZrO{sub 6} powder have been reported. In this study, a high-purity powder of Li{sub 8}ZrO{sub 6} was synthesized by solid state reaction under hydrogen atmosphere combined with an effective lithium source and a suitable initial Li:Zr molar ratio. Mixed powders of Li{sub 2}CO{sub 3} and ZrO{sub 2} were fired at around 630 °C in H{sub 2} for several hours and several firing cycles. The low firing temperature inhibited the vaporization of Li during the heating, so that excessive amounts of Li were not needed for the synthesis, and the Li:Zr ratio in the starting material was 10:1 (mol:mol). In this synthesis, Li{sub 2}O was generated via the decomposition of Li{sub 2}CO{sub 3} during firing in H{sub 2}, and reacted with ZrO{sub 2} to form Li{sub 6}Zr{sub 2}O{sub 7}, which reacted with itself to form Li{sub 8}ZrO{sub 6}.

  9. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  10. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-09-01

    A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.

  11. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  12. Preparation of superconducting powders by freeze-drying

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.; Rowcliffe, D.J.; Geballe, T.H.; Sun, J.Z.

    1987-01-01

    A method of preparing superconducting powders by freeze-drying is described. Powders produced by this method are homogeneous, have high purities, and are very reactive. Materials sintered from these powders have densities up to 89% of the theoretical density, and exhibit very sharp resistivity drops and large Meissner effects. The microstructure of the materials is very sensitive to the sintering temperature

  13. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  14. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  15. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    Science.gov (United States)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  16. Manufacturing And High Temperature Oxidation Properties Of Electro-Sprayed Fe-24.5% Cr-5%Al Powder Porous Metal

    Directory of Open Access Journals (Sweden)

    Lee Kee-Ahn

    2015-06-01

    Full Text Available Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°C and with different pore sizes (500 μm, 450 μm, and 200 μm. High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.

  17. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  18. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  19. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  20. Spray Drying of High Sugar Content Foods: Improving of Product Yield and Powder Properties

    Directory of Open Access Journals (Sweden)

    Mehmet Koç

    2016-05-01

    Full Text Available Spray drying is the most preferred drying method to produce powdered food in the food industry and it is also widely used to convert sugar-rich liquid foods to a powder form. During and/or after spray drying process of sugar-rich products, undesirable situation was appeared such as stickiness, high moisture affinity (hygroscopicity and low solubility due to low molecular weight monosaccharides that found naturally in the structure. The basis of these problems was formed by low glass transition temperature of sugar-rich products. This review gives information about the difficulties in drying of sugar-rich products via spray dryer, actions need to be taken against these difficulties and drying of sugar-rich honey and fruit juices with spray drying method.

  1. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  2. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  3. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Huiyang, E-mail: hl209@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Zhang, Deliang, E-mail: zhangdeliang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Gabbitas, Brian, E-mail: briang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Yang, Fei, E-mail: fyang@waikato.ac.nz [Waikato Center for Advanced Materials, School of Engineering, University of Waikato, Hamilton (New Zealand); Matthews, Steven, E-mail: S.Matthews@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Auckland (New Zealand)

    2014-09-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study.

  4. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture

    International Nuclear Information System (INIS)

    Lu, Huiyang; Zhang, Deliang; Gabbitas, Brian; Yang, Fei; Matthews, Steven

    2014-01-01

    Highlights: • TiB/Ti6Al4V composites were prepared from extruded BE powders. • Different starting powders affected the morphologies of TiB whiskers formed in-situ. • A TiB/Ti6Al4V composite with TiB whiskers had good strength and ductility. • The strength and ductility achieved were superior to those obtained by other methods. - Abstract: A Ti–6 wt%Al–4 wt%V alloy (Ti6Al4V) matrix composite, reinforced by in situ synthesized TiB whiskers (TiBw) has been successfully fabricated by powder compact extrusion using a blended powder mixture. The microstructural characterization of the various extruded samples showed that the different starting powders, pre-alloyed powder plus boron powder or titanium plus Al–40V master alloy powder plus boron powder, had a significant effect on the morphology of the in situ synthesized TiB whiskers. It is also evident that the TiB whiskers affect the microstructural evolution of the Ti6Al4V matrix. The tensile test results indicated that the composite with a dispersion of fine TiB whiskers with high aspect ratios exhibited a high ultimate tensile stress (UTS) and yield stress (YS) of 1436 MPa and 1361 MPa, respectively, a reasonably good tensile ductility reflected by an elongation to fracture of 5.6% was also achieved. This is a significant improvement compared with as-extruded monolithic Ti6Al4V alloy produced in this study

  5. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  6. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  7. RESEARCH REGARDING THE CHEMICAL COMPOSITION OF POWDER MILK WITH NUTRIENTS

    Directory of Open Access Journals (Sweden)

    Liviu Giurgiulescu

    2009-06-01

    Full Text Available Powdered milk is a manufactured dairy product made by evaporating milk to dryness. This product has incomposition powder apple, powder carrots, rice flour and corn flour, vitamins, minerals.One purpose of drying milk is to preserve it; milk powder has a far longer self life than liquid milk and does notneed to be refrigerated, due to its low moisture content. Another purpose is to reduce its bulk for economy oftransportation. Milk powders contain all twenty standards amino acids and are high insoluble vitamins and minerals.The typical average amounts of major nutrients in the un reconstituted in 100 g milk are (by weight 12,7g protein,68,2g carbohydrates (predominantly lactose, calcium 427g , potassium g, vitamins11g, Inappropriate storageconditions (high relative humidity and high ambient temperature can significantly degrade the nutritive value ofmilk powder.

  8. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  9. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  10. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  11. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  12. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  14. High-energy high-rate pulsed-power processing of materials by powder consolidation and by railgun deposition. Technical report (Final), 10 April 1985-10 February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Weldon, W.F.

    1987-03-31

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other high-energy high-rate processing. The characteristics of the high-energy-high-rate (1MJ/s) powder consolidation using megampere current pulses from a homopolar generator, were defined. Molybdenum Alloy TZM, a nickel-based metallic glass, copper/graphite composites, and P/M aluminum alloy X7091 were investigated. The powder-consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with subsecond high-temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time temperature transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Inherent control of energy input, and time-to-peak processing temperature developed to be held to short times. Deposition experiments were conducted using an exploding-foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid, or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate. Deposits of a wide variety of single- and multi-specie materials were produced on several types of substrates. In a series of ancillary experiments, pulsed-skin-effect heating and self quenching of metallic conductors was discovered to be a new means of surface modification by high-energy high-rate-processing.

  15. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  16. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    OpenAIRE

    Budding, A.; Vaneker, T.H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of applications, but this study solely focuses on the application for powder -based three-dimensional printing (e.g. SLS, 3DP). This research is primarily interested in powder compaction for creating membrane...

  17. Detection of N-(1-deoxy-D-fructos-1-yl) Fumonisins B₂ and B₃ in Corn by High-Resolution LC-Orbitrap MS.

    Science.gov (United States)

    Matsuo, Yosuke; Takahara, Kentaro; Sago, Yuki; Kushiro, Masayo; Nagashima, Hitoshi; Nakagawa, Hiroyuki

    2015-09-16

    The existence of glucose conjugates of fumonisin B₂ (FB₂) and fumonisin B₃ (FB₃) in corn powder was confirmed for the first time. These "bound-fumonisins" (FB₂ and FB₃ bound to glucose) were identified as N-(1-deoxy-D-fructos-1-yl) fumonisin B₂ (NDfrc-FB₂) and N-(1-deoxy-D-fructos-1-yl) fumonisin B₃ (NDfrc-FB₃) respectively, based on the accurate mass measurements of characteristic ions and fragmentation patterns using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) analysis. Treatment on NDfrc-FB₂ and NDfrc-FB₃ with the o-phthalaldehyde (OPA) reagent also supported that D-glucose binding to FB₂ and FB₃ molecules occurred to their primary amine residues.

  18. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  19. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  20. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    DEFF Research Database (Denmark)

    Shen, Yanbin; Pedersen, Erik Ejler; Christensen, Mogens

    2014-01-01

    An electrochemical cell has been designed for powder X-ray diffraction (PXRD) studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode...... to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li4Ti5O12 anode and LiMn2O4 cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na0.84Fe0.56Mn0.44O2)....

  1. Synthesis of Cu-coated Graphite Powders Using a Chemical Reaction Process

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Ho; Park, Hyun-Kuk; Oh, Ik-Hyun [Korea Institute of Industrial Technology (KITECH), Gwangju (Korea, Republic of); Lim, Jae-Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-05-15

    In this paper, Cu-coated graphite powders for a low thermal expansion coefficient and a high thermal conductivity are fabricated using a chemical reaction process. The Cu particles adhere to the irregular graphite powders and they homogeneously disperse in the graphite matrix. Cu-coated graphite powders are coarser at approximately 3-4 μm than the initial graphite powders; furthermore, their XRD patterns exhibit a low intensity in the oxide peak with low Zn powder content. For the passivation powders, the transposition solvent content has low values, and the XRD pattern of the oxide peaks is almost non-existent, but the high transposition solvent content does not exhibit a difference to the non-passivation treated powders.

  2. Microstructural analysis of sinterized aluminum powder obtained by the high energy milling of beverage cans

    International Nuclear Information System (INIS)

    Souza, Jose Raelson Pereira de; Peres, Mauricio Mhirdaui

    2016-01-01

    The objective is the study of the effect of high energy milling on the sintering of aluminum from beverage cans. The selected aluminum cans were cut and subjected to high energy milling under a common atmosphere (in the air). In milling, three grams of aluminum was used to maintain the ratio of 10/1 between the mass of the beads and the material. The milling time was varied in 1h, 1.5h and 2h, keeping the other variables constant. The particle size distribution was measured by laser granulometry, for further compaction and sintering at a temperature of 600 ° C for 2 h. The samples were characterized by scanning electron microscopy (SEM). The granulometric analysis of the powders found that higher milling times produced finer particles. Powders with granulometry of less than 45 μm were obtained at 1 h, 1.5 h and 2 h times. The times of 1.5h and 2h promoted finer particles with better distribution of size. The SEM analyzes showed little variation in the shape of the particles as a function of the variation of the grinding times, presenting irregularities in the platelet geometry. The sintering time and temperature were effective in the densification of the powder particles, which were influenced by the average particle size

  3. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  4. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  5. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  6. High Temperature Degradation of Powder-processed Ni-based Superalloy

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pizúrová, Naděžda; Roupcová, Pavla; Dymáček, Petr

    2015-01-01

    Roč. 22, č. 2 (2015), s. 85-94 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : powder materials * polycrystalline Ni-based superalloy * creep machine grips * oxidation Subject RIV: JG - Metallurgy

  7. High resolution SETI: Experiences and prospects

    Science.gov (United States)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  8. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  9. Development of granular powder manufacturing technology by spray pyrolysis

    International Nuclear Information System (INIS)

    Katoh, Yoshiyuki; Kawase, Keiichi; Takahashi, Yoshiharu; Todokoro, Akio

    1996-01-01

    For shortening of mixed-oxide (MOX) fuel manufacturing process and improvement in treatment of MOX-powder, we have been developing the granular powder production technology. Since the granular powders have excellent fluidity owing to the spherical shape, there is the possibility of modifying scattering and adcering of the powder in the process equipment. In this paper, spray pyrolysis process in adopted as the process of manufacturing the granular powders and the basic feasibility study has been carried out. The experimental results show that the manufactured granular powders have excellent fluidity and the diameter of the powders is controllable. Furthermore, high density pellets are formed by sintering the powders. Thus, it is clarified that this process is promising for the actual MOX fuel fabrication. (author)

  10. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    Science.gov (United States)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  11. Powder metallurgy techniques in nuclear technology

    International Nuclear Information System (INIS)

    Mardon, P.G.

    1983-01-01

    The nuclear application of conventional powder metallurgy routes is centred on the fabrication of ceramic fuels. The stringent demands in terms of product performance required by the nuclear industry militate against the use of conventional powder metallurgy to produce metallic components such as the fuel cladding. However, the techniques developed in powder metallurgy find widespread application throughout nuclear technology. Illustrations of the use of these techniques are given in the fields of absorber materials, ceramic cladding materials, oxide fuels, cermet fuels, and the disposal of highly active waste. (author)

  12. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  13. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  14. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  16. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    International Nuclear Information System (INIS)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-01

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 (micro)m or smaller will lead to an image resolution of 500 (micro)m when using 18F- or 64Cu-labeled radiotracers, giving a factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.

  17. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  18. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  19. Spray drying of beryllium oxide powder

    International Nuclear Information System (INIS)

    Sepulveda, J.L.; Kahler, D.A.

    1991-01-01

    Forming of beryllia ceramics through dry pressing requires the agglomeration of the powder through spray drying. To produce high quality fired ceramics it is necessary to disperse/grind the primary powder prior to binder addition. Size reduction of the powder is accomplished using an aqueous system in Vibro-Energy mills (VEM) charged with beryllia media to minimize contamination. Two VEM mills of different size were used to characterize the grinding operation. Details of the grinding kinetics are described within the context of the Macroscopic Population Balance Model approach. Spray drying of the ceramic slurry was accomplished with both a centrifugal atomizer and a two fluid nozzle atomizer. Two different spray dryers were used. Important operating parameters affecting the size distribution of the spray dried powder are discussed

  20. Light extinction in metallic powder beds: Correlation with powder structure

    International Nuclear Information System (INIS)

    Rombouts, M.; Froyen, L.; Gusarov, A.V.; Bentefour, E.H.; Glorieux, C.

    2005-01-01

    A theoretical correlation between the effective extinction coefficient, the specific surface area, and the chord length distribution of powder beds is verified experimentally. The investigated powder beds consist of metallic particles of several tens of microns. The effective extinction coefficients are measured by a light-transmission technique at a wavelength of 540 nm. The powder structure is characterized by a quantitative image analysis of powder bed cross sections resulting in two-point correlation functions and chord length distributions. The specific surface area of the powders is estimated by laser-diffraction particle-size analysis and by the two-point correlation function. The theoretically predicted tendency of increasing extinction coefficient with specific surface area per unit void volume is confirmed by the experiments. However, a significant quantitative discrepancy is found for several powders. No clear correlation of the extinction coefficient with the powder material and particle size, and morphology is revealed, which is in line with the assumption of geometrical optics

  1. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  2. Analysis of diffuse scattering in neutron powder diagrams. Application to glassy carbon

    International Nuclear Information System (INIS)

    Boysen, H.

    1985-01-01

    From the quantitative analysis of the diffuse scattered intensity in powder diagrams valuable information about the disorder in crystals may be obtained. According to the dimensionality of this disorder (0D, 1D, 2D or 3D corresponding to diffuse peaks, streaks, planes or volume in reciprocal space) a characteristic modulation of the background is observed, which is described by specific functions. These are derived by averaging the appropriate cross sections over all crystallite orientations in the powder and folding with the resolution function of the instrument. If proper account is taken of all proportionality factors different components of the background can be put on one relative scale. The results are applied to two samples of glassy carbon differing in their degree of disorder. The neutron powder patterns contain contributions from 0D (00l peaks due to the stacking of graphitic layers), 1D (hkzeta streaks caused by the random orientation of these layers) and 3D (incoherent scattering, averaged thermal diffuse scattering, multiple scattering). From the fit to the observed data various parameters of the disorder like domain sizes, strains, interlayer distances, amount of incorporated hydrogen, pore sizes etc. are determined. It is shown that the omission of resolution corrections leads to false parameters. (orig.)

  3. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    Science.gov (United States)

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  4. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.

    Science.gov (United States)

    de Boer, Anne H; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    2012-09-01

    To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer™ dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Comparison of predicted flow and particle behaviour from CFD computations with experimental data obtained with cascade impactor and laser diffraction analysis. Inhaler resistance, flow split, particle trajectories and particle residence times can well be predicted with CFD for a multiple classifier based inhaler like the Twincer™. CFD computations showed that the flow split of the Twincer™ is independent of the pressure drop across the inhaler and that the total flow rate can be decreased without affecting the dispersion efficacy or retention behaviour. They also showed that classifier symmetry can be improved by reducing the resistance of one of the classifier bypass channels, which for the current concept does not contribute to the swirl in the classifier chamber. CFD is a highly valuable tool for development and optimisation of dry powder inhalers. CFD can assist adapting the inhaler design to specific physico-chemical properties of the drug formulation with respect to dispersion and retention behaviour. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  5. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  6. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  7. Polymer quenched prealloyed metal powder

    Science.gov (United States)

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  8. Modification of TiO{sub 2} powder via atmospheric dielectric barrier discharge treatment for high performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Shang-I; Yang, Hao; Chen, Hsien-Wei; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2015-12-01

    The main objective of this study is to improve the electrochemical performances of TiO{sub 2} Li-ion anode material by introducing plasma treatment on TiO{sub 2} powder. A specially designed atmospheric dielectric barrier discharge plasma generator feasible to modify powders is proposed. The rate capacity of 20 min plasma-treated TiO{sub 2} anode revealed nearly 20% increment as compared to that of pristine TiO{sub 2} at the rates of 0.5, 1, 2, 5, 10 C. As-treated TiO{sub 2} was first analyzed by the X-ray diffractometer and high resolution transmission electron microscope confirmed that there was no noticeable surface morphology and microstructure change from plasma treatment. In addition, plasma-treated TiO{sub 2} was reduced with increasing treatment duration. Significant amount of excited argon (Ar{sup ∗}) and excitation of a nitrogen second positive system (N{sub 2}{sup ∗}) were discovered using optical emission spectroscopy (OES). It was believed that Ar{sup ∗} and N{sub 2}{sup ∗} contributed to TiO{sub 2} surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increases the chance of allowing excited nitrogen to dope onto surface of TiO{sub 2} particle. Electrochemical properties of TiO{sub 2} were raised due to the production of oxygen vacancy and nitrogen doping. These findings enhance the understanding of the atmospheric plasma treatment on the potential application of TiO{sub 2} anode material in Li-ion battery. - Highlights: • A plasma generator was developed and proposed for modifying TiO{sub 2} powder in enhancing its electrochemical property. • The plasma treated TiO{sub 2} revealed 20% increment in capacity under different C-rates. • Plasma diagnosis was performed providing an insight of how plasma treatment is effective in TiO{sub 2} surface modification.

  9. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  10. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy

    2018-04-01

    Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.

  12. Characterization and Sintering of Armstrong Process Titanium Powder

    Science.gov (United States)

    Xu, Xiaoyan; Nash, Philip; Mangabhai, Damien

    2017-04-01

    Titanium and titanium alloys have a high strength to weight ratio and good corrosion resistance but also need longer time and have a higher cost on machining. Powder metallurgy offers a viable approach to produce near net-shape complex components with little or no machining. The Armstrong titanium powders are produced by direct reduction of TiCl4 vapor with liquid sodium, a process which has a relatively low cost. This paper presents a systematic research on powder characterization, mechanical properties, and sintering behavior and of Armstrong process powder metallurgy, and also discusses the sodium issue, and the advantages and disadvantages of Armstrong process powders.

  13. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  14. Sysnthesis of powders by freeze-drying

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.; Hildenbrand, D.L.

    1988-01-01

    The freeze-drying method of synthesizing powders of the superconducting oxide YBa 2 Cu 3 O 7 - δ is described. This process produces homogeneous, submicron powders of high purity. The effects of salt selection, solution concentration and pH on the process are described. Some evaluation of the sintering behavior and the effects on critical current density are included

  15. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-01

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (~110,700 S m-1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  16. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  17. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  18. High quality aluminium doped zinc oxide target synthesis from nanoparticulate powder and characterisation of sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, P.J.M., E-mail: P.J.M.Isherwood@lboro.ac.uk [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Neves, N. [Innovnano, S. A., Rua Coimbra Inovação Parque, IParque Lote 13, 3040-570 Antanhol, Coimbra (Portugal); Bowers, J.W. [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Newbatt, P. [Innovnano, S. A., Rua Coimbra Inovação Parque, IParque Lote 13, 3040-570 Antanhol, Coimbra (Portugal); Walls, J.M. [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

    2014-09-01

    Nanoparticulate aluminium-doped zinc oxide powder was synthesised through detonation and subsequent rapid quenching of metallic precursors. This technique allows for precise compositional control and rapid nanoparticle production. The resulting powder was used to form sputter targets, which were used to deposit thin films by radio frequency sputtering. These films show excellent sheet resistance and transmission values for a wide range of deposition temperatures. Crystal structure analysis shows that crystals in the target have a random orientation, whereas the crystals in the films grow perpendicular to the substrate surface and propagate preferentially along the (002) axis. Higher temperature deposition reduces crystal quality with a corresponding decrease in refractive index and an increase in sheet resistance. Films deposited between room temperature and 300 °C were found to have sheet resistances equivalent to or better than indium tin oxide films for a given average transmission value. - Highlights: • Nanoparticulate AZO powder was used to produce sputter targets. • The powder synthesis technique allows for precise compositional control. • Sputtered films show excellent optical, electronic and structural properties. • High temperature films show reduced electrical and structural quality. • For a given transmission, films show equivalent sheet resistances to ITO.

  19. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  20. Direct solution-phase synthesis of Se submicrotubes using Se powder as selenium source

    International Nuclear Information System (INIS)

    Yan Shancheng; Wang Haitao; Zhang Yuping; Li Shuchun; Xiao Zhongdang

    2009-01-01

    The selenium submicrotubes were directly prepared using Se powder as selenium source by microwave-assisted method. Field-emission scan electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were adopted to characterize the as-prepared products. The results of high-resolution transmission electron microscopy (HRTEM) and XRD pattern proved that the selenium submicrotubes were single crystalline in nature and [0 0 1] oriented. A possible growth mechanism of the selenium submicrotubes was proposed. The effects of the experimental conditions, such as alkaline concentration and solvent properties, on the morphology and dimension of the products have also been discussed

  1. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  2. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  3. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    NARCIS (Netherlands)

    Budding, A.; Vaneker, Thomas H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of

  4. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  5. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  6. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  7. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  8. Using Adobe Acrobat to create high-resolution line art images.

    Science.gov (United States)

    Woo, Hyoun Sik; Lee, Jeong Min

    2009-08-01

    The purpose of this article is to introduce a method for using Adobe Acrobat to make high-resolution and high-quality line art images. High-resolution and high-quality line art images for radiology journal submission can be generated using Adobe Acrobat as a steppingstone, and the customized PDF conversion settings can be used for converting hybrid images, including both bitmap and vector components.

  9. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  10. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  11. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  12. High-resolution esophageal pressure topography for esophageal motility disorders

    OpenAIRE

    Hashem Fakhre Yaseri; Gholamreza Hamsi; Tayeb Ramim

    2016-01-01

    Background: High-resolution manometer (HRM) of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed...

  13. Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, Vincenzo

    2016-01-01

    The use of liquid chromatography high-resolution mass spectrometry (LC-HRMS) and direct analysis real-time high-resolution mass spectrometry (DART-HRMS) defines a new scenario in the analysis of thermal-induced toxicants, such as acrylamide. Several factors contribute to the definition of the

  14. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  15. Doped titanium dioxide nanocrystalline powders with high photocatalytic activity

    International Nuclear Information System (INIS)

    Castro, A.L.; Nunes, M.R.; Carvalho, M.D.; Ferreira, L.P.; Jumas, J.-C.; Costa, F.M.; Florencio, M.H.

    2009-01-01

    Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO 2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 , whereas no photocatalytic activity was detected for the Fe:TiO 2 and Co:TiO 2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Moessbauer spectroscopy and magnetization data. - Graphical abstract: Doped titanium dioxide nanopowders (M:TiO 2 ; M=Fe, Co, Nb, Sb) with highly stable anatase structure were successfully synthesized through an hydrothermal route. The photocatalytic efficiencies of the synthesized nanopowders were tested and the results show an appreciable enhancement in the photoactivity of the Sb:TiO 2 and Nb:TiO 2 .

  16. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  17. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  18. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    Science.gov (United States)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  19. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  20. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  1. Science with High Spatial Resolution Far-Infrared Data

    Science.gov (United States)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  2. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  3. High-resolution computed tomography findings in pulmonary Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rosana Souza [Universidade Federal do Rio de Janeiro (HUCFF/UFRJ), RJ (Brazil). Hospital Universitario Clementino Fraga Filho. Unit of Radiology; Capone, Domenico; Ferreira Neto, Armando Leao [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2011-07-15

    Objective: The present study was aimed at characterizing main lung changes observed in pulmonary Langerhans cell histiocytosis by means of high-resolution computed tomography. Materials and Methods: High-resolution computed tomography findings in eight patients with proven disease diagnosed by open lung biopsy, immunohistochemistry studies and/or extrapulmonary manifestations were retrospectively evaluated. Results: Small rounded, thin-walled cystic lesions were observed in the lung of all the patients. Nodules with predominantly peripheral distribution over the lung parenchyma were observed in 75% of the patients. The lesions were diffusely distributed, predominantly in the upper and middle lung fields in all of the cases, but involvement of costophrenic angles was observed in 25% of the patients. Conclusion: Comparative analysis of high-resolution computed tomography and chest radiography findings demonstrated that thinwalled cysts and small nodules cannot be satisfactorily evaluated by conventional radiography. Because of its capacity to detect and characterize lung cysts and nodules, high-resolution computed tomography increases the probability of diagnosing pulmonary Langerhans cell histiocytosis. (author)

  4. Resolution of the crystal structure of the deficient perovskite LaNiO2.5 from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Alonso, J.A.; Martinez-Lope, M.J.

    1996-01-01

    The oxygen-deficient perovskite LaNiO 2.5 has been prepared by controlled reduction of LaNiO 3 with Zr metal. The XRD pattern could be indexed in a monoclinic unit-cell with dimensions a 0 xa 0 xa 0 (a 0 : lattice parameter of the ideal cubic perovskite). The indexing of the neutron powder diffraction pattern needed a doubled cell to account for the superstructure reflections originated by the oxygen vacancy ordering and the tilting of the Ni coordination polyhedra. The structure was solved and refined from the neutron powder data. The oxygen vacancies are ordered in such a way that square planar NiO 4 and NiO 6 octahedra alternate in the ab plane along the [110] direction. Both kinds of Ni polyhedra are fairly distorted and tilted in order to optimize the La-O distances, giving rise to a highly strained structure of metastable character. In fact, the compound readily takes oxygen, above 175 C in air, to give the much more stable LaNiO 3 perovskite. (orig.)

  5. Hygroscopic behavior of lyophilized acerola pulp powder

    Directory of Open Access Journals (Sweden)

    Luciana C. Ribeiro

    2016-03-01

    Full Text Available ABSTRACT Powder products are characterized by their practicality and long life. However, fruit powders have high hygroscopicity and tend to agglomerate due to its hydrophilic nature. The isotherms of equilibrium moisture content apply to the study of dehydrated food preservation potential. Acerola is a nutritionally rich fruit, with great economic and industrial potential. The objective of this study was to analyse acerola powder adsorption isotherms obtained by lyophilization and characterize the powder obtained from lyophilized acerola pulp. Analysis of hygroscopicity, solubility and degree of caking were performed. Isotherms were represented by the mathematical models of GAB, BET, Henderson and Oswin, at temperatures of 25, 35 and 45 °C. According to the results, the obtained powder showed hygroscopicity of 5.96 g of absorbed water 100g-1 of solids, solubility of 95.08% and caking of 14.12%. The BET model showed the best fit to the adsorption isotherms of the acerola pulp powder obtained by lyophilization. The obtained isotherm was of type III, with a "J" shape. There was an inversion of the effect of temperature on the isotherms of acerola powders.

  6. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  7. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  8. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  9. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  10. Processing method for high resolution monochromator

    International Nuclear Information System (INIS)

    Kiriyama, Koji; Mitsui, Takaya

    2006-12-01

    A processing method for high resolution monochromator (HRM) has been developed at Japanese Atomic Energy Agency/Quantum Beam Science Directorate/Synchrotron Radiation Research unit at SPring-8. For manufacturing a HRM, a sophisticated slicing machine and X-ray diffractometer have been installed for shaping a crystal ingot and orienting precisely the surface of a crystal ingot, respectively. The specification of the slicing machine is following; Maximum size of a diamond blade is φ 350mm in diameter, φ 38.1mm in the spindle diameter, and 2mm in thickness. A large crystal such as an ingot with 100mm in diameter, 200mm in length can be cut. Thin crystal samples such as a wafer can be also cut using by another sample holder. Working distance of a main shaft with the direction perpendicular to working table in the machine is 350mm at maximum. Smallest resolution of the main shaft with directions of front-and-back and top-and-bottom are 0.001mm read by a digital encoder. 2mm/min can set for cutting samples in the forward direction. For orienting crystal faces relative to the blade direction adjustment, a one-circle goniometer and 2-circle segment are equipped on the working table in the machine. A rotation and a tilt of the stage can be done by manual operation. Digital encoder in a turn stage is furnished and has angle resolution of less than 0.01 degrees. In addition, a hand drill as a supporting device for detailed processing of crystal is prepared. Then, an ideal crystal face can be cut from crystal samples within an accuracy of about 0.01 degrees. By installation of these devices, a high energy resolution monochromator crystal for inelastic x-ray scattering and a beam collimator are got in hand and are expected to be used for nanotechnology studies. (author)

  11. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  12. Advances in beryllium powder consolidation simulations

    International Nuclear Information System (INIS)

    Reardon, B.J.

    1998-01-01

    A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the algorithm is used to optimize micromechanical densification modeling parameters for warm isopressed beryllium powder, HIPed copper powder and CIPed/sintered and HIPed tantalum powder. In addition to optimizing the main model parameters using the experimental data points as objective functions, the GA provides a quantitative measure of the sensitivity of the model to each parameter, estimates the mean particle size of the powder, and determines the smoothing factors for the transition between stage 1 and stage 2 densification. While the GA does not provide a sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method is reliable and reproducible in optimizing parameters given any size data set and determining the impact on the model of slight variations in each parameter

  13. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Towards high resolution polarisation analysis using double polarisation and ellipsoidal analysers

    CERN Document Server

    Martin-Y-Marero, D

    2002-01-01

    Classical polarisation analysis methods lack the combination of high resolution and high count rate necessary to cope with the demand of modern condensed-matter experiments. In this work, we present a method to achieve high resolution polarisation analysis based on a double polarisation system. Coupling this method with an ellipsoidal wavelength analyser, a high count rate can be achieved whilst delivering a resolution of around 10 mu eV. This method is ideally suited to pulsed sources, although it can be adapted to continuous sources as well. (orig.)

  15. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  16. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  17. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  18. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    International Nuclear Information System (INIS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil 5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm 2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil 5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil 5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil 5) as well as one (Nanofil 5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil 5), constant rate (compacted Nanofil 5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil 5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant

  19. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  20. Permanent magnets and its production by powder metallurgy

    Directory of Open Access Journals (Sweden)

    Enrique Herraiz Lalana

    2018-06-01

    Full Text Available In this work, the historical relationship between permanent magnets and powder metallurgy is reviewed. Powder metallurgy is a manufacturing technique based on the compaction of powders that are sintered to create a solid product. This technique was used in the production of permanent magnets for the first time in the 18th century and, nowadays, most permanent magnetic materials are manufacturing by this mean. Magnetic properties are highly dependent on the microstructure of the final product, the magnetic alignment of domains and presence of porosity, to mention a few, and powder metallurgy enables fine control of these factors.

  1. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  2. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  3. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  4. Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, Y.; Sun, Z.; Li, Y.N.; Tay, B.K.

    2006-01-01

    A new approach to synthesize carbon nanotube (CNT) powders has been achieved by using the floating catalyst method below atmospheric pressure. Scanning electron microscopy, Raman spectroscopy and high-resolution transmission electron microscopy were utilized to characterize the CNTs samples. Using ferrocene (FeC 10 H 10 ) as catalyst precursor, cyclohexane (C 6 H 12 ) as carbon source, H 2 as carrier gas and thiophene (C 4 H 4 S) as promoter, it is found that the pressure of 15 kPa, temperature of 650 deg. C and H 2 flow rate of 60 sccm would be the optimization condition for synthesis of high quality CNTs. This method is economical and easily scalable for synthesis of CNTs

  5. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  6. Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids

    NARCIS (Netherlands)

    Silva, E.; Birkenhake, M.; Scholten, E.; Sagis, L.M.C.; Linden, van der E.

    2013-01-01

    Incorporating high volume fractions of broccoli powder in starch noodle dough has a major effect on its shear modulus, as a result of significant swelling of the broccoli particles. Several hydrocolloids with distinct water binding capacity (locust bean gum (LBG), guar gum, konjac glucomannan (KG),

  7. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  8. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  9. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  10. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  11. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  12. Preparation of zinc ferrite nano powders by high energy wet-milling method and investigation of Crystallites size variation during this process

    International Nuclear Information System (INIS)

    Masoudi, H.; Aftabi, A.; Mozafari, M.; Amighian, J.

    2007-01-01

    In this research work ZnFe 2 O 4 nano powders were prepared by high-energy wet-milling process, using metallic Fe and Zn powders. The process was investigated by XRD technique. 10% of the zinc ferrite was formed after 10 h milling. The as-milled sample was annealed at 500, 550 and 600 d egree C . Ultimately a single sample was obtained at 600 d egree C . Using sherrer's formula, the mean crystallite size of the as-milled and annealed powders were calculated. These were in the range of 17.9 to 20.4 nm.

  13. Dielectric properties of tantalum powder with broccoli-like morphology

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Masahiko [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Suzuki, Ryosuke O [Department of Energy Science and Technology, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2005-04-19

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta{sub 2}O{sub 5} in molten CaCl{sub 2}. The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal.

  14. Dielectric properties of tantalum powder with broccoli-like morphology

    International Nuclear Information System (INIS)

    Baba, Masahiko; Suzuki, Ryosuke O.

    2005-01-01

    Metallic tantalum powder with broccoli-like morphology, consisting of spherical fine particles and of long rods or thin plates, was prepared in a hundred gram scale by calcium reduction of Ta 2 O 5 in molten CaCl 2 . The properties as electrolytic capacitor were evaluated in comparison with commercial powder obtained by Na reduction and with powder consisting of only fine particles obtained by Ca reduction. The capacitance was larger than that of conventional powder with the same surface area, because the broccoli-like powder showed a strong resistance against shrinkage during high temperature annealing due to the framework of branches. The powder with new broccoli-like morphology can circumvent the conventional treatments for grain size control and gas removal

  15. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability.

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-07

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m -1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  16. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  17. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  18. Development of a high-resolution cavity-beam position monitor

    Science.gov (United States)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  19. Better powder diffractometers. II—Optimal choice of U, V and W

    Science.gov (United States)

    Cussen, L. D.

    2007-12-01

    This article presents a technique for optimising constant wavelength (CW) neutron powder diffractometers (NPDs) using conventional nonlinear least squares methods. This is believed to be the first such design optimisation for a neutron spectrometer. The validity of this approach and discussion should extend beyond the Gaussian element approximation used and also to instruments using different radiation, such as X-rays. This approach could later be extended to include vertical and perhaps horizontal focusing monochromators and probably other types of instruments such as three axis spectrometers. It is hoped that this approach will help in comparisons of CW and time-of-flight (TOF) instruments. Recent work showed that many different beam element combinations can give identical resolution on CW NPDs and presented a procedure to find these combinations and also find an "optimum" choice of detector collimation. Those results enable the previous redundancy in the description of instrument performance to be removed and permit a least squares optimisation of design. New inputs are needed and are identified as the sample plane spacing ( dS) of interest in the measurement. The optimisation requires a "quality factor", QPD, chosen here to be minimising the worst Bragg peak separation ability over some measurement range ( dS) while maintaining intensity. Any other QPD desired could be substituted. It is argued that high resolution and high intensity powder diffractometers (HRPDs and HIPDs) should have similar designs adjusted by a single scaling factor. Simulated comparisons are described suggesting significant improvements in performance for CW HIPDs. Optimisation with unchanged wavelength suggests improvements by factors of about 2 for HRPDs and 25 for HIPDs. A recently quantified design trade-off between the maximum line intensity possible and the degree of variation of angular resolution over the scattering angle range leads to efficiency gains at short wavelengths. This

  20. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  1. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  2. Retraction Note to: Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    Science.gov (United States)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2018-05-01

    The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).

  3. A new method for high-resolution characterization of hydraulic conductivity

    Science.gov (United States)

    Liu, Gaisheng; Butler, J.J.; Bohling, Geoffrey C.; Reboulet, Ed; Knobbe, Steve; Hyndman, D.W.

    2009-01-01

    A new probe has been developed for high-resolution characterization of hydraulic conductivity (K) in shallow unconsolidated formations. The probe was recently applied at the Macrodispersion Experiment (MADE) site in Mississippi where K was rapidly characterized at a resolution as fine as 0.015 m, which has not previously been possible. Eleven profiles were obtained with K varying up to 7 orders of magnitude in individual profiles. Currently, high-resolution (0.015-m) profiling has an upper K limit of 10 m/d; lower-resolution (???0.4-m) mode is used in more permeable zones pending modifications. The probe presents a new means to help address unresolved issues of solute transport in heterogeneous systems. Copyright 2009 by the American Geophysical Union.

  4. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  5. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  6. Change of lattice parameters in highly disperse nickel powders

    International Nuclear Information System (INIS)

    Gamarnik, M.Ya.

    1991-01-01

    A monotonous increase of the lattice parameters with the decrease of particle size is established by an X-ray study for highly disperse nickel powders in the interval of sizes from 4.9 to 35 nm. The relative changes of lattice parameters are from 4.9x10 -3 ±5x10 -4 up to 3x10 -4 ±1x10 -4 . The effect is explained by the decrease of the intracrystalline pressure in small particles stipulated by electrostatic interaction of the elements of crystal charge lattice. A calculated dependence of the lattice parameters which agrees with experimental curve is obtained in the framework of the model suggested by the charge lattice represented by an ion-electron lattice of positive ions and collectivized electrons with regard of the lattice of atomic neutral cores (the contribution of the latter is proved very small as found from the calculations). (orig.)

  7. New automated pellet/powder assay system

    International Nuclear Information System (INIS)

    Olsen, R.N.

    1975-01-01

    This paper discusses an automated, high precision, pellet/ powder assay system. The system is an active assay system using a small isotopic neutron source and a coincidence detection system. The handling of the pellet powder samples has been automated and a programmable calculator has been integrated into the system to provide control and data analysis. The versatile system can assay uranium or plutonium in either active or passive modes

  8. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  9. High resolution radar satellite imagery analysis for safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Christian; Eineder, Michael [German Aerospace Center, Remote Sensing Technology Institute, Department of SAR Signal Processing, Wessling, (Germany); Rezniczek, Arnold [UBA GmbH, Herzogenrath, (Germany); Niemeyer, Irmgard [Forschungszentrum Juelich, Institue of Energy and Climate Research, IEK-6: Nuclear Waste Management and Reactor Safety, Juelich, (Germany)

    2011-12-15

    For monitoring nuclear sites, the use of Synthetic Aperture Radar (SAR) imagery shows essential promises. Unlike optical remote sensing instruments, radar sensors operate under almost all weather conditions and independently of the sunlight, i.e. time of the day. Such technical specifications are required both for continuous and for ad-hoc, timed surveillance tasks. With Cosmo-Skymed, TerraSARX and Radarsat-2, high-resolution SAR imagery with a spatial resolution up to 1m has recently become available. Our work therefore aims to investigate the potential of high-resolution TerraSAR data for nuclear monitoring. This paper focuses on exploiting amplitude of a single acquisition, assessing amplitude changes and phase differences between two acquisitions, and PS-InSAR processing of an image stack.

  10. An investigation on fuel meats extruded with atomized U-10wt% Mo powder for uranium high-density dispersion fuel

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Don-Bae; Sohn, Dong-Seong

    1997-01-01

    The RERTR program has been making an effort to develop dispersion fuels with uranium densities of 8 to 9 g U/cm3 for research and test reactors. Using atomized U-10wt%Mo powder, fuel meats have been fabricated successfully up to 55 volume % of fuel powder. The uranium density of an extruded meat with a 55 volume % of fuel powder was obtained to be 7.7 g/cm3. A relatively high porosity of 7.3% was formed due to cracking of particles, presumably induced by the impingement among agglomerated particles. Tensile test results indicated that the strength of fuel meats with 55% volume fraction decreased some and a little of ductility was maintained. Examination on the fracture surface revealed that some U-10%Mo particles appeared to be broken by the tensile force in brittle rupture mode. The increase of broken particles in high fuel fraction is considered to be induced mainly by the impingement among agglomerated particles. Uranium loading density is assumed to be improved through the development of the better homogeneous dispersion technology. (author)

  11. Effects of display resolution and size on primary diagnosis of chest images using a high-resolution electronic work station

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Cooperstein, L.A.; Herron, J.; Good, W.F.; Good, B.; Gur, D.; Maitz, G.; Tabor, E.; Hoy, R.J.

    1987-01-01

    To evaluate the acceptability of electronically displayed planar images, the authors have a high-resolution work station. This system utilizes a high-resolution film digitizer (100-micro resolution) interfaced to a mainframe computer and two high-resolution (2,048 X 2,048) display devices (Azuray). In a clinically simulated multiobserver blind study (19 cases and five observers) a prodetermined series of reading sessions is stored on magnetic disk and is transferred to the displays while the preceding set of images is being reviewed. Images can be linearly processed on the fly into 2,000 X 2,000 full resolution, 1,000 X 1,000 minified display, or 1,000 X 1,000 interpolated for full-size display. Results of the study indicate that radiologists accept but do not like significant minification (more than X2), and they rate 2,000 X 2,000 images as having better diagnostic quality than 1,000 X 1,000 images

  12. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  13. Analysis strategies for high-resolution UHF-fMRI data.

    Science.gov (United States)

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  15. Measurement of loose powder density

    International Nuclear Information System (INIS)

    Akhtar, S.; Ali, A.; Haider, A.; Farooque, M.

    2011-01-01

    Powder metallurgy is a conventional technique for making engineering articles from powders. Main objective is to produce final products with the highest possible uniform density, which depends on the initial loose powder characteristics. Producing, handling, characterizing and compacting materials in loose powder form are part of the manufacturing processes. Density of loose metallic or ceramic powder is an important parameter for die design. Loose powder density is required for calculating the exact mass of powder to fill the die cavity for producing intended green density of the powder compact. To fulfill this requirement of powder metallurgical processing, a loose powder density meter as per ASTM standards is designed and fabricated for measurement of density. The density of free flowing metallic powders can be determined using Hall flow meter funnel and density cup of 25 cm/sup 3/ volume. Density of metal powders like cobalt, manganese, spherical bronze and pure iron is measured and results are obtained with 99.9% accuracy. (author)

  16. Ring artifact correction for high-resolution micro CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-01-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. (note)

  17. Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study

    Science.gov (United States)

    Tandon, Rajiv; Madan, Deepak

    The use of powder metallurgy offers a potential processing route based on tailored compositions and unique microstructures to achieve high performance in magnesium alloys. This paper highlights recent advances in the production, qualification, and characterization of gas atomized AZ91E, WE43 and Elektron21 alloy powders. Transmission electron microscopy (TEM) was used to understand the bulk and surface structure of the atomized powder. The potential for using these magnesium alloy powders for emerging applications involves establishing compatibility with viable consolidation processes such as cold spray, laser assisted deposition, forging and extrusion. This study summarizes the preliminary results for various ongoing investigations using WE43 powder as an example. Results show that powder metallurgy processed WE43 results in comparable properties to those obtained from cast and wrought and offers potential for improvement.

  18. Digital approach to high-resolution pulse processing for semiconductor detectors

    International Nuclear Information System (INIS)

    Georgiev, A.; Buchner, A.; Gast, W.; Lieder, R.M.

    1992-01-01

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs

  19. Digital approach to high-resolution pulse processing for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, A [Sofia Univ. (Bulgaria); Buchner, A [Forschungszentrum Rossendorf (Germany); Gast, W; Lieder, R M [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Stein, J [Target System Electronic GmbH, Solingen, (Germany)

    1992-08-01

    A new design philosophy for processing signals produced by high resolution, large volume semiconductor detectors is described. These detectors, to be used in the next generation of spectrometer arrays for nuclear research (i.e. EUROBALL, etc.), present a set of problems like resolution degradation due to charge trapping and ballistic defect effects, low resolution at a high count rate, poor long term stability, etc. To solve these problems, a new design approach has been developed, including reconstruction of the event charge, providing a pure triangular residual function, and suppressing low frequency noise. 5 refs., 4 figs.

  20. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    Science.gov (United States)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS

  1. The effect of reduced oxygen content powder on the impact toughness of 316 steel powder joined to 316 steel by low temperature HIP

    International Nuclear Information System (INIS)

    Lind, Anders; Sundstroem, Johan; Peacock, Alan

    2005-01-01

    During the manufacture of the blanket modules, 316L steel powder is simultaneously consolidated and joined to tubes and blocks of 316L materials by hot isostatic pressing (HIP). The high processing temperature can detrimentally increase the grain size of the water-cooling tubes in the structure and the blocks reducing their strength. It is well known [L. Arnberg, A. Karlsson, Influence of powder surface oxidation on some properties of a HIPed martensitic chromium steel, Int. J. Powder Metall. 24 (2) (1988) 107-112] that surface oxides on the powder particles negatively influence the impact toughness of material and joints consolidated in this way. At a high HIP temperature, the oxides are at least partly transformed, thereby improving the impact toughness [L. Nyborg, I. Olefjord, Surface analysis of PM martensitic steel before and after consolidation. Part 2. Surface analysis of compacted material, Powder Metall. 31 (1) (1988) 40-44]. In order to get acceptable mechanical properties of materials produced at a low HIP temperature, the oxygen content on the powder surfaces needs to be reduced. In order to study the effect of reducing the powder oxygen content, it was reduced and the results were compared to those of specimens with ordinary oxygen content. The effect on the impact toughness and the tensile strength of low temperature (1020 and 1060 deg. C) HIP joints between steel blocks and powder consolidated material with low and ordinary oxygen content was measured

  2. Applying high-resolution melting (HRM) technology to identify five commonly used Artemisia species.

    Science.gov (United States)

    Song, Ming; Li, Jingjian; Xiong, Chao; Liu, Hexia; Liang, Junsong

    2016-10-04

    Many members of the genus Artemisia are important for medicinal purposes with multiple pharmacological properties. Often, these herbal plants sold on the markets are in processed forms so it is difficult to authenticate. Routine testing and identification of these herbal materials should be performed to ensure that the raw materials used in pharmaceutical products are suitable for their intended use. In this study, five commonly used Artemisia species included Artemisia argyi, Artemisia annua, Artemisia lavandulaefolia, Artemisia indica, and Artemisia atrovirens were analyzed using high resolution melting (HRM) analysis based on the internal transcribed spacer 2 (ITS2) sequences. The melting profiles of the ITS2 amplicons of the five closely related herbal species are clearly separated so that they can be differentiated by HRM method. The method was further applied to authenticate commercial products in powdered. HRM curves of all the commercial samples tested are similar to the botanical species as labeled. These congeneric medicinal products were also clearly separated using the neighbor-joining (NJ) tree. Therefore, HRM method could provide an efficient and reliable authentication system to distinguish these commonly used Artemisia herbal products on the markets and offer a technical reference for medicines quality control in the drug supply chain.

  3. Industrial powder metallurgy processing for production of high field Nb3Sn

    International Nuclear Information System (INIS)

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  4. Fundamentals of powder metallurgy

    International Nuclear Information System (INIS)

    Khan, I.H.; Qureshi, K.A.; Minhas, J.I.

    1988-01-01

    This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)

  5. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  6. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  7. Method development for Lawsone estimation in Trichup herbal hair powder by high-performance thin layer chromatography

    Directory of Open Access Journals (Sweden)

    Maunang M Patel

    2013-01-01

    Full Text Available A simple, specific, accurate, precise and robust high-performance thin-layer chromatographic method has been developed and validated for estimation of Lawsone in Trichup herbal hair powder (coded as a THHP, polyherbal formulation. The chromatographic development was carried out on aluminum plates pre-coated with silica gel 60F 254 and good resolution was achieved with Toluene: Ethyl acetate: Glacial acetic acid (8:1:1 v/v/v as mobile phase. Lawsone detection was carried out densitometrically at 277 nm and obtained retardation factor value was 0.46 ± 0.02. The method was validated with respect to specificity, linearity, accuracy, precision and robustness. The calibration curve was achieved to be linear over a range of 5-60 μg/ml and regression coefficient was obtained 0.998. Accuracy of chromatographic method was evaluated by standard addition method; recovery was obtained 99.25 ± 0.61% . The peak purity of Lawsone was achieved 0.999 r. Relative standard deviation for intraday and inter-day precision was 0.37-0.56% and 0.42-0.55%, respectively. The limit of detection and limit of quantification of the Lawsone were found to be 1.08 μg/m land 3.28 μg/ml, respectively. This result shows that the method was well validated. In the present study, the Lawsone content was found 0.322 ± 0.014% in THHP. This study reveals that the proposed high performance thin layer chromatography method is accurate, fast and cost- effective for routine estimation of Lawsone in polyherbal formulation.

  8. Advances in data reduction of high-pressure x-ray powder diffraction data from two-dimensional detectors: a case study of schafarzikite (FeSb{sub 2}O{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichsen, B [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Dinnebier, R E [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Rajiv, P [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Hanfland, M [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble Cedex (France); Grzechnik, A [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Technologia, Universidad del Pais Vasco, Apartado 644, E-48080 Bilbao (Spain); Jansen, M [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2006-06-28

    Methods have been developed to facilitate the data analysis of multiple two-dimensional powder diffraction images. These include, among others, automatic detection and calibration of Debye-Scherrer ellipses using pattern recognition techniques, and signal filtering employing established statistical procedures like fractile statistics. All algorithms are implemented in the freely available program package Powder3D developed for the evaluation and graphical presentation of large powder diffraction data sets. As a case study, we report the pressure dependence of the crystal structure of iron antimony oxide FeSb{sub 2}O{sub 4} (p{<=}21 GPa, T = 298 K) using high-resolution angle dispersive x-ray powder diffraction. FeSb{sub 2}O{sub 4} shows two phase transitions in the measured pressure range. The crystal structures of all modifications consist of frameworks of Fe{sup 2+}O{sub 6} octahedra and irregular Sb{sup 3+}O{sub 4} polyhedra. At ambient conditions, FeSb{sub 2}O{sub 4} crystallizes in space group P4{sub 2}/mbc (phase I). Between p = 3.2 GPa and 4.1 GPa it exhibits a displacive second order phase transition to a structure of space group P 2{sub 1}/c (phase II, a = 5.7792(4) A, b = 8.3134(9) A, c = 8.4545(11) A, {beta} = 91.879(10){sup 0}, at p = 4.2 GPa). A second phase transition occurs between p = 6.4 GPa and 7.4 GPa to a structure of space group P4{sub 2}/m (phase III, a = 7.8498(4) A, c = 5.7452(5) A, at p = 10.5 GPa). A nonlinear compression behaviour over the entire pressure range is observed, which can be described by three Vinet equations in the ranges from p = 0.52 GPa to p 3.12 GPa, p = 4.2 GPa to p = 6.3 GPa and from p = 7.5 GPa to p = 19.8 GPa. The extrapolated bulk moduli of the high-pressure phases were determined to K{sub 0} = 49(2) GPa for phase I, K{sub 0} = 27(3) GPa for phase II and K{sub 0} = 45(2) GPa for phase III. The crystal structures of all phases are refined against x-ray powder data measured at several pressures between p = 0.52 GPa

  9. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa

    Directory of Open Access Journals (Sweden)

    Jana Šic Žlabur

    2017-12-01

    Full Text Available The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant capacity, irrespective of the extraction technique used. Apple juice samples with added chokeberry powder treated with high intensity ultrasound had significantly higher content of all analyzed bioactive compounds. The application of high intensity ultrasound significantly reduced the extraction time of the plant material. A positive correlation between vitamin C content, total phenols, flavonoids and anthocyanins content and antioxidant capacity was determined in juice samples with added chokeberry powder treated with high intensity ultrasound.

  10. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa).

    Science.gov (United States)

    Šic Žlabur, Jana; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Bilić, Daniela Patricia; Voća, Sandra

    2017-12-05

    The purpose of this study was to determine the possibility of using chokeberry powder as a supplement in apple juice to increase the nutritional value of the final product with the aim of developing a new functional food product. Also, to determine the influence of ultrasound assisted extraction on the bioactive compounds content, nutritional composition and antioxidant potential of apple juice with added chokeberry powder. The juice samples with added chokeberry powder had higher antioxidant capacity, irrespective of the extraction technique used. Apple juice samples with added chokeberry powder treated with high intensity ultrasound had significantly higher content of all analyzed bioactive compounds. The application of high intensity ultrasound significantly reduced the extraction time of the plant material. A positive correlation between vitamin C content, total phenols, flavonoids and anthocyanins content and antioxidant capacity was determined in juice samples with added chokeberry powder treated with high intensity ultrasound.

  11. Exploring Oven-drying Technique in Producing Pineapple Powder

    Directory of Open Access Journals (Sweden)

    Cyril John A. Domingo

    2017-11-01

    Full Text Available Pineapple puree and juice of 11 to 12 °Brix were used to obtain pineapple powder using oven-drying technique. Addition of maltodextrin in treatments 2 and 4 yielded good quality powder, however addition of sugar and maltodextrin in treatments 1 and 3 resulted to sticky product which was processed to pineapple leather. Treatment 2 composed of pineapple puree and maltodextrin resulted to significantly higher powder recovery compared with treatment 4 which composed of pineapple juice and maltodextrin. The solubility of pineapple powder improved as maltodextrin concentration is increased from 40.00 % to 60.00 %.Addition of maltodextrin also reduced stickiness of the final product. An instant pineapple powder of 5.47 and 5.33 % moisture content could be produced by oven-drying.This level of moisture content will prohibit bacterial growth in the pineapple powder but may have mold or yeast growth with increase storage period at environments with high humidity. Molds were observed on the 17th day at 89.00 % relative humidity as exhibited by the moisture sorption isotherm data. This suggests that appropriate packaging with moisture barrier is recommended for pineapple powder. This study showedthat by using appropriate ratio of juice, puree, and maltodextrin and appropriate oven drying conditions, a good oven-dried pineapple powder could be obtained.

  12. One-dimensional curved wire chamber for powder x-ray crystallography

    International Nuclear Information System (INIS)

    Ortendahl, D.; Perez-Mendez, V.; Stoker, J.; Beyermann, W.

    1978-01-01

    A xenon filled single anode wire chamber with delay line readout has been constructed for use in powder x-ray crystallography using 8 to 20 keV x-rays. The entire chamber including the anode wire and the delay line which forms part of the cathode plane is a section of a circular arc whose center is the powder specimen. The anode wire--38 μm gold-plated tungsten--is suspended in a circular arc by the interaction of a current flowing through it and magnetic field provided by two permanent magnets, above and below the wire, extending along the active length of the chamber. When filled with xenon to 3 atmospheres the chamber has uniform sensitivity in excess of 80% at 8 keV and a spatial resolution better than 0.3 mm

  13. Preparation of high-purity ZrSiO4 powder using sol-gel processing and mechanical properties of the sintered body

    International Nuclear Information System (INIS)

    Mori, T.; Yamamura, H.; Kobayashi, H.; Mitamura, T.

    1992-01-01

    This paper reports that effects of the concentration of ZrOCl 2 , calcination temperature, heating rate, and the size of secondary particles after hydrolysis on the preparation of high-purity ZrSiO 4 fine powders from ZrOCl 2 :8H 2 O (0.2M to 1.7M) and equimolar colloidal SiO 2 using Sol--gel processing have been studied. Mechanical properties of the sintered ZrSiO 4 from the high-purity ZrSiO 4 powders have been also investigated. Single-phase ZrSiO 4 fine powders were synthesized at 1300 degrees C by forming ZrSiO 4 precursors having a Zr---O---Si bond, which was found in all the hydrolysis solutions, and by controlling a secondary particle size after hydrolysis. The conversion rate of ZrSiO 4 precursor gels to ZrSiO 4 powders from concentrations other than 0.4M ZrOCl 2 ·8H 2 O increased when the heating rate was high, whereupon the crystallization of unreacted ZrO 2 and SiO 2 was depressed and the propagation and increase of ZrSiO 4 nuclei in the gels were accelerated. The density of the ZrSiO 4 sintered bodies, manufactured by firing the ZrSiO 4 compacts at 1600 degrees to 1700 degrees C, was more than 95% of the theoretical density, and the grain size ranged around 2 to 4 μm. The mechanical strength was 320 MPa (room temperature to 1400 degrees C), and the thermal shock resistance was superior to that of mullite and alumina, with fairly high stability at higher temperatures

  14. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    García, C. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain); Romero, A. [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Herranz, G., E-mail: gemma.herranz@uclm.es [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Blanco, Y.; Martin, F. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain)

    2016-11-15

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructures of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.

  15. The development of high resolution silicon x-ray microcalorimeters

    Science.gov (United States)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  16. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  17. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  18. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  19. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  20. Effect of Powder-Suspended Dielectric on the EDM Characteristics of Inconel 625

    Science.gov (United States)

    Talla, Gangadharudu; Gangopadhyay, S.; Biswas, C. K.

    2016-02-01

    The current work attempts to establish the criteria for powder material selection by investigating the influence of various powder-suspended dielectrics and machining parameters on various EDM characteristics of Inconel 625 (a nickel-based super alloy) which is nowadays regularly used in aerospace, chemical, and marine industries. The powders include aluminum (Al), graphite, and silicon (Si) that have significant variation in their thermo-physical characteristics. Results showed that powder properties like electrical conductivity, thermal conductivity, density, and hardness play a significant role in changing the machining performance and the quality of the machined surface. Among the three powders, highest material removal rate was observed for graphite powder due to its high electrical and thermal conductivities. Best surface finish and least radial overcut (ROC) were attained using Si powder. Maximum microhardness was found for Si due to its low thermal conductivity and high hardness. It is followed by graphite and aluminum powders. Addition of powder to the dielectric has increased the crater diameter due to expansion of plasma channel. Powder-mixed EDM (PMEDM) was also effective in lowering the density of surface cracks with least number of cracks obtained with graphite powder. X-ray diffraction analysis indicated possible formation of metal carbides along with grain growth phenomenon of Inconel 625 after PMEDM.

  1. A new omni-directional multi-camera system for high resolution surveillance

    Science.gov (United States)

    Cogal, Omer; Akin, Abdulkadir; Seyid, Kerem; Popovic, Vladan; Schmid, Alexandre; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2014-05-01

    Omni-directional high resolution surveillance has a wide application range in defense and security fields. Early systems used for this purpose are based on parabolic mirror or fisheye lens where distortion due to the nature of the optical elements cannot be avoided. Moreover, in such systems, the image resolution is limited to a single image sensor's image resolution. Recently, the Panoptic camera approach that mimics the eyes of flying insects using multiple imagers has been presented. This approach features a novel solution for constructing a spherically arranged wide FOV plenoptic imaging system where the omni-directional image quality is limited by low-end sensors. In this paper, an overview of current Panoptic camera designs is provided. New results for a very-high resolution visible spectrum imaging and recording system inspired from the Panoptic approach are presented. The GigaEye-1 system, with 44 single cameras and 22 FPGAs, is capable of recording omni-directional video in a 360°×100° FOV at 9.5 fps with a resolution over (17,700×4,650) pixels (82.3MP). Real-time video capturing capability is also verified at 30 fps for a resolution over (9,000×2,400) pixels (21.6MP). The next generation system with significantly higher resolution and real-time processing capacity, called GigaEye-2, is currently under development. The important capacity of GigaEye-1 opens the door to various post-processing techniques in surveillance domain such as large perimeter object tracking, very-high resolution depth map estimation and high dynamicrange imaging which are beyond standard stitching and panorama generation methods.

  2. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  3. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  4. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  5. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  6. Synthesis of ultrafine alumina powders using egg white as complexing medium

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K. A.; Chinelatto, A.S.A.; Chinelatto, A.L.

    2011-01-01

    Synthesis of alumina powders through chemical methods has been attracting much attention of researchers in the past few years, due to the ability to produce powders in nanometric scale with high degree of purity. In this work, there were synthesized alumina powders through a chemical route, using egg white as a complexing medium and aluminium nitrate as the source of Al 3+ cations. Egg white contains ovalbumin, a protein which acts effectively on the isolation of aluminium cations during the mixing process, enabling the formation of ultrafine alumina powders in a relatively economic and environmentally friendly way. The powders obtained by calcinations of the precursor resin were characterized by X-ray diffraction, specific surface area measurements, infrared spectroscopy and scanning electron microscopy. It was observed that the egg white, present at the reaction medium, allowed obtaining transition alumina powders, with high degree of purity. (author)

  7. Study of nuclear fuel powders forming by axial compaction

    International Nuclear Information System (INIS)

    Fourcade, J.

    2002-12-01

    Nuclear fuel powders forming, although perfectly dominated, fail to make compacts without density gradients. Density heterogeneities induce diametric deformations during firing which force manufacturers to adjust shape with a high cost machining stage. Manufacturing process improvement is a major project to obtain perfectly shaped pellets and reduce their cost. One way of investigation of this project is the study of powders compaction mechanisms to understand and improve their behaviour. The goal of this study is to identify the main mechanisms linked with powder properties that act on pressing. An empirical model is developed to predict pellet deformations from a single compaction test. This model has to link powder properties with their compaction behaviour. Then, compaction tests identify the main mechanisms whereas a contact dynamic program is used to explain them. These works, done to improve the understanding in powders behaviour, focus on powders agglomeration state and macroscopic particles arrangement during the die filling stage. Actually, for granulated powders, granules cohesion act on the powder bed behaviour under pressure. The first particles arrangement is responsible for the first transfer directions into the powder and so for its transfer homogeneity and isotropy. As a consequence, the knowledge of all the macroscopic powder properties is essential to understand and improve the manufacturing process. Moreover, tests on UO 2 powders have shown that it is better to use granulated powders with spherical granules, short size distribution and granules cohesion according with compaction pressure to improve compact homogeneity of densification. (author)

  8. The refractive-index correction in powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.; Parrish, W.; Bellotto, M.; Lim, G.S.

    1988-01-01

    Throughout the history of powder diffraction practice there has been uncertainty about whether or not a refractive-index correction should be made to Bragg's law. High-precision Bragg-angle measurements have been performed with synchrotron radiation on SRM-640 silicon powders at glancing angles; it is found that little or no correction is necessary for the usual 2θ angle range. (orig.)

  9. Characterization of powdered fish heads for bone graft biomaterial applications.

    Science.gov (United States)

    Oteyaka, Mustafa Ozgür; Unal, Hasan Hüseyin; Bilici, Namık; Taşçı, Eda

    2013-01-01

    The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications. Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 µm) and Powder B (fine, d50=19.1 µm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS). The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively. The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.

  10. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  11. Acemetacin cocrystal structures by powder X-ray diffraction

    Science.gov (United States)

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  12. Acemetacin cocrystal structures by powder X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Geetha Bolla

    2017-05-01

    Full Text Available Cocrystals of acemetacin drug (ACM with nicotinamide (NAM, p-aminobenzoic acid (PABA, valerolactam (VLM and 2-pyridone (2HP were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R32(9R22(8R32(9 with three different syn amides (VLM, 2HP and caprolactam. The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I or syn (type II. ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O...H, N...H, Cl...H and C...H interactions. The physicochemical properties of these cocrystals are under study.

  13. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  14. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  15. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  16. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  17. Detection of Type A Trichothecene Di-Glucosides Produced in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hitoshi Nagashima

    2013-03-01

    Full Text Available The existence of di-glucosylated derivative of T-2 toxin in plant (corn powder was confirmed for the first time in addition to that of HT-2 toxin. These masked mycotoxins (mycotoxin glucosides were identified as T-2 toxin-di-glucoside (T2GlcGlc and HT-2 toxin-di-glucoside (HT2GlcGlc based on accurate mass measurements of characteristic ions and fragmentation patterns using high-resolution liquid chromatography-Orbitrap mass spectrometric (LC-Orbitrap MS analysis. Although the absolute structure of T2GlcGlc was not clarified, two glucose molecules were suggested to be conjugated at 3-OH position in tandem when considering the structure of T-2 toxin. On the other hand, the specification of the structure seems to be more complicated in the case of HT2GlcGlc, since HT-2 toxin has two possible positions (at 3-OH and 4-OH to be glusocylated. In addition, 15-monoacetoxyscirpenol-glucoside (MASGlc was also detected in the identical sample.

  18. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  19. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  20. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...